On the metric dimension of corona product graphs

I. G. Yero ${ }^{1}$, D. Kuziak ${ }^{2}$ and J. A. Rodríguez-Velázquez ${ }^{1}$
${ }^{1}$ Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain. ismael.gonzalez@urv.cat, juanalberto.rodriguez@urv.cat
${ }^{2}$ Faculty of Applied Physics and Mathematics
Gdańsk University of Technology, ul. Narutowicza 11/12 80-233 Gdańsk, Poland dkuziak@mif.pg.gda.pl

October 8, 2010

Abstract

Given a set of vertices $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of a connected graph G, the metric representation of a vertex v of G with respect to S is the vector $r(v \mid S)=\left(d\left(v, v_{1}\right), d\left(v, v_{2}\right), \ldots, d\left(v, v_{k}\right)\right)$, where $d\left(v, v_{i}\right)$, $i \in\{1, \ldots, k\}$ denotes the distance between v and $v_{i} . S$ is a resolving set for G if for every pair of vertices u, v of $G, r(u \mid S) \neq r(v \mid S)$. The metric dimension of $G, \operatorname{dim}(G)$, is the minimum cardinality of any resolving set for G. Let G and H be two graphs of order n_{1} and n_{2}, respectively. The corona product $G \odot H$ is defined as the graph obtained from G and H by taking one copy of G and n_{1} copies of H and joining by an edge each vertex from the $i^{\text {th }}$-copy of H with the $i^{\text {th }}$-vertex of G. For any integer $k \geq 2$, we define the graph $G \odot^{k} H$ recursively from $G \odot H$ as $G \odot^{k} H=\left(G \odot^{k-1} H\right) \odot H$. We give several results on the metric dimension of $G \odot^{k} H$. For instance, we show that given two connected graphs G and H of order $n_{1} \geq 2$ and $n_{2} \geq 2$, respectively, if the diameter of H is at most two, then $\operatorname{dim}\left(G \odot^{k} H\right)=n_{1}\left(n_{2}+1\right)^{k-1} \operatorname{dim}(H)$. Moreover, if $n_{2} \geq 7$ and

the diameter of H is greater than five or H is a cycle graph, then $\operatorname{dim}\left(G \odot^{k} H\right)=n_{1}\left(n_{2}+1\right)^{k-1} \operatorname{dim}\left(K_{1} \odot H\right)$.

Keywords: Resolving sets, metric dimension, corona graph.
AMS Subject Classification Numbers: 05C12; 05C76; 05C90; 92E10.

1 Introduction

The concepts of resolvability and location in graphs were described independently by Harary and Melter [10] and Slater [19], to define the same structure in a graph. After these papers were published several authors developed diverse theoretical works about this topic $[3,4,5,6,7,16,18,20]$. Slater described the usefulness of these ideas into long range aids to navigation [19]. Also, these concepts have some applications in chemistry for representing chemical compounds $[14,15]$ or to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures [17]. Other applications of this concept to navigation of robots in networks and other areas appear in $[6,12,16]$. Some variations on resolvability or location have been appearing in the literature, like those about conditional resolvability [18], locating domination [11], resolving domination [1] and resolving partitions [5, 8, 9, 21]. In this article we study the metric dimension of corona product graphs.

We begin by giving some basic concepts and notations. Let $G=(V, E)$ be a simple graph of order $n=|V|$. Let $u, v \in V$ be two different vertices in G, the distance $d_{G}(u, v)$ between two vertices u and v of G is the length of a shortest path between u and v. If there is no ambiguity, we will use the notation $d(u, v)$ instead of $d_{G}(u, v)$. The diameter of G is defined as $D(G)=\max _{u, v \in V}\{d(u, v)\}$. Given $u, v \in V, u \sim v$ means that u and v are adjacent vertices. Given a set of vertices $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of a connected graph G, the metric representation of a vertex $v \in V$ with respect to S is the vector $r(v \mid S)=\left(d\left(v, v_{1}\right), d\left(v, v_{2}\right), \ldots, d\left(v, v_{k}\right)\right)$. We say that S is a resolving set for G if for every pair of distinct vertices $u, v \in V, r(u \mid S) \neq r(v \mid S)$. The metric dimension of G is the minimum cardinality of any resolving set for G, and it is denoted by $\operatorname{dim}(G)$.

Let G and H be two graphs of order n_{1} and n_{2}, respectively. The corona product $G \odot H$ is defined as the graph obtained from G and H by taking one copy of G and n_{1} copies of H and joining by an edge each vertex from the
$i^{\text {th }}$-copy of H with the $i^{\text {th }}$-vertex of G. We will denote by $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ the set of vertices of G and by $H_{i}=\left(V_{i}, E_{i}\right)$ the copy of H such that $v_{i} \sim v$ for every $v \in V_{i}$. Notice that the corona graph $K_{1} \odot H$ is isomorphic to the join graph $K_{1}+H$. For any integer $k \geq 2$, we define the graph $G \odot^{k} H$ recursively from $G \odot H$ as $G \odot^{k} H=\left(G \odot^{k-1} H\right) \odot H$. We also note that the order of $G \odot^{k} H$ is $n_{1}\left(n_{2}+1\right)^{k}$.

2 Metric dimension of corona product graphs

We begin by presenting the following useful facts.
Lemma 1. Let $G=(V, E)$ be a connected graph of order $n \geq 2$ and let H be a graph of order at least two. Let $H_{i}=\left(V_{i}, E_{i}\right)$ be the subgraph of $G \odot H$ corresponding to the $i^{\text {th }}$-copy of H.
(i) If $u, v \in V_{i}$, then $d_{G \odot H}(u, x)=d_{G \odot H}(v, x)$ for every vertex x of $G \odot H$ not belonging to V_{i}.
(ii) If S is a resolving set for $G \odot H$, then $V_{i} \cap S \neq \emptyset$ for every $i \in\{1, \ldots, n\}$.
(iii) If S is a resolving set for $G \odot H$ of minimum cardinality, then $V \cap S=\emptyset$.
(iv) If H is a connected graph and S is a resolving set for $G \odot H$, then for every $i \in\{1, . ., n\}, S \cap V_{i}$ is a resolving set for H_{i}.

Proof. (i) Let $y=v_{i} \in V$. The result directly follows from the fact that $d_{G \odot H}(u, x)=d_{G \odot H}(u, y)+d_{G \odot H}(y, x)=d_{G \odot H}(v, y)+d_{G \odot H}(y, x)=d_{G \odot H}(v, x)$.
(ii) We suppose $V_{i} \cap S=\emptyset$ for some $i \in\{1, \ldots, n\}$. Let $x, y \in V_{i}$. By (i) we have $d_{G \odot H}(x, u)=d_{G \odot H}(y, u)$ for every vertex $u \in S$, which is a contradiction.
(iii) We will show that $S^{\prime}=S-V$ is a resolving set for $G \odot H$. Now let x, y be two different vertices of $G \odot H$. We have the following cases.

Case 1: $x, y \in V_{i}$. By (i) we conclude that there exist $v \in V_{i} \cap S^{\prime}$ such that $d_{G \odot H}(x, v) \neq d_{G \odot H}(y, v)$.

Case 2: $x \in V_{i}$ and $y \in V_{j}, i \neq j$. Let $v \in V_{i} \cap S^{\prime}$. Then we have $d_{G \odot H}(x, v) \leq 2<3 \leq d_{G \odot H}(y, v)$.

Case 3: $x, y \in V$. Let $x=v_{i}$ and let $v \in V_{i} \cap S^{\prime}$. Then we have $d_{G \odot H}(x, v)=1<1+d_{G \odot H}(y, x)=d_{G \odot H}(y, v)$.

Case 4: $x \in V_{i}$ and $y \in V$. If $x \sim y$, then $y=v_{i}$. Let $v_{j} \in V, j \neq i$, and let $v \in V_{j} \cap S^{\prime}$. Then we have $d_{G \odot H}(x, v)=1+d_{G \odot H}(y, v)>d_{G \odot H}(y, v)$. For $x \nsim y=v_{l}$ we take $v \in V_{l} \cap S^{\prime}$ and we obtain $d_{G \odot H}(x, v)=d_{G \odot H}(x, y)+$ $d_{G \odot H}(y, v)>d_{G \odot H}(y, v)$.

Therefore, S^{\prime} is a resolving set for $G \odot H$.
(iv) Let $S_{i}=S \cap V_{i}$. For $x \in S_{i}$ or $y \in S_{i}$ the result is straightforward. We suppose $x, y \in V_{i}-S_{i}$. Since S is a resolving set for $G \odot H$, we have $r(x \mid S) \neq r(y \mid S)$. By (i), $d_{G \odot H}(x, u)=d_{G \odot H}(y, u)$ for every vertex u of $G \odot H$ not belonging to V_{i}. So, there exists $v \in S_{i}$ such that $d_{G \odot H}(x, v) \neq$ $d_{G \odot H}(y, v)$. Thus, either $(v \sim x$ and $v \nsim y)$ or $(v \nsim x$ and $v \sim y)$. In the first case we have $d_{G \odot H}(x, v)=d_{H_{i}}(x, v)=1$ and $d_{G \odot H}(y, v)=2 \leq d_{H_{i}}(y, v)$. The case $v \nsim x$ and $v \sim y$ is analogous. Therefore, S_{i} is a resolving set for H_{i}.

Theorem 2. Let G and H be two connected graphs of order $n_{1} \geq 2$ and $n_{2} \geq 2$, respectively. Then,

$$
\operatorname{dim}\left(G \odot^{k} H\right) \geq n_{1}\left(n_{2}+1\right)^{k-1} \operatorname{dim}(H)
$$

Proof. Let S be a resolving set of minimum cardinality in $G \odot H$. From Lemma 1 (iii) we have that $S \cap V=\emptyset$. Moreover, by Lemma 1 (ii) we have that for every $i \in\left\{1, \ldots, n_{1}\right\}$ there exist a nonempty set $S_{i} \subset V_{i}$ such that $S=\bigcup_{i=1}^{n_{1}} S_{i}$. Now, by using Lemma 1 (iv) we have that S_{i} is a resolving set for H_{i}. Hence, $\operatorname{dim}(G \odot H)=|S|=\sum_{i=1}^{n_{1}}\left|S_{i}\right| \geq \sum_{i=1}^{n_{1}} \operatorname{dim}(H)=n_{1} \operatorname{dim}(H)$. As a result, the lower bound follows.

Theorem 3. Let G be a connected graph of order $n_{1} \geq 2$ and let H be a graph of order $n_{2} \geq 2$. If $D(H) \leq 2$, then

$$
\operatorname{dim}\left(G \odot^{k} H\right)=n_{1}\left(n_{2}+1\right)^{k-1} \operatorname{dim}(H)
$$

Proof. Let $S_{i} \subset V_{i}$ be a resolving set for H_{i} and let $S=\bigcup_{i=1}^{n_{1}} S_{i}$. We will show that S is a resolving set for $G \odot H$. Let us consider two different vertices x, y of $G \odot H$. We have the following cases.

Case 1: $x, y \in V_{i}$. Since $D\left(H_{i}\right) \leq 2$, we have that $r\left(x \mid S_{i}\right) \neq r\left(y \mid S_{i}\right)$ leads to $r(x \mid S) \neq r(y \mid S)$.

Case 2: $x \in V_{i}$ and $y \in V_{j}, i \neq j$. Let $v \in S_{i}$. Hence we have $d(x, v) \leq$ $2<3 \leq d(y, v)$.

Case 3: $x, y \in V$. Let $x=v_{i}$. Then for every vertex $v \in S_{i}$ we have $d(x, v)=1<d(y, x)+1=d(y, v)$.

Case 4: $x \in V_{i}$ and $y \in V$. If $x \sim y$, then let $v \in S_{j}$, for some $j \neq i$. So we have $d(x, v)=1+d(y, v)>d(y, v)$. Moreover, if $x \nsim y=v_{j}$, for $v \in S_{j}$ we have $d(x, v)=d(x, y)+d(y, v)>d(y, v)$.

Thus, for every different vertices x, y of $G \odot H$, we have $r(x \mid S) \neq r(y \mid S)$, as a consequence, $\operatorname{dim}(G \odot H) \leq n_{1} \operatorname{dim}(H)$. Therefore, we have $\operatorname{dim}\left(G \odot^{k}\right.$ $H) \leq n_{1}\left(n_{2}+1\right)^{k-1} \operatorname{dim}(H)$. By Theorem 2 we conclude the proof.

In order to show a consequence of the above theorem we present the following well known result, where K_{t} denotes a complete graph of order t, $K_{s, t}$ denotes a complete bipartite graph of order $s+t$ and N_{t} denotes an empty graph of order t.

Lemma 4. [6] Let G be a connected graph of order $n \geq 4$. Then $\operatorname{dim}(G)=$ $n-2$ if and only if $G=K_{s, t},(s, t \geq 1), G=K_{s}+N_{t},(s \geq 1, t \geq 2)$, or $G=K_{s}+\left(K_{1} \cup K_{t}\right),(s, t \geq 1)$.

Corollary 5. Let G be a connected graph of order $n_{1} \geq 2$ and let H be a graph of order $n_{2} \geq 4$ and diameter $D(H) \leq 2$. Then

$$
\operatorname{dim}\left(G \odot^{k} H\right)=n_{1}\left(n_{2}+1\right)^{k-1}\left(n_{2}-2\right)
$$

if and only if $H=K_{s, t},(s, t \geq 1) ; H=K_{s}+N_{t},(s \geq 1, t \geq 2)$, or $H=K_{s}+\left(K_{1} \cup K_{t}\right),(s, t \geq 1)$.

We recall that the wheel graph of order $n+1$ is defined as $W_{1, n}=K_{1} \odot C_{n}$, where K_{1} is the singleton graph and C_{n} is the cycle graph of order n. The metric dimension of the wheel $W_{1, n}$ was obtained by Buczkowski et. al. in [2].

Remark 6. [2] Let $W_{1, n}$ be a wheel graph. Then

$$
\operatorname{dim}\left(W_{1, n}\right)= \begin{cases}3 & \text { for } n=3,6 \\ 2 & \text { for } n=4,5 \\ \left\lfloor\frac{2 n+2}{5}\right\rfloor & \text { otherwise }\end{cases}
$$

The fan graph $F_{n_{1}, n_{2}}$ is defined as the graph join $N_{n_{1}}+P_{n_{2}}$, where $N_{n_{1}}$ is the empty graph of order n_{1} and $P_{n_{2}}$ is the path graph of order n_{2}. The case $n_{1}=1$ corresponds to the usual fan graphs. Notice that, for the metric dimension of fan graphs, it is possible to find an equivalent result to Remark 6 which was obtained by Caceres et. al. in [4].

Remark 7. [4] Let $F_{1, n}$ be a fan graph. Then

$$
\operatorname{dim}\left(F_{1, n}\right)= \begin{cases}1 & \text { for } n=1 \\ 2 & \text { for } n=2,3 \\ 3 & \text { for } n=6 \\ \left\lfloor\frac{2 n+2}{5}\right\rfloor & \text { otherwise }\end{cases}
$$

As a particular case of the Theorem 3 we obtain the following results.
Corollary 8. Let G be a connected graph of order $n_{1} \geq 2$. If H is a wheel graph or a fan graph of order $n_{2} \geq 8$, then

$$
\operatorname{dim}\left(G \odot^{k} H\right)=n_{1}\left(n_{2}+1\right)^{k-1}\left\lfloor\frac{2 n_{2}}{5}\right\rfloor
$$

Theorem 9. Let G be a connected graph of order $n_{1} \geq 2$ and let H be a graph of order $n_{2} \geq 2$. Let α be the number of connected components of H of order greater than one and let β be the number of isolated vertices of H. Then

$$
\operatorname{dim}\left(G \odot^{k} H\right) \leq \begin{cases}n_{1}\left(n_{2}+1\right)^{k-1}\left(n_{2}-\alpha-1\right) & \text { for } \alpha \geq 1 \text { and } \beta \geq 1 \\ n_{1}\left(n_{2}+1\right)^{k-1}\left(n_{2}-\alpha\right) & \text { for } \alpha \geq 1 \text { and } \beta=0 \\ n_{1}\left(n_{2}+1\right)^{k-1}\left(n_{2}-1\right) & \text { for } \alpha=0\end{cases}
$$

Proof. We suppose $\alpha \geq 1$ and $\beta \geq 1$. Let A_{i} be the set of vertices of $G \odot H$ formed by all but one of the vertices per each of the α connected components of H_{i}. If $\beta \geq 2$ we define B_{i} to be the set of vertices of $G \odot H$ formed by all but one of the isolated vertices of H_{i}. If $\beta=1$ we assume $B_{i}=\emptyset$. Let us show that $S=\cup_{j=1}^{n_{1}}\left(A_{j} \cup B_{j}\right)$ is a resolving set for $G \odot H$. Let x, y be two different vertices of $G \odot H$. We suppose $x, y \notin S$. We have the following cases.

Case 1. $x=v_{i} \in V$ and $y \in V_{i}$. For every vertex $u \in V_{j} \cap S, j \neq i$, we obtain $d(y, u)=d(y, x)+d(x, u)>d(x, u)$.
case 2. $x=v_{i} \in V$ and $y \notin V_{i}$. For every $v \in S \cap V_{i}$ we have $d(x, v)=$ $1<d(y, v)$.

Case 3. $x \in V_{i}$ and $y \in V_{j}, j \neq i$. For every $u \in V_{i} \cap S$ we have $d(x, u) \leq 2<3 \leq d(y, u)$.

Case 4. $x, y \in V_{i}$. We consider, without loss of generality, that x is not an isolated vertex in H_{i}. Then there exists $v \in V_{i} \cap S$ such that $v \sim x$, so $d(x, v)=1<2=d(y, v)$.

Thus, for every two different vertices x, y of $G \odot H$, we obtain $r(x \mid S) \neq$ $r(y \mid S)$ and, as a consequence, $\operatorname{dim}(G \odot H) \leq n_{1}\left(n_{2}-\alpha-1\right)$.

As above, if $\beta=0$ then we take $S=\cup_{j=1}^{n_{1}} A_{j}$ and we obtain $\operatorname{dim}(G \odot$ $H) \leq n_{1}\left(n_{2}-\alpha\right)$ and if $\alpha=0$, then we take $S=\cup_{j=1}^{n_{1}} B_{j}$ and we obtain $\operatorname{dim}(G \odot H) \leq n_{1}\left(n_{2}-1\right)$. Note that if $\alpha=0$, then it is not necessary to consider Case 4. Thus, the result follows.

Corollary 10. Let G be a connected graphs of order $n_{1} \geq 2$ and let H be an unconnected graph of order $n_{2} \geq 2$. Then

$$
\operatorname{dim}\left(G \odot^{k} H\right)=n_{1}\left(n_{2}+1\right)^{k-1}\left(n_{2}-1\right)
$$

if and only if $H \cong N_{n_{2}}$.
Proof. In [13] the authors showed that $\operatorname{dim}\left(G \odot N_{n_{2}}\right)=n_{1}\left(n_{2}-1\right)$. Hence, $\operatorname{dim}\left(G \odot^{k} N_{n_{2}}\right)=n_{1}\left(n_{2}+1\right)^{k-1}\left(n_{2}-1\right)$. Moreover, by the above theorem, if H is unconnected and $H \not \approx N_{n_{2}}$, then $\operatorname{dim}\left(G \odot^{k} H\right) \leq n_{1}\left(n_{2}+1\right)^{k-1}\left(n_{2}-2\right)$.

Theorem 11. Let G and H be two connected graphs of order $n_{1} \geq 2$ and $n_{2} \geq 3$, respectively. Then

$$
\operatorname{dim}\left(G \odot^{k} H\right)=n_{1}\left(n_{2}+1\right)^{k-1}\left(n_{2}-1\right)
$$

if and only if $H \cong K_{n_{2}}$. Moreover, if $H \not \approx K_{n_{2}}$, then

$$
\operatorname{dim}\left(G \odot^{k} H\right) \leq n_{1}\left(n_{2}+1\right)^{k-1}\left(n_{2}-2\right)
$$

Proof. Since $\operatorname{dim}\left(K_{n_{2}}\right)=n_{2}-1$, by Theorem 3 we conclude $\operatorname{dim}\left(G \odot^{k} K_{n_{2}}\right)=$ $n_{1}\left(n_{2}+1\right)^{k-1}\left(n_{2}-1\right)$. On the contrary, we suppose $H \not \approx K_{n_{2}}$. Given a set X of vertices of H and a vertex v of $H, N_{X}(v)$ denotes the set of neighbors that v has in $X: N_{X}(v)=\{u \in X: u \sim v\}$. Given two vertices a, b of H, let $X_{a, b}$ be the set formed by all vertices of H different from a and b. Since H is a connected graph and $H \neq K_{n_{2}}$, there exist at least two vertices a, b of H such that $N_{X_{a, b}}(a) \neq N_{X_{a, b}}(b)$. Let a_{i}, b_{i} be the vertices corresponding to a, b, respectively, in the $i^{t h}$-copy $H_{i}=\left(V_{i}, E_{i}\right)$ of H. Let $S=\cup_{i=1}^{n_{2}}\left(V_{i}-\left\{a_{i}, b_{i}\right\}\right)$. We will show that S is a resolving set for $G \odot H$. Let x, y be two different vertices of $G \odot H$ such that $x, y \notin S$. We have the following cases.

Case 1. $x=a_{i}$ and $y=b_{i}$. Since $N_{X_{a, b}}(a) \neq N_{X_{a, b}}(b)$ we have $r(x \mid S) \neq$ $r(y \mid S)$.

Case 2. $x=v_{i} \in V$ and $y \in V_{i}$. For every $v \in V_{j}-\left\{a_{j}, b_{j}\right\}, j \neq i$, we have $d(y, v)=d(y, x)+d(x, v)>d(x, v)$. If $x \in V_{i}$ and $y \in V_{j}, j \neq i$, then for every $v \in V_{i}-\left\{a_{i}, b_{i}\right\}$ we have $d(x, v) \leq 2<3 \leq d(y, v)$.

Case 3. $x, y \in V$. Say $x=v_{i}$. Then for every $v \in V_{i}-\left\{a_{i}, b_{i}\right\}$ we have $d(x, v)=1<d(y, v)$.

Hence, for every two different vertices x, y of $G \odot H$, we obtain $r(x \mid S) \neq$ $r(y \mid S)$. Thus, $\operatorname{dim}(G \odot H) \leq n_{1}\left(n_{2}-2\right)$. Therefore, the result follows.

As we have shown in Corollary 5, the above bound is tight.
Theorem 12. Let G be a connected graph of order $n_{1} \geq 2$ and let H be a graph of order $n_{2} \geq 2$. Then

$$
\operatorname{dim}\left(G \odot^{k} H\right) \leq n_{1}\left(n_{2}+1\right)^{k-1} \operatorname{dim}\left(K_{1} \odot H\right)
$$

Proof. We denote by $K_{1} \odot H_{i}$ the subgraph of $G \odot H$, obtained by joining the vertex $v_{i} \in V$ with all vertices of H_{i}. For every $v_{i} \in V$, let B_{i} be a resolving set of minimum cardinality of $K_{1} \odot H_{i}$ and let $B=\bigcup_{i=1}^{n_{1}} B_{i}$. By Lemma 1 (iii) we have that v_{i} does not belong to any resolving set of minimum cardinality for $K_{1} \odot H_{i}$. So, B does not contain any vertex from G. We will show that B is a resolving set for $G \odot H$. Let x, y be two different vertices in $G \odot H$. We consider the following cases.

Case 1: $x, y \in V_{i}$. There exists $u \in B_{i}$ such that $d_{K_{1} \odot H_{i}}(x, u) \neq$ $d_{K_{1} \odot H_{i}}(y, u)$, which leads to $d_{G \odot H}(x, u) \neq d_{G \odot H}(y, u)$.

Case 2: $x \in V_{i}$ and $y \in V_{j}, i \neq j$. Let $v \in B_{i}$. We have $d_{G \odot H}(x, v) \leq$ $2<3 \leq d_{G \odot H}(y, v)$.

Case 3: $x, y \in V$. Suppose now that x is adjacent to the vertices of H_{i}. Hence, for every vertex $v \in B_{i}$ we have $d_{G \odot H}(x, v)=1<d_{G \odot H}(y, x)+1=$ $d_{G \odot H}(y, v)$.

Case 4: $x \in V_{i}$ and $y \in V$. If $x \sim y$, then for every vertex $v \in B_{j}$, with $j \neq i$, we have $d_{G \odot H}(x, v)=1+d_{G \odot H}(y, v)>d_{G \odot H}(y, v)$. Now, let us assume that $x \nsim y$. Hence, there exists $v \in B_{j}$ adjacent to y, with $j \neq i$. So, we have $d_{G \odot H}(x, v)=d_{G \odot H}(x, y)+1=d_{G \odot H}(x, y)+d_{G \odot H}(y, v)>d_{G \odot H}(y, v)$.

Thus, for every two different vertices x, y of $G \odot H$, we have $r(x \mid S) \neq$ $r(y \mid S)$ and, as a consequence, $\operatorname{dim}(G \odot H) \leq n_{1} \operatorname{dim}\left(K_{1} \odot H\right)$. Therefore, the result follows.

Theorem 13. Let G be a connected graph of order $n_{1} \geq 2$ and let H be a graph of order $n_{2} \geq 7$. If $D(H) \geq 6$ or H is a cycle graph, then

$$
\operatorname{dim}\left(G \odot^{k} H\right)=n_{1}\left(n_{2}+1\right)^{k-1} \operatorname{dim}\left(K_{1} \odot H\right)
$$

Proof. Let S be a resolving set of minimum cardinality in $G \odot H$. By Lemma 1 (iii) we have $S \cap V=\emptyset$, as a consequence, $S=\cup_{i=1}^{n_{1}} S_{i}$, where $S_{i} \subset V_{i}$. Notice that, by Lemma 1 (ii), $S_{i} \neq \emptyset$ for every $i \in\left\{1, \ldots, n_{1}\right\}$. Now we differentiate two cases in order to show that $r\left(x \mid S_{i}\right) \neq(1, \ldots, 1)$ for every $x \in V_{i}-S_{i}$.

Case 1. H is a cycle graph of order $n_{2} \geq 7$. If $r\left(a \mid S_{i}\right)=(1,1)$ for some $a \in V_{i}-S_{i}$, then, since $n_{2} \geq 7$, there exist two vertices $x, y \in V_{i}-S_{i}$ such that $d_{H_{i}}(x, v)>1$ and $d_{H_{i}}(y, v)>1$, for every $v \in S_{i}$. Hence, $d_{G \odot H}(x, v)=$ $d_{G \odot H}(y, v)=2$ for every $v \in S_{i}$, which is a contradiction because, by Lemma 1 (i), $d_{G \odot H}(x, v)=d_{G \odot H}(y, v)$ for every vertex u of S not belonging to S_{i}.

Case 2. $D(H) \geq 6$. Let $x, y \in V_{i}-S_{i}$. Since S is a resolving set for $G \odot H$, we have $r(x \mid S) \neq r(y \mid S)$. As we have noted before, by Lemma 1 (i) we have that $d_{G \odot H}(x, u)=d_{G \odot H}(y, u)$ for every vertex u of $G \odot H$ not belonging to V_{i}. So, there exists $v \in S_{i}$ such that $d_{G \odot H}(x, v) \neq d_{G \odot H}(y, v)$ and, as a consequence, either ($v \sim x$ and $v \nsim y$) or ($v \nsim x$ and $v \sim y$). Now we suppose that there exists a vertex $a \in V_{i}-S_{i}$ such that $r\left(a \mid S_{i}\right)=(1,1, \ldots 1)$. If there exists a vertex $b \in V_{i}-S_{i}$ such that $d_{H_{i}}(b, u)>1$, for every $u \in S_{i}$, then for every $w \in V_{i}-\left(S_{i} \cup\{a, b\}\right)$, there exists $v \in S_{i}$ such that $w \sim v$. Then $D\left(H_{i}\right) \leq 5$. Moreover, if for every $b \in V_{i}-S_{i}$ there exists $v_{b} \in S_{i}$ such that $v_{b} \sim b$, then $D(H) \leq 4$. Therefore, if $D(H) \geq 6$, then $r\left(a \mid S_{i}\right) \neq(1,1, \ldots 1)$ for every $a \in V_{i}-S_{i}$.

Now, we denote by $K_{1} \odot H_{i}$ the subgraph of $G \odot H$, obtained by joining the vertex $v_{i} \in V$ with all vertices of the $i^{\text {th }}$-copy of H. In both the above cases we have $r\left(v_{i} \mid S_{i}\right)=(1,1, \ldots, 1) \neq r\left(x \mid S_{i}\right)$ for every $x \in V_{i}-S_{i}$, so S_{i} is a resolving set for $K_{1} \odot H_{i}$. Hence, $\operatorname{dim}\left(K_{1} \odot H_{i}\right) \leq\left|S_{i}\right|$, for every $i \in\left\{1, \ldots, n_{1}\right\}$. Thus, $\operatorname{dim}(G \odot H) \geq n_{1} \operatorname{dim}\left(K_{1} \odot H_{i}\right)$ and, as a consequence, $\operatorname{dim}\left(G \odot^{k} H\right) \geq n_{1}\left(n_{2}+1\right)^{k-1} \operatorname{dim}\left(K_{1} \odot H\right)$. We conclude the proof by Theorem 12.

Corollary 14. Let G be a connected graph of order $n_{1} \geq 2$.
(i) If $n_{2} \geq 7$, then $\operatorname{dim}\left(G \odot^{k} C_{n_{2}}\right)=n_{1}\left(n_{2}+1\right)^{k-1}\left\lfloor\frac{2 n_{2}+2}{5}\right\rfloor$.
(ii) If $n_{2} \geq 7$, then $\operatorname{dim}\left(G \odot^{k} P_{n_{2}}\right)=n_{1}\left(n_{2}+1\right)^{k-1}\left\lfloor\frac{2 n_{2}+2}{5}\right\rfloor$.

All our previous results concern to $G \odot H$ for H of order at least two. Now we consider the case $H \cong K_{1}$. We obtain a general bound for $\operatorname{dim}\left(G \odot^{k} K_{1}\right)$ and, when G is a tree, we give the exact value for this parameter.

Claim 15. Let G be a simple graph. If v is a vertex of degree greater than one in G, then for every vertex u adjacent to v there exists a vertex $x \neq u, v$ of G, such that $d(v, x) \neq d(u, x)+1$.

The following lemma obtained in [2] is useful to obtain the next result.
Lemma 16. [2] If G_{1} is a graph obtained by adding a pendant edge to a nontrivial connected graph G, then $\operatorname{dim}(G) \leq \operatorname{dim}\left(G_{1}\right) \leq \operatorname{dim}(G)+1$.

Theorem 17. For every connected graph G of order $n \geq 2$,

$$
\operatorname{dim}\left(G \odot^{k} K_{1}\right) \leq 2^{k-1} n-1
$$

Proof. If $G \cong K_{2}$, then $\operatorname{dim}\left(K_{2} \odot K_{1}\right)=\operatorname{dim}\left(P_{4}\right)=1$. So, let us suppose $G \not \approx K_{2}$. Let us suppose, without loss of generality, that v_{n} is a vertex of degree greater than one in G and let $S=V-\left\{v_{n}\right\}$. For every $i \in\{1, \ldots, n\}$, let u_{i} be the pendant vertex of v_{i} in $G \odot K_{1}$. We will show that S is a resolving set for $G \odot K_{1}$. Let x, y be two different vertices of $G \odot K_{1}$. If $x=u_{i}$ and $y=u_{j}, i \neq j$, then we have either $i \neq n$ or $j \neq n$. Let us suppose for instance $i \neq n$. So, we obtain that $d\left(x, v_{i}\right)=1 \neq d\left(y, v_{i}\right)$. On the other hand, if $x=v_{n}$ and $y=u_{i}$, then let us suppose $d\left(x, v_{i}\right)=1$. Since v_{n} is a vertex of degree greater than one in G, by Claim 15, there exists a vertex $v_{j} \in S$ such that $d\left(x, v_{j}\right) \neq d\left(v_{i}, v_{j}\right)+1$. So, we have $d\left(x, v_{j}\right) \neq$ $d\left(v_{i}, v_{j}\right)+1=d\left(v_{i}, v_{j}\right)+d\left(u_{i}, v_{i}\right)=d\left(y, v_{i}\right)+d\left(v_{i}, v_{j}\right)=d\left(y, v_{j}\right)$. Therefore, for every different vertices x, y of $G \odot K_{1}$ we have $r(x \mid S) \neq r(y \mid S)$ and, as a consequence, $\operatorname{dim}\left(G \odot K_{1}\right) \leq n-1$. Therefore, $\operatorname{dim}\left(G \odot^{k} K_{1}\right) \leq 2^{k-1} n-1$.

By Lemma 16 we have $\operatorname{dim}\left(K_{n} \odot K_{1}\right) \geq \operatorname{dim}\left(K_{n}\right)=n-1$. Thus, for $k=1$ the above bound is achieved for the graph $G=K_{n}$.

To present the next result, we need additional definitions. A vertex of degree at least 3 in a graph G will be called a major vertex of G. Any vertex u of degree one is said to be a terminal vertex of a major vertex v if $d(u, v)<d(u, w)$ for every other major vertex w of G. The terminal degree of a major vertex v is the number of terminal vertices of v. A major vertex v is an exterior major vertex if it has positive terminal degree. Given a graph $G, n_{1}(G)$ denotes the number of vertices of degree one and $\operatorname{ex}(G)$ denotes the number of exterior major vertices of G.

Lemma 18. [6, 10, 19] If T is a tree that is not a path, then $\operatorname{dim}(T)=$ $n_{1}(T)-e x(T)$.

Theorem 19. For any tree T of order $n \geq 3$,

$$
\operatorname{dim}\left(T \odot^{k} K_{1}\right)= \begin{cases}n_{1}(T) & \text { for } k=1, \\ 2^{k-2} n & \text { for } k \geq 2\end{cases}
$$

Proof. If T is a path of order $n \geq 3$, then we have $\operatorname{dim}\left(T \odot K_{1}\right)=2=n_{1}(T)$. Now, if T is not a path, then by using Lemma 18, since $T \odot K_{1}$ is a tree, $n_{1}\left(T \odot K_{1}\right)=n$ and $e x\left(T \odot K_{1}\right)=n-n_{1}(T)$, we obtain the result for $k=1$. Since for every tree T of order n we have $n_{1}\left(T \odot K_{1}\right)=n$, we obtain the result for $k \geq 2$.

Acknowledgements

The research was partially done while the first author was at Gdańsk University of Technology, Poland, supported by "Fundació Ferran Sunyer i Balaguer", Catalunya, Spain. This work was partly supported by the Spanish Ministry of Education through projects TSI2007-65406-C03-01 "E-AEGIS" and CONSOLIDER INGENIO 2010 CSD2007-00004 "ARES".

References

[1] R. C. Brigham, G. Chartrand, R. D. Dutton, P. Zhang, Resolving domination in graphs, Mathematica Bohemica 128 (1) (2003) 25-36.
[2] P. S. Buczkowski, G. Chartrand, C. Poisson, P. Zhang, On k-dimensional graphs and their bases, Periodica Mathematica Hungarica, 46 (1) (2003), 9-15.
[3] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, D. R. Wood, On the metric dimension of Cartesian product of graphs, SIAM Journal of Discrete Mathematics 21 (2) (2007) 273-302.
[4] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, On the metric dimension of some families of graphs, Electronic Notes in Discrete Mathematics 22 (2005) 129-133.
[5] G. Chappell, J. Gimbel, C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combinatoria 88 (2008) 349-366.
[6] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000) 99-113.
[7] G. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of graphs, Computers and Mathematics with Applications 39 (2000) 19-28.
[8] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Mathematicae (1-2) 59 (2000) 45-54.
[9] M. Fehr, S. Gosselin, O. R. Oellermann, The partition dimension of Cayley digraphs Aequationes Mathematicae 71 (2006) 1-18.
[10] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191-195.
[11] T. W. Haynes, M. Henning, J. Howard, Locating and total dominating sets in trees, Discrete Applied Mathematics 154 (2006) 1293-1300.
[12] B. L. Hulme, A. W. Shiver, P. J. Slater, A Boolean algebraic analysis of fire protection, Algebraic and Combinatorial Methods in Operations Research 95 (1984) 215-227.
[13] H. Iswadi, E. T. Baskoro, R. Simanjuntak, A. N. M. Salman, The metric dimension of graph with pendant edges, Journal of Combinatorial Mathematics and Combinatorial Computing, 65 (2008) 139-145.
[14] M. A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, Journal of Biopharmaceutical Statistics $\mathbf{3}$ (1993) 203-236.
[15] M. A. Johnson, Browsable structure-activity datasets, Advances in Molecular Similarity (R. Carbó-Dorca and P. Mezey, eds.) JAI Press Connecticut (1998) 153-170.
[16] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70 (1996) 217-229.
[17] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Computer Vision Graphics and Image Processing 25 (1984) 113-121.
[18] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: a survey, International Journal of Mathematics and Mathematical Sciences 38 (2004) 1997-2017.
[19] P. J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium 14 (1975) 549-559.
[20] I. Tomescu, Discrepancies between metric and partition dimension of a connected graph, Discrete Mathematics 308 (2008) 5026-5031.
[21] I. G. Yero and J. A. Rodríguez-Velázquez. A note on the partition dimension of Cartesian product graphs. Applied Mathematics and Computation. In press. Doi: 10.1016/j.amc.2010.08.038

