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In this paper we consider nearly Kähler manifolds of pointwise constant antiholomorphic
sectional curvature. An analogue of Schur’s theorem is proved and a classification theorem
for such manifolds is given.
Let M be an almost Hermitian manifold with dimM = 2n, a metric tensor g, an

almost complex structure J and a curvature tensor R. A 2-plane α in the tangential
space TpM , p ∈ M is said to be holomorphic (antiholomorphic) if Jα = α (Jα ⊥ α).
The sectional curvature K(α, p) of the 2-plane α in TpM with an orthonormal basis
{x, y} is given by the equality K(α, p) = R(x, y, y, x). The manifold M is said to be
of pointwise constant holomorphic (antiholomorphic) sectional curvature if the sectional
curvature K(α, p) of an arbitrary holomorphic (antiholomorphic) 2-plane α in TpM for
every p ∈ M does not depend on α. An almost Hermitian manifold M is called an RK-
manifold if R(x, y, z, u) = R(Jx, Jy, Jz, Ju) for all x, y, z, u ∈ TpM , p ∈ M . The nearly
Kähler manifolds are characterized by the equality (∇XJ)X = 0, where X is an arbitrary
vector field. Every nearly Kähler manifold is an RK-manifold [4].
For Kähler manifolds the following analogue of the classical Schur theorem is well

known:
Theorem. Let M be a connected Kähler manifold with dimM ≥ 4. If M is of

pointwise constant holomorphic sectional curvature µ(p), then µ is a constant. Moreover,
M is of constant antiholomorphic sectional curvature µ/4.
Conversely, if the Kähler manifoldM is of pointwise constant antiholomorphic sectional

curvature µ/4, then M is of constant holomorphic sectional curvature µ [1]. Such a
manifold is locally isometric to Cn, CPn or CDn.
For nearly Kähler manifolds the following statements are known:
Theorem, [5]. If M is a connected nearly Kähler manifold of pointwise constant

holomorphic sectional curvature µ(p) and dimM ≥ 4, then µ is a constant.
Theorem, [3]. If M is a nearly Kähler manifold of constant holomorphic sectional

curvature and dimM ≥ 4, then M is locally isometric to Cn, CPn, CDn or S6.
We shall consider nearly Kähler manifolds of pointwise constant antiholomorphic sec-

tional curvature. We need the following lemma:
Lemma, [2]. Let M be an almost Hermitian manifold and T be a tensor of type (0,4)

in TpM satisfying the conditions:
1) T (x, y, z, u) = −T (y, x, z, u);
2) T (x, y, z, u) + T (y, z, x, u) + T (z, x, y, u) = 0;
3) T (x, y, z, u) = −T (x, y, u, z);
4) T (x, y, z, u) = T (Jx, Jy, Jz, Ju);
5) T (x, y, y, x) = 0, where {x, y} is a basis of an arbitrary holomorphic or antiholomor-

phic 2-plane in TpM .
Then T = 0.
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Let R′(x, y, z, u) = R(x, y, Jz, Ju). We denote by S, S ′ and τ , τ ′ the Ricci tensors and
scalar curvatures with respect to the tensors R, R′ respectively. If {E1, . . . , E2n} is an
arbitrary orthonormal frame field, we have

(1)

2n∑

i=1

(∇Ei
R)(X, Y, Z, Ei) = (∇XS)(Y, Z)− (∇Y S)(X,Z) ;

(2)

2n∑

i=1

(∇Ei
S)(X,Ei) =

1

2
Xτ

for arbitrary vector fields X, Y, Z. The following identities are valid for a nearly Kähler
manifold [4]:

(3)
2n∑

i=1

(∇Ei
S ′)(X,Ei) =

1

2
Xτ ′ ;

(4) X(τ − τ ′) = 0 ;

(5) 2(∇X(S − S ′))(Y, Z) = (S − S ′)((∇XJ)Y, JZ) + (S − S ′)(JY, (∇XJ)Z) .

Let the tensors R1, R2, ψ be defined by

R1(x, y, z, u) = g(y, z)g(x, u)− g(x, z)g(y, u) ;

R2(x, y, z, u) = g(Jy, z)g(Jx, u)− g(Jx, z)g(Jy, u)− 2g(Jx, y)g(Jz, u) ;

ψ(x, y, z, u) = g(Jy, z)S(Jx, u)− g(Jx, z)S(Jy, u)− 2g(Jx, y)S(Jz, u)
+g(Jx, u)S(Jy, z)− g(Jy, u)S(Jx, z)− 2g(Jz, u)S(Jx, y) .

Proposition 1. Let M be an RK-manifold of pointwise constant antiholomorphic
sectional curvature ν and dimM = 2n ≥ 4. Then the curvature tensor R has the form

(6) R =
1

6
ψ + νR1 −

2n− 1

3
νR2

and

(7) 3S ′ − (n + 1)S =
1

2n
(3τ ′ − (n+ 1)τ)g ,

(8) ν =
(2n + 1)τ − 3τ ′

8n(n2 − 1)
.

Proof. Let {x, y} be an orthonormal basis for an arbitrary antiholomorphic 2-plane in
TpM . From the condition R(x, y, y, x) = ν immediately follows

(9) S(x, x)−R(x, Jx, Jx, x) = 2(n− 1)ν ,

where x is an arbitrary unit vector. Now let T = R − (1/6)ψ − νR1 + ((2n− 1)/3)νR2.
From the given condition, (9) and the Lemma it follows (6). By direct computation we
find (7) and (8).

Theorem 2. Let M be a connected nearly Kähler manifold of pointwise constant
antiholomorphic sectional curvature ν and dimM = 2n > 4. Then ν is a constant.

Proof. From (7), (3) and (2) it follows that X(3τ ′ − (n + 1)τ) = 0 for an arbitrary
vector field X . Let n > 2. Taking into account (4), we obtain that τ and τ ′ are constants
and hence ν is a constant.

Theorem 3. Let M be a connected nearly Kähler manifold of pointwise constant
antiholomorphic sectional curvature ν and dimM = 2n > 4. Then M is locally isometric
to one of the following manifolds:
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1) The complex Euclidean space Cn;
2) The complex projective space CPn;
3) The complex hyperbolic space CD

n;
4) The six sphere S6.
Proof. From (5) and (7) it follows that

(10) 2(∇XS)(Y, Z) = S((∇XJ)Y, JZ) + S(JY, (∇XJ)Z) ;

(11) (∇XS)(Y, Z) + (∇JXS)(JY, Z) = 0 ;

(12) (∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = 0 .

Let {E1, . . . , E2n} be an arbitrary orthonormal frame field. Taking into account (10)
and (11), from (6) and Theorem 2 we obtain

2n∑

i=1

(∇Ei
R)(X, Y, Z, Ei) = −

1

6
{(∇XS)(Y, Z)− (∇Y S)(X,Z)}.

This equality and (1) imply (∇XS)(Y, Z) = (∇Y S)(X,Z). Then (12) gives that the Ricci
tensor is parallel: ∇XS = 0.
If M is irreducible, then it is an Einstein manifold and from (9) it follows that M is of

pointwise constant holomorphic sectional curvature. Now the assertion follows from the
classification theorem in [3].
Let M be reducible and be locally a product M1(λ1) × . . . ×Mk(λk) (k ≥ 2) where

S = λig on Mi(λi) and λi are different constants (i = 1, . . . , k). All Mi are nearly Kähler
manifolds [4]. Let X onMi, Y onMj (i 6= j) be unit vector fields. From R(X, Y, Y,X) = 0
we find ν = 0. From R(X, JX, JY, Y ) = 0 and (6) it follows that

(13) S(X,X) + S(Y, Y ) = 0 .

If k > 2, (13) implies λi = 0 for i = 1, . . . , k. Hence M is of zero Ricci curvature. The
equality (9) gives that M is of zero holomorphic sectional curvature. According to [3],
M is locally isometric to C

n. Let k = 2 and dimM1 = 2n1 ≥ 4. From (9) and ν = 0
it follows that M1 is of constant holomorphic sectional curvature. Hence M1 is locally
isometric to Cn1. Now (13) gives that M is of zero Ricci curvature and consequently M
is locally isometric to Cn.
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