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A complete locally convex space of countable dimension admitting an

operator with no invariant subspaces

Stanislav Shkarin

Abstract

We construct a complete locally convex topological vector space X of countable algebraic dimension
and a continuous linear operator T : X → X such that T has no non-trivial closed invariant subspaces.
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1 Introduction

All vector spaces in this article are over the field C of complex numbers. As usual, R is the field of real
numbers, T = {z ∈ C : |z| = 1}, N is the set of positive integers and Z+ = N ∪ {0}. Throughout the
article, all topological spaces are assumed to be Hausdorff. For a topological vector space X, L(X) is the
algebra of continuous linear operators on X and X ′ is the space of continuous linear functionals on X. For
T ∈ L(X), the dual operator T ′ : X ′ → X ′ is defined as usual: T ′f = f ◦ T .

We say that a topological vector space X has the invariant subspace property if every T ∈ L(X)
has a non-trivial (=different from {0} and X) closed invariant subspace. The problem whether ℓ2 has
the invariant subspace property is known as the invariant subspace problem and remains perhaps the
greatest open problem in operator theory. It is worth noting that Read [10] and Enflo [8] (see also [3])
showed independently that there are separable infinite dimensional Banach spaces, which do not have the
invariant subspace property. In fact, Read [11] demonstrated that ℓ1 does not have the invariant subspace
property. All existing constructions of operators on Banach spaces with no invariant subspaces are rather
sophisticated and artificial. On the other hand, examples of separable non-complete normed spaces with
or without the invariant subspace property are easy to construct.

Proposition 1.1. Every normed space of countable algebraic dimension does not have the invariant sub-

space property. On the other hand, in every separable infinite dimensional Banach space B, there is a

dense linear subspace X such that X has the invariant subspace property.

Thus completeness is an essential difficulty in constructing operators with no non-trivial invariant
subspaces. Countable algebraic dimension is often perceived as almost incompatible with completeness.
Basically, there is only one complete topological vector space of countable dimension, most analysts are
aware of. Namely, the locally convex direct sum ϕ (see [12]) of countably many copies of the one-dimensional
space C has countable dimension and is complete. In other words, ϕ is a vector space of countable dimension
endowed with the topology defined by the family of all seminorms. It is easy to see that every linear subspace
of ϕ is closed, which easily leads to the following observation.

Proposition 1.2. The space ϕ has the invariant subspace property.

Contrary to the common perception, there is an abundance of complete topological vector spaces of
countable dimension. The main result of this paper is the following theorem.

Theorem 1.3. There is a complete locally convex topological vector space X of countable algebraic dimen-

sion such that X does not have the invariant subspace property.

In other words, Theorem 1.3 provides a complete locally convex topological vector spaceX with dimX =
ℵ0 and T ∈ L(X) such that T does not have non-trivial closed invariant subspaces.
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2 Proof of Propositions 1.1 and 1.2

Although Propositions 1.1 and 1.2 are certainly known facts, we do not know whether they can be found
in the literature or whether they are folklore. Granted that their proofs are fairly elementary and short,
we present them for the sake of convenience.

Proof of Proposition 1.1. First, assume that X is a normed space of countable dimension. Let B be the
completion of X. Then B is a separable infinite dimensional Banach space. According to Ansari [1] and
Bernal–Gonzáles [4], there is a hypercyclic T ∈ L(B). That is, there is x ∈ B such that {T nx : n ∈ Z+} is
dense in B. Let Z be the linear span of T nx for n ∈ Z+. Since Z and X are both dense linear subspaces
of B, according to Grivaux [9], there is an invertible S ∈ L(B) such that S(Z) = X. Since Z is invariant
for T , X is invariant for STS−1. That is, the restriction A = STS−1

∣

∣

X
belongs to L(X). Let u ∈ X \ {0}.

Then S−1u is a non-zero vector in Z and therefore S−1u = p(T )x, where p is a non-zero polynomial. Due
to Bourdon [6], S−1u = p(T )x is also a hypercyclic and therefore cyclic vector for T . By similarity, u is a
cyclic vector for STS−1 and therefore for A. Thus every non-zero vector in X is cyclic for A. That is, A
has no non-trivial closed invariant subspaces.

Next, let B be a separable infinite dimensional invariant subspace. Then there is a dense linear subspace
X of B (X can even be chosen to be a hyperplane [5]) such that every T ∈ L(X) has the shape λI + S
with λ ∈ C and dimS(X) < ∞. Trivially, such a T has a one-dimensional invariant subspace.

Proof of Proposition 1.2. Let T ∈ L(ϕ) and x ∈ ϕ \ {0}. Then the linear span L of {T nx : n ∈ Z+} is an
(automatically closed) invariant subspace of T different from {0}. If L 6= ϕ, we are done. If L = ϕ, then
the vectors T nx are linearly independent (otherwise L is finite dimensional). Hence the linear span L1 of
{T nx : n ∈ N} is a hyperplane in L. Clearly L1 is T -invariant and non-trivial.

3 Proof of Theorem 1.3

We shall construct an operator T with no non-trivial invariant subspaces, needed in order to prove Theo-
rem 1.3, by lifting a non-linear map on a topological space to a linear map on an appropriate topological
vector space.

3.1 A class of complete countably dimensional spaces

Recall that a topological space X is called completely regular (or Tychonoff) if for every x ∈ X and
a closed subset F ⊂ X satisfying x /∈ F , there is a continuous f : X → R such that f(x) = 1 and
f
∣

∣

F
= 0. Equivalently, a topological space is completely regular, if its topology can be defined by a family

of pseudometrics. Note that any subspace of a completely regular space is completely regular and that
every topological group is completely regular.

Our construction is based upon the concept of the free locally convex space [14]. Let X be a completely
regular topological space. We say that a topological vector space LX is a free locally convex space of X if
LX is locally convex, contains X as a subset with the topology induced from LX to X being the original
topology of X and for every continuous map f from X to a locally convex space Y there is a unique
continuous linear operator T : LX → Y such that T

∣

∣

X
= f . It turns out that for every completely regular

topological space X, there is a free locally convex space LX unique up to an isomorphism leaving points of
X invariant. Thus we can speak of the free locally convex space LX of X. Note that X is always a Hamel
basis in LX . Thus, as a vector space, LX consists of formal finite linear combinations of elements of X.
Identifying x ∈ X with the point mass measure δx on X (δx(A) = 1 if x ∈ A and δx(A) = 0 if x /∈ A),
we can also think of elements of LX as measures with finite support on the σ-algebra of all subsets of X.
Under this interpretation

L0
X = {µ ∈ LX : µ(X) = 0}

is a closed hyperplane in the locally convex space LX . If f : X → X is a continuous map, from the
definition of the free locally convex space it follows that f extends uniquely to a continuous linear operator
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Tf ∈ L(LX). It is also clear that L0
X is invariant for Tf . Thus the restriction Sf of Tf to L0

X belongs to
L(L0

X).
According to Uspenskii [14], LX is complete if and only if X is Dieudonne complete and every compact

subset of X is finite. Since Dieudonne completeness follows from paracompactness, every regular countable
topological space is Dieudonne complete. Since every countable compact topological space is metrizable, for
a countable X, finiteness of compact subsets is equivalent to the absence of non-trivial convergent sequences
(a convergent sequence is trivial if it is eventually stabilizing). Note also that a regular countable topological
space is automatically completely regular and therefore we can safely replace the term ’completely regular’
by ’regular’ in the context of countable spaces. Thus we can formulate the following corollary of the
Uspenskii theorem.

Proposition 3.1. Let X be a regular countable topological space. Then the countably dimensional locally

convex topological vector spaces LX and L0
X are complete if and only if there are no non-trivial convergent

sequences in X.

The above proposition provides plenty of complete locally convex spaces of countable algebraic dimen-
sion. We also need the shape of the dual space of LX . As shown in [14], L′

X can be identified with the
space C(X) of continuous scalar valued functions on X in the following way. Every f ∈ C(X) produces a
continuous linear functional on LX in the usual way:

〈f, µ〉 =

∫

f dµ =
∑

cjf(xj), where µ =
∑

cjδxj

and there are no other continuous linear functionals on LX .

3.2 Operators Sf with no invariant subspaces

The following lemma is the main tool in the proof of Theorem 1.3.

Lemma 3.2. Let τ be a regular topology on Z such that f : Z → Z, f(n) = n + 1 is a homeomorphism

of Zτ = (Z, τ) onto itself, Z+ is dense in Zτ and for every z ∈ C \ {0, 1}, n 7→ zn is non-continuous as a

map from Zτ to C. Then the operators Tf and Sf are invertible continuous linear operators on LZτ and

L0
Zτ

respectively and Sf has no non-trivial closed invariant subspaces.

Proof. We already know that Tf and Sf are continuous linear operators. It is easy to see that T−1

f = Tf−1

and S−1

f = Sf−1 . Since f−1 is also continuous, Tf and Sf have continuous inverses.
Now let µ ∈ LZτ \ {0}. It remains to show that µ is a cyclic vector for Sf . Assume the contrary. Then

there is a non-constant g ∈ C(Zτ ) such that 〈Sn
f µ, g〉 = 〈T n

f µ, g〉 = 0 for every n ∈ Z+. Decomposing µ as a

linear combination of point mass measures, we have µ =
l
∑

k=−l

ckδk with ck ∈ C. Then µ =
2l
∑

j=0

cj−kT
j
f δ−l =

p(Tf )δ−l, where p is a non-zero polynomial. Then 0 = 〈T n
f µ, g〉 = 〈T n

f δ−l, p(Tf )
′g〉 for n ∈ Z+. Thus the

functional p(Tf )
′g vanishes on the linear span of T n

f δ−l with n ∈ Z+, which contains the linear span of Z+

in LZτ . Since Z+ is dense in Zτ , p(Tf )
′g vanishes on a dense linear subspace and therefore p(Tf )

′g = 0.
It immediately follows that T ′

f has an eigenvector, which is given by a non-constant function h ∈ C(X):
T ′

fh = zh for some z ∈ C. Since Tf is invertible, so is T ′

f and therefore z 6= 0. It is easy to see that
T ′

fh(n) = h(n + 1) for each n ∈ Z. Thus the equality T ′

fh = zh implies that (up to a multiplication by a
non-zero constant) h(n) = zn for each n ∈ Z. Since h is non-constant, z 6= 1. Thus the map n 7→ zn is
continuous on Zτ for some z ∈ C \ {0, 1}. We have arrive to a contradiction.

3.3 A specific countable topological space

Lemma 3.3. There exists a regular topology τ on Z such that the topological space Zτ = (Z, τ) has the

following properties

(a) f : Z → Z, f(n) = n+ 1 is a homeomorphism of Zτ onto itself ;
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(b) Z+ is dense in Zτ ;

(c) for every z ∈ C \ {0, 1}, n 7→ zn is non-continuous as a map from Zτ to C;

(d) Zτ has no non-trivial convergent sequences.

Proof. Consider the Hilbert space ℓ2(Z) and the bilateral weighted shift T ∈ L(ℓ2(Z)) given by Ten = en−1

if n 6 0 and Ten = 2en−1 if n > 0, where {en}n∈Z is the canonical orthonormal basis in ℓ2(Z). Symbol
Hσ stands for ℓ2(Z) equipped with its weak topology σ. Clearly T is invertible and therefore T is a
homeomorphism on Hσ. According to Chan and Sanders, there is x ∈ ℓ2(Z) such that the set O = {T nx :
n ∈ Z+} is dense in Hσ. Then Y = {T nx : n ∈ Z} is also dense in Hσ. We equip Y with the topology
inherited from Hσ and transfer it to Z by declaring the bijection n 7→ T nx from Z to Y a homeomorphism.

Since σ is a completely regular topology, so is the just defined topology τ on Z. Since T is a homeo-
morphism on (ℓ2(Z), σ) and Y is a subspace of the topological space (ℓ2(Z), σ) invariant for both T and
T−1, T is a homeomorphism on Y . Since T (T nx) = T n+1x, it follows that f is a homeomorphism on Zτ .
Density of O in Y implies the density of Z+ in Zτ .

Observe that the sequence {‖T nx‖}n∈Z is strictly increasing and ‖T nx‖ → ∞ as n → +∞. Indeed, the
inequality ‖Tu‖ > ‖u‖ for u ∈ ℓ2(Z) follows from the definition of T . Hence {‖T nx‖}n∈Z is increasing.
Assume that ‖T n+1x‖ = ‖T nx‖ for some n ∈ Z. Then, by definition of T , T nx belongs to the closed
linear span L of en with n < 0. The latter is invariant for T and therefore Tmx ∈ L for m > n, which
is incompatible with the σ-density of O. Next, if ‖T nx‖ does not tend to ∞ as n → +∞, the sequence
{‖T nx‖}n∈Z+

is bounded. Since every bounded subset of ℓ2(Z) is σ-nowhere dense, we have again obtained
a contradiction with the σ-density of O.

In order to show that X has no non-trivial convergent sequences, it suffices to show that Y has no non-
trivial convergent sequences. Assume that {T nkx}k∈Z+

is a non-trivial convergent sequence in Y . Without
loss of generality, we can assume that the sequence {nk} of integers is either strictly increasing or strictly
decreasing. If {nk} is strictly increasing the above observation ensures that ‖T nkx‖ → ∞ as k → ∞. Since
every σ-convergent sequence is bounded, we have arrived to a contradiction. If {nk} is strictly decreasing,
then by the above observation, the sequence {‖T nkx‖} of positive numbers is also strictly decreasing and
therefore converges to c > 0. Then ‖T lx‖ > c for every l ∈ Z. Since {T nkx} σ-converges to Tmx ∈ Y , the
upper semicontinuity of the norm function with respect to σ implies that ‖Tmx‖ 6 c and we have arrived
to a contradiction.

Finally, let z ∈ C \ {0, 1} and f : Z → C, f(n) = zn. It remains to show that f is not continuous
as a function on Zτ . Equivalently, it is enough to show that the function g : Y → C, g(T nx) = zn is
non-continuous. Assume the contrary. There are two possibilities. First, consider the case |z| 6= 1. In this
case the the topology on the set M = {zn : n ∈ Z} inherited from C is the discrete topology. Continuity of
the bijection g : Y → M implies then that Y is also discrete, which is apparently not the case: the density
of Y in Hσ ensures that Y has no isolated points. It remains to consider the case |z| = 1, z 6= 1. In this
case the closure G of {zn : n ∈ Z} is a closed subgroup of the compact abelian topological group T. Since
x is a hypercyclic vector for T acting on Hσ and z generates the compact abelian topological group G,
[13, Corollary 4.1] implies that {(T nx, zn) : n ∈ Z+} is dense in Hσ ×G. It follows that the graph of g is
dense in Y × G. Since G is not a single-point space, the latter is incompatible with the continuity of g.
The proof is now complete.

Proof of Theorem 1.3. Let τ be the topology on Z provided by Lemma 3.3. By Proposition 3.1, E = L0
Zτ

is a complete locally convex space of countable algebraic dimension. Let f : Z → Z, f(n) = n + 1 and
S = Sf ∈ L(E). By Lemmas 3.2 and 3.3, S is invertible and has no non-trivial invariant subspaces. The
proof is complete (with an added bonus of invertibility of S).

It is easy to see that the topology τ on Z constructed in the proof of Lemma 3.3 does not agree with the
group structure. That is Zτ is not a topological group. Indeed, it is easy to see that the group operation
+ is only separately continuous on Zτ , but not jointly continuous. As a matter of curiosity, it would be
interesting to find out whether there exists a topology τ on Z satisfying all conditions of Lemma 3.3 and
turning Z into a topological group.
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