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Abstract

Given a set of vertices S = {v1, v2, ..., vk} of a connected graph
G, the metric representation of a vertex v of G with respect to S

is the vector r(v|S) = (d(v, v1), d(v, v2), ..., d(v, vk)), where d(v, vi),
i ∈ {1, ..., k} denotes the distance between v and vi. S is a resolving
set for G if for every pair of vertices u, v of G, r(u|S) 6= r(v|S). The
metric dimension of G, dim(G), is the minimum cardinality of any
resolving set for G. Let G and H be two graphs of order n1 and
n2, respectively. The corona product G ⊙ H is defined as the graph
obtained from G and H by taking one copy of G and n1 copies of H
and joining by an edge each vertex from the ith-copy of H with the
ith-vertex of G. For any integer k ≥ 2, we define the graph G ⊙k H

recursively from G ⊙ H as G ⊙k H = (G ⊙k−1 H) ⊙ H. We give
several results on the metric dimension of G ⊙k H. For instance,
we show that given two connected graphs G and H of order n1 ≥ 2
and n2 ≥ 2, respectively, if the diameter of H is at most two, then
dim(G ⊙k H) = n1(n2 + 1)k−1dim(H). Moreover, if n2 ≥ 7 and
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the diameter of H is greater than five or H is a cycle graph, then
dim(G⊙k H) = n1(n2 + 1)k−1dim(K1 ⊙H).

Keywords: Resolving sets, metric dimension, corona graph.
AMS Subject Classification Numbers: 05C12; 05C76; 05C90; 92E10.

1 Introduction

The concepts of resolvability and location in graphs were described inde-
pendently by Harary and Melter [10] and Slater [19], to define the same
structure in a graph. After these papers were published several authors de-
veloped diverse theoretical works about this topic [3, 4, 5, 6, 7, 16, 18, 20].
Slater described the usefulness of these ideas into long range aids to nav-
igation [19]. Also, these concepts have some applications in chemistry for
representing chemical compounds [14, 15] or to problems of pattern recogni-
tion and image processing, some of which involve the use of hierarchical data
structures [17]. Other applications of this concept to navigation of robots
in networks and other areas appear in [6, 12, 16]. Some variations on re-
solvability or location have been appearing in the literature, like those about
conditional resolvability [18], locating domination [11], resolving domination
[1] and resolving partitions [5, 8, 9, 21]. In this article we study the metric
dimension of corona product graphs.

We begin by giving some basic concepts and notations. Let G = (V,E)
be a simple graph of order n = |V |. Let u, v ∈ V be two different vertices
in G, the distance dG(u, v) between two vertices u and v of G is the length
of a shortest path between u and v. If there is no ambiguity, we will use
the notation d(u, v) instead of dG(u, v). The diameter of G is defined as
D(G) = maxu,v∈V {d(u, v)}. Given u, v ∈ V , u ∼ v means that u and v are
adjacent vertices. Given a set of vertices S = {v1, v2, ..., vk} of a connected
graph G, the metric representation of a vertex v ∈ V with respect to S is the
vector r(v|S) = (d(v, v1), d(v, v2), ..., d(v, vk)). We say that S is a resolving

set for G if for every pair of distinct vertices u, v ∈ V , r(u|S) 6= r(v|S). The
metric dimension of G is the minimum cardinality of any resolving set for G,
and it is denoted by dim(G).

Let G and H be two graphs of order n1 and n2, respectively. The corona
product G⊙H is defined as the graph obtained from G and H by taking one
copy of G and n1 copies of H and joining by an edge each vertex from the
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ith-copy of H with the ith-vertex of G. We will denote by V = {v1, v2, ..., vn}
the set of vertices of G and by Hi = (Vi, Ei) the copy of H such that vi ∼ v
for every v ∈ Vi. Notice that the corona graph K1 ⊙H is isomorphic to the
join graph K1 + H . For any integer k ≥ 2, we define the graph G ⊙k H
recursively from G ⊙ H as G ⊙k H = (G ⊙k−1 H) ⊙ H . We also note that
the order of G⊙k H is n1(n2 + 1)k.

2 Metric dimension of corona product graphs

We begin by presenting the following useful facts.

Lemma 1. Let G = (V,E) be a connected graph of order n ≥ 2 and let H
be a graph of order at least two. Let Hi = (Vi, Ei) be the subgraph of G⊙H
corresponding to the ith-copy of H.

(i) If u, v ∈ Vi, then dG⊙H(u, x) = dG⊙H(v, x) for every vertex x of G⊙H
not belonging to Vi.

(ii) If S is a resolving set for G⊙H, then Vi∩S 6= ∅ for every i ∈ {1, ..., n}.

(iii) If S is a resolving set for G⊙H of minimum cardinality, then V ∩S = ∅.

(iv) If H is a connected graph and S is a resolving set for G⊙H, then for

every i ∈ {1, .., n}, S ∩ Vi is a resolving set for Hi.

Proof. (i) Let y = vi ∈ V . The result directly follows from the fact that
dG⊙H(u, x) = dG⊙H(u, y)+dG⊙H(y, x) = dG⊙H(v, y)+dG⊙H(y, x) = dG⊙H(v, x).

(ii) We suppose Vi ∩ S = ∅ for some i ∈ {1, ..., n}. Let x, y ∈ Vi. By
(i) we have dG⊙H(x, u) = dG⊙H(y, u) for every vertex u ∈ S, which is a
contradiction.

(iii) We will show that S ′ = S − V is a resolving set for G⊙H . Now let
x, y be two different vertices of G⊙H . We have the following cases.

Case 1: x, y ∈ Vi. By (i) we conclude that there exist v ∈ Vi ∩ S ′ such
that dG⊙H(x, v) 6= dG⊙H(y, v).

Case 2: x ∈ Vi and y ∈ Vj , i 6= j. Let v ∈ Vi ∩ S ′. Then we have
dG⊙H(x, v) ≤ 2 < 3 ≤ dG⊙H(y, v).

Case 3: x, y ∈ V . Let x = vi and let v ∈ Vi ∩ S ′. Then we have
dG⊙H(x, v) = 1 < 1 + dG⊙H(y, x) = dG⊙H(y, v).
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Case 4: x ∈ Vi and y ∈ V . If x ∼ y, then y = vi. Let vj ∈ V , j 6= i, and
let v ∈ Vj ∩ S ′. Then we have dG⊙H(x, v) = 1 + dG⊙H(y, v) > dG⊙H(y, v).
For x 6∼ y = vl we take v ∈ Vl ∩S ′ and we obtain dG⊙H(x, v) = dG⊙H(x, y) +
dG⊙H(y, v) > dG⊙H(y, v).

Therefore, S ′ is a resolving set for G⊙H .
(iv) Let Si = S ∩ Vi. For x ∈ Si or y ∈ Si the result is straightforward.

We suppose x, y ∈ Vi − Si. Since S is a resolving set for G ⊙ H , we have
r(x|S) 6= r(y|S). By (i), dG⊙H(x, u) = dG⊙H(y, u) for every vertex u of
G ⊙ H not belonging to Vi. So, there exists v ∈ Si such that dG⊙H(x, v) 6=
dG⊙H(y, v). Thus, either (v ∼ x and v 6∼ y) or (v 6∼ x and v ∼ y). In the first
case we have dG⊙H(x, v) = dHi

(x, v) = 1 and dG⊙H(y, v) = 2 ≤ dHi
(y, v).

The case v 6∼ x and v ∼ y is analogous. Therefore, Si is a resolving set for
Hi.

Theorem 2. Let G and H be two connected graphs of order n1 ≥ 2 and

n2 ≥ 2, respectively. Then,

dim(G⊙k H) ≥ n1(n2 + 1)k−1dim(H).

Proof. Let S be a resolving set of minimum cardinality in G ⊙ H . From
Lemma 1 (iii) we have that S ∩ V = ∅. Moreover, by Lemma 1 (ii) we have
that for every i ∈ {1, ..., n1} there exist a nonempty set Si ⊂ Vi such that
S =

⋃n1

i=1
Si. Now, by using Lemma 1 (iv) we have that Si is a resolving set

for Hi. Hence, dim(G⊙H) = |S| =
∑n1

i=1
|Si| ≥

∑n1

i=1
dim(H) = n1dim(H).

As a result, the lower bound follows.

Theorem 3. Let G be a connected graph of order n1 ≥ 2 and let H be a

graph of order n2 ≥ 2. If D(H) ≤ 2, then

dim(G⊙k H) = n1(n2 + 1)k−1dim(H).

Proof. Let Si ⊂ Vi be a resolving set for Hi and let S =
⋃n1

i=1
Si. We will

show that S is a resolving set for G⊙H . Let us consider two different vertices
x, y of G⊙H . We have the following cases.

Case 1: x, y ∈ Vi. Since D(Hi) ≤ 2, we have that r(x|Si) 6= r(y|Si) leads
to r(x|S) 6= r(y|S).

Case 2: x ∈ Vi and y ∈ Vj , i 6= j. Let v ∈ Si. Hence we have d(x, v) ≤
2 < 3 ≤ d(y, v).

Case 3: x, y ∈ V . Let x = vi. Then for every vertex v ∈ Si we have
d(x, v) = 1 < d(y, x) + 1 = d(y, v).
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Case 4: x ∈ Vi and y ∈ V . If x ∼ y, then let v ∈ Sj , for some j 6= i. So
we have d(x, v) = 1 + d(y, v) > d(y, v). Moreover, if x 6∼ y = vj , for v ∈ Sj

we have d(x, v) = d(x, y) + d(y, v) > d(y, v).
Thus, for every different vertices x, y of G⊙H , we have r(x|S) 6= r(y|S),

as a consequence, dim(G⊙H) ≤ n1dim(H). Therefore, we have dim(G⊙k

H) ≤ n1(n2 + 1)k−1dim(H). By Theorem 2 we conclude the proof.

In order to show a consequence of the above theorem we present the
following well known result, where Kt denotes a complete graph of order t,
Ks,t denotes a complete bipartite graph of order s + t and Nt denotes an
empty graph of order t.

Lemma 4. [6] Let G be a connected graph of order n ≥ 4. Then dim(G) =
n − 2 if and only if G = Ks,t, (s, t ≥ 1), G = Ks + Nt, (s ≥ 1, t ≥ 2), or
G = Ks + (K1 ∪Kt), (s, t ≥ 1).

Corollary 5. Let G be a connected graph of order n1 ≥ 2 and let H be a

graph of order n2 ≥ 4 and diameter D(H) ≤ 2. Then

dim(G⊙k H) = n1(n2 + 1)k−1(n2 − 2)

if and only if H = Ks,t, (s, t ≥ 1); H = Ks + Nt, (s ≥ 1, t ≥ 2), or

H = Ks + (K1 ∪Kt), (s, t ≥ 1).

We recall that the wheel graph of order n+1 is defined asW1,n = K1⊙Cn,
where K1 is the singleton graph and Cn is the cycle graph of order n. The
metric dimension of the wheel W1,n was obtained by Buczkowski et. al. in
[2].

Remark 6. [2] Let W1,n be a wheel graph. Then

dim(W1,n) =







3 for n = 3, 6,
2 for n = 4, 5,
⌊

2n+2

5

⌋

otherwise.

The fan graph Fn1,n2
is defined as the graph join Nn1

+ Pn2
, where Nn1

is the empty graph of order n1 and Pn2
is the path graph of order n2. The

case n1 = 1 corresponds to the usual fan graphs. Notice that, for the metric
dimension of fan graphs, it is possible to find an equivalent result to Remark
6 which was obtained by Caceres et. al. in [4].
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Remark 7. [4] Let F1,n be a fan graph. Then

dim(F1,n) =















1 for n = 1,
2 for n = 2, 3,
3 for n = 6,
⌊

2n+2

5

⌋

otherwise.

As a particular case of the Theorem 3 we obtain the following results.

Corollary 8. Let G be a connected graph of order n1 ≥ 2. If H is a wheel

graph or a fan graph of order n2 ≥ 8, then

dim(G⊙k H) = n1(n2 + 1)k−1

⌊

2n2

5

⌋

.

Theorem 9. Let G be a connected graph of order n1 ≥ 2 and let H be a

graph of order n2 ≥ 2. Let α be the number of connected components of H
of order greater than one and let β be the number of isolated vertices of H.

Then

dim(G⊙k H) ≤























n1(n2 + 1)k−1(n2 − α− 1) for α ≥ 1 and β ≥ 1,

n1(n2 + 1)k−1(n2 − α) for α ≥ 1 and β = 0,

n1(n2 + 1)k−1(n2 − 1) for α = 0.

Proof. We suppose α ≥ 1 and β ≥ 1. Let Ai be the set of vertices of G⊙H
formed by all but one of the vertices per each of the α connected components
of Hi. If β ≥ 2 we define Bi to be the set of vertices of G ⊙ H formed by
all but one of the isolated vertices of Hi. If β = 1 we assume Bi = ∅. Let
us show that S = ∪n1

j=1(Aj ∪ Bj) is a resolving set for G ⊙ H . Let x, y be
two different vertices of G⊙H . We suppose x, y /∈ S. We have the following
cases.

Case 1. x = vi ∈ V and y ∈ Vi. For every vertex u ∈ Vj ∩ S, j 6= i, we
obtain d(y, u) = d(y, x) + d(x, u) > d(x, u).

case 2. x = vi ∈ V and y 6∈ Vi. For every v ∈ S ∩ Vi we have d(x, v) =
1 < d(y, v).

Case 3. x ∈ Vi and y ∈ Vj, j 6= i. For every u ∈ Vi ∩ S we have
d(x, u) ≤ 2 < 3 ≤ d(y, u).
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Case 4. x, y ∈ Vi. We consider, without loss of generality, that x is not
an isolated vertex in Hi. Then there exists v ∈ Vi ∩ S such that v ∼ x, so
d(x, v) = 1 < 2 = d(y, v).

Thus, for every two different vertices x, y of G⊙H , we obtain r(x|S) 6=
r(y|S) and, as a consequence, dim(G⊙H) ≤ n1(n2 − α− 1).

As above, if β = 0 then we take S = ∪n1

j=1Aj and we obtain dim(G ⊙
H) ≤ n1(n2 − α) and if α = 0, then we take S = ∪n1

j=1
Bj and we obtain

dim(G ⊙ H) ≤ n1(n2 − 1). Note that if α = 0, then it is not necessary to
consider Case 4. Thus, the result follows.

Corollary 10. Let G be a connected graphs of order n1 ≥ 2 and let H be an

unconnected graph of order n2 ≥ 2. Then

dim(G⊙k H) = n1(n2 + 1)k−1(n2 − 1)

if and only if H ∼= Nn2
.

Proof. In [13] the authors showed that dim(G ⊙ Nn2
) = n1(n2 − 1). Hence,

dim(G⊙kNn2
) = n1(n2+1)k−1(n2−1). Moreover, by the above theorem, ifH

is unconnected and H 6∼= Nn2
, then dim(G⊙kH) ≤ n1(n2+1)k−1(n2−2).

Theorem 11. Let G and H be two connected graphs of order n1 ≥ 2 and

n2 ≥ 3, respectively. Then

dim(G⊙k H) = n1(n2 + 1)k−1(n2 − 1)

if and only if H ∼= Kn2
. Moreover, if H 6∼= Kn2

, then

dim(G⊙k H) ≤ n1(n2 + 1)k−1(n2 − 2).

Proof. Since dim(Kn2
) = n2−1, by Theorem 3 we conclude dim(G⊙kKn2

) =
n1(n2 + 1)k−1(n2 − 1). On the contrary, we suppose H 6∼= Kn2

. Given a set
X of vertices of H and a vertex v of H , NX(v) denotes the set of neighbors
that v has in X : NX(v) = {u ∈ X : u ∼ v}. Given two vertices a, b of H , let
Xa,b be the set formed by all vertices of H different from a and b. Since H is
a connected graph and H 6= Kn2

, there exist at least two vertices a, b of H
such that NXa,b

(a) 6= NXa,b
(b). Let ai, bi be the vertices corresponding to a, b,

respectively, in the ith-copy Hi = (Vi, Ei) of H . Let S = ∪n2

i=1
(Vi − {ai, bi}).

We will show that S is a resolving set for G ⊙ H . Let x, y be two different
vertices of G⊙H such that x, y 6∈ S. We have the following cases.
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Case 1. x = ai and y = bi. Since NXa,b
(a) 6= NXa,b

(b) we have r(x|S) 6=
r(y|S).

Case 2. x = vi ∈ V and y ∈ Vi. For every v ∈ Vj − {aj , bj}, j 6= i, we
have d(y, v) = d(y, x) + d(x, v) > d(x, v). If x ∈ Vi and y ∈ Vj, j 6= i, then
for every v ∈ Vi − {ai, bi} we have d(x, v) ≤ 2 < 3 ≤ d(y, v).

Case 3. x, y ∈ V . Say x = vi. Then for every v ∈ Vi − {ai, bi} we have
d(x, v) = 1 < d(y, v).

Hence, for every two different vertices x, y of G⊙H , we obtain r(x|S) 6=
r(y|S). Thus, dim(G⊙H) ≤ n1(n2 − 2). Therefore, the result follows.

As we have shown in Corollary 5, the above bound is tight.

Theorem 12. Let G be a connected graph of order n1 ≥ 2 and let H be a

graph of order n2 ≥ 2. Then

dim(G⊙k H) ≤ n1(n2 + 1)k−1dim(K1 ⊙H).

Proof. We denote by K1⊙Hi the subgraph of G⊙H , obtained by joining the
vertex vi ∈ V with all vertices of Hi. For every vi ∈ V , let Bi be a resolving
set of minimum cardinality ofK1⊙Hi and let B =

⋃n1

i=1
Bi. By Lemma 1 (iii)

we have that vi does not belong to any resolving set of minimum cardinality
for K1 ⊙Hi. So, B does not contain any vertex from G. We will show that
B is a resolving set for G⊙H . Let x, y be two different vertices in G⊙H .
We consider the following cases.

Case 1: x, y ∈ Vi. There exists u ∈ Bi such that dK1⊙Hi
(x, u) 6=

dK1⊙Hi
(y, u), which leads to dG⊙H(x, u) 6= dG⊙H(y, u).

Case 2: x ∈ Vi and y ∈ Vj, i 6= j. Let v ∈ Bi. We have dG⊙H(x, v) ≤
2 < 3 ≤ dG⊙H(y, v).

Case 3: x, y ∈ V . Suppose now that x is adjacent to the vertices of Hi.
Hence, for every vertex v ∈ Bi we have dG⊙H(x, v) = 1 < dG⊙H(y, x) + 1 =
dG⊙H(y, v).

Case 4: x ∈ Vi and y ∈ V . If x ∼ y, then for every vertex v ∈ Bj, with
j 6= i, we have dG⊙H(x, v) = 1+dG⊙H(y, v) > dG⊙H(y, v). Now, let us assume
that x 6∼ y. Hence, there exists v ∈ Bj adjacent to y, with j 6= i. So, we
have dG⊙H(x, v) = dG⊙H(x, y) + 1 = dG⊙H(x, y) + dG⊙H(y, v) > dG⊙H(y, v).

Thus, for every two different vertices x, y of G ⊙ H, we have r(x|S) 6=
r(y|S) and, as a consequence, dim(G ⊙ H) ≤ n1dim(K1 ⊙ H). Therefore,
the result follows.
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Theorem 13. Let G be a connected graph of order n1 ≥ 2 and let H be a

graph of order n2 ≥ 7. If D(H) ≥ 6 or H is a cycle graph, then

dim(G⊙k H) = n1(n2 + 1)k−1dim(K1 ⊙H).

Proof. Let S be a resolving set of minimum cardinality in G⊙H . By Lemma
1 (iii) we have S ∩ V = ∅, as a consequence, S = ∪n1

i=1Si, where Si ⊂ Vi.
Notice that, by Lemma 1 (ii), Si 6= ∅ for every i ∈ {1, ..., n1}. Now we
differentiate two cases in order to show that r(x|Si) 6= (1, ..., 1) for every
x ∈ Vi − Si.

Case 1. H is a cycle graph of order n2 ≥ 7. If r(a|Si) = (1, 1) for some
a ∈ Vi − Si, then, since n2 ≥ 7, there exist two vertices x, y ∈ Vi − Si such
that dHi

(x, v) > 1 and dHi
(y, v) > 1, for every v ∈ Si. Hence, dG⊙H(x, v) =

dG⊙H(y, v) = 2 for every v ∈ Si, which is a contradiction because, by Lemma
1 (i), dG⊙H(x, v) = dG⊙H(y, v) for every vertex u of S not belonging to Si.

Case 2. D(H) ≥ 6. Let x, y ∈ Vi − Si. Since S is a resolving set for
G⊙H , we have r(x|S) 6= r(y|S). As we have noted before, by Lemma 1 (i) we
have that dG⊙H(x, u) = dG⊙H(y, u) for every vertex u of G⊙H not belonging
to Vi. So, there exists v ∈ Si such that dG⊙H(x, v) 6= dG⊙H(y, v) and, as a
consequence, either (v ∼ x and v 6∼ y) or (v 6∼ x and v ∼ y). Now we suppose
that there exists a vertex a ∈ Vi − Si such that r(a|Si) = (1, 1, ...1). If there
exists a vertex b ∈ Vi − Si such that dHi

(b, u) > 1, for every u ∈ Si, then
for every w ∈ Vi − (Si ∪ {a, b}), there exists v ∈ Si such that w ∼ v. Then
D(Hi) ≤ 5. Moreover, if for every b ∈ Vi − Si there exists vb ∈ Si such that
vb ∼ b, then D(H) ≤ 4. Therefore, if D(H) ≥ 6, then r(a|Si) 6= (1, 1, ...1)
for every a ∈ Vi − Si.

Now, we denote by K1 ⊙Hi the subgraph of G⊙H , obtained by joining
the vertex vi ∈ V with all vertices of the ith-copy of H . In both the above
cases we have r(vi|Si) = (1, 1, ..., 1) 6= r(x|Si) for every x ∈ Vi − Si, so
Si is a resolving set for K1 ⊙ Hi. Hence, dim(K1 ⊙ Hi) ≤ |Si|, for every
i ∈ {1, ..., n1}. Thus, dim(G⊙H) ≥ n1dim(K1⊙Hi) and, as a consequence,
dim(G ⊙k H) ≥ n1(n2 + 1)k−1dim(K1 ⊙ H). We conclude the proof by
Theorem 12.

Corollary 14. Let G be a connected graph of order n1 ≥ 2.

(i) If n2 ≥ 7, then dim(G⊙k Cn2
) = n1(n2 + 1)k−1

⌊

2n2+2

5

⌋

.

(ii) If n2 ≥ 7, then dim(G⊙k Pn2
) = n1(n2 + 1)k−1

⌊

2n2+2

5

⌋

.
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All our previous results concern to G⊙H forH of order at least two. Now
we consider the case H ∼= K1. We obtain a general bound for dim(G⊙k K1)
and, when G is a tree, we give the exact value for this parameter.

Claim 15. Let G be a simple graph. If v is a vertex of degree greater than

one in G, then for every vertex u adjacent to v there exists a vertex x 6= u, v
of G, such that d(v, x) 6= d(u, x) + 1.

The following lemma obtained in [2] is useful to obtain the next result.

Lemma 16. [2] If G1 is a graph obtained by adding a pendant edge to a

nontrivial connected graph G, then dim(G) ≤ dim(G1) ≤ dim(G) + 1.

Theorem 17. For every connected graph G of order n ≥ 2,

dim(G⊙k K1) ≤ 2k−1n− 1.

Proof. If G ∼= K2, then dim(K2 ⊙ K1) = dim(P4) = 1. So, let us suppose
G 6∼= K2. Let us suppose, without loss of generality, that vn is a vertex of
degree greater than one in G and let S = V − {vn}. For every i ∈ {1, ..., n},
let ui be the pendant vertex of vi in G ⊙ K1. We will show that S is a
resolving set for G ⊙ K1. Let x, y be two different vertices of G ⊙ K1. If
x = ui and y = uj, i 6= j, then we have either i 6= n or j 6= n. Let us
suppose for instance i 6= n. So, we obtain that d(x, vi) = 1 6= d(y, vi). On
the other hand, if x = vn and y = ui, then let us suppose d(x, vi) = 1. Since
vn is a vertex of degree greater than one in G, by Claim 15, there exists
a vertex vj ∈ S such that d(x, vj) 6= d(vi, vj) + 1. So, we have d(x, vj) 6=
d(vi, vj) + 1 = d(vi, vj) + d(ui, vi) = d(y, vi) + d(vi, vj) = d(y, vj). Therefore,
for every different vertices x, y of G⊙K1 we have r(x|S) 6= r(y|S) and, as a
consequence, dim(G⊙K1) ≤ n−1. Therefore, dim(G⊙kK1) ≤ 2k−1n−1.

By Lemma 16 we have dim(Kn ⊙ K1) ≥ dim(Kn) = n − 1. Thus, for
k = 1 the above bound is achieved for the graph G = Kn.

To present the next result, we need additional definitions. A vertex of
degree at least 3 in a graph G will be called a major vertex of G. Any
vertex u of degree one is said to be a terminal vertex of a major vertex v if
d(u, v) < d(u, w) for every other major vertex w of G. The terminal degree

of a major vertex v is the number of terminal vertices of v. A major vertex v
is an exterior major vertex if it has positive terminal degree. Given a graph
G, n1(G) denotes the number of vertices of degree one and ex(G) denotes
the number of exterior major vertices of G.
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Lemma 18. [6, 10, 19] If T is a tree that is not a path, then dim(T ) =
n1(T )− ex(T ).

Theorem 19. For any tree T of order n ≥ 3,

dim(T ⊙k K1) =







n1(T ) for k = 1,

2k−2n for k ≥ 2.

Proof. If T is a path of order n ≥ 3, then we have dim(T ⊙K1) = 2 = n1(T ).
Now, if T is not a path, then by using Lemma 18, since T ⊙ K1 is a tree,
n1(T ⊙K1) = n and ex(T ⊙K1) = n−n1(T ), we obtain the result for k = 1.
Since for every tree T of order n we have n1(T ⊙ K1) = n, we obtain the
result for k ≥ 2.
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