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Abstract

We solve some forms of non homogeneous differential equations in one
and two dimensions. By expanding the solution into whell-posed closed
form-Eisenstein series the solution itself is quite simple and elementary.
Also we consider Fourier series solutions of linear differential operator
equations. In the third section we study operators which are functions of
the Leibnitz derivative. The last result is the complete solution of a non
homogenus 2-degree ODE with linear coeficients. The non homogenous
part is an arbirtary function of L2(R).

1 The Divisor Sums and ODE

Proposition 1. If x, is positive real number and f is analytic in (-1,1),
with f(0) = 0, then

exp

(∫ x

∞

f(e−t)dt

)
=

∞∏

n=1

(1− e−nx)
1
n

∑
d|n

f(d)(0)
d!

µ(n/d)
(1)

Where µ is the Moebius function. See also and [Ap] chapter 2 for the
Moebius as also for other multiplicative functions.
Proof. See [B]

Examples of such identities are

1) Let f(n)(0)
n!

= 1[n] = 1 if n = 1, 0 else. X(n) = 1
n
µ(n)

∞∏

n=1

(1− qn)
µ(n)
n = e−q

2) Let f(n)(0)
n!

= n, n = 1, 2, . . . then f(x) = x
(x−1)2

and

X(n) = 1
n

∑
d|n

dµ(n/d) = φ(n)
n

∞∏

n=1

(1− qn)
φ(n)
n = e

q
q−1
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Where φ(n) is the Euler Totient function.
Proposition 2. If A(n) is arbitrary sequence of numbers we have for
x > 0

dν

dxν

(
∞∑

n=1

∑
d|n

A(d)µ(n/d)

enx − 1

)
=

∞∑

n=1

∑
d|n

A(d)(−d)νµ(n/d)
enx − 1

(2)

Proof.
See also [B]

We will use Proposition 1 to find the solution of the N − th degree linear
differential equation

N∑

ν=0

aν
dν

dxν
u(x) =

∞∑

n=1

∑
d|n

C(d)µ(n/d)

enx − 1
=

∞∑

n=1

C(n)e−nx (3)

Lemma 1. Set

P (x) =

N∑

ν=0

aνx
ν (4)

then the solution of (3) is

u(x) =

∞∑

n=1

∑
d|n

C(d)
P (−d)

µ(n/d)

enx − 1
=

∞∑

n=1

C(n)

P (−n)e
−nx (5)

Proof 1. From Proposition 2, it is clear that if

u(x) =

∞∑

n=1

∑
d|n

A(d)µ(n/d)

enx − 1

for a certain A(k), then (3) becomes

N∑

ν=0

aν(x)

(
∞∑

n=1

∑∞

d|n
A(d)µ(n/d)

enx − 1

)(ν)

=

∞∑

n=1

∑
d|n

C(d)µ(n/d)

enx − 1

or

N∑

ν=0

aν(x)

∞∑

n=1

∑
d|n

A(d)(−d)νµ(n/d)
enx − 1

=

∞∑

n=1

∑
d|n

C(d)µ(n/d)

enx − 1

or
∞∑

n=1

∑
d|n

A(d)P (−d)µ(n/d)
enx − 1

=

∞∑

n=1

∑
d|n

C(d)µ(n/d)

enx − 1

Hence it must be
∑

d|n

A(d)P (−d)µ(n/d) =
∑

d|n

C(d)µ(n/d) (6)
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Eq.6 shows clearly that

A(n) = C(n)/P (−n)

Also one can see that we have

∞∑

n=1

W (n)

enx − 1
=

∞∑

n=1


∑

d|n

W (d)


 e−nx

and
∞∑

n=1

∑
d|n

W (d)µ(n/d)

enx − 1
=

∞∑

n=1

W (n)e−nx

Proof 2. Let

u(x) =

∞∑

n=1

une
−nx

then setting into (3) the above expansion we get the same result in a more
easy way.

Theorem 1. If
N∑

ν=0

aνu
(ν)u(x) =

∞∑

n=1

C(n)

enx − 1

Then

u(x) =

∞∑

n=1

∑
d|n

C(d)

Px(n)
e−nx

, where

Px(w) =

N∑

k=0

akw
k

Proof. As in Lemma 1.

Next we proceed with the 2-dimension problem with a similar way.

We set

Px(w) =

N∑

k=0

akw
k (7)

and

Py(w) =

M∑

l=0

blw
l (8)

Also

G(x, y) =

∞∑

k,m=1

c(k,m)

(ekx − 1)(emy − 1)
(9)
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Theorem 2. The equation

N,M∑

k,l=0

akblu
(k),(l)(x, y) = G(x, y) (10)

have solution

u(x, y) =

∞∑

n,m=1

S(n,m)

(enx − 1)(emy − 1)
(11)

where
S(n,m) =

∑

d|n,δ|m

B(d, δ)µ(n/d)µ(m/δ) (12)

and

B(n,m) =
1

Px(−n)Py(−m)

∑

k|n,r|m

c(k, r) (13)

Proof. Let

u(x, y) =

∞∑

n=1

∑
d|n

Ad(y)µ(n/d)

enx − 1

Then differentiating with respect to x we get

u(k),(0)(x, y) =

∞∑

n=1

∑
d|n

Ad(y)(−d)kµ(n/d)
enx − 1

(a)

then with respect to y we get

u(k),(l)(x, y) =

∞∑

n=1

∑
d|n

A
(l)
d (y)(−d)kµ(n/d)
enx − 1

(b)

but

A
(l)
d (y) =

∞∑

m=1

∑
δ|m

B(d, δ)(−δ)lµ(m/δ)
emy − 1

(c)

combining the above we get the result.

Note. The polynomials P apparently must have no solutions in natural
numbers.

Examples.
1) Set

Px(w) = 1 +
√
2w +w2

also set
Py(w) = 1 +

√
2w

Then the equation

u(x, y)+
√
2ux(x, y)+uxx(x, y)+

√
2uy(x, y)+2uxy(x, y)+

√
2uxxy(x, y) =

4



=

∞∑

n=1

1

enx − 1

∞∑

m=1

1

emy − 1

have solution

u(x, y) =

(
∞∑

n=1

σ0(n)e
−nx

1−
√
2n+ n2

)(
∞∑

m=1

σ0(m)e−my

1−
√
2m

)

where
σν(n) =

∑

d|n

dν

2) If
Px(w) = 2 +

√
3w +w3

Py(w) = 1 +
√
3w + w2

then the solution of

2u+
√
3ux +uxxx+2

√
3uy +3uxy +

√
3uxxxy +2uyy +

√
3uxyy +uxxxyy =

=

∞∑

n,m=1

log(n+m)

(enx − 1)(emy − 1)

is

u(x, y) =

∞∑

n,m=1

∑
d|n

∑
δ|m

B(d, δ)µ(n/d)µ(m/δ)

(enx − 1)(emy − 1)

where

B(n,m) =

∑
d|n

∑
δ|m

log(d+ δ)

(2−
√
3n− n3)(1−

√
3m+m2)

Observe that in this example we are not able to split the solution into two
parts in x and y.
Note. For no confusion the form of the equation is defined by

N,M∑

n,m=0

anbmu
(n),(m)(x, y)

where the an and bn are respectively that of Px and Py .

2 Series Solutions

If F is an operator such that

F (x) =

∞∑

k=0

(tλ)k

k!

dk

dxk
= eλt

d
dx (d)

We will try to solve the equation

∂

∂t
u(x, t) =

∂

∂x
u(x, t)

5



Assume that
u(x, t) = et

∂
∂x f(x)

then
∂

∂t
u(x, t) = et

∂
∂x

∂

∂x
f(x) =

∂

∂x
et

∂
∂x f(x) =

∂

∂x
u(x, t)

Hence the operator exp
(
t ∂
∂x

)
produces the solution. From Eq.(3) and

Lemma one can take the limit N → ∞ then

F
(
d

dx

)
u(x, t) = exp

(
−t ∂
∂x

)
u(x, t) = f(x) =

∞∑

n=1

C(n)e−nx

thus according to Lemma the solution of the above equation must be

u(x, t) =

∞∑

n=1

C(n)

etn
e−nx

Using the parameter λ which can take and complex values one can arrive
to the conclusion that

∂ν

∂tν
u(x, t) +

∂ν

∂xν
u(x, t) = 0 (14)

have solution

u(x, t) =

∞∑

n=1

C(n)

exp [eiπ/νnt]
e−nx (15)

One can see that, a solution of Schrodingers equation

ut(x, t) = − ∂m

∂xm
u(x, t) + V (t)u(x, t) (16)

is

u(x, t) =

∞∑

n=1

C(n)e−nx

exp [(−n)mt− f(t)]
(17)

where

f(x) =

∫ x

c

V (w)dw (18)

This is the general case in which the potential depends only in time.

Let again

P (x) :=

N∑

k=0

akx
k (19)

Consider now the equation

N∑

k=0

aky
(k)(x) = P

(
d

dx

)
y(x) = x− π (20)
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the solution is

y(x) =
xa0 − a0π − a1

a20
+

N∑

k=1

C(k)exρk (21)

Where ρk is the roots of P (x) = 0 The same equation have solution
according to the Theorems of section 1:

y(x) =
∑

n∈Z∗

i

nP (in)
einx (22)

An interesting question is how one can extract from (21) and (22) the
roots ρk.
Anyway when if we let N → ∞, then
Theorem 3.
i)

y(x) =
∑

n∈Z∗

i

nF (in)
einx (23)

ii)

F
(
d

dx

)
y(x) = x− π (24)

iii)

y(x) =
xa0 − a0π − a1

a20
+

∞∑

k=1

C(k)eρkx (25)

the ρk are roots of Eq. F (x) = x − π. The function F must have not
integer roots in the imaginery line.

Now consider the function F (x) = e−2πix+x−π−1. It is a0 = F (0) = −π
and a1 = −2πi+ 1 and ρk = k. Hence the two representations are

y(x) =
∑

n∈Z∗

ieinx

n(e2nπ + in− π − 1)

y(x) =
−xπ + π2 + 2πi− 1

π2
+

∞∑

n=−∞

C(n)einx

the differential equation is

y(x− 2πi) + y′(x)− y(x)(π + 1) = x− π

Examples
1)

F (x) = ex + x+ 1

then

y(x) =
∑

n∈Z∗

i

n(−n+ 1 + en)
einx

7



and also

y(x) =
−1− π + x

2
+ eπix

∞∑

k=−∞

C(k)e2kπix

in this example the diferential eq. is

y(x+ 1) + y′(x) + y(x) = x− π

2) For F (x) = cosh(x) + x+ 1 the DE is

y(x+ 1) + y(x− 1)

2
+ y′(x) + y(x) = x− π

with solution

y(x) =
∑

n∈Z∗

i

nF (in)
einx

The series in a first view can not become more fast convergent. If we
consider for example

F (x) = cos(x) + x+ 1

then

yM (x) =
∑

|n|≤M

i

n(cosh(n) + in+ 1)
einx

But for the diferential equation holds

yM (x+ i) + yM (x− i)

2
+ y′M (x) + yM (x)− x+ π = O

(
1

M

)

If we try with F (x) = cos(πx) + x+ 1 then we have

yM (x) =
∑

|n|≤M

i

n(cosh(nπ) + inπ + 1)
einx

and for the diferential equation holds

yM (x+ iπ) + yM (x− iπ)

2
+ y′M (x) + yM (x)− x+ π = O

(
1

M

)

which is the same.
Thus we can say that even the equations are not easy to solve numericaly,
the solutions itself under certain conditions may behave very good i.e
yM (x) is very fast convergent.
3) Let us consider now a curius case. The L2(R) function h(x) = ex−ex

then if F (x) = h(x) + x+ 1 (we dont need the roots), we have

∞∑

l=0

(−1)l

l!
y(x+ l + 1) + y′(x) + y(x) = x− π (26)

and

y(x) =
∑

n∈Z∗

i

n(in+ 1 + ein−ein )
einx (27)

is the solution indeed.
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3 Functions of
d

dx

We proceed with the following
Lemma 2. Let

f(x) =

∞∑

n=0

fnx
n

be analytic function in R such that for every a, b > 0 there exist constant
depending from f , Mf :

|f(x)| ≤Mf (1 + |x|a)e−b|x| (28)

Let also φ(x) real valued function with values in C, such that for every
c > 0 there exist costant Mφ:

|φ(x)| ≤Mφ|x|c (29)

then

∫ ∞

0

f(x)φ(x)e−xsdx =

∞∑

k=0

f2k
∂2k(Lφ)(s)

∂s2k
−

∞∑

k=0

f2k+1
∂2k+1(Lφ)(s)

∂s2k+1

(30)
Proof.
See [Ba]

If happens Lφ = y(x) then

∫ ∞

0

f(x)(L(−1)y)(x)e−xsdx =

=

∞∑

k=0

f (2k)(0)

(2k)!

d2ky(s)

ds2k
−

∞∑

k=0

f (2k+1)(0)

(2k + 1)!

d2k+1y(s)

ds2k+1
(31)

hence we can write
∫ ∞

0

f(x)(L(−1)y)(x)e−xsdx = fe

(
d

ds

)
y(s)− fo

(
d

ds

)
y(s)

∫ ∞

0

f(−x)(L(−1)y)(x)e−xsdx = f
(
d

ds

)
y(s) (32)

Theorem 4.
i) It holds

f
(
d

ds

)
y(s) = L

(
f(−x)(L(−1)y)(x)

)
(s) (33)

ii) The solution of

f
(
d

ds

)
y(s) = g(s) (34)

is

y(s) =

∫ ∞

0

(L(−1)g)(x)

f(−x) e−xsdx (35)
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This theorem shows clearly that we can find solutions in integral-closed-
form, of the general not homogeneous equation (if existing the Laplace
transforms).

Examples.
1) If hapens g(x) = 1/x2, then (L(−1)g)(x) = x and thus the solution of

f
(
d

ds

)
y(s) = 1/s2 (36)

is

y(x) =

∫ ∞

0

x

f(−x)e
−xsdx (37)

where the form of the equations (36) and (37) is that of (34) and (35). In
the same way as in the above example we can set other values for g(x)
2) Set

h(x) =

∞∑

k=0

ckx
νke−lkx

Then the equation
∞∑

k=0

cky
(νk)(x− lk) = g(x) (38)

have solution

y(x) =

∫ ∞

0

(L(−1)g)(w)

h(−w) e−wxdw (39)

This method is like solving (38) with Fourier or Laplace transforms but
we avoid some restrictions of y and g to be in L2(R). Note also that it is
solved with Laplace theory.
3) We try now to evaluate T = 1

1+ d
dx

. Let Ty(x) = g(x), then

1

1 + d
dx

= 1− d

dx
+

d2

dx2
− d3

dx3
+ . . .

g(x) = Ty(x) =
1

1 + d
dx

y(x) = 1− dy

dx
+
d2y

dx2
− d3y

dx3
+ . . .

we use (39) and get

y(x) =

∫ ∞

0

(L(−1)g)(w)(1− w)e−xwdw

solving with respect to g we have

g(w) = Ty(w) =

∫ ∞

0

(L(−1)y)(x)

1− x
e−xwdx

In general holds

h
(
d

dx

)
f(x) =

∫ ∞

0

(L(−1)f)(w)h(−w)e−xwdw (40)
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under certain conditions of convergence. For example if y(x) =polynomial
in x. Also for h(x) = log(1 + x), then

log
(
1 +

d

dx

)
y(x) = −

∞∑

n=1

(−1)n

n

dn

dxn
y(x) =

=

∫ ∞

0

(L(−1)y)(w) log(1− w)e−xwdw

Thus for example if we consider the equation

f
(
d

dx

)
y(x) = g(x) (e)

with f(x) = x + log(1 + x), then the differential equation (e) is actualy
the

dy(x)

dx
+

∫ ∞

0

(L(−1)y)(w) log(1− w)e−xwdw = g(x)

and have solution

y(x) =

∫ ∞

0

(L(−1)g)(w)

−w + log(1− w)
e−wxdw

Relation (40) is very useful if one can set a one to one relation between
h and a function of y. For example if one take h(x) = ex then for all the
functions

Q(x) + ex

with Q(x) =
∑N

k=0
akx

k, the equation will be

N∑

k=0

ak
dk

dxk
y(x) + y(x+ 1) = g(x)

will have the same solution type

y(x) =

∫ ∞

0

(L(−1)g)(w)

Q(−w) + e−w
e−xwdw

Can we say that for a given function h(x), (ex in the examples) exists a
unique form of y(x) (such as y(x+ 1) in the examples)? The exponential
and polynomial functions behave very good, but what happens with other
values of h. For example: Exist h2(x) giving us the form y(x)2 in the
differential equation? Then all the differential equations, with this term,
will be solvable in integral forms with knowing one function only. But
this seems not to happen. It happens with the differential functions, i.e.
h
(

d
dx

)
y(x) = log(1− d

dx
).

For example if we consider the equation

2
d2

dx2
y(x)− a

d

dx
y(x)− log

(
1− d

dx

)
y(x) = g(x)

11



the solution is

y(x) =

∫ ∞

0

(L(−1)g)(w)

2w2 + aw − log(1 + w)
e−xwdw.

Another related equation is

y(x+ i) + log
(
1− d

dx

)
y(x) = g(x)

which have a solution

y(x) =

∫ ∞

0

(L(−1)g)(w)

e−iw + log(1 + w)
e−wxdw

From the above examples and (39) and (40) one can see that the inversion
with respect to some g(x) is
Theorem 5. (Inversion)

h
(
d

dx

)(−1)

=
1

h
(

d
dx

) (41)

This means if

y(x) =

∫ ∞

0

(L(−1)g)(w)

h(−w) e−xwdw (42)

then

y(−1)(x) = g(x) =

∫ ∞

0

(L(−1)y)(w)h(−w)e−xwdw (43)

Where

h
(
d

dx

)
y(x) = g(x) = y1(x)

and
1

h
(

d
dx

)y1(x) = y(x)

Example.
If h(x) = e−x + 1 then h(−1)(x) = 1

h(x)
= 1

e−x+1
. This means that if

g(x) = 1/x2

y(x+ 1) + y(x) = g(x)

then

y(x) =
1

4

(
−ψ
(
1, 1 +

x

2

)
+ ψ

(
1,
x+ 1

2

))

and

g(x) = y1(x) =

∫ ∞

0

(L(−1)y)(w)(ew + 1)e−xwdw = 1/x2

Where ψ is the Polygamma function i.e

ψ(z) =
1

Γ(z)

dΓ(z)

dz

and
ψ(n, z) = ψ(n)(z)

12



(see and Mathematica notes). The above example is trivial and can be
solved with Laplace theory.

Now we will find a way to solve the equation

(a1x+ b1)f
′′(x) + (a2x+ b2)f

′(x) + (a3x+ b3)f(x) = g(x) (44)

where f , g ∈ L2(R).
Let the Fourier Transform of a function of L2(R) is

f̂(γ) =

∫ ∞

−∞

f(t)e−itγdx

the Inverse Fourier Transform is

f(x) =
1

2π

∫ ∞

−∞

f̂(γ)eiγxdγ

Lemma 3. ∫ ∞

−∞

f(x)xne−ixγdx = in(f̂)(n)(γ). (45)

̂(f (n))(γ) = (iγ)nf̂(γ). (46)∫ ∞

−∞

f ′(x)A(x)e−ixγdx =

=

∫ ∞

−∞

f(x)A′(x)e−ixγdx+ (−iγ)
∫ ∞

−∞

f(x)A(x)e−ixγdx. (47)

∫ ∞

−∞

f ′′(x)A(x)e−ixγ =

∫ ∞

−∞

f(x)A′′(x)e−ixγdx+

2(−iγ)
∫ ∞

−∞

f(x)A′(x)e−ixγdx+ (−iγ)2
∫ ∞

−∞

f(x)A(x)e−ixγdx. (48)

Proof.
The proof of (45) and (46) can be found in [Pa]. The relations (47) and
(48) are obtained with integration by parts.
Theorem 6.
When f , g ∈ L2(R) and lim|x|→∞ |f(x)x2+ǫ| = 0, ǫ > 0, equation (44)
can reduced in into

(−ia1γ2+a2γ+ia3)
f̂(γ)

dγ
+(−b1γ2−2ia1γ+ib2γ+a2+b3)f̂(γ) = ĝ(γ) (49)

which is solvable.
Proof.
Take the Fourier Transform in both sides of (44) and use Lemma 3.
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