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Abstract By using some techniques of the divided difference operators, we establish an
4n-point interpolation formula. Certain polynomials, such as Jackson’s g¢; terminating
summation formula, are special cases of this formula. Based on Krattenthaler’s identity,
we also give Jackson’s formula a determinantal interpretation.

1 Introduction

Recall that the i-th divided difference operator d;, acting on functions f(xy,...,z,) of
several variables, is defined by

floy, oo i, ) — [y, ..o, i1, Ty e e
floy, . o @z, .. )0 = (1, @iy Tiy ’(%)—xii)’ Raa s Ak ).

To be more general, we introduce the operator .0; which we call the i-th c-divided
difference operator:
f(ﬂ?l, N . T P ) — f(.l’l, ey L1, Ly - ) (1 1)
(%’ - $i+1)(1 - C/l’ixz‘ﬂ)

f(.l’l, ey Lgy Lja,y - - )682 =

Note that 0@ = 8,

Several properties of the c-divided difference operators will be given in next section,
see Lemmas 2.1 to 2.5. Employing those lemmas, we obtain the main result of this

paper.

Theorem 1.1 Given two sets of variables
A={a,c/ay,...,an,c/ay}, B=A{b,c/bi,... by, c/b,},

we have the following 4n-point interpolation formula for certain polynomials f(y) of
degree 2n with symmetry y=" f(y) = (¢/y) " f(c/y) when ¢ # 0:

_ f(br) - N — ca
fly) = H?_l(bl—ai)(bl—c/ai) [T —a)y—c/a)

i=1

fas "
I e =B al—c/b 116 =00 —e/n)

+ZC H ><y—c/b»ﬁ(y—ai)(y—c/ai), 12
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where

F(b1)by ™

C; = n—j+1
[T (0 — ai) (b — ¢/ai)

01 -+ 05 (bj1 — an—j1)(1 = ¢/an_j11bj11).

Note that Theorem [Tl leads to the following 2n-point interpolation formula given
in [1} if c=0:

_ f(bl) - f(a1) -
f(y) - H:'L:l(bl _ ai) H(y - a’i) + H;L:1(al N bz) E(y - bz)
+ "Z_l -f(bl) o -+ 'aj(bj+1 - @n—j+1) : ﬁ(y - bi) ﬁ(y - ai)'
j=1 [T (0 — ) i=1 i=1

The symmetry y~"f(y) = (¢/y) " f(c/y) when ¢ # 0 implies that f(y) can be
written as a product [[;,(y — ;)(c — z;y). Considering the case

A={a,c/a,...;aq" " cq" fa}, B ={bc/b,... bg" " cq"!/b}

and y = x,.1, one can check that Theorem [[T] implies the following identity by ex-
panding the determinant with respect to the last row:

det (Poji1 (i, aq’ ") Po_jpa (25, ¢/a) Py (i, bg' ™) Py (i, an_j+1/b))n+l

i,j=1
— n+1

= JI (@) — )bl )g= e 0me=0B T  (a/b, g% Jab; g, (1.3)

1<i<j<n+1 i=1

where (a; q),, is the g-shifted factorial defined by

(@;9)0=1, (¢;Q)n=>10—0a)1—aq) --(1—ag™™"), n=12...

and we use P,(a,b) called Cauchy polynomials [2] to denote a"(b/a; q),, for convenience.

After some rearrangement of (L3]), we may get Krattenthaler’s identity [5]:

(Clxu aC/%‘; q)n—j "
det ( (in> bC/ZEzG C_I)n—j

- H (z; —2;)(1 = c/xixj)a(g)q(g) H (b/a, abeg™ = Q)i—l'

1<i<j<n i—1 (bxi, be/wi; q)n—1

ij=1

Through the specializations f(y) = [[1-,(ug¢" ™! — y)(c — ug'~'y) and
A - {CL, C/a, ey aql—n’ an—l/a}’ B — {b’ C/b, ey bql—n’ an—l/b}

in Theorem [[.T], we have the following variation of Jackson’s g¢7 terminating formula.
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Corollary 1.2 We have

n

1—[(uq"‘1 —y)(c—uq'y)

" [n] Po_i(b,uq" ") Py(a, ug" ) P,_i(u, c/b) Pi(c/a,u)
2 k] Pulb, a){eq ™ Jabs g)sled fabyq)s

X Pn k\Y, aqk+1_n)Pn—k(y7 C/a)Pk(yv bql_n)Pk(yv an_k/b)7 (14)

where m is the q-binomial coefficient defined by

m T (@ quzg;) Z)n—k

In section 3, we shall give Corollary [I.2] a different approach by considering a special
case of ([L3]). The key step of our approach is to evaluate the cofactor of each entry in
the last row of the determinant in (L.3)).

Note that if we write cq™'/ab as a, y/a as b, ¢/bu as ¢, c¢/ay as d and ug™ /b as e
in the above corollary, we get Jackson’s g¢; formula [3]:

(ag, ag/bec, aq/bd, aq/cd; q)n
(aq/b,aq/c,aq/d, aq/bcd' q)
_Z 1_@ aq®) (a; q)i(b; k(¢ Q)r(d; O)rle; Du(a™; @)rd"

Q)r(aq/b; q)x(ag/c; @)(ag/d; q)rlag/e; @)rlag™; @)y

2 The 4n-point interpolation formula

In this section, we shall focus our attention on the proof of Theorem [I.II To this
aim, we shall first introduce several elementary properties of the c-divided difference
operators.

Lemma 2.1 c-divided difference operators satisfy the following Leibnitz rules:
f(z1)g(z1)c01 = f(%) (1)c01 + f(21)c019(22)

f(a1)g(21) 01 - -+ Oy —Zf 1)1+ cOpg(Tr41) Oy + On.

Lemma 2.2 If f(xy,z9,...,2,) is a symmetric function of x;, x;y1, then

f(xlax% cee 7xn)cai =0.



Lemma 2.3 If p,(y) is a polynomial of degree 2n such that
Y "pa(y) = (c¢/y)"palc/y),

then we have
0, m>n,

1, m=n. (2.1)

yl_npn(yl)cal T cam - {
Proof. Clearly, y;"pn(y1) can be rewritten as [\, (y1 — z1)(1 — ¢/y1x1). When m =1

and n = 0 or n = 1, it is easy to verify that (2.1]) holds. In view of Lemma 2.1l we can
prove Lemma 23] by induction on the length of the operators. |

Lemma 2.4 We have

0, jF#i;

2.2
yr=bp,1<k<i+1 {1, J =1i. (2.2)

J
H (y1 = bi) (L — ¢/y1bg)cOn - - - O;

Proof. For j <1, Lemma [2.4]is a direct consequence of Lemma 2.3l For j > i, we have

J
[T = b0 (1 = c/yabi)c0s - - 0,
k=1
J

- H<y2 — bi) (1 = ¢/y2bi)cOs -+ - cO;

k=2

Yrp=bp,1<k<i+1

y=br 2<k<it1
J
== [ wisr = 00)(1 = c/yisabr)

k=i+1

= 0.

We complete the proof. |

Lemma 2.5 We have

i—1

J
H yl bk 1 C/ylbk H 1_ak 1—C/y1ak) -0

o (= aR) (1 = ¢/yrar)

Yr=bg,1<k<i+1

k=1
0, Jj# i
= 1 oy (2.3)
(bj+1—aj)(1—c/ajbjt1)’ J .
Proof. For j < i, we have
J i—1
—be)(1 —¢/yb —a)(1 — R
kl:[l Y1 k) c/vy1br,) kgl(yl ag)( c/yiax) .01 e
i 7
= (y1 — be)(1 — ¢/y1bg) Oy - - - Oy
k=1 Yr=br,1<k<I+1

i—1

X (Yir1 — ax)(1 = ¢/yry1a) 0141 - - - <0
k=l+1

Y =bp l+1<k<it+1



From Lemma and Lemma 2.4l either the first product inside the sum or the
second one vanishes, so does the sum.

For j > i, we have

[T— (y1 — b)) (1 — c/yiby)

1 —ar) (1= c/yiar)”
= (y1 — b1)(1 — ¢/yb1) .01 H??ZQ(‘% — be)(1 — ¢/y2br) PR )
= [T (e — an) (1 — c/yaar)” T yp=bp 2<k<it

_ ol =00 —clb) 4
7 (s — a)(1 = ¢/yaaz,)” M yp=bp,2<k<iv

i:i(yi — b)(1 — ¢/yiby)

i (Wi — ar) (1 = c/yiay,)

0y
Yr=by,1<k<i+1

()
Yr=bg,i<k<i+1

|0, J>1

B { 1/(bjr1 — a;)(1 = ¢/abj1), j=1i.
We complete the proof. |
Proof of Theorem [1.1]

Given a polynomial f(y) of degree 2n with symmetry y="f(y) = (c¢/y) " f(c/y), we
assume that

n

ZC H — by —c/bi) T (= an)y —c/an). (2.4)

= k=j+1

Taking y = by in (24]), one has

bl = Hbl—ak bl—c/ak)

Therefore,

f(D1)
[Tiei(br — ar)(by — c/ax)

Setting y = a, in (24)) leads to

Co =

flan)
[Tz (an = be)(an — ¢/bi)

Let g(y) = f(y)/ IIi=i(y — ax)(y — ¢/ax). Rewrite (2.2) as

C, =

g(br) +ZC Hk 1 bi)(1 — ¢/yby)

Y —ak)(l—C/yak)

f(an T (Y= b)(1 = c/yby)
+H:L1( —b) —c/by) H —a)(1 —c/yar)



Multiplying both sides by H;;ll(y — ag)(1 — ¢/yag), then applying the operator
O -+ - .0;, one has

Hyl_ak )1 —c/yrak)c0n - - - c0; '
k= Yrp=bk,1<k<i+1

i—1

Z H Y1 — b)(1 = c/yiby) H (y1 —ag)(1 — c/yrax) 01 - - - 0

=by,,1<k<i+1
f=jt1 Yr=bp,1Sk<i+

n—1
_I'ZC Hk lyl_bk)(l_c/ylbk) all_‘ca'

iy — ap)(1 = c/y1ax) Hy=bi1shsivy’

By Lemma 2.5 we have

i—1
Ci
—a)(1 —c/yra)0; - - - 0; = )
g(yl) g(yl k)( /yl k) ! Yrp=bp,1<k<i+1 (bi+1 - CLZ)(l - c/bi+1a2-)
Thus
i—1
Ci= - 1- O -+ 0 bit1 — a;)(1 — ¢/bija;
g(yl)g(yl ag)(1 — c/y1ax).01 yk:bk,lgkgi-i-l( +1— a;)(1 = ¢/biyia;)
f(b1)by™
T — ao) (s — cfan) e @t = /biaa)
Replacing a; by a,,_; 1, we complete the proof. |

3 Jackson’s 3¢; terminating summation formula

Letting z; = ug'™! for 1 <4 < n and z,.; = y, we shall show that (I3 in this case
is equivalent to Corollary [.2l In other words, we shall give Jackson’s g¢; terminating
summation formula a determinantal interpretation.

Our proofs in this section involve the following well-known symmetric functions.
Given two sets of variables X and Y, the i-th supersymmetric complete function h;(X —
Y) is defined by

y(I— - '
i SDYGLLGLSC S

where [t'] f(t) means the coefficient of " in f(t), ¢;(X) and h;(Y) are i-th elementary
symmetric function and i-th complete symmetric function, respectively.

hi(X —Y) = [t']



Expanding the determinant of (L.3)) along the last row in the case x; = ug~' for
1<i<nandz,; =y, we have

n

[T(ua ™" = y)(c — ug—ty)pl"s ) g~ Crrime=ny/s
=1
n+1
< [T (™ —ug ") (c—u?¢™72) [ J(a/b, cg® 7% fab; q)i
1<i<j<n i=1
n+1
= CorPoii1(y,a0" ") Pu_a(y, ¢/a) Puoa(y.bg" ") Peca (y, cq" 4 /1),
k=1

(3.2)

where (), is the cofactor of the entry
Pn—k+1(y7 aqk_n)Pn—k+1(y7 C/a)Pk—l(ya bql_n)Pk—l(ya an_kﬂ/b)-

It is easy to verify that C, ; can be rewritten in terms of the supersymmetric com-
plete functions:

Cor = H (ug"™" — ug’ ") det(hgy_i11 (U — Yir)), (3.3)
1<i<j<n

where the set

v { {ec/a s ad ™ g fabg' 7" g b, WFW1WW”VH if 1 <j <k,
T {ae/a, .. ag T eq T a, bt g 1/b b @™ b}, ifk < j < n.

For convenience, we denote by F, (U, A, B) the determinant in (3.3]). Now, in
order to prove Corollary [[.2] we are left to evaluate these determinants F), (U, A, B)
forl1 <k<n+1.

Theorem 3.1 For1 <k <n+1, we have

Fo (U, A, B) = {k " 1] T T (e— w2

1<i<j<n

X Pp_pi1(b,uq” ) Pe_1(a, uq”_k“)Pn pi1(u, c/b)Py_1(c/a,u)

><f[(1 ag’~ /b)"" H H — cq't 1 Jab). (3.4)

i=j+1
j;én k+1 i#n—k+1

To make the proof clear, we shall first give two lemmas.

Lemma 3.2 [}/ Let {j1,j2,. .., jn} be a sequence of integers, and let Xy, ..., X,, and

Y1, ..., Y, be sets of variables. The following relation holds
det (hjk+k—l(Xk - Yk))k = det (hjk+k—l(Xk —Y, — Dn—k))k Ly
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where Dy, D1, ..., D,_1 are sets of indeterminates such that the cardinality of D; is
equal to or less than 1.

The second lemma is a special case of Theorem [3.11
Lemma 3.3 For1 <k <n-+1, we have
det(62n—i+l(y}7k))?,j=1

n—1 -
o n n+1 n—k+1\_ n(n—1)(2n—-1) i 1 iti—1
[ et oy T TT -

i=1 i=j+1
jAn—k+1 i#En—k+1

(3.5)

where the sets of 2n variables Y;y, 1 < j < n, are defined as above.

Proof. Obviously, es, (Y ) = ¢*. We shall use induction on n. When n = 1, we have
det(es(a, c/a)) = det(eq(b, c/b)) =

Thus (B.3)) is true for n = 1. Assume that (3.5]) holds for 1 < m < n — 1, where n > 2.
We now proceed to check that (3.3]) is true for m = n.

When k = 1, the substraction of two successive columns of the determinant gives
ei(Yj1) —ei(Yjo11) = ¢ (b —a) (1 — cg®" % Jab)e;1 (Y] 4 ),

where Y/ | | = Yj1\ {b¢/ ™", cq" 77 /b}.
It is easy to verify that

n—1 n—1 n
det(ezn_“_l (Y}J»Zj:l = C(n;rl)q(g>_7L(n71)ts(2n;1) H(b_aqi—1>n—i H H (1 _qu+j—1/ab>’
i=1 §=0 i=j+1

which is equal to the right side of ([3.H). The case k = n + 1 is similar.

We now consider the case 2 < k < n. According to

ei(Yk,k) - ei(Yk—l,k)
= " "(b—a)(1—cg™ 7 Jab)e; 1 (Yi_y ) +" " (b—a) (1—cq® 22 Jab)e; 1 (Yy_1 1),

we have
det(ean—ir1(Yik)) = "¢~ Z —a)"” 1H — cq* /ab)
X det(e%‘i—l(yj,k—l))qn P det(ean—i1(Y]y)g" ! (3.6)
1 —cq® =2 /ab 1—cq?=2+2/ab )7



where for : = k — 1 or ¢« = k, we have

y! — Yik\ {aqj_f’,cqn_j/a}? 1< <1,
a Vierr \ {bgZ 1", cq" 71 /b}, i<j<n-—1.

Our induction hypothesis implies that

deen-ia(1]0) = [} el e

k—1
n—2
% H(bq—l _ z n i—1 H H qu—l—j/ab)7
=1 7=0 i=7+1
g#n k i#n—k
and
n—1| (n\ (n—k+t1)_ (n=1)(n—2)(2n—3)
det(egn_i_l(ijk_l) = |]<: B 2} c(z)q( 2 ) 6
n—2
X H(bq_l— e H H —cq" Jab).
=1 i=j+1
g#n k:+1 i#En—k+1
Therefore,
det(e2n—i+1(}/j,k))2j=1
n—1 n—1 n
= c(ngl)q(nféﬁl)_n(nfl)fs(%fl) H(b —aq"™ )" H (1 —cq™~1/ab)

i=j+1

=1 Jj=0
n—k+1 i#n—k+1

Ji#
A R cq® " /ab N n—1 1—cq"‘k/ab o1
EF—111—= q2n 2k+1/ab E—2|1— 2n 2k+1/abq ’
With the aid of the following recurrence
n | n—1 k| — 1 g (n—1 n—1
[k—J‘[k:—J” {k—Q]_q k1) k-2

we complete the proof. |

We are now ready to complete the proof of Theorem [3.1]
Proof of Theorem [31l

View F, (U, A, B) as a polynomial in u of degree n? +n with coefficients expressed
in terms of the other variables. Applying Lemma [3.2] we first prove that F), x(U, A, B)
has 2n roots:

ag"™", ... ad" " e *a, .. c/a, bg" P L b T e/b, . g™ TR /b



Let u = a¢"™™ in F, (U, A, B), where 1 <i < k — 1. We take
Dy =@, Dy={aq},...,Diy ={ag,ag® ... aq" "},

D, = {aqi_", aq,aq?, . . ., aqi_l}, oo, Dy = {aqi_", . aq Y ag ag?, aqi_l},
then apply Lemma [3.2]

Since ex(X) = 0 if the cardinality of X is less than k, F,, (U, A, B) can be trans-
formed into a determinant whose (4, j)-th entry is equal to 0 if

(1,7) €{(4,j) :1<j<k—1and 1 <i<n—k+2, or k<j<n—1 and 1 <i<n—j}.

Thus F, 1 (U, A, B) |y—qgi-n=0for 1 <i<k—1

The case u = c¢'~"/a, where 1 <14 < k — 1, is similar to the above if we take
Dy=2, Di={cqg'/a},...,Di_1={cq" "/a,... cq'/a},
D;={cq""fa,...,cq fa,cq" " fa}, ..., Doy = {cq' " fa, ... cq a,cqfa, .. cq" T a}.
For the cases u = bg> "% and u = cq'~! /b, where 1 <i <n —k+ 1, we take
Doy=@, Dy={bg"},....,Diy ={bg* """, ...,bg7"},

D, = {qu_i_”, ., bg7, bql_i}, oDy = {bq2_i_", b bR L bql_i}

and

Dy =@, D;={cq"/b},. 1 =A{cq"/b,...,c "+’_2/b},
D; ={cq ' /b,cq™ /b, ..., cq" T2 /bY, ... Dy_y = {cq b, cq" 2 b, cq™ )b, . . cq" T T bY,
respectively.

In view of Lemma B2 F, (U, A, B) in both cases becomes a determinant whose
(i, 7)-th entry is equal to 0 if

(1,7) €{(4,j):2<j<k—land 1<i<j—1, or k<j<n and 1<i<Ek}.

Therefore F, (U, A, B) |y=pg2—n—i= Fpi(U, A, B) |y=cgi-1p= 0 for 1 <i <n—Fk+ 1.

Secondly, we show that [, ;<,(c — u?¢"*/7?) is a factor of F,, (U, A, B). This is
because the determinant vanishes if we set z; = ¢/z; in (I.3) for each pair 4, j where
1<i<y<n.

Based on the above, we may assume that

F.x(U /A, B)=C x H (c —u?q"t72)

1<i<j<n

X Po_ps1(b,uq" ") Pocr(a, uq" ™ ) P (u, ¢/b) Po_y(c/a, u).

10



To complete the proof, we need to determine C. Setting v = 0, then applying (B.5),
we have

o (_1)n_k+1det(ezn—i+1(—Yj,k))Zj:1 _ { n ]q_n(nlgznl)
C(n;l)q(nféﬂrl) k _ 1
n—1 n—1 n
x [T —ag™)" [T G —cq™="/ab),
i=1 5=0 i=j+1
j#ENn—k+1 i#n—k+1
as desired. |

Putting (B3] into (3:2)), then divided both sides of (B2) by

n+1
. . L. n+1 ;
H (ug™ — ug’ 1) (c — u2qz+j—2>b( : )q—(n+1)n(n—1)/3 H(a/b’ e [ab: q)ie1,

1<i<j<n i=1
we complete the proof of Corollary L2
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