COMPOSITION OF ORDINARY GENERATING FUNCTIONS

Vladimir Kruchinin
Tomsk State University
of Control Systems and Radioelectronics
Tomsk
Russion Federation
kru@ie.tusur.ru

Abstract

A solution is proposed for the problem of composition of ordinary generating functions. A new class of functions that provides a composition of ordinary generating functions is introduced; main theorems are presented; compositae are written for polynomials, trigonometric and hyperbolic functions, exponential and log functions. It is shown that the composition holds true for many integer sequences.

Abstract A solution is proposed for the problem of composition of ordinary generating functions. A new class of functions that provides a composition of ordinary generating functions is introduced; main theorems are presented; compositae are written for polynomials, trigonometric and hyperbolic functions, exponential and log functions. It is shown that the composition holds true for many integer sequences

1 Introduction

Generating functions are an efficient tool of solving mathematical problems. Given the ordinary generating functions $F(x)=\sum_{n \geqslant 1} f(n) x^{n}$ and $R(x)=\sum_{n \geqslant 0} r(n) x^{n}$, the operation of composition of generating functions $A(x)=R(F(x))$ is defined correctly. [3, 1, 6, 2]. However, coefficients of the composition of generating functions are difficult to find. Stanley [3] came close to the solution of the problem and proposed a formula for the composition of exponential generating functions based on ordered partitions of a finite set. Let us show that the basis for the composition of ordinary generating functions is ordered partitions of a positive integer n and put forward basic formulae for the coefficients of the composition of ordinary generating functions. For this purpose, we introduce several definitions.

Definition 1. An ordinary generating function $F(x)$ is a series that belongs to the ring of formal power series in one variable $K[[x]]$:

$$
F(x)=\sum_{n \geq 0} f(n) x^{n}
$$

where $f(n): P \rightarrow K, P$ is a set of nonnegative numbers; K is a commutative field.
Further we consider only ordinary generating functions. The known generating functions are denoted as $F(x), R(x), G(x)$, and the desired generating function as $A(x)$.

Definition 2. An ordered partition (composition) of a positive integer n is an ordered sequence of positive integers λ_{i} such that

$$
\sum_{i=1}^{k} \lambda_{i}=n
$$

where $\lambda_{i} \geq 1$ and $k=\overline{1, n}$ are parts of the ordered partition.
C_{n} is a set of all ordered partitions of n.
$\pi_{k} \in C_{n}$ is an ordered partition of C_{n} with k parts.
The ordered partitions of n have been much studied [4, 5].

2 Compositae and their properties

Let there be functions $f(n)$ and $r(n)$ and their generating functions $F(x)=\sum_{n \geqslant 1} f(n) x^{n}$, $R(x)=\sum_{n \geqslant 0} r(n) x^{n}$. Then, calculating the composition of the generating functions $A(x)=$ $R(F(x))$ requires [2]

$$
\begin{equation*}
[F(x)]^{k}=\sum_{n \geq k} \sum_{\substack{\lambda_{i}>0 \\ \lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}=n}} f\left(\lambda_{1}\right) f\left(\lambda_{2}\right) \ldots f\left(\lambda_{k}\right) x^{n} \tag{1}
\end{equation*}
$$

Hence it follows that for the function $a(n)$ of the composition of generating functions with $n>0$, the formula

$$
\begin{gather*}
a(0)=r(0) \\
a(n)=\sum_{k=1}^{n}\left[\sum_{\substack{\lambda_{i}>0 \\
\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}=n}} f\left(\lambda_{1}\right) f\left(\lambda_{2}\right) \ldots f\left(\lambda_{k}\right)\right] r(k) \tag{2}
\end{gather*}
$$

holds true. Further the composition of generating functions is written implying that $a(0)=$ $r(0)$.

Remark 3. It should be noted that the summation in formulae (1),(2) is over all ordered partitions of n that have exactly k parts, because $\left\{\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}=n\right\}, \lambda_{i}>0, i=\overline{1, k}$ (further we use the reduction $\pi_{k} \in C_{n}$).

Thus, the ordered partitions of n are the basis for calculation of the composition of generating functions.

Let us consider the following example. Assume that $f(0)=0, f(n)=1$ for all $n>0$. This function is defined by the generating function $F(x)=\frac{x}{1-x}$. Then, the expression

$$
\sum_{\pi_{k} \in C_{n}} f\left(\lambda_{1}\right) f\left(\lambda_{2}\right) \ldots f\left(\lambda_{k}\right)
$$

gives the number of ordered partitions of n with exactly k parts; this number is equal to $\binom{n-1}{k-1}$ [4]. Thus,

$$
\sum_{\pi_{k} \in C_{n}} f\left(\lambda_{1}\right) f\left(\lambda_{2}\right) \ldots f\left(\lambda_{k}\right)=\binom{n-1}{k-1}
$$

Hence it follows that the formula valid for any generating function $R(x)=\sum_{n \geqslant 0} r(n) x^{n}$ and $A(x)=R\left(\frac{x}{1-x}\right)$ is

$$
a(n)=\sum_{k=1}^{n}\binom{n-1}{k-1} r(k) .
$$

Example 4. For $R(x)=\frac{x}{1-x}$, we have the composition $A(x)=\frac{x}{1-2 x}$ and

$$
a(n)=\sum_{k=1}^{n}\binom{n-1}{k-1}=2^{n-1} .
$$

Thus, we calculate the total number of ordered partitions of n.
Example 5. We have $R(x)=e^{x}$, then for the composition $A(x)=e^{\frac{x}{1-x}}$ we can write

$$
a(n)=\sum_{k=1}^{n}\binom{n-1}{k-1} \frac{1}{k!}
$$

(see A000262 formula Herbert S. Wilf).
Example 6. We have $R(x)=\frac{x}{1-x-x^{2}}$, then for the composition $A(x)=R\left(\frac{x}{1-x}\right)$ we can write

$$
a(n)=\sum_{k=1}^{n}\binom{n-1}{k-1} F(k),
$$

where $F(k)$ is the Fibonacci numbers (see A001519, formula Benoit Cloitre).
Definition 7. A composita of the generating function $F(x)=\sum_{n>0} f(n) x^{n}$ is the function

$$
\begin{equation*}
F^{\Delta}(n, k)=\sum_{\pi_{k} \in C_{n}} f\left(\lambda_{1}\right) f\left(\lambda_{2}\right) \ldots f\left(\lambda_{k}\right) \tag{3}
\end{equation*}
$$

Calculation of $F^{\Delta}(n, k)$ is of prime importance to obtain a composition of generating functions, because from formula (2) it follows that the formula valid for the composition $A(x)=R(F(x))$ is

$$
\begin{equation*}
a(n)=\sum_{k=1}^{n} F^{\Delta}(n, k) r(k) . \tag{4}
\end{equation*}
$$

The basis for the derivation of a composita is calculation of the ordered partition π_{k} of C_{n}. From formula (1) it follows that the generating function of the composita is equal to

$$
[F(x)]^{k}=\sum_{n \geq k} F^{\Delta}(n, k) x^{n}
$$

For $F(x)$, the condition $f(0)=0$ holds true, and hence numbering for the composita begins with $k=1, n=1$. For $k=1, F^{\Delta}(n, k)=f(n)$. For $k>n, F^{\Delta}(n, k)$ is equal to zero. This statement stems from the fact that there is no ordered partition of n in which the number of parts is larger than n.

The above example demonstrates that the Pascal triangle is a composita for the generating function $\frac{x}{1-x}$ and deriving the composition $A(x)=R\left(\frac{x}{1-x}\right)$ requires the use of

$$
F^{\Delta}(n, k)=\binom{n-1}{k-1}
$$

Let us derive a recurrence formula for the composita of a generating function.
Theorem 8. For the composita $F^{\Delta}(n, k)$ of the generating function $F(x)=\sum_{n>0} f(n) x^{n}$, the following relation holds true:

$$
F^{\Delta}(n, k)= \begin{cases}f(n), & k=1, \tag{5}\\ {[f(1)]^{n},} & k=n, \\ \sum_{i=0}^{n-k} f(i+1) F^{\Delta}(n-i-1, k-1) & k<n\end{cases}
$$

Proof. Let us derive a recurrence formula for the $c_{n, k}$ number of ordered partitions of n that have exactly k parts. Let us introduce the operation $\operatorname{pos}\left[\lambda^{*}, \pi_{k}\right]$ of adjunction of the new part λ^{*} on the left to a certain ordered partition $\pi_{k} \in C_{n}$ providing that $\lambda^{*}>0$. From the ordered partition $\pi_{k} \in C_{n}$ this operation obtains an ordered partition $\pi_{k+1} \in C_{\lambda^{*}+n}$. Let us extend this operation to sets. Assume that $C_{n, k}=\left\{\pi_{k} \mid \pi_{k} \in C_{n}\right\}$, then the set $\hat{C}=\operatorname{pos}\left[\lambda^{*}, C_{n, k}\right]$ is a subset $C_{\lambda^{*}+n, k+1}$. Thus, we can write

$$
C_{n, k}=\operatorname{pos}\left[1, C_{n-1, k-1}\right] \cup \operatorname{pos}\left[2, C_{n-1, k-1}\right] \cup \ldots \cup \operatorname{pos}\left[n-k-1, C_{k-1, k-1}\right] .
$$

In this case, the condition

$$
\operatorname{pos}\left[i, C_{n-i, k-1}\right] \cap \operatorname{pos}\left[j, C_{n-j, k-1}\right]=\oslash
$$

is fulfilled for all $i \neq j$, because the first parts of the ordered partitions π_{k} do not coincide. Hence,

$$
\begin{equation*}
c_{n, k}=\sum_{i=0}^{n-k} c_{n-i-1, k-1}, \tag{6}
\end{equation*}
$$

and $c_{k, k}=1$ because we have the only ordered partition $\pi_{k}=\{1+1+\ldots+1=n\}$, and $c_{n, 1}=1$ because $\pi_{1}=\{n=n\}$.

Let us now consider expression (3). Using expression (6), we can write

$$
\begin{aligned}
& F^{\Delta}(n, k)= \\
& =f(1) F^{\Delta}(n-1, k-1)+f(2) F^{\Delta}(n-2, k-1)+\ldots+ \\
& +f(n-k+1) F^{\Delta}(k-1, k-1)
\end{aligned}
$$

The set $C_{n, n}$ consists of the only ordered partition $\{1+1+\ldots+1\}$, and then $F_{n, n}^{\Delta}=[f(1)]^{n}$; the set $C_{n, 1}$ consists of $\{n\}$, and then $F_{n, 1}^{\Delta}=f(n)$. Thus, the theorem is proved.

Consideration of formula (4) allows the conclusion that the composita does not depend on $R(x)$ and characterizes the generating function $F(x)$. In tabular form, the composita is represented as

or, knowing that $F_{1, n}^{\Delta}=f(n), F_{n, n}^{\Delta}=[f(1)]^{n}$, as

Below are the terms of the composite of the generating function $F(x)=\frac{x}{1-x}$:

Theorem 9. For a given ordinary generating function $F(x)=\sum_{n \geq 1} f(n) x^{n}$, the composita $F^{\Delta}(n, k)$ always exists and is unique.

Proof. Without proof.

3 Calculation of compositae

Calculation of compositae is based on derivation of the generating function of a composita

$$
[A(x)]^{k}=\sum_{n \geqslant k} A^{\Delta}(n, k) x^{n}
$$

and operation on them.
Theorem 10. Let there be a generating function $F(x)=\sum_{n>0} f(n) x^{n}$, its composita $F^{\Delta}(n, k)$, and a constant α. Then, the generating function $A(x)=\alpha F(x)$ has the composita

$$
A^{\Delta}(n, k)=\alpha^{k} F^{\Delta}(n, k)
$$

Proof.

$$
[A(x)]^{k}=[\alpha F(x)]^{k}=\alpha^{k}[F(x)]^{k} .
$$

Theorem 11. Let there be a generating function $F(x)=\sum_{n>0} f(n) x^{n}$, its composita $F^{\Delta}(n, k)$, and a constant α. Then, the generating function $A(x)=F(\alpha x)$ has the composita

$$
A^{\Delta}(n, k)=\alpha^{n} F^{\Delta}(n, k) .
$$

Proof. By definition, we have

$$
\begin{aligned}
& A^{\Delta}(n, k)=\sum_{\pi_{k} \in C_{n}} \alpha^{\lambda_{1}} f\left(\lambda_{1}\right) \alpha^{\lambda_{2}} f\left(\lambda_{2}\right) \ldots \alpha^{\lambda_{k}} f\left(\lambda_{k}\right)= \\
& =\alpha^{n} \sum_{\pi_{k} \in C_{n}} f\left(\lambda_{1}\right) f\left(\lambda_{2}\right) \ldots f\left(\lambda_{k}\right)=\alpha^{n} F^{\Delta}(n, k)
\end{aligned}
$$

Theorem 12. Let there be a generating function $F(x)=\sum_{n>0} f(n) x^{n}$, its composita $F^{\Delta}(n, k)$, a generating function $B(x)=\sum_{n \geqslant 0} b(n) x^{n}$ and $\left[B(x)^{k}\right]=\sum_{n \geqslant 0} B(n, k) x^{n}$. Then, the generating function $A(x)=F(x) B(x)$ has the composita

$$
A^{\Delta}(n, k)=\sum_{i=k}^{n} F^{\Delta}(i, k) B(n-i, k)
$$

Proof. Because $a(0)=f(0) b(0)=0, A(x)$ has the composita $A^{\Delta}(n, k)$. On the other hand,

$$
[A(x)]^{k}=[F(x)]^{k}[B(x)]^{k} .
$$

This, reasoning from the rule of product of generating functions, gives

$$
A^{\Delta}(n, k)=\sum_{i=k}^{n} F^{\Delta}(i, k) B(n-i, k) .
$$

For $B(x) b(0)=0$, the formula has the form:

$$
A^{\Delta}(n, k)=\sum_{i=k}^{n-k} F^{\Delta}(i, k) B^{\Delta}(n-i, k)
$$

Theorem 13. Let there be generating functions $F(x)=\sum_{n>0} f(n) x^{n}, G(x)=\sum_{n>0} g(n) x^{n}$ and their compositae $F^{\Delta}(n, k), G^{\Delta}(n, k)$. Then, the generating function $A(x)=F(x)+G(x)$ has the composita

$$
A^{\Delta}(n, k)=F^{\Delta}(n, k)+\sum_{j=1}^{k-1}\binom{k}{j} \sum_{i=j}^{n-k+j} F^{\Delta}(i, j) G^{\Delta}(n-i, k-j)+G^{\Delta}(n, k)
$$

Proof. According to the binomial theorem, we have

$$
\begin{gathered}
{[A(x)]^{k}=\sum_{j=0}^{k}\binom{k}{j}[F(x)]^{j}[G(x)]^{k-j}} \\
{[F(x)]^{j}=\sum_{n \geqslant j} F^{\Delta}(n, j)}
\end{gathered}
$$

and

$$
[G(x)]^{k-j}=\sum_{n \geqslant k-j} G^{\Delta}(n, k-j)
$$

According to the rule of multiplication of series, we obtain

$$
A^{\Delta}(n, k)=F^{\Delta}(n, k)+\sum_{j=1}^{k-1}\binom{k}{j} \sum_{i=j}^{n-k+j} F^{\Delta}(i, j) G^{\Delta}(n-i, k-j)+G^{\Delta}(n, k)
$$

Definition 14. Let there be a composition of generating functions $A(x)=R(F(x))$. Then, the product of two compositae will be termed a composite of the composition $A(x)$ and denoted as $A^{\Delta}(n, k)=F^{\Delta}(n, k) \circ R^{\Delta}(n, k)$.
Theorem 15. Let there be two generating functions $F(x)=\sum_{n>0} f(n) x^{n}$ and $R(x)=$ $\sum_{n>0} r(n) x^{n}$, and their compositae $F^{\Delta}(n, k)$ and $R^{\Delta}(n, k)$. Then, the expression valid for the product of the compositae $A^{\Delta}=F^{\Delta} \circ R^{\Delta}$ is

$$
\begin{equation*}
A^{\Delta}(n, m)=\sum_{k=m}^{n} F^{\Delta}(n, k) R^{\Delta}(k, m) \tag{7}
\end{equation*}
$$

Proof.

$$
[A(x)]^{m}=\left[G(F(x)]^{m}=G^{m}(F(x)) .\right.
$$

Hence, according to the composition rule and taking into account that the nonzero terms $G^{\Delta}(n, m)$ begin with $n \geqslant m$, we have

$$
A^{\Delta}(n, m)=\sum_{k=m}^{n} F^{\Delta}(n, k) G^{\Delta}(k, m)
$$

Corollary . Because the composition of generating functions is an associative operation and

$$
F(x) \circ(R(x) \circ G(x))=(F(x) \circ R(x)) \circ G(x),
$$

the product of compositae is also an associative operation and

$$
\sum_{k=m}^{n} \sum_{i=k}^{n} F^{\Delta}(n, i) R^{\Delta}(i, k) G^{\Delta}(k, m)=\sum_{k=m}^{n} \sum_{i=k}^{n} R^{\Delta}(n, i) G^{\Delta}(i, k) F^{\Delta}(k, m) .
$$

4 Compositae of generating functions

4.1 Identical composita

Definition 16. An identical composita $I d^{\Delta}(n, k)$ is a composita of the generating function $F(x)=x$.

By definition, $[F(x)]^{k}=x^{k}$. Then

$$
F^{\Delta}(n, k)= \begin{cases}1, & n=k \tag{8}\\ 0, & n \neq k\end{cases}
$$

Thus, $F^{\Delta}(n, k)=\delta_{n, k}$, where $\delta_{n, k}$ is the Kronecker delta. It is easily seen that for any generating function $A(x)$, we have the identity

$$
a(n)=\sum_{k=1}^{n} I d^{\Delta}(n, k) a(k) .
$$

The composita of the function $F(x)=x^{m}$ is

$$
\begin{equation*}
F^{\Delta}(n, k, m)=\delta_{\frac{n}{m}, k}, \quad \bmod (n, m)=0 \text { or } n=k m . \tag{9}
\end{equation*}
$$

4.2 Compositae of polynomials

4.2.1 Composita for $P_{2}(x)=\left(a x+b x^{2}\right)$

Let us consider $P_{2}(x)=\left(a x+b x^{2}\right)$. Then, $p_{2}(0)=0, p_{2}(1)=a$ and $p_{2}(2)=b$, and the rest are $p_{2}(n)=0, n>2$. The composita of the function $F(x)=a x$ is equal to $a^{k} \delta_{n, k}$, and the composita of the function $G(x)=b x^{2}$ is equal to $b^{k} \delta_{\frac{n}{2}, k}$. Using sum theorem (13), we obtain

$$
P_{2}^{\Delta}(n, k)=\sum_{j=0}^{k}\binom{k}{j} \sum_{i=j}^{n-k+j} a^{j} \delta_{i, j} b^{k-j} \delta_{\frac{n-i}{2}, k-j},
$$

$\delta_{\frac{n-i}{2}, k-j}=1$ for $\frac{n-i}{2}=k-j$, whence $i=n-2 k+2 j$. So we have

$$
P_{2}^{\Delta}(n, k)=\sum_{j=0}^{k}\binom{k}{j} a^{j} \delta_{n-2 k+2 j, j} b^{k-j} .
$$

Now $\delta_{n-2 k+2 j, j}=1$ for $n-2 k+2 j=j$, whence $j=2 k-n$. So we obtain

$$
\begin{equation*}
P_{2}^{\Delta}(n, k, a, b)=\binom{k}{n-k} a^{2 k-n} b^{n-k} \tag{10}
\end{equation*}
$$

for $\left\lceil\frac{n}{2}\right\rceil \leq k \leq n$.
Thus, the composition $A(x)=R\left(a x+b x^{2}\right)$ can be found using the expression:

$$
a(n)=\sum_{k=\left\lceil\frac{n}{2}\right\rceil}^{n}\binom{k}{n-k} a^{2 k-n} b^{n-k} r(k) .
$$

For example, let us derive an expression for the coefficients of the generating function $A(x)=$ $e^{x+\frac{1}{2} x^{2}}$ (see $\underline{\text { A000085 }}$). Taking into account that this function is an exponential generating function, we obtain

$$
a(n)=n!\sum_{k=\left\lceil\frac{n}{2}\right\rceil}^{n}\binom{k}{n-k} \frac{1}{2^{n-k}} \frac{1}{k!} .
$$

Another example is $A(x)=R(F(x))$, where $R(x)=\frac{x}{1-x}$ and $F(x)=x+x^{2}, A(x)=\frac{x+x^{2}}{1-x-x^{2}}$. Hence

$$
a(n)=\sum_{k=\left\lceil\frac{n}{2}\right\rceil}^{n}\binom{k}{n-k}
$$

(see $\underline{\text { A000045). }}$

4.2.2 Composita for $P_{3}(x)=a x+b x^{2}+c x^{3}$

The polynomial $P_{3}(x)=a x+b x^{2}+c x^{3}$ can be expressed as

$$
P_{3}(x)=a x+x P_{2}(x, b, c) .
$$

The composita $a x$ is equal to $\delta(n, k) a^{k}$, and the composita $x P_{2}(x)$ to $A_{2} \Delta(n-k, k)$. Then, on the strength of the theorem on the composita of the sum of generating functions, we have

$$
A_{3}^{\Delta}(n, k, a, b, c)=\sum_{j=0}^{k}\binom{k}{j} \sum_{i=j}^{n-k+j} A_{2} \Delta(i-j, j, b, c) \delta(n-i, k-j) a^{k-j}
$$

Simplification gives $\delta(n-i, k-j)=1$ for $n-i=k-j$, whence we have $i=n-k+j$ and

$$
A_{3}^{\Delta}(n, k, a, b, c)=\sum_{j=0}^{k}\binom{k}{j} A_{2}(n-k, j, b, c) a^{k-j}
$$

where $A_{2}^{\Delta}(n-k, j, b, c)=\binom{j}{n-k-j} b^{2 j+k-n} b^{n-k-j}$. Hence,

$$
A_{3}^{\Delta}(n, k, a, b, c)=\sum_{j=0}^{k}\binom{k}{j}\binom{j}{n-k-j} a^{k-j} b^{2 j+k-n} b^{n-k-j}
$$

Then, for the generating function $A(x)=\frac{1}{1-a x-b x^{2}-c x^{3}}$, the following expression holds true:

$$
a(n)=\sum_{k=1}^{n} \sum_{j=0}^{k}\binom{k}{j}\binom{j}{n-k-j} a^{k-j} b^{2 j+k-n} b^{n-k-j} .
$$

4.2.3 Composita for $P(x)=a x+c x^{3}$

An important condition in the foregoing examples is that $a, b, c \neq 0$. Therefore, if $b=0$ the formula for the composita should be sought for over again. For example,

$$
P(x)=a x+c x^{3} .
$$

In this case, the expression for the composita is

$$
P^{\Delta}(n, k)=\binom{k}{\frac{3 k-n}{2}} a^{\frac{3 k-n}{2}} c^{\frac{n-k}{2}},
$$

where $(n-k)$ is exactly divisible by 2 . For example, for the generating function $A(x)=\frac{1}{1-x-x^{3}}$ the following expression holds true:

$$
a(n)=\sum_{k=1}^{n}\binom{k}{\frac{3 k-n}{2}}
$$

(see $\underline{\text { A000930). }}$

4.2.4 Composita for $P_{4}(x)=a x+b x^{2}+c x^{3}+d x^{4}$

At $n=4$, the polynomial $P_{4}(x)=a x+b x^{2}+c x^{3}+d x^{4}$ can be expressed as

$$
P_{4}(x)=P_{2}(x)+x^{2} P_{2}(x) .
$$

The generating function of the composita for $x^{2} P_{2}(x)$ is equal to

$$
x^{2 k}\binom{k}{n-k} c^{2 k-n} b^{n-k} x^{n}=\binom{k}{n-k} c^{2 k-n} b^{n-k} x^{n+2 k},
$$

and hence the expression for the composita is

$$
\binom{k}{n-3 k} c^{4 k-n} b^{n-3 k}
$$

Then the composita $P_{4}(x)$ has the following expression:

$$
\sum_{j=0}^{k}\binom{k}{j} \sum_{i=j}^{n-k+j}\binom{j}{i-j} a^{2 j-i} b^{i-j}\binom{k-j}{n-i-3(k-j)} c^{4(k-j)-(n-i)} d^{n-i-k+j} .
$$

For example, for the generating function $A(x)=\frac{1}{1-a x-b x^{2}-c x^{3}-d x^{4}}$ the following expression holds true:

$$
a(n)=\sum_{k=1}^{n} \sum_{j=0}^{k}\binom{k}{j} \sum_{i=j}^{n-k+j}\binom{j}{i-j} a^{2 j-i} b^{i-j}\binom{k-j}{n-i-3(k-j)} c^{4(k-j)-(n-i)} d^{n-i-k+j} .
$$

At $a=b=c=d=1$, we obtain the generating function $A(x)=\frac{1}{1-x-x^{2}-x^{3}-x^{4}}$. Hence

$$
a(n)=\sum_{k=1}^{n} \sum_{j=0}^{k}\binom{k}{j} \sum_{i=j}^{n-k+j}\binom{j}{i-j}\binom{k-j}{n-i-3(k-j)} .
$$

4.2.5 Composita for $P_{5}(x)=a x+b x^{2}+c x^{3}+d x^{4}+e x^{5}$

For finding the composita of the m th power polynomial, we can propose the recurrent algorithm

$$
A_{m}^{\Delta}(n, k)=\sum_{j=0}^{k} A_{m-1}^{\Delta}(n-k, j) a^{k-j}
$$

providing that $A_{m-1}(n, 0)=1$. Using this recurrent algorithm, we obtain the composita of the 5th power polynomial:

$$
\sum_{r=0}^{k} a^{k-r}\binom{k}{r} \sum_{m=0}^{r} b^{r-m}\left(\sum_{j=0}^{m} c^{m-j} d^{r-n+m+k+2 j} e^{v}\binom{j}{v}\binom{m}{j}\right)\binom{r}{m}
$$

, where $v=-r+n-m-k-j$.

4.3 Composita for $A(x)=\left(\frac{a x}{1-b x}\right)$

For the generating function $F(x)=\frac{x}{(1-x)}, F^{\Delta}(n, k)=\binom{n-1}{k-1}$, and

$$
A(x)=\left(a b^{-1} \frac{b x}{1-b x}\right) .
$$

Using theorems $(10,11)$, we obtain

$$
A^{\Delta}(n, k)=\binom{n-1}{k-1} a^{k} b^{n-k}
$$

4.4 Compositae of the exponent

Let us find the expression for the coefficients of the generating function $[B(x)]^{k}=e^{k x}$:

$$
B(x)^{k}=e^{x k}=\sum_{n \geqslant 0} \frac{k^{n}}{n!},
$$

whence it follows that

$$
B(n, k)=\frac{k^{n}}{n!}
$$

Now, for $A(x)=x e^{x}$ the composita is equal to

$$
\begin{equation*}
A^{\Delta}(n, k)=B(n-k, k)=\frac{k^{n-k}}{(n-k)!} . \tag{11}
\end{equation*}
$$

Let us write the composita for the generating function $A(x)=e^{x}-1$:

$$
A(x)^{k}=\sum_{m=0}^{k}\binom{k}{m} e^{m x}(-1)^{k-m}
$$

whence it follows that the composita is

$$
\begin{equation*}
A^{\Delta}(n, k)=\sum_{m=0}^{k}\binom{k}{m} \frac{m^{n}}{n!}(-1)^{k-m}=\frac{k!}{n!} S_{2}(n, k) \tag{12}
\end{equation*}
$$

where $S_{2}(n, k)$ is the Stirling numbers of the second kind. For the generating functions of the Bell numbers $A(x)=e^{e^{x}-1}$, we have

$$
a(n)=n!\sum_{k=1}^{n} S_{2}(n, k) \frac{k!}{n!} \frac{1}{k!}=\sum_{k=1}^{n} S_{2}(n, k)
$$

(see $\underline{\text { A000110). }}$

4.5 Composita for $\ln (1+x)$

Let $F(x)=\ln (x+1)$. Then, knowing the relation [6]

$$
\sum_{n=k}^{\infty} S_{1}(n, k) \frac{x^{n}}{n!}=\frac{[\ln (1+x)]^{k}}{k!}
$$

where $S_{1}(n, k)$ is the Stirling numbers of the first kind, and using formula (1), we obtain the expression for the composita of the generating function $\ln (1+x)$:

$$
\begin{equation*}
F^{\Delta}(n, k)=\frac{k!}{n!} S_{1}(n, k) \tag{13}
\end{equation*}
$$

4.6 Composita for the generating function of the Bernoulli numbers

The generating function of the Bernoulli numbers is

$$
A(x)=\frac{x}{e^{x}-1}
$$

This function can be represented as the composition $B(F(x))$, where $B(x)=\frac{\ln x}{x}, F(x)=$ $e^{x}-1$. Let us find the expression for the coefficients of the generating function $[B(x)]^{k}$:

$$
[B(x)]^{k}=\sum_{n \geqslant 0} S_{1}(n, k) \frac{k!}{n!} x^{n-k}
$$

whence

$$
B(n, k)=S_{1}(n+k, k) \frac{k!}{(n+k)!}
$$

Knowing the composita of the function $F(x)$ (see 12),

$$
F^{\Delta}(n, k)=\frac{k!}{n!} S_{2}(n, k)
$$

Let us write the composition of the generating functions $A(x)^{k}=\left[B\left(e^{x}-1\right)\right]^{k}$:

$$
A(n, m)= \begin{cases}1, & n=0 \\ \sum_{k=1}^{n} S_{2}(n, k) \frac{k!}{n!} S_{1}(k+m, m) \frac{m!}{(k+m)!}, & n>0\end{cases}
$$

Then the composita of $x A(x)$ is

$$
A^{\Delta}(n, m)= \begin{cases}1, & n=m \\ \frac{m!}{(n-m)!} \sum_{k=1}^{n-m} \frac{k!}{(k+m)!} S_{1}(k+m, m) S_{2}(n-m, k), & n>m .\end{cases}
$$

4.7 Composita for the generating function of the Fibonacci numbers

Let us find the composita for the generating function of the Fibonacci numbers:

$$
A(x)=\frac{x}{1-x-x^{2}} .
$$

The function can be represented as the composition of the generating functions $A(x)=$ $R(F(x))$, where $R(x)=\frac{x}{1-x}, F(x)=\frac{x}{1-x^{2}}$. Let us find the composita for $F(x)$:

$$
F^{\Delta}(n, k)=\left\{\begin{array}{ll}
\left(\frac{n+k}{2}-1\right. \\
k-1
\end{array}\right), \text { at } n+k-\text { even }, ~ \text { at } n+k-\text { odd } . ~ \$
$$

Now, using the operation of product of compositae, we find the composita of the generating function $A(x)$:

$$
A^{\Delta}(n, m)=\sum_{k=m}^{n}\binom{\frac{n+k}{2}-1}{k-1}\binom{k-1}{m-1}, \quad \text { at } n+k-\text { even. }
$$

Below are the first terms of the composita for the generating function of the Fibonacci numbers:

4.8 Composita for the generalized Fibonacci numbers

Let us find the composita of the generating function:

$$
F(x)=x+x^{2}+\ldots+x^{m}=\frac{x-x^{m+1}}{1-x}
$$

Let us write $F(x)$ as the product of the functions $G(x)=x-x^{m+1}$ and $R(x)=\frac{1}{1-x}$. Let us find the composita for $G(x)$. For this purpose, we consider the compositae of the functions $y(x)=x$ and $z(x)=-x^{m}$. For $y(x)$, the composita is equal to $\operatorname{Id}(n, k)=\delta_{n, k}$. For $z(x)=-x^{m}$, the composita is

$$
Z^{\Delta}(n, k)=(-1)^{k} \delta_{\frac{n}{m}, k} .
$$

Then, on the strength of the theorem on the composite of sum of generating functions $y(x)+z(x)$, we have

$$
\begin{aligned}
G^{\Delta}(n, k) & =\sum_{j=0}\binom{k}{j} \sum_{i=j}^{n-k+j} \operatorname{Id}(i, j) Z^{\Delta}(n-i, k-j)= \\
& =\sum_{j=0}\binom{k}{j} \sum_{i=j}^{n-k+j} \delta_{i, j} \delta_{\frac{n-i}{m}, k-j}(-1)^{k-j} .
\end{aligned}
$$

The function $\delta_{i, j}=1$ is only for $i=j$, and hence

$$
G^{\Delta}(n, k)=\sum_{j=0}\binom{k}{j} \delta_{\frac{n-j}{m}, k-j}(-1)^{k-j}
$$

The function $\delta_{\frac{n-j}{m}, k-j}=1$ is only for $\frac{n-j}{m}=k-j$, and hence

$$
G^{\Delta}(n, k)=\binom{k}{\frac{(m+1) k-n}{m}}(-1)^{\frac{n-k}{m}} .
$$

It is known that $R(n, k)=\binom{n+k-1}{k-1}$. Then, with regard to the rule of finding the composita of the product of generating functions (case 2), we obtain

$$
F^{\Delta}(n, k)=\sum_{i=k}^{n}\binom{k}{\frac{(m+1) k-i}{m}}(-1)^{\frac{i-k}{m}}\binom{n-i+k-1}{k-1}
$$

Let us consider the composita of the generating functions:

$$
A(x)=\frac{F(x)}{1-F(x)}=\frac{x-x^{m+1}}{1-2 x-x^{m+1}}
$$

Hence, using the theorem on the product of compositae, we obtain the composita of the generating function $A(x)$:

$$
\begin{array}{r}
A^{\Delta}(n, l)=\sum_{k=l}^{n} F^{\Delta}(n, k)\binom{k-1}{m-1}= \\
=\sum_{k=m}^{n} \sum_{i=k}^{n}\binom{k}{\frac{(m+1) k-i}{m}}(-1)^{\frac{i-k}{m}}\binom{n-i+k-1}{k-1}\binom{k-1}{l-1} .
\end{array}
$$

For $l=1$, we derive the formula for the generalized Fibonacci numbers:

$$
\begin{equation*}
F_{n}^{(m)}=\sum_{k=1}^{n} \sum_{i=k}^{n}\binom{k}{\frac{(m+1) k-i}{m}}(-1)^{\frac{i-k}{m}}\binom{n-i+k-1}{k-1} . \tag{14}
\end{equation*}
$$

4.9 Composita of the generating function for the Catalan numbers

Let $F(x)=x \frac{1-\sqrt{1-4 x}}{2 x}$, then the composita has the form

$$
F^{\Delta}(n, k)=\sum_{i=0}^{n-k} C(i) F_{n-i-1, k-1}^{\Delta}
$$

where $C(i)$ is the Catalan numbers. The composita $F^{\Delta}(n, k)$ has the following triangular form:

					1			
			1		1			
		2		1		1		
	5		5		3		1	
14		14		9		4		1

Let us consider the sequence $\underline{\text { A009766 }}$ called the Catalan triangle. This triangle is given by the formula

$$
a(n, m)=\binom{n+m}{n} \frac{n-k+1}{n+1} .
$$

Below are the initial values of the triangle, and n and m begin with zero.

Comparison of two triangles suggests that $a(n, k)=F^{\Delta}(n+1, n-k+1)$. Hence, the composita for the Catalan generating function is equal to

$$
F^{\Delta}(n, k)=\binom{2 n-k-1}{n-1} \frac{k}{n}
$$

Thus, the expression valid for the coefficients of the composition $A(x)=R\left(\frac{1-\sqrt{1-4 x}}{2}\right)$ is

$$
a(n)=\binom{2 n-k-1}{n-1} \frac{k}{n} \cdot r(k) .
$$

4.10 Composita of the generating function $\frac{x}{\sqrt{1-x}}$

This generating function can be represented as the composition of the functions:

$$
\frac{x}{\sqrt{1-x}}=x \frac{1}{1-\left(2 \frac{\sqrt{1-\frac{4 x}{4}}}{2}-1\right)}=x \frac{1}{1-2 C\left(\frac{1}{4} x\right)}
$$

where $C(x)=\frac{1-\sqrt{1-4 x}}{2}$.
Using the formula of composition, we finally obtain

$$
A^{\Delta}(n, m)= \begin{cases}1, & n=m \\ \sum_{k=1}^{n-m}\binom{2 n-2 m-k-1}{n-m-1} \frac{k}{n-m} 2^{k-2 n+2 m}\binom{k+m-1}{m-1}, & n>m\end{cases}
$$

4.11 Compositae of trigonometric functions

4.11.1 Composita of the sine

Using the expression

$$
\sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}
$$

we obtain $\sin (x)^{k}$:

$$
\sin (x)^{k}=\frac{1}{2^{k} i^{k}} \sum_{m=0}^{k}\binom{k}{m} e^{i m x} e^{-i(k-m) x}(-1)^{k-m}=\frac{1}{2^{k} i^{k}} \sum_{m=0}^{k}\binom{k}{m} e^{i(2 m-k) x}(-1)^{k-m} .
$$

Hence the composita is

$$
\frac{1}{2^{k}} i^{n-k} \sum_{m=0}^{k}\binom{k}{m} \frac{(2 m-k)^{n}}{n!}(-1)^{k-m} .
$$

Taking into account that $n-k$ is an even number and the function is symmetric about k, we obtain the composita of the generating function $\sin (x)$:

$$
A^{\Delta}(n, k)= \begin{cases}\frac{1}{2^{k-1} n!} \sum_{m=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k}{m}(2 m-k)^{n}(-1)^{\frac{n-k}{2}-m}, & (n-k)-\text { even } \\ 0, & (n-k)-\text { odd }\end{cases}
$$

Example 17. For the Euler numbers we know the exponential generating function $\frac{1}{1-\sin (x)}$. Hence,

$$
E_{n+1}=\sum_{\substack{k=1 \\ n+k \text { even }}}^{n} \frac{1}{2^{k-1}} \sum_{m=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k}{m}(2 m-k)^{n}(-1)^{\frac{n+k}{2}-m}
$$

(see A000111).

Example 18. For the generating function $A(x)=e^{\sin (x)}$, the valid expression is

$$
a_{n}=\sum_{\substack{k=1 \\ n+k \text { even }}}^{n} \frac{1}{2^{k-1} k!} \sum_{m=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k}{m}(2 m-k)^{n}(-1)^{\frac{n+k}{2}-m}
$$

(see A002017).

4.11.2 Compositae of the cosine

Knowing that

$$
\cos (x)=\frac{e^{i x}+e^{-i x}}{2}
$$

We have

$$
\begin{aligned}
& {[\cos x]^{k}=\frac{1}{2^{k}} \sum_{j=0}^{k}\binom{k}{j} e^{(2 j-k) i x}=} \\
& =\frac{1}{2^{k}} \sum_{n \geqslant 0} \sum_{j=0}^{k}\binom{k}{j}(2 j-k)^{n} i^{n} \frac{x^{n}}{n!}
\end{aligned}
$$

Hence

$$
B(n, k)=\frac{1}{2^{k} n!}(-1)^{\frac{n}{2}} \sum_{j=0}^{k}\binom{k}{j}(2 j-k)^{n} .
$$

Then, the composita of the generating function $x \cos (x)$ is

$$
A^{\Delta}(n, k)= \begin{cases}\frac{1}{2^{k-1}(n-k)!}(-1)^{\frac{n-k}{2}} \sum_{j=0}^{k}\binom{k}{j}(2 j-k)^{n-k}, & n-k-\text { even } \\ 0, & n-k-\text { odd } .\end{cases}
$$

The composita of the function $\cos (x)-1$ is equal to

$$
A^{\Delta}(n, k)=\sum_{i=0}^{k} B(n, i)(-1)^{k-i}
$$

Let us consider the following example. Let there be a generating function $A(x)=$ $\sec (x)=\frac{1}{\cos (x)}=\frac{1}{1+(\cos (x)-1)}$. Hence, on the strength of the formula of composition and composita $(\cos (x)-1)$, we obtain

$$
a(n)=\sum_{k=1}^{2 n} \sum_{m=0}^{k}\binom{k}{m} 2^{1-m}\left(\sum_{j=0}^{\frac{m}{2}}(2 j-m)^{2 n}\binom{m}{j}\right)(-1)^{n+m}
$$

(see $\underline{\text { A000364). }}$

4.11.3 Composita for $\tan (x)$

For the tangent, we know the identity

$$
\tan (x)=\frac{e^{i x}-e^{-i x}}{i\left(e^{i x}-e^{-i x}\right)}
$$

Division of the numerator and denominator by $e^{i x}$ gives

$$
\tan (x)=\frac{1-e^{-2 i x}}{i\left(1-e^{-2 i x}\right)} .
$$

Multiplication of the numerator and denominator by i, and addition and then subtraction of unity gives

$$
\tan (x)=i \frac{e^{-2 i x}-1}{2-\left(e^{-2 i x}-1\right)}
$$

Whence it follows that

$$
\tan (x)=\frac{i}{2} \frac{e^{-2 i x}-1}{1-\frac{1}{2}\left(e^{-2 i x}-1\right)}
$$

Thus, the function $\tan (x)$ is expressed as the composition of the functions

$$
F(x)=\frac{i}{2} \frac{x}{1+\frac{1}{2} x}
$$

and functions $R(x)=e^{-2 i x}-1$. The composita for $F(x)$ is equal to

$$
F^{\Delta}(n, k)=\frac{1}{2^{n}}(-1)^{n-k}\binom{n-1}{k-1} i^{k} .
$$

The composita for $R(x)$ is equal to

$$
R^{\Delta}(n, k)=(-2 i)^{n} \frac{k!}{n!} S_{2}(n, k)
$$

where $S_{2}(n, k)$ is the Stirling numbers of the second kind. Then, on the strength of the theorem on the product of compositae, we obtain the composita of the function $\tan (x)$:

$$
A^{\Delta}(n, m)=\sum_{k=m}^{n}(-2 i)^{n} S_{2}(n, k) \frac{k!}{n!} \frac{1}{2^{k}}(-1)^{k-m}\binom{k-1}{m-1} i^{m}
$$

After transformation, we obtain

$$
A^{\Delta}(n, m)=(-1)^{\frac{n+m}{2}} \sum_{k=m}^{n}(2)^{n-k} S_{2}(n, k) \frac{k!}{n!}(-1)^{n+k-m}\binom{k-1}{m-1}
$$

Then at $k=1$, the expression for the tangential numbers is

$$
a(n)=(-1)^{n+1} \sum_{j=1}^{2 n+1}(-1)^{j} j!2^{2 n-j+1} S_{2}(2 n+1, j)
$$

(see A000182)
Let us consider the example $A(x)=e^{\tan (x)}$:

$$
a(n)=\sum_{k=1}^{n} \frac{(-1)^{\frac{n+k}{2}} \sum_{j=k}^{n}\binom{j-1}{k-1} j!2^{n-j}(-1)^{n-k+j} S_{2}(n, j)}{k!}
$$

(see $\underline{A 006229})$. For more examples, see $\underline{A 000828, ~} \underline{\underline{A 000831}, \underline{A 003707}}$
4.11.4 Composita for $x^{2} \cot (x)$

It is known that

$$
x^{2} \cot (x)=i x \frac{e^{i x}+e^{-i x}}{e^{i x}-e^{-i x}}=i x^{2}+\frac{2 i x^{2}}{e^{2 i x}-1}
$$

The composita $i x^{2}$ is equal to $\delta\left(\frac{n}{2}, k\right) i^{k}$, and the composita for $\frac{2 i x^{2}}{e^{2 i x}-1}$ is equal to

$$
(2 i)^{n-k} B^{\Delta}(n, k)
$$

where $B^{\Delta}(n, k)$ is the composita for the generating function of the Bernoulli numbers. Using the theorem on the composita of the sum of generating functions, we obtain the composita of the function $x^{2} \cot (x)$:

$$
\begin{aligned}
A^{\Delta}(n, k) & =\delta\left(\frac{n}{2}, k\right) i^{k}+\sum_{j=1}^{k} B^{\Delta}(n-2 k+2 j, j)(2 i)^{n-2 k+j} i^{k-j}= \\
= & \delta\left(\frac{n}{2}, k\right) i^{k}+i^{n-k} \sum_{j=1}^{k} B^{\Delta}(n-2 k+2 j, j) 2^{n-2 k+j}
\end{aligned}
$$

4.11.5 Composita of the arc tangent $F(x)=\arctan (x)$

Let us consider the generating function of the arc tangent:

$$
\arctan (x)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n+1)} x^{2 n+1}
$$

Let us find an expression for the composita of the arc tangent from the operation of product of compositae. For this purpose, the expression

$$
\left.\arctan (x)=\frac{i}{2}(\ln (1-i x))-\ln (1+i x)\right)
$$

is written as follows:

$$
\arctan (x)=\frac{i}{2} \ln \left(1-\frac{2 i x}{1+i x}\right)
$$

The composita of the function $f(x)=\frac{2 i x}{1+i x}$ is equal to

$$
F^{\Delta}(n, k)=2^{k}\binom{n-1}{k-1} i^{n}
$$

whence it follows that

$$
\begin{gather*}
A_{z}^{\Delta}(n, m)=\frac{i^{m}}{2^{m}} \sum_{k=m}^{n} 2^{k}\binom{n-1}{k-1} i^{n} \frac{m!}{k!} S_{1}(k, m) . \tag{15}\\
A_{z}^{\Delta}(n, m)=\frac{(-1)^{\frac{m+n}{2}}}{2^{m}} \sum_{k=m}^{n} 2^{k}\binom{n-1}{k-1} \frac{m!}{k!} S_{1}(k, m) . \tag{16}
\end{gather*}
$$

Below are the first terms of the composita of the arc tangent $A^{\Delta}(n, k)$ in the triangular form:

Example 19. Let there be $R(x)=\frac{1}{1-x}$, then the coefficients of the generating function

$$
A(x)=\frac{1}{1-\arctan (x)}
$$

are expressed by the formula:

$$
a(n)=\sum_{m=1}^{n} \frac{(-1)^{\frac{m+n}{2}}}{2^{m}} \sum_{k=m}^{n} 2^{k}\binom{n-1}{k-1} \frac{m!}{k!} S_{1}(k, m) .
$$

Hence, summation of rows of the composita of the arc tangent gives the following series:

$$
A(x)=1+x+x^{2}+\frac{2}{3} x^{3}+\frac{1}{3} x^{4}+\frac{1}{5} x^{5}+\frac{8}{45} x^{6}+\ldots .
$$

Example 20. Let $A(x)=e^{\arctan (x)}$, then the valid expression is

$$
a(n)=n!\sum_{m=1}^{n} \frac{(-1)^{\frac{3 n+m}{2}} \sum_{i=m}^{n} \frac{2^{i} S_{1}(i, m)\binom{n-1}{i-1}}{i!}}{2^{m}}
$$

(see A002019).

4.12 Compositae of hyperbolic functions

For the hyperbolic sine, we have the known expression:

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}
$$

Let us find the composita of this generating function. For this purpose, we write

$$
\begin{gathered}
\left(\frac{e^{x}-e^{-x}}{2}\right)^{k}=\frac{1}{2^{k}}\left(e^{x}+e^{-x}\right)^{k}=\frac{1}{2^{k}} \sum_{i=0}^{k}\binom{k}{i} e^{(k-i) x}(-1)^{i} e^{-i x}= \\
=\frac{1}{2^{k}} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} e^{(k-2 i) x}
\end{gathered}
$$

Let us write e^{x} as a series, then we obtain

$$
\frac{1}{2^{k}} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \sum_{n \geqslant 0} \frac{(k-2 i)^{n}}{n!} x^{n} .
$$

Hence, the composita is

$$
F^{\Delta}(n, k)=\frac{1}{2^{k}} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \frac{(k-2 i)^{n}}{n!}
$$

For example, for $A(x)=e^{\sinh x}$ the valid expression is

$$
a(n)=\sum_{k=1}^{n} \frac{\sum_{i=0}^{k}(-1)^{i}(k-2 i)^{n}\binom{k}{i}}{2^{k} k!}
$$

(see $\underline{\text { A002724). }}$
For the hyperbolic cosine, we have

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

Then,

$$
\begin{gathered}
\cosh ^{k}(x)=\left(\frac{e^{x}+e^{-x}}{2}\right)^{k}=\frac{1}{2^{k}} \sum_{i=0}^{k}\binom{k}{i} e^{(k-2 i) x}= \\
=\frac{1}{2^{k}} \sum_{i=0}^{k}\binom{k}{i} \sum_{n \geqslant 0} \frac{(k-2 i)^{n}}{n!} x^{n},
\end{gathered}
$$

and hence the composita of the generating function $x \cosh (x)$ is

$$
F^{\Delta}(n, k)=\frac{1}{2^{k}} \sum_{i=0}^{k}\binom{k}{i} \frac{(k-2 i)^{n-k}}{(n-k)!} .
$$

For example, for $A(x)=e^{\cosh x}$ the valid expression is

$$
\sum_{k=1}^{n} \frac{\left(\sum_{i=0}^{k}(k-2 i)^{n-k}\binom{k}{i}\right)\binom{n}{k}}{2^{k}}
$$

see $\underline{\text { A003727 }}$).

5 Conclusion

The operation of the composition $A(x)=R(F(x))$ of ordinary generating functions requires:

1. Finding the composita $F^{\Delta}(n, k)$ of the generating function $F(x)$ with the use of theorems (10,11,12,13,15)
2. Writing the composition in the form

$$
a(n)=\sum_{k=1}^{n} F^{\Delta}(n, k) r(n) .
$$

References

[1] A. I. Markushevich, "Theory of functions of a complex variable", 1, Chelsea (1977) (Translated from Russian)
[2] G. P. Egorichev, "Integral representation and the computation of combinatorial sums" , Amer. Math. Soc. (1984) (Translated from Russian)
[3] R. P. Stanley. Enumerative combinatorics 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
[4] G. E. Andrews. Number Theory, W. B. Sounders Company, 1981.
[5] V. V. Kruchinin. Combinatorics of Compositions and Aplications, V-Spektr, Tomsk, 2010. (in rus)
[6] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics, Addison-Wesley, Reading, MA, 1989.

2000 Mathematics Subject Classification: Primary 05A15; Secondary 30B10.
Keywords: Composition of ordinary generating function, ordered partitions, composita of ordinary generating function, integer sequence.
(Concerned with sequences $\underline{A 000045}, \underline{A 000085}, \underline{A 000110, ~} \underline{A 000111}, \underline{A 000182}, \underline{A 000262}, \underline{A 000364}$, A000828, A000831, A000930, A001519, A002017, A002019, A002714, A003707, A003727, A006229, A009766.)

