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Joint Channel Probing and Proportional Fair

Scheduling in Wireless Networks
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Abstract

The design of a scheduling scheme is crucial for the effigiemed user-fairness of wireless
networks. Assuming that the quality of all user channelsvalable to a central controller, a simple
scheme which maximizes the utility function defined as tha sogarithm throughput of all users has
been shown to guarantee proportional fairness. Howevacdaire the channel quality information may
consume substantial amount of resources. In this work, dsg@imed that probing the quality of each
user’s channel takes a fraction of the coherence time, daftkaamount of time for data transmission
is reduced. The multiuser diversity gain does not alwayseim®e as the number of users increases. In
case the statistics of the channel quality is available ¢octimtroller, the problem of sequential channel
probing for user scheduling is formulated as an optimalstaptime problem. A joint channel probing
and proportional fair scheduling scheme is developed. $tiime is extended to the case where the
channel statistics are not available to the controller,liiclw case a joint learning, probing and scheduling
scheme is designed by studying a generalized bandit prolemmerical results demonstrate that the

proposed scheduling schemes can provide significant ganexisting schemes.

. INTRODUCTION

arXiv:1009.2602v1 [cs.IT] 14 Sep 2010

Efficient and fair scheduling is important for wireless gmst with limited resources and
heterogeneous user conditions. A large class of resoumeatibn schemes with fairness consid-
erations are obtained by maximizing some utility functiaighe throughput [1]. In particular,
proportional fairness is achieved when the utility is thensaf the logarithm of the users’
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throughput. In existing third generation wireless systeiike EV-DO and HSDPA, proportional
fair (PF) scheduling scheme is employed at the base stabiasthedule downlink traffic to
mobile users. The PF scheme strikes a good balance betwesghiput efficiency and fairness
by exploiting the multiuser diversity [2] and the game-ttedic equilibrium [3]. Analysis and
applications on PF scheduling have been extensively exglénom various aspects due to its
favorable performance and low implementation compleXity. example, there have been studies
of the convergence and optimality! [4], stability [5], thghyput [6] and capacity region|[7] of
PF scheduling.

Most previous work on PF scheduling assume that the instaotss channel quality informa-
tion (CQI) of all users is known to the scheduler at no costpractice, however, acquiring the
CQI often consumes a significant amount of resources in tefrtime, bandwidth and power. It
is important to understand the impact of the cost when thebeurof users is large, because the
cost may scale linearly with the user population. The goahisfwork is to answer the following
two questions: 1) to what extent will the CQI acquisitioneatf the scheduling? and 2) how to
probe and schedule the users to achieve the best performaticproportional fairness?

There have been related works on the impact of the channeltaiaty on the communication
systems. The loss of throughput caused by poor estimatdsaohel quality is quantified in [8].
Joint channel probing and user scheduling has also beemssddl recently. Several schemes
with the objective of maximizing the system throughput haeen designed in [9]-[12]. And the
authors of [[13]+[15] propose schemes for stabilizing theusps and characterize the network
throughput region. In contrast to the preceding works, thal @f this paper is to design a
proportional fair scheduling scheme which takes into anttlie cost of channel probing. Our
previous work [[16] has shown the scheme and its performangaghty. In this paper, we not
only present the derivation of the scheme with rigorous @mgnts, but also show its asymptotic
behavior and the optimality with theoretical rigor. In atitohi, the scheme is extended to a more

generalized scenario. The organization and main conioibsitof this work are as follows:

« Section Il describes the network model.
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« In Section Ill, we assume the prior distribution of CQI is knoto the scheduler, and
formulate the problem of sequentially probing user chammelmake scheduling decision
as a stopping time problem. A simple scheme based on maxignthie sum logarithm
throughput of all users is shown to guarantee proportioaiahéss and convergence. The
scheduling gain of the scheme is determined analyticallsther reduction of computational
complexity is also discussed.

« In Section 1V, the statistics of the CQI is assumed not to leelable to the scheduler. The
problem is formulated as a generalized bandit problem, ajudné learning, probing and
scheduling scheme is proposed.

« In Section V, significant advantages of the proposed schareslemonstrated using nu-
merical experiments. In typical scenarios where the siegi®f the CQI are not available,
the joint learning, probing and scheduling scheme achiel®st the same performance

as that in the case where the statistics are known.

[I. THE NETWORK MODEL

Consider a wireless system with one controller &hdsers with time-varying channel quality,
such as in the downlink of a cellular system. Let time be didiéhto unit-length slots and only
one user can be served in each slot. As in most related wagk (4] and [6]), the transmit
power is assumed to be fixed so that dynamic power allocasomot considered. Thus the
achievable rate is only determined by the instantaneousnehajuality. Moreover, we assume
saturated traffic for all users.

Assume slow fading, where the duration of a slot is much ghahtan the channel coherence
time, so that the channel quality remains constant durirgh edot. We make the following
homogeneous rate assumption that the rate of each user normalized by its mean value fsllow
the same distribution:

(A1) Let X4, ..., Xk be independent identically distributed (i.i.d.) non-riagarandom vari-

ables with unit mean value. Let, ..., rx > 0 be constants. LeR, = r,.X, fork=1,... K.
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The achievable rate§R.(n)|k =1,..., K;n=1,2,...} are independent. For every ugerthe
rates over the time slots?,(1), Rx(2), ..., are i.i.d. following the same distribution as that of
Ry.. Clearly,ERy(n) = ry.
The instantaneous achievable rates of all users are notrkagwiori. During each slot,

to obtain the achievable rat@,(n) requires the scheduler to probe the channel of ésesing

a fraction g of the slot. Let/;(n) be an indicator of the event that useris scheduled for
transmission in slok.. Let J(n) denote the number of probed users in stotThe amount of
data transmitted to or by usér during slotn is By(n) = (1 — J(n)B)Rk(n)Ix(n), which is

nonzero for only one user during each slot. The throughputsef # averaged over slots is

thus
1 < ‘
Ty(n) = E;Bk(])- (1)
[1l. JOINT PROBING AND SCHEDULING WITH KNOWN CHANNEL STATISTICS
In this section, we consider the case where the statistid® ef [Ry, ..., Rx] is known to

the scheduler and design a proportional fair scheme.

A. The Algorithm

Consider first a scheme which maximizes the utility definethassum logarithm throughput:

K
u(T(n)) = ITi(n) . 2)
k=1
Note that by[(I),
Tyln) = " Ti(n = 1) + - Bun). ©
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So that the increase of the utility function after theh slot is
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where the throughput-normalized rate is

b ACE (5)

Sk (n)

Since the indicatof,(n) is zero for all but one useék in each slot, one can see that to greedily
maximize the utility increment at time slot, we should schedule the user with the maximum
sr(n), which is the classical PF scheduling algorithm.

However, due to the assumption that the instantaneous rgtés) are unknown a priori,
we can only probe the users rates and obtgim) one by one in each slot. We formulate the
following optimal stopping time problem [18]. Note that tseheduling decision made in one
slot has no impact on future realization of the rates, it seffito consider one arbitrary slot
and omit the time index. For the scheduler, the joint probing and scheduling probée the
beginning of the time slot is defined by two objects:

(i) The independent throughput-normalized rates . ., sk.

(i) A sequence of positive-valued reward functiops ..., yx, where if j channels have
been probed to reveal their throughput-normalized inatsetus rates,, ..., ¢;, the reward of

terminating the probing phase and schedule the best used fea far is

yi(ti, ..., t;) = (1 — jB) max(ty,...,t;). (6)

The theory of optimal stopping is concerned with deterngniihe stopping time/ to max-

imize the expected rewarl[y;]. The maximum number of probings in every slotig,. =
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min(K, [1/5]). Compared with the classical optimal stopping problem, férenulation above
is more general in the sense that the probing ordes;, a6 not deterministic. Hence the joint
probing and scheduling scheme basically includes two teskach slot: to determine the order
in which users are probed, and to select one user as the atéstirat a proper (stopping)
time. Recalling the objective of maximizing the expecigdthe user with the largedi|s;(n)]
should be probed first, and then the second largest and saam. Assumption (A1), we know
5x(n) = E[sg(n)] = ri/Ti(n — 1). Hence the probing order is(n) = (ky,--- , kx) such that
Sk, (n) > -+ > 8, (n). Now that the probing order has been determined, the dectiowhen
to stop can be addressed by investigating the structurglepty of the problem.

Theorem 1. Under the homogeneous rate assumption (Al), the joint pgohhd scheduling
problem is a monotone stopping problemI[18, Chapter 5], vinieans that, it; denotes the
event

{wi(srs o vs1,) 2 Elyjan(Snrs Sk [Sk 5 si ]} (7)
then&; C &1 for 0 < j < Jpue — 1.

Proof: See appendikJA.

Now the problem has been proved to be monotone, then fronflheTheorem 1, Chapter 5],
the one-state look-ahead rule is optimal. The one-stagedbead rule is the one that stops if
the reward for stopping at current stage is at least as laadkeaexpected reward of continuing
one stage and then stop. Mathematically, the rule is destridy the stopping time. Leb;

denote the largest value of the observed throughput-narechtate after probing users and

wj] } 7 (8)

which solves the stopping problem almost surely in each $legcisely, the optimal PF joint

aV b 2 max(a,b), the optimal stopping time is

ki1

\/ A e
Tk,.Jrl (n — 1)

J

J*:min{j >0:(1—jB)w; > (11— (G+1)P)E |w,

probing and scheduling (JPS-PF) scheme is described asithigol.

B. On the Optimality of Algorithm 1

To present the optimality of Algorithm 1, we need to show tbhewergence property.
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Algorithm 1: JPS-PF
1 Initialization: 7;(0) <~ 1 for k=1,--- | K;

2 forn=1,2,--- do
3 5k(n) < rx/T(n — 1). Sort the throughput-normalized mean rat¢n)(k =1, -+ , K)
in the descending ordesy, (n) > --- > 5. (n) ;

4 | 70, w0,

5 do

6 JJ+1;

7 Probe usek; and get the ratdz;, (n) ;
8 w = wV Ry, (n)/Ty,(n— 1) ;

Ry,

o WMeﬂ—jMw<(L—U+1wm{wvﬁ;ﬁ%ﬂ;

10 Transmit to usek;. UpdateT'(n) ;

11 end

Theorem 2: Assume (Al). Then for any initial condition, the throughmequenceT'(n)
generated under Algorithm 1 converges almost surely to itin@ point 7™ of the ordinary
differential equatioril’(t) = h(T'(t)), whereh(T) = —T + E[B(n)|T(n — 1) = T]. Moreover,
all users’ steady-state throughput are proportional tir tnean rate with an identical ratie,

TF  T; T:
L_ 1 Ik _ (9)

A1 T2 'k
Proof: Let M (n) = B(n) — E[B(n)|T'(n — 1)]. By (3), the update of users’ throughput

can be organized in the form of stochastic approximatioraiten [19, Eqn. 2.1.1]:
T(n)=T(n—1)+an)[h(T(n—-1))+ M(n),

wherea(n) = 1/n. The equation above is a standard stochastic approximatipression. It
is easy to verify thath(-) is Lipshitz, the stepsize satisfi§s, a(n) = oo, a(n)? < co and
T(n) is bounded. Furthermore, it is easy to verify tHANV (n)|M(1),---,M(n — 1)] = 0,

so M (n) is a martingale difference sequence. Now the throughpuatepdnder the proposed
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scheme satisfies the assumptions (Al)-(A4)lin [19, Sectidf #hen applying Theorem 2 in
[19, Section 2.1] directly, the convergence conclusiordgol

Now the convergence of the throughput sequence has beemathtdhe remainder of the
proof is by contradiction. Supposkl (9) does not hold at stesdte and that’y/r; < T3 /ro
without loss of generality. Consider the throughput patrtstg at slotn, which is at steady
state. At this times;, = r,/7;"(l = 1,2) ands; > s5,. Thus userl is probed first in each slot.
From assumption (A1) we know that and s, are of the same type of distribution, buthas a
larger mean value. Thus uskis selected for transmission more often than @sevhich would
further imply 7' (ng + ny)/m1 > To(no + ny1)/re after a sufficiently large numbern() of slots,
which contradicts the steady state assumption @ithr; < 75 /rs. n

Note that the constant proportionality factors a bridge connecting the steady-state through-
put and the mean-rate. After obtaining it is straightforward to evaluate the throughput and
utility. On the other hand, due to the fact thais a constant, we have the following corollary
from the proof of Theorerml2.

Corollary 1: Under Algorithm 1, the probability that each user is seléas the destination
is identical asl/K.

Algorithm 1 is asymptotically optimal in the following ses1s

Theorem 3: Assume (Al). Therl™ maximizes the PF utility.(-) over the rate region gen-
erated by all joint probing and scheduling schemes.

Proof: Let S denote the set composed of all the feasible schdmesder the assumption
that only one user can be selected in one slot. The develabesine in this paper is denoted as
I'*. We have shown in the derivation of Algorithm 1 tHat is optimal for solving the monotone
stopping problem in each slot, that is, it maximizggn)/T;(n—1) in slotn almost surely. Due
to the constraint that only one user can be scheduled in atevegt can see that the developed
schemel™ satisfies

K

B(F)
['* € argmax e ()

e Y (10)
Tes st Tk(n - 1)
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whereB,ﬁF) (n) is the number of bits transmitted to ugem slotn under the schemE. Recalling

the definition of the utility function in[{2), it can be fountat
K

r
]; % = Vu(T(n —1)) - BV (n), (11)
which means that the scheme chooses a decision maximizngctdar product oB™ (n) and
the gradientVu(T'(n — 1)).
The gradient scheduling algorithm developed by Stolyar [17] is that, at timehe controller
chooses a decisioli(n) € arg max Vu(T(n —1)) - BO(n). Let T denote the solution to the

problem

max  u(T)

st. Tey,

whereV is the system rate region, i.e., the set of all feasible l@mg: service rate vectors. Then
the [17, Theorem 2] shows that the expected average seatiee under the gradient scheduling
algorithm converges in probability t@'.

By (10) and [(111), one can see that the joint probing and sdimedalgorithm in this paper
belongs to the gradient scheduling algorithm. From the emyence of Algorithm 1, we know

T* = T. Then the achieved throughpiit maximizes the PF utility function asymptoticallys

C. A Satic Threshold Criteria

Note that in Algorithm 1, after each probe, the scheduledade evaluate the expectation in
(8) which depends on the channel realizations. Furthercteztuin the computational complexity
is possible by simply comparing the highest normalized agi@nst a sequence of deterministic
thresholds, in lieu of computing(8). Consider the steadyescase where users’ throughput is
exactlyT*. Note that by Theorerl 2,

Ry _ By

Tkj+1(n —1) N Iy 7

G+1
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which is identically distributed as(;/x. For 0 < j < J,... — 1, the inequality ofw; in (8)
reduces to

(1—jB)w; > (1 —(j+1)8)Emax(w;, /{_1X1)|wj]. (12)

It turns out that[(12) can be reduced to comparing with a static threshold;, which can

be determined as follows. Léfy(-) denote the cumulative distribution function (CDF) &f..

E [max (wj, &>
K

So that [(1R) can be rewritten as

Then

wj} =w; + /:O (E — wj) dFx(x). (13)

(=38 = (1= G+ 09) fuy+ [ (%= w)) dPx(o)| (14)
or, equivalently, ]
Kw; > g;(Kw;), (15)
where
() =[5 = G+ 1] [ (@ = v)dFxlo) (16)

It is not hard to check that: (ij;(v) > 0 for v > 0; (ii) ¢;(v) is a strictly decreasing function of
v; (iii) lim, . gj(v) = 0. Then inequality[(15) is equivalent taw; > v;, wherew; is the cross
point of function f(v) = v and g;(v). Also, we haveg;(v) > g;1+1(v). Then it is easy to verify
thatv;;; < v;. The solution to[(I5) is illustrated in Figl 2.

By observing the structure of (I16), it is worth pointing obat the cross point; is only
determined byj, § and the CDFFx(-), i.e., the unit mean valued random variabfe. And
the value ofv; is independent of the number of uséts the mean rates of all userg as well
as the achieved throughput to mean-rate ratiblence if the transmitter knows the distribution
Fx(-) , it can computey; in advance.

Now inequality [I2) can be expressed @as > %vj for 0 < j < Juaee — 1, Which is also
equivalent to the inequality in{(8) in the steady-state cabeis the decision on whether to keep

probing or to start transmitting is decided by a static thod$ criteria. For completeness, let
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vy,... = 0 in order to make sure the probing can always be terminate@ch slot. We get the
following static threshold based probing criteria, whia@naeplace the line 9 in Algorithm 1.
Criteria 1: After probing; users, if the current value of the largest normalized uate> %v]—,
then the transmitter transmits to the user with the largestnalized rate; otherwise it probes
the (j + 1)st user.
In practice, the scheduler can calculatein advance butk is unavailable at the beginning.
One way to estimate is to start the joint probing and scheduling using the dymaeniteria in
line 9 of Algorithm 1. After a period of time, the throughpyioaches to its steady-state value.
Then the throughput to mean-rate ratias obtained and the static threshold criteria can be used

thereafter. Alternativelyx can be determined theoretically as discussed in the nesestibn.

D. The Scheduling Gain

In this section we analyze the performance of the proposkdnse theoretically. We define
the scheduling gain as the ratio of the achieved throughput to that using roubthrecheduling
without probing, which reflects how much multiuser diverditenefits can be exploited. The
scheduling gain of the proposed joint probing and schedusicheme isKT—’ik = kK. For a
random variableX, let us denote the truncation df over [a,b] as[X]%. Note thatE[X|a <
X < =E[X]].

Theorem 4: Under the homogeneous rate assumption (Al), the schedygiimgof Algorithm
1is

Jmaz

R = > [(Fx(vy )™ = (Fx ()] (1 = 8B { [max (X5 (X0 X))

j=1
wherew; is the solution ofv = g,(v).

Recall that/* is the optimal stopping time, that is, the number of userb@daobefore a user
is scheduled. We prove Theorém 4 using the following sujmpgptemma.
Lemma 1. Using Algorithm 1, the steady-state probability of the evdiat ; users are probed

until transmission is given by

pj = (FX(Uj—l))j_l - (FX(UJ))j’ 1 S] g Jmax~ (17)
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Proof: At steady state, all users’ throughput-normalized meaesrat/7;; are essentially
identical. Letq; = Pr{J* > j}, i.e., the probability that at leagt users are probed before

transmission. Then; = 1. And from Criteria 1, we have fojf > 2,
q; = Pmax(Xy, -+, Xj 1) <vj1}
=Pr{X; <vj1}---PH{X,; 1 <vj_1}
= (Fx(vj-1))" ™"

Like v;, ¢; is also completely determined by the rate distribution.a@e p;, = ¢; — ¢;41 for
J < Jmaz — 1 @NAdDpy,.. = Qs u
Proof of Theorem@ Consider a specific user. In the steady statel’(t) = 0. Then from
Theorem[2, usek’s throughput is given byl = E[By(n)|T*]. Throughout, letK* denote
index of the user that is selected as destination. Then dvént= k}, i.e., userk is selected as

destination, can be decomposed intg,. exclusive sub event{K* =k} = |J {K*=
j=1,Jmaz
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k,J* = j}. Then we have
Ty =E[By(n)|T*] = E[(1 — J"B) RiIi]
=PH{ K" = kE}E[(1 — J*B)R| K* = k|

9 LR((1 - g Rel K = K]

K
Jmaz
) 1 .
2= > PHI = JYE[(L - jB)Ru K" =k, J* = J]
7=1
w J
max R . )
ijl—]BE T—k f=k,J 21}
k
Jmaz r -R vi—1 _R Vji—1 R o0
(c) k 1 " j—1 " J
=7 p max _*:| s T T T * :| P
Z ) { (_Tl ; T, TJ> }
Jmaz i r Ujil r Ujil &
d { <X1:| ~ Xj_1:| ” X]>] }
: ij max - s T T T [
L K o L R Jo K v;
Jmaz
[max([Xl]gﬂf” X ld T X)) J}’

where (a) foIIows from Corollaryll, (b) from the law of totatgbability, (c) from the static

threshold criteria, that is{ K* = k, J* = j} means that: i) usek has the largest throughput-
normalized rate among the firgtusers; ii) the firstj — 1 users’ throughput-normalized rates
are smaller than:~'v;_; and iii) the largest value of the first users’ throughput-normalized
rates is larger thar~'v;, (d) from R, = X, and [9), and (e) from the distribution df;. By

replacingp; with (17) and removindg;* from both sides, the conclusion of Theoreéin 4 hols.

IV. JOINT LEARNING, PROBING AND SCHEDULING

Consider the case where the scheduler does not lnprmori the statistics of the quality of
the downlink channels, and thus has to rely on the histonhefgrobed CQI to decide on the
user probing order and user selection. Under this assumphe problem of maximizing the PF
utility function is a generalization of the classical matthed bandit problem [20]. The problem

is a generalization because in the classical bandit prgbtbendecision maker has to decide
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which of K random process to observe in a sequential of trials so as xamz& the reward,
where the ‘observing’ operation is equivalent to the ‘atilg’ operation. However, in our model,
in each slot, the scheduler may probe (observe) more thaclmarels (random processes) and
then choose only one for transmission (utilization). Theesbation does not always lead to a
utilization.

At the beginning of slot, i.e., the end of slot — 1, let M, (n— 1) denote the number of time
slots in which the channel to usérhas been probed, arf@,(n — 1) = {R,E}), e ,R,i”[k("_l))}
record all the probed samples of the channel rate of kis€tearly, the cardinalityR,(n—1)| =
M. (n—1). The scheduler keeps updating thesets[R,(n), - - - , Rk (n)] from slot to slot. Also,
the scheduler knows the through@tn — 1) till the previous slot. The objective is still to find
a scheme that solves the stopping problem in each slot. Agzauhin Sectiori III-A, there still
exists the same two tasks to find the optimal scheme: detargnthe user probing order and
selecting one user for transmission. Hence the problemuiation and scheme design is similar
to those in Sectiop III-A. The only difference is that the eghler just has the sampled values of
all channels’ rates instead of the explicit knowledge of disribution of Ry, (k =1, -, K),
which means that we cannot calculate the expectationecdetatR,, directly. Alternatively, we
can only evaluate the empirical average using the acquaetpkes ofz,, which readily leads
to the index-based policy solution in the framework of bamdoblem.

The index policy, consisting of choosing at any time the Is&stic process with the currently
highest index, is the solution to a class of bandit problerere to find the optimal scheme,
we adopt the similar methodology as in the development ofrtlex-based policy by Agrawal
in [21]. For the decision on the user probing order, we usectireent average reward, i.e., the
throughput-normalized average rate as the index. For tbisida on when to start transmission,
we adopt the actually served bits in current slot, i.e., tfte@pct of 1 — j5 and the conditional

throughput-normalized-average rate. For the conveniehgeesenting the algorithm, we define
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the following two empirical averages

. 1 M (n—1) ngm)
S = —_— l
M (n—1) (m)
- A 1 Rk)
= V—-. 19

The 5, (n) is used to replace the,(n) in Algorithm[l and thez,(n, w) is for E [w Y %] in
Algorithm[1. Then a joint PF learning, probing and scheduligLPS-PF) algorithm is described
in Algorithm 2.

Algorithm 2: JLPS-PF

1 Initialization: n « [K]. Fork=1,--- | K, Tx(n) < 1. In the firstn slots, sequentially
probe each channel once, making sure that each one of th&gets, (k =1, --- ,K) is
not empty.My(n) < 1 ;

2 for n=[pK]|+1,[fK]|+2,--- do

M (n—1)

) R;im)/Tk(n —1). Sorts,(n)(k =1,---, K) in the descending

order: g, (n) > -+ > 8. (n) ;

4 j0,w<+0;

5 do
6 jJ+1;
7 Probe usek; and get the rate;, (n) ;
8 w(—w\/RkJ(n)/Tkj(n—l) ,
J\/[kj+l(n) ](Qm)

~ 1 j+1 .
? iy (0 0) Mi; 1 () mZ::1 [w v T’“J'H("_l)} '
10 Rk](n) < Rkj (’fl — 1) U {Rk](n)}, Mkj (’fl) — Mk](n — 1) +1;

11 while (1 —j8)w < (1 — (j +1)B)éx,,,(n, w);

12 Transmit to usek;. UpdateT'(n) ;

13 Fork=Fk;+1, - kg, Ri(n) < Ri(n —1), My(n) < Mp(n—1) ;
14 end

From the description of Algorithm 2, one may wonder such anphgenon may exist that if

September 15, 2010 DRAFT



16

one user is probed with relatively high values in the first &ats, then it will have low priority
of being probed afterwards, resulting that the ensembleageeof this channel is always higher
than its statistical expectation. However, this does ngipka thanks to the structure of the
algorithm derived from the objective of maximizing the PHityt As a matter of fact, if usek

is probed and selected less frequently compared to othes,ube achieved throughpti.(n)
will become small, which will in return increase its prigriof being probed and selected. In
fact, the metric of throughput-normalized rate used in Rtedaling is a well-balanced rule that
guarantees each user is sampled with sufficiently many tanesidentical frequencies. Hence
after the Algorithm 2 runs a a sufficiently long time, the sédpdata of each user’s channel
rate can characterize the statistics®fwell. Then from the law of large number, the ensemble
average converges to the statistical expectation. And dénfmypnance of Algorithm 2 is almost

the same as that of Algorithm 1.

V. NUMERICAL RESULTS

In this section, we provide some numerical experimentstitating the theoretical findings of
the previous sections. Our objectives here are (i) to etaltiee performance of the developed
schemes with and without channel statistics; (ii) to coraghe developed scheme for achieving
PF with some ideal and practical schemes and to quantifynipact of the cost of CQI on the
scheduling. We consider the scenario where users’ ratgstbleeexponential distributions with
average equal to the user index. The exponential rate assuimpan appropriate approximation

of the Shannon capacity under Rayleigh fading channelsvin3diR regime.

A. Evaluation of the Proposed Algorithms

ConsiderK = 20 users and let the fraction of one probe be- 0.1. Up to J,,.. = 10 users
can be probed in each slot.
Fig.[3 presents a sample throughput trajectory of user 1 wheaduled with Algorithm 1, the

static threshold criteria given icriteria 1 and Algorithm 2. The simulation runs fan, 000 slots
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in this experiment. The time axis is in logarithmic scale ighight the transient behavior. We
can see that the static threshold criteria works well. Théatian of the throughput diminishes
over time as more and more time slots are included in the giegalt is worth noting that the
low complexity of the static threshold criteria for solvitige optimal stopping problem comes
from the explicit knowledge of the channel statistics. istmformation is not known, or if the
distribution of the channel rate varies over time, we cary @dopt the dynamic criteria given
in Algorithm 1.

Fig. 4 illustrates the frequency of each user being schdduen relatively short period of
2000 slots. Each of the 20 user is selected as the destirfatisnughly 100 slots. That is, the
scheme is fair to all users even within a small applicatiometiwvindow.

Fig.[8 presents the probability thatusers have been probed until transmission. The theoretical
results are from Lemmnid 1. The figure shows that both the Algoril and Algorithm 2 coincide
with the theoretical results. We observe from the figure thatprobability decreases sharply as
the probing step approachés,,..

Fig.[8 plots the scheduling gain of the proposed algorithersus the number of users in the
system. The simulation runs for 20,000 slots. In fact theugation result matches the analytical
result of Theorem 4 quite well. Also, we note the scheduliaghgemains about the same for
more than 9 users. Because at this time, the cost of userngradidominant and the scheme

always tries to carry out the user probing till the end.

B. Comparison between the Proposed Scheme and Other Schemes

The fraction of slot for probing one user is still set= 0.1. Here four schemes are considered:
(a) the proposed joint probing and scheduling scheme; (ninBaoobin scheduling; (c) Genie-
aided PF (GA-PF) scheme where full CQI is available to theedater at the beginning of each
slot; (d) Probe-all PF (PA-PF) scheme where the transnpttaloes all users before scheduling.
For both (c) and (d), the transmitter selects the user with l#figestR,(n)/T;(n — 1) for

transmission. From_[22] we know that the scheduling gain 8fFF- is E |:k_rrllaXK Xk} Then

September 15, 2010 DRAFT



18

that of PA-PF ismax(1 — K3,0)E L:n?axK Xk} .

Fig.[4 presents the scheduling gai7n 7of schemes (a)-(d) asdida of the number of users.
We can see from Fid.] 7 that when probing cost is taken intowatt¢cthe scheduling gain does
not always increase but approaches to a limit value as thebeumf users increases. This
indicates that, by ignoring the cost of channel probing,itleal genie-aided PF does not reflect
the correct multiuser diversity characteristics. The cargon also shows the advantage of the
proposed joint probing and scheduling scheme. For the pablde- scheme, it achieves higher
gain than round robin when the user population is not veryelamompared witi8—!. However,
when the number of user increases to some extent, the saigedidin of probe-all algorithm
vanishes. That is because almost all the period of one slasas for user-probing instead of
data transmission.

Fig. [8 displays the sum throughput of all schemes as the nuwibasers increases. One
can see that there exists a relative large gap between thé gdaie-aided PF curve and the
proposed scheme. The gap quantifies the the extent to whecluglr probing decreases the
system performance. For example, when the number of uséts=s20, the throughput of the
joint probing and scheduling scheme only accounts for 3%.@4 that of the genie-aided PF.
And the throughput achieved by the joint scheme is the higgme®ng all the non-ideal schemes
(@), (b) and (d). The probe-all PF scheme performs similahé&ojoint probing and scheduling
scheme when there are not many uséfs< 6), but degrades fast and even vanishes when the

number of users becomes large.

VI. CONCLUSION

We have studied the problem of achieving proportional &8min wireless systems when
explicitly taking into account the channel probing cost. éptimal adaptive joint probing and
scheduling scheme is presented, as well as a static thdedlasled criteria for determining
whether to probe or to transmit. Using the steady-stateyaisawe have evaluated the scheduling

gain explicitly. Extension of the scheme to the case in wiinghscheduler has no knowledge of
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the channel rate distribution has been developed, whicieeef almost the same performance of
the algorithm obtained under known rate statistics assiomp@ind outperforms other non-ideal
PF schemes. In this work, we have focused on the well-stygliedortional fairness rule. It is
possible to extend the results to more general utilities,efample, thex fair utility [7]. The

methodology presented in this paper can then be carrieddhrto that case as well.

APPENDIX A

PROOF OFTHEOREM[I

Proof: Let the largest throughput-normalized user rate after ipgpl users be denoted by

w; = 1H§1la§}§ Sp) (20)
Then the current reward can be writtemaésy, , - - - , sx,) = (1—758)w; and the expected reward

obtained from probing the next user is

E[yj+1<sk1> U 78kj+1)‘8k17 e 78kj] = (1 - (] + 1>B)E[wj \% 8kj+1‘wj]' (21)

Then the evenE; can be expressed as

E={(1—=jp)w; > (1 = (j + 1)B)E[w; V sg,,, |w;]}. (22)

We first show that there exists a threshmﬁh) such that the evertl; can be represented as
& = {w; > w™}. To this end, letf;(w) = (1 — jB)w — (1 — (j + 1)B)E[w V s,,,]. Then
w e & < fi(w) > 0. Itis easy to verify thatf;(0) < 0 and f;(co) > 0. The function f;(w)

can be reorganized g§(w) = SE[w V s, | + (1 — jB)E[w —w V s, ]. For anyw’ > w > 0,

fi(w") = fi(w) = BE[w' V s, —wV s, ]+ (1= jBEW —w+w' Vs, , —wVs,,]

Note thatw'V sy, , > wV sg,,, andw' —w > w'V sg,,, —wV sg,,,. Thus f;(w') — f;(w) > 0,

j+1°

that is, f;(w) is a nondecreasing function. Summarizing the propertie;@#), it can be seen

that the solution tof;(w) > 0 can be expressed as> w".
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We next show thaty!") < w](.th). For fixedw,

firi(w) = fi(w)
=1 =0 +1)Bw =1 =0 +2)B)Es, [wV sl —(1-jfw+(1—(+1FEwV sp,]

:5]E3kj+2 [w \ Skjte — w] + (1 - (.7 + 1)5>{E[w \% Skj+1] —E [w v 8kj+2]}

Sk .
kjt+2

>0. (23)

where the last>’ follows from the fact thats,,,,, ands;, , are of the same type of distribution

(th

(th) (th)
; < w}

andEsg,,, > Es;, ,. Note thatw ! is the zero point of the functiof;(w). Hencew; ; <w;"",

as illustrated in FiglJ1.
Collecting the preceding results, we ha¥e= {w; > w{™} C {wjs > w{™} C {wjy; >

h
wil} = &, u
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Fig. 1: lllustration of the property of functioii;(w).
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Fig. 2: lllustration of the solution to inequality (IL5).
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O Joint probing and scheduling, Algorithm 1
VvV Joint probing and scheduling, Static threshold criteria
Joint learning, probing and scheduling, Algorithm 2

Throughput of user 1

Time slot

Fig. 3: The throughput trajectory of user 1 when scheduldd wigorithm 1, the static threshold
criteria and Algorithm 2 respectivelW,,; = 10,000, K = 20,3 = 0.1.

September 15, 2010 DRAFT



24

I Joint probing and scheduling, Simulation
120- [ Joint learning, probing and scheduling, Simulation : i
= _Joint probing and scheduling, Theory
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Fig. 4: The number of slots in which each user is selectedasgétinationV,,,; = 2000, K =
20,3 = 0.1.
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Fig. 5: The probability that users have been probed until transmissien= 20, 5 = 0.1.
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Fig. 6: The scheduling gain comparison between Algorithildgorithm 2 and theoretical results.
B =0.1.
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Fig. 7: Scheduling gain VS number of usefs= 0.1.
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Fig. 8: Sum throughput VS number of usets= 0.1.
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