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Joint Channel Probing and Proportional Fair

Scheduling in Wireless Networks

Hui Zhou, Pingyi Fan, Dongning Guo

Abstract

The design of a scheduling scheme is crucial for the efficiency and user-fairness of wireless

networks. Assuming that the quality of all user channels is available to a central controller, a simple

scheme which maximizes the utility function defined as the sum logarithm throughput of all users has

been shown to guarantee proportional fairness. However, toacquire the channel quality information may

consume substantial amount of resources. In this work, it isassumed that probing the quality of each

user’s channel takes a fraction of the coherence time, so that the amount of time for data transmission

is reduced. The multiuser diversity gain does not always increase as the number of users increases. In

case the statistics of the channel quality is available to the controller, the problem of sequential channel

probing for user scheduling is formulated as an optimal stopping time problem. A joint channel probing

and proportional fair scheduling scheme is developed. Thisscheme is extended to the case where the

channel statistics are not available to the controller, in which case a joint learning, probing and scheduling

scheme is designed by studying a generalized bandit problem. Numerical results demonstrate that the

proposed scheduling schemes can provide significant gain over existing schemes.

I. INTRODUCTION

Efficient and fair scheduling is important for wireless systems with limited resources and

heterogeneous user conditions. A large class of resource allocation schemes with fairness consid-

erations are obtained by maximizing some utility functionsof the throughput [1]. In particular,

proportional fairness is achieved when the utility is the sum of the logarithm of the users’
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throughput. In existing third generation wireless systems, like EV-DO and HSDPA, proportional

fair (PF) scheduling scheme is employed at the base station to schedule downlink traffic to

mobile users. The PF scheme strikes a good balance between throughput efficiency and fairness

by exploiting the multiuser diversity [2] and the game-theoretic equilibrium [3]. Analysis and

applications on PF scheduling have been extensively explored from various aspects due to its

favorable performance and low implementation complexity.For example, there have been studies

of the convergence and optimality [4], stability [5], throughput [6] and capacity region [7] of

PF scheduling.

Most previous work on PF scheduling assume that the instantaneous channel quality informa-

tion (CQI) of all users is known to the scheduler at no cost. Inpractice, however, acquiring the

CQI often consumes a significant amount of resources in termsof time, bandwidth and power. It

is important to understand the impact of the cost when the number of users is large, because the

cost may scale linearly with the user population. The goal ofthis work is to answer the following

two questions: 1) to what extent will the CQI acquisition affect the scheduling? and 2) how to

probe and schedule the users to achieve the best performancewith proportional fairness?

There have been related works on the impact of the channel uncertainty on the communication

systems. The loss of throughput caused by poor estimates of channel quality is quantified in [8].

Joint channel probing and user scheduling has also been addressed recently. Several schemes

with the objective of maximizing the system throughput havebeen designed in [9]–[12]. And the

authors of [13]–[15] propose schemes for stabilizing the queues and characterize the network

throughput region. In contrast to the preceding works, the goal of this paper is to design a

proportional fair scheduling scheme which takes into account the cost of channel probing. Our

previous work [16] has shown the scheme and its performance roughly. In this paper, we not

only present the derivation of the scheme with rigorous arguments, but also show its asymptotic

behavior and the optimality with theoretical rigor. In addition, the scheme is extended to a more

generalized scenario. The organization and main contributions of this work are as follows:

• Section II describes the network model.
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• In Section III, we assume the prior distribution of CQI is known to the scheduler, and

formulate the problem of sequentially probing user channels to make scheduling decision

as a stopping time problem. A simple scheme based on maximizing the sum logarithm

throughput of all users is shown to guarantee proportional fairness and convergence. The

scheduling gain of the scheme is determined analytically. Further reduction of computational

complexity is also discussed.

• In Section IV, the statistics of the CQI is assumed not to be available to the scheduler. The

problem is formulated as a generalized bandit problem, and ajoint learning, probing and

scheduling scheme is proposed.

• In Section V, significant advantages of the proposed schemesare demonstrated using nu-

merical experiments. In typical scenarios where the statistics of the CQI are not available,

the joint learning, probing and scheduling scheme achievesalmost the same performance

as that in the case where the statistics are known.

II. THE NETWORK MODEL

Consider a wireless system with one controller andK users with time-varying channel quality,

such as in the downlink of a cellular system. Let time be divided into unit-length slots and only

one user can be served in each slot. As in most related work (e.g., [4] and [6]), the transmit

power is assumed to be fixed so that dynamic power allocation is not considered. Thus the

achievable rate is only determined by the instantaneous channel quality. Moreover, we assume

saturated traffic for all users.

Assume slow fading, where the duration of a slot is much shorter than the channel coherence

time, so that the channel quality remains constant during each slot. We make the following

homogeneous rate assumption that the rate of each user normalized by its mean value follows

the same distribution:

(A1) Let X1, . . . , XK be independent identically distributed (i.i.d.) non-negative random vari-

ables with unit mean value. Letr1, . . . , rK ≥ 0 be constants. LetRk = rkXk for k = 1, . . . , K.
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The achievable rates{Rk(n)|k = 1, . . . , K;n = 1, 2, . . . } are independent. For every userk, the

rates over the time slots,Rk(1), Rk(2), . . . , are i.i.d. following the same distribution as that of

Rk. Clearly,ERk(n) = rk.

The instantaneous achievable rates of all users are not known a priori. During each slotn,

to obtain the achievable rateRk(n) requires the scheduler to probe the channel of userk using

a fraction β of the slot. LetIk(n) be an indicator of the event that userk is scheduled for

transmission in slotn. Let J(n) denote the number of probed users in slotn. The amount of

data transmitted to or by userk during slotn is Bk(n) = (1 − J(n)β)Rk(n)Ik(n), which is

nonzero for only one user during each slot. The throughput ofuserk averaged overn slots is

thus

Tk(n) =
1

n

n
∑

j=1

Bk(j). (1)

III. JOINT PROBING AND SCHEDULING WITH KNOWN CHANNEL STATISTICS

In this section, we consider the case where the statistics ofR = [R1, . . . , RK ] is known to

the scheduler and design a proportional fair scheme.

A. The Algorithm

Consider first a scheme which maximizes the utility defined asthe sum logarithm throughput:

u(T (n)) =

K
∑

k=1

lnTk(n) . (2)

Note that by (1),

Tk(n) =
n− 1

n
Tk(n− 1) +

1

n
Bk(n). (3)
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So that the increase of the utility function after then-th slot is

u(T (n))− u(T (n− 1))

=
K
∑

k=1

(lnTk(n)− lnTk(n− 1))

=

K
∑

k=1

ln

(

n− 1

n
+

1

n

Bk(n)

Tk(n− 1)

)

=

K
∑

k=1

ln

(

n− 1

n
+

1− βJ(n)

n
sk(n)Ik(n)

)

, (4)

where the throughput-normalized rate is

sk(n) =
Rk(n)

Tk(n− 1)
. (5)

Since the indicatorIk(n) is zero for all but one userk in each slot, one can see that to greedily

maximize the utility increment at time slotn, we should schedule the user with the maximum

sk(n), which is the classical PF scheduling algorithm.

However, due to the assumption that the instantaneous ratesRk(n) are unknown a priori,

we can only probe the users rates and obtainsk(n) one by one in each slot. We formulate the

following optimal stopping time problem [18]. Note that thescheduling decision made in one

slot has no impact on future realization of the rates, it suffices to consider one arbitrary slot

and omit the time indexn. For the scheduler, the joint probing and scheduling problem at the

beginning of the time slot is defined by two objects:

(i) The independent throughput-normalized ratess1, . . . , sK .

(ii) A sequence of positive-valued reward functionsy1, . . . , yK, where if j channels have

been probed to reveal their throughput-normalized instantaneous ratest1, . . . , tj, the reward of

terminating the probing phase and schedule the best user found so far is

yj(t1, . . . , tj) = (1− jβ)max(t1, . . . , tj). (6)

The theory of optimal stopping is concerned with determining the stopping timeJ to max-

imize the expected rewardE[yJ ]. The maximum number of probings in every slot isJmax =
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min(K, ⌊1/β⌋). Compared with the classical optimal stopping problem, theformulation above

is more general in the sense that the probing order ofsk is not deterministic. Hence the joint

probing and scheduling scheme basically includes two tasksin each slot: to determine the order

in which users are probed, and to select one user as the destination at a proper (stopping)

time. Recalling the objective of maximizing the expectedyj, the user with the largestE[sk(n)]

should be probed first, and then the second largest and so on. From Assumption (A1), we know

s̄k(n) , E[sk(n)] = rk/Tk(n − 1). Hence the probing order isπ(n) = (k1, · · · , kK) such that

s̄k1(n) ≥ · · · ≥ s̄kK (n). Now that the probing order has been determined, the decision on when

to stop can be addressed by investigating the structural property of the problem.

Theorem 1: Under the homogeneous rate assumption (A1), the joint probing and scheduling

problem is a monotone stopping problem [18, Chapter 5], which means that, ifEj denotes the

event
{

yj(sk1, · · · , skj ) ≥ E[yj+1(sk1, · · · , skj+1
)|sk1, · · · , skj ]

}

, (7)

thenEj ⊆ Ej+1 for 0 ≤ j ≤ Jmax − 1.

Proof: See appendix A.

Now the problem has been proved to be monotone, then from the [18, Theorem 1, Chapter 5],

the one-state look-ahead rule is optimal. The one-stage look-ahead rule is the one that stops if

the reward for stopping at current stage is at least as large as the expected reward of continuing

one stage and then stop. Mathematically, the rule is described by the stopping time. Letwj

denote the largest value of the observed throughput-normalized rate after probingj users and

a ∨ b , max(a, b), the optimal stopping time is

J∗ = min

{

j ≥ 0 : (1− jβ)wj ≥ (1− (j + 1)β)E

[

wj ∨
Rkj+1

Tkj+1
(n− 1)

∣

∣

∣

∣

wj

]}

, (8)

which solves the stopping problem almost surely in each slot. Precisely, the optimal PF joint

probing and scheduling (JPS-PF) scheme is described as Algorithm 1.

B. On the Optimality of Algorithm 1

To present the optimality of Algorithm 1, we need to show the convergence property.
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Algorithm 1: JPS-PF

1 Initialization: Tk(0)← 1 for k = 1, · · · , K;

2 for n = 1, 2, · · · do

3 s̄k(n)← rk/Tk(n− 1). Sort the throughput-normalized mean rates̄k(n)(k = 1, · · · , K)

in the descending order:̄sk1(n) ≥ · · · ≥ s̄kK(n) ;

4 j ← 0, w ← 0 ;

5 do

6 j ← j + 1 ;

7 Probe userkj and get the rateRkj(n) ;

8 w ← w ∨ Rkj(n)/Tkj (n− 1) ;

9 while (1− jβ)w < (1− (j + 1)β)E
[

w ∨
Rkj+1

Tkj+1
(n−1)

]

;

10 Transmit to userkj. UpdateT (n) ;

11 end

Theorem 2: Assume (A1). Then for any initial condition, the throughputsequenceT (n)

generated under Algorithm 1 converges almost surely to the limit point T ∗ of the ordinary

differential equationṪ (t) = h(T (t)), whereh(T ) = −T + E[B(n)|T (n− 1) = T ]. Moreover,

all users’ steady-state throughput are proportional to their mean rate with an identical ratioκ,

T ∗
1

r1
=

T ∗
2

r2
= · · · =

T ∗
K

rK
= κ. (9)

Proof: Let M(n) = B(n) − E[B(n)|T (n − 1)]. By (3), the update of users’ throughput

can be organized in the form of stochastic approximation iteration [19, Eqn. 2.1.1]:

T (n) = T (n− 1) + a(n)[h(T (n− 1)) +M(n)],

wherea(n) = 1/n. The equation above is a standard stochastic approximationexpression. It

is easy to verify thath(·) is Lipshitz, the stepsize satisfies
∑

n a(n) = ∞,
∑

n a(n)
2 < ∞ and

T (n) is bounded. Furthermore, it is easy to verify thatE[M(n)|M(1), · · · ,M(n − 1)] = 0,

so M(n) is a martingale difference sequence. Now the throughput update under the proposed

September 15, 2010 DRAFT



8

scheme satisfies the assumptions (A1)-(A4) in [19, Section 2.1], then applying Theorem 2 in

[19, Section 2.1] directly, the convergence conclusion holds.

Now the convergence of the throughput sequence has been obtained. The remainder of the

proof is by contradiction. Suppose (9) does not hold at steady state and thatT ∗
1 /r1 < T ∗

2 /r2

without loss of generality. Consider the throughput path starting at slotn0 which is at steady

state. At this time,̄sl = rl/T
∗
l (l = 1, 2) and s̄1 > s̄2. Thus user1 is probed first in each slot.

From assumption (A1) we know thats1 ands2 are of the same type of distribution, buts1 has a

larger mean value. Thus user1 is selected for transmission more often than user2, which would

further imply T1(n0 + n1)/r1 > T2(n0 + n1)/r2 after a sufficiently large number (n1) of slots,

which contradicts the steady state assumption withT ∗
1 /r1 < T ∗

2 /r2.

Note that the constant proportionality factorκ is a bridge connecting the steady-state through-

put and the mean-rate. After obtainingκ, it is straightforward to evaluate the throughput and

utility. On the other hand, due to the fact thatκ is a constant, we have the following corollary

from the proof of Theorem 2.

Corollary 1: Under Algorithm 1, the probability that each user is selected as the destination

is identical as1/K.

Algorithm 1 is asymptotically optimal in the following sense:

Theorem 3: Assume (A1). ThenT ∗ maximizes the PF utilityu(·) over the rate region gen-

erated by all joint probing and scheduling schemes.

Proof: Let S denote the set composed of all the feasible schemesΓ under the assumption

that only one user can be selected in one slot. The developed scheme in this paper is denoted as

Γ∗. We have shown in the derivation of Algorithm 1 thatΓ∗ is optimal for solving the monotone

stopping problem in each slot, that is, it maximizesBk(n)/Tk(n−1) in slotn almost surely. Due

to the constraint that only one user can be scheduled in one slot, we can see that the developed

schemeΓ∗ satisfies

Γ∗ ∈ argmax
Γ∈S

K
∑

k=1

B
(Γ)
k (n)

Tk(n− 1)
, (10)
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whereB(Γ)
k (n) is the number of bits transmitted to userk in slotn under the schemeΓ. Recalling

the definition of the utility function in (2), it can be found that

K
∑

k=1

B
(Γ)
k (n)

Tk(n− 1)
= ∇u(T (n− 1)) ·B(Γ)(n), (11)

which means that the scheme chooses a decision maximizing the scalar product ofB(Γ)(n) and

the gradient∇u(T (n− 1)).

The gradient scheduling algorithm developed by Stolyar [17] is that, at timen the controller

chooses a decisionΓ(n) ∈ argmax
Γ
∇u(T (n − 1)) ·B(Γ)(n). Let T̃ denote the solution to the

problem

max u(T )

s.t. T ∈ V,

whereV is the system rate region, i.e., the set of all feasible long-term service rate vectors. Then

the [17, Theorem 2] shows that the expected average service rates under the gradient scheduling

algorithm converges in probability tõT .

By (10) and (11), one can see that the joint probing and scheduling algorithm in this paper

belongs to the gradient scheduling algorithm. From the convergence of Algorithm 1, we know

T
∗ = T̃ . Then the achieved throughputT ∗ maximizes the PF utility function asymptotically.

C. A Static Threshold Criteria

Note that in Algorithm 1, after each probe, the scheduler needs to evaluate the expectation in

(8) which depends on the channel realizations. Further reduction in the computational complexity

is possible by simply comparing the highest normalized rateagainst a sequence of deterministic

thresholds, in lieu of computing (8). Consider the steady-state case where users’ throughput is

exactlyT ∗. Note that by Theorem 2,

Rkj+1

Tkj+1
(n− 1)

=
Rkj+1

T ∗
kj+1

,

September 15, 2010 DRAFT
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which is identically distributed asX1/κ. For 0 ≤ j ≤ Jmax − 1, the inequality ofwj in (8)

reduces to

(1− jβ)wj ≥ (1− (j + 1)β)E[max(wj, κ
−1X1)|wj]. (12)

It turns out that (12) can be reduced to comparingκwj with a static thresholdvj , which can

be determined as follows. LetFX(·) denote the cumulative distribution function (CDF) ofXk.

Then

E

[

max

(

wj,
X1

κ

)
∣

∣

∣

∣

wj

]

= wj +

∫ ∞

κwj

(x

κ
− wj

)

dFX(x). (13)

So that (12) can be rewritten as

(1− jβ)wj ≥ (1− (j + 1)β)

[

wj +

∫ ∞

κwj

(x

κ
− wj

)

dFX(x)

]

, (14)

or, equivalently,

κwj ≥ gj(κwj), (15)

where

gj(v) =
[

β−1 − (j + 1)
]

∫ ∞

v

(x− v)dFX(x). (16)

It is not hard to check that: (i)gj(v) > 0 for v ≥ 0; (ii) gj(v) is a strictly decreasing function of

v; (iii) limv→∞ gj(v) = 0. Then inequality (15) is equivalent toκwj ≥ vj , wherevj is the cross

point of functionf(v) = v andgj(v). Also, we havegj(v) > gj+1(v). Then it is easy to verify

that vj+1 < vj . The solution to (15) is illustrated in Fig. 2.

By observing the structure of (16), it is worth pointing out that the cross pointvj is only

determined byj, β and the CDFFX(·), i.e., the unit mean valued random variableXj. And

the value ofvj is independent of the number of usersK, the mean rates of all usersrk as well

as the achieved throughput to mean-rate ratioκ. Hence if the transmitter knows the distribution

FX(·) , it can computevj in advance.

Now inequality (12) can be expressed aswj ≥
1
κ
vj for 0 ≤ j ≤ Jmax − 1, which is also

equivalent to the inequality in (8) in the steady-state case. Thus the decision on whether to keep

probing or to start transmitting is decided by a static threshold criteria. For completeness, let
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vJmax
= 0 in order to make sure the probing can always be terminated in each slot. We get the

following static threshold based probing criteria, which can replace the line 9 in Algorithm 1.

Criteria 1: After probingj users, if the current value of the largest normalized ratewj ≥
1
κ
vj ,

then the transmitter transmits to the user with the largest normalized rate; otherwise it probes

the (j + 1)st user.

In practice, the scheduler can calculatevj in advance butκ is unavailable at the beginning.

One way to estimateκ is to start the joint probing and scheduling using the dynamic criteria in

line 9 of Algorithm 1. After a period of time, the throughput approaches to its steady-state value.

Then the throughput to mean-rate ratioκ is obtained and the static threshold criteria can be used

thereafter. Alternatively,κ can be determined theoretically as discussed in the next subsection.

D. The Scheduling Gain

In this section we analyze the performance of the proposed scheme theoretically. We define

the scheduling gain as the ratio of the achieved throughput to that using round robin scheduling

without probing, which reflects how much multiuser diversity benefits can be exploited. The

scheduling gain of the proposed joint probing and scheduling scheme is T ∗

k

K−1rk
= κK. For a

random variableX, let us denote the truncation ofX over [a, b] as [X ]ba. Note thatE[X|a ≤

X ≤ b] = E[X ]ba.

Theorem 4: Under the homogeneous rate assumption (A1), the schedulinggain of Algorithm

1 is

κK =

Jmax
∑

j=1

[

(FX(vj−1))
j−1 − (FX(vj))

j
]

(1− jβ)E
{

[

max
(

[X1]
vj−1

0 , · · · , [Xj−1]
vj−1

0 , Xj

)]∞

vj

}

,

wherevj is the solution ofv = gj(v).

Recall thatJ∗ is the optimal stopping time, that is, the number of users probed before a user

is scheduled. We prove Theorem 4 using the following supporting lemma.

Lemma 1: Using Algorithm 1, the steady-state probability of the event thatj users are probed

until transmission is given by

pj = (FX(vj−1))
j−1 − (FX(vj))

j, 1 ≤ j 6 Jmax. (17)
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Proof: At steady state, all users’ throughput-normalized mean rates rk/T ∗
k are essentially

identical. Let qj = Pr{J∗ ≥ j}, i.e., the probability that at leastj users are probed before

transmission. Thenq1 = 1. And from Criteria 1, we have forj ≥ 2,

qj = Pr{max(X1, · · · , Xj−1) < vj−1}

= Pr{X1 < vj−1} · · ·Pr{Xj−1 < vj−1}

= (FX(vj−1))
j−1.

Like vj , qj is also completely determined by the rate distribution. Clearly, pj = qj − qj+1 for

j ≤ Jmax − 1 andpJmax
= qJmax

.

Proof of Theorem 4: Consider a specific userk. In the steady state,̇T (t) = 0. Then from

Theorem 2, userk’s throughput is given byT ∗
k = E[Bk(n)|T

∗]. Throughout, letK∗ denote

index of the user that is selected as destination. Then event{K∗ = k}, i.e., userk is selected as

destination, can be decomposed intoJmax exclusive sub events:{K∗ = k} =
⋃

j=1,··· ,Jmax

{K∗ =

September 15, 2010 DRAFT
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k, J∗ = j}. Then we have

T ∗
k =E[Bk(n)|T

∗] = E[(1 − J∗β)RkIk]

=Pr{K∗ = k}E[(1 − J∗β)Rk|K
∗ = k]

(a)
=

1

K
E[(1 − J∗β)Rk|K

∗ = k]

(b)
=

1

K

Jmax
∑

j=1

Pr{J∗ = j}E[(1− jβ)Rk|K
∗ = k, J∗ = j]

=
T ∗
k

K

Jmax
∑

j=1

pj(1− jβ)E

[

Rk

T ∗
k

∣

∣

∣

∣

K∗ = k, J∗ = j

]

(c)
=
T ∗
k

K

Jmax
∑

j=1

pj(1− jβ)E







[

max

(

[

R1

T ∗
1

]

vj−1
κ

0

, · · · ,

[

Rj−1

T ∗
j−1

]

vj−1
κ

0

,
Rj

T ∗
j

)]∞

vj

κ







(d)
=
T ∗
k

K

Jmax
∑

j=1

pj(1− jβ)E







[

max

(

[

X1

κ

]

vj−1
κ

0

, · · · ,

[

Xj−1

κ

]

vj−1
κ

0

,
Xj

κ

)]∞

vj

κ







(e)
=

T ∗
k

κK

Jmax
∑

j=1

pj(1− jβ)E
{

[

max
(

[X1]
vj−1

0 , · · · , [Xj−1]
vj−1

0 , Xj

)]∞

vj

}

,

where (a) follows from Corollary 1, (b) from the law of total probability, (c) from the static

threshold criteria, that is,{K∗ = k, J∗ = j} means that: i) userk has the largest throughput-

normalized rate among the firstj users; ii) the firstj − 1 users’ throughput-normalized rates

are smaller thanκ−1vj−1 and iii) the largest value of the firstj users’ throughput-normalized

rates is larger thanκ−1vj , (d) from Rk = rkXk and (9), and (e) from the distribution ofXj . By

replacingpj with (17) and removingT ∗
k from both sides, the conclusion of Theorem 4 holds.�

IV. JOINT LEARNING, PROBING AND SCHEDULING

Consider the case where the scheduler does not knowa priori the statistics of the quality of

the downlink channels, and thus has to rely on the history of the probed CQI to decide on the

user probing order and user selection. Under this assumption, the problem of maximizing the PF

utility function is a generalization of the classical multiarmed bandit problem [20]. The problem

is a generalization because in the classical bandit problem, the decision maker has to decide
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which of K random process to observe in a sequential of trials so as to maximize the reward,

where the ‘observing’ operation is equivalent to the ‘utilizing’ operation. However, in our model,

in each slot, the scheduler may probe (observe) more than onechannels (random processes) and

then choose only one for transmission (utilization). The observation does not always lead to a

utilization.

At the beginning of slotn, i.e., the end of slotn−1, let Mk(n−1) denote the number of time

slots in which the channel to userk has been probed, andRk(n− 1) = {R
(1)
k , · · · , R

(Mk(n−1))
k }

record all the probed samples of the channel rate of userk. Clearly, the cardinality|Rk(n−1)| =

Mk(n−1). The scheduler keeps updating theK sets[R1(n), · · · ,RK(n)] from slot to slot. Also,

the scheduler knows the throughputT (n− 1) till the previous slot. The objective is still to find

a scheme that solves the stopping problem in each slot. As analyzed in Section III-A, there still

exists the same two tasks to find the optimal scheme: determining the user probing order and

selecting one user for transmission. Hence the problem formulation and scheme design is similar

to those in Section III-A. The only difference is that the scheduler just has the sampled values of

all channels’ rates instead of the explicit knowledge of thedistribution ofRk, (k = 1, · · · , K),

which means that we cannot calculate the expectations related toRk directly. Alternatively, we

can only evaluate the empirical average using the acquired samples ofRk, which readily leads

to the index-based policy solution in the framework of bandit problem.

The index policy, consisting of choosing at any time the stochastic process with the currently

highest index, is the solution to a class of bandit problems.Here to find the optimal scheme,

we adopt the similar methodology as in the development of theindex-based policy by Agrawal

in [21]. For the decision on the user probing order, we use thecurrent average reward, i.e., the

throughput-normalized average rate as the index. For the decision on when to start transmission,

we adopt the actually served bits in current slot, i.e., the product of1− jβ and the conditional

throughput-normalized-average rate. For the convenienceof presenting the algorithm, we define
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the following two empirical averages

s̃k(n) ,
1

Mk(n− 1)

Mk(n−1)
∑

m=1

R
(m)
k

Tk(n− 1)
, (18)

ẽk(n, w) ,
1

Mk(n− 1)

Mk(n−1)
∑

m=1

[

w ∨
R

(m)
k

Tk(n− 1)

]

. (19)

The s̃k(n) is used to replace thēsk(n) in Algorithm 1 and thẽek(n, w) is for E
[

w ∨ Rk

Tk(n−1)

]

in

Algorithm 1. Then a joint PF learning, probing and scheduling (JLPS-PF) algorithm is described

in Algorithm 2.

Algorithm 2: JLPS-PF

1 Initialization: n← ⌈βK⌉. For k = 1, · · · , K, Tk(n)← 1. In the firstn slots, sequentially

probe each channel once, making sure that each one of the setsRk(n), (k = 1, · · · , K) is

not empty.Mk(n)← 1 ;

2 for n = ⌈βK⌉+ 1, ⌈βK⌉+ 2, · · · do

3 s̃k(n)←
1

Mk(n−1)

Mk(n−1)
∑

m=1

R
(m)
k /Tk(n− 1). Sort s̃k(n)(k = 1, · · · , K) in the descending

order: s̃k1(n) ≥ · · · ≥ s̃kK(n) ;

4 j ← 0, w ← 0 ;

5 do

6 j ← j + 1 ;

7 Probe userkj and get the rateRkj(n) ;

8 w ← w ∨ Rkj(n)/Tkj (n− 1) ;

9 ẽkj+1
(n, w)← 1

Mkj+1
(n)

Mkj+1
(n)

∑

m=1

[

w ∨
R

(m)
kj+1

Tkj+1
(n−1)

]

;

10 Rkj (n)←Rkj (n− 1) ∪ {Rkj (n)}, Mkj (n)←Mkj (n− 1) + 1 ;

11 while (1− jβ)w < (1− (j + 1)β)ẽkj+1
(n, w);

12 Transmit to userkj. UpdateT (n) ;

13 For k = kj + 1, · · · , kK , Rk(n)← Rk(n− 1), Mk(n)←Mk(n− 1) ;

14 end

From the description of Algorithm 2, one may wonder such a phenomenon may exist that if
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one user is probed with relatively high values in the first fewslots, then it will have low priority

of being probed afterwards, resulting that the ensemble average of this channel is always higher

than its statistical expectation. However, this does not happen thanks to the structure of the

algorithm derived from the objective of maximizing the PF utility. As a matter of fact, if userk

is probed and selected less frequently compared to other users, the achieved throughputTk(n)

will become small, which will in return increase its priority of being probed and selected. In

fact, the metric of throughput-normalized rate used in PF scheduling is a well-balanced rule that

guarantees each user is sampled with sufficiently many timesand identical frequencies. Hence

after the Algorithm 2 runs a a sufficiently long time, the sampled data of each user’s channel

rate can characterize the statistics ofR well. Then from the law of large number, the ensemble

average converges to the statistical expectation. And the performance of Algorithm 2 is almost

the same as that of Algorithm 1.

V. NUMERICAL RESULTS

In this section, we provide some numerical experiments illustrating the theoretical findings of

the previous sections. Our objectives here are (i) to evaluate the performance of the developed

schemes with and without channel statistics; (ii) to compare the developed scheme for achieving

PF with some ideal and practical schemes and to quantify the impact of the cost of CQI on the

scheduling. We consider the scenario where users’ rates obey the exponential distributions with

average equal to the user index. The exponential rate assumption is an appropriate approximation

of the Shannon capacity under Rayleigh fading channels in low SNR regime.

A. Evaluation of the Proposed Algorithms

ConsiderK = 20 users and let the fraction of one probe beβ = 0.1. Up to Jmax = 10 users

can be probed in each slot.

Fig. 3 presents a sample throughput trajectory of user 1 whenscheduled with Algorithm 1, the

static threshold criteria given incriteria 1 and Algorithm 2. The simulation runs for10, 000 slots
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in this experiment. The time axis is in logarithmic scale to highlight the transient behavior. We

can see that the static threshold criteria works well. The variation of the throughput diminishes

over time as more and more time slots are included in the averaging. It is worth noting that the

low complexity of the static threshold criteria for solvingthe optimal stopping problem comes

from the explicit knowledge of the channel statistics. If this information is not known, or if the

distribution of the channel rate varies over time, we can only adopt the dynamic criteria given

in Algorithm 1.

Fig. 4 illustrates the frequency of each user being scheduled in a relatively short period of

2000 slots. Each of the 20 user is selected as the destinationfor roughly 100 slots. That is, the

scheme is fair to all users even within a small application time window.

Fig. 5 presents the probability thatk users have been probed until transmission. The theoretical

results are from Lemma 1. The figure shows that both the Algorithm 1 and Algorithm 2 coincide

with the theoretical results. We observe from the figure thatthe probability decreases sharply as

the probing step approachesJmax.

Fig. 6 plots the scheduling gain of the proposed algorithms versus the number of users in the

system. The simulation runs for 20,000 slots. In fact the simulation result matches the analytical

result of Theorem 4 quite well. Also, we note the scheduling gain remains about the same for

more than 9 users. Because at this time, the cost of user probing is dominant and the scheme

always tries to carry out the user probing till the end.

B. Comparison between the Proposed Scheme and Other Schemes

The fraction of slot for probing one user is still setβ = 0.1. Here four schemes are considered:

(a) the proposed joint probing and scheduling scheme; (b) Round robin scheduling; (c) Genie-

aided PF (GA-PF) scheme where full CQI is available to the scheduler at the beginning of each

slot; (d) Probe-all PF (PA-PF) scheme where the transmitterprobes all users before scheduling.

For both (c) and (d), the transmitter selects the user with the largestRk(n)/Tk(n − 1) for

transmission. From [22] we know that the scheduling gain of GA-PF is E

[

max
k=1,··· ,K

Xk

]

. Then
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that of PA-PF ismax(1−Kβ, 0)E

[

max
k=1,··· ,K

Xk

]

.

Fig. 7 presents the scheduling gain of schemes (a)-(d) as a function of the number of users.

We can see from Fig. 7 that when probing cost is taken into account, the scheduling gain does

not always increase but approaches to a limit value as the number of users increases. This

indicates that, by ignoring the cost of channel probing, theideal genie-aided PF does not reflect

the correct multiuser diversity characteristics. The comparison also shows the advantage of the

proposed joint probing and scheduling scheme. For the probe-all PF scheme, it achieves higher

gain than round robin when the user population is not very large compared withβ−1. However,

when the number of user increases to some extent, the scheduling gain of probe-all algorithm

vanishes. That is because almost all the period of one slot isused for user-probing instead of

data transmission.

Fig. 8 displays the sum throughput of all schemes as the number of users increases. One

can see that there exists a relative large gap between the ideal genie-aided PF curve and the

proposed scheme. The gap quantifies the the extent to which the user probing decreases the

system performance. For example, when the number of users isK = 20, the throughput of the

joint probing and scheduling scheme only accounts for 55.64% of that of the genie-aided PF.

And the throughput achieved by the joint scheme is the highest among all the non-ideal schemes

(a), (b) and (d). The probe-all PF scheme performs similar tothe joint probing and scheduling

scheme when there are not many users (K ≤ 6), but degrades fast and even vanishes when the

number of users becomes large.

VI. CONCLUSION

We have studied the problem of achieving proportional fairness in wireless systems when

explicitly taking into account the channel probing cost. Anoptimal adaptive joint probing and

scheduling scheme is presented, as well as a static threshold based criteria for determining

whether to probe or to transmit. Using the steady-state analysis, we have evaluated the scheduling

gain explicitly. Extension of the scheme to the case in whichthe scheduler has no knowledge of
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the channel rate distribution has been developed, which achieves almost the same performance of

the algorithm obtained under known rate statistics assumption and outperforms other non-ideal

PF schemes. In this work, we have focused on the well-studiedproportional fairness rule. It is

possible to extend the results to more general utilities, for example, theα fair utility [7]. The

methodology presented in this paper can then be carried through to that case as well.

APPENDIX A

PROOF OFTHEOREM 1

Proof: Let the largest throughput-normalized user rate after probing j users be denoted by

wj = max
1≤l≤j

sk(l) (20)

Then the current reward can be written asyj(sk1, · · · , skj) = (1−jβ)wj and the expected reward

obtained from probing the next user is

E[yj+1(sk1 , · · · , skj+1
)|sk1, · · · , skj ] = (1− (j + 1)β)E[wj ∨ skj+1

|wj]. (21)

Then the eventEj can be expressed as

Ej = {(1− jβ)wj ≥ (1− (j + 1)β)E[wj ∨ skj+1
|wj]}. (22)

We first show that there exists a thresholdw
(th)
j such that the eventEj can be represented as

Ej = {wj ≥ w
(th)
j }. To this end, letfj(w) = (1 − jβ)w − (1 − (j + 1)β)E[w ∨ skj+1

]. Then

w ∈ Ej ⇔ fj(w) ≥ 0. It is easy to verify thatfj(0) < 0 and fj(∞) > 0. The functionfj(w)

can be reorganized asfj(w) = βE[w ∨ skj+1
] + (1− jβ)E[w−w ∨ skj+1

]. For anyw′ > w > 0,

fj(w
′)− fj(w) = βE[w′ ∨ skj+1

− w ∨ skj+1
] + (1− jβ)E[w′ − w + w′ ∨ skj+1

− w ∨ skj+1
].

Note thatw′ ∨ skj+1
≥ w ∨ skj+1

andw′−w ≥ w′ ∨ skj+1
−w ∨ skj+1

. Thusfj(w′)− fj(w) ≥ 0,

that is,fj(w) is a nondecreasing function. Summarizing the properties offj(w), it can be seen

that the solution tofj(w) ≥ 0 can be expressed asw ≥ w
(th)
j .
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We next show thatw(th)
j+1 ≤ w

(th)
j . For fixedw,

fj+1(w)− fj(w)

=(1− (j + 1)β)w − (1− (j + 2)β)Eskj+2
[w ∨ skj+2

]− (1− jβ)w + (1− (j + 1)β)E[w ∨ skj+1
]

=βEskj+2
[w ∨ skj+2

− w] + (1− (j + 1)β){E[w ∨ skj+1
]− Eskj+2

[w ∨ skj+2
]}

≥0. (23)

where the last ‘≥’ follows from the fact thatskj+1
andskj+2

are of the same type of distribution

andEskj+1
≥ Eskj+2

. Note thatw(th)
j is the zero point of the functionfj(w). Hencew(th)

j+1 ≤ w
(th)
j ,

as illustrated in Fig. 1.

Collecting the preceding results, we haveEj = {wj ≥ w
(th)
j } ⊆ {wj+1 ≥ w

(th)
j } ⊆ {wj+1 ≥

w
(th)
j+1} = Ej+1.
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Fig. 1: Illustration of the property of functionfj(w).
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Fig. 2: Illustration of the solution to inequality (15).
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Fig. 3: The throughput trajectory of user 1 when scheduled with Algorithm 1, the static threshold

criteria and Algorithm 2 respectively.Nslot = 10, 000, K = 20, β = 0.1.
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Fig. 4: The number of slots in which each user is selected as the destination.Nslot = 2000, K =

20, β = 0.1.

Fig. 5: The probability thatk users have been probed until transmission.K = 20, β = 0.1.
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Fig. 6: The scheduling gain comparison between Algorithm 1,Algorithm 2 and theoretical results.

β = 0.1.
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Fig. 7: Scheduling gain VS number of users.β = 0.1.
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Fig. 8: Sum throughput VS number of users.β = 0.1.
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