A generalized Schrödinger-Poisson type system *

A. Azzollini [†] & V. Luisi

Abstract

In this paper we study the boundary value problem

$$\begin{cases} -\Delta u + \varepsilon q \Phi f(u) = |u|^{p-1} u & \text{in } \Omega \\ -\Delta \Phi = 2qF(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ \Phi = 0 & \text{on } \partial \Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^3$ is a smooth bounded domain, $1 , <math>\varepsilon = \pm 1$, q > 0, $f : \mathbb{R} \to \mathbb{R}$ is a continuous function and F is the primitive of f such that F(0) = 0. We show that, if q is sufficiently small, the problem has a solution provided that f satisfies a subcritical growth assumption.

We study also the critical case for $\varepsilon = 1$ and provide an existence result.

Keywords: Schrödinger-Poisson equations, variational methods, mountain pass. 2000 MSC: 35J20, 35J57, 35J60.

1 Introduction and the main result

This paper deals with the following problem

$$\begin{cases} -\Delta u + \varepsilon q \Phi f(u) = |u|^{p-1} u & \text{in } \Omega \\ -\Delta \Phi = 2q F(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ \Phi = 0 & \text{on } \partial \Omega \end{cases}$$
(P)

where $\Omega \subset \mathbb{R}^3$ is a bounded domain, 1 , <math>q > 0, $\varepsilon = \pm 1$, $f : \mathbb{R} \to \mathbb{R}$ is a continuous function and $F(s) = \int_0^s f(t) dt$.

When the function f(t) = t and $\varepsilon = 1$, this system represents the well known "Schrödinger-Poisson (or Schrödinger-Maxwell) equations", briefly SPE, that has been widely studied in the recent past. In the pioneer paper of Benci and Fortunato [3], the linear version of SPE (where the term $|u|^{p-1}u$ does not appear) has been approached as an eigenvalue problem. In [11] the authors have proved the existence of infinitely many solutions for SPE when p > 4, whereas in [12] an analogous result has been found for almost any q > 0 and

^{*}The first author is supported by M.I.U.R. - P.R.I.N. "Metodi variazionali e topologici nello studio di fenomeni non lineari"

[†]Dipartimento di Matematica ed Informatica, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, I-85100 Potenza, Italy, e-mail: antonio.azzollini@unibas.it

 $p \in]2, 5[$. A multiplicity result has been obtained in [13] for any q > 0 and p sufficiently close to critical exponent 5, by using the abstract theory of Lusternik - Schnirelmann. For the sake of completeness we mention also [10] where Neumann condition on Φ is assumed on $\partial\Omega$, and [1] and the references within for results on SPE in unbounded domains.

If f(t) = t and $\varepsilon = -1$ the system is equivalent to a nonlocal nonlinear problem related with the following well known Choquard equation in the whole space \mathbb{R}^3

$$\Delta u + u - \left(\frac{1}{|x|} * u^2\right)u = 0.$$

We refer to [7, 8] for more details on the Choquard equation, and to [9] for a recent result on a system in \mathbb{R}^3 strictly related with ours.

Up to our knowledge, problem (\mathcal{P}) has not been investigated when a more general function *f* appears instead of the identity. Since, as showed in section 2, problem (\mathcal{P}) possesses a variational structure, our aim is to find the weakest assumptions on f in order to apply the usual variational techniques. In particular, the first step in a classical approach to such a type of systems consists in the use of the reduction method. To this end, we need to assume suitable growth conditions on f which let us invert the Laplace operator to solve the second equation of the system. Then, after we have reduced the problem to finding a critical point of a one variable functional, we check if the geometrical and compactness assumptions of the Mountain Pass Theorem are satisfied. If a suitable use of some *a priori* estimates makes almost immediate to show that geometrical hypotheses are verified (at least for small q), some technical difficulties arise in proving the boundedness of the Palais-Smale sequences. In section 3 we will overcome these difficulties by means of a truncation argument based on an idea of Berti and Bolle [4] and Jeanjean and Le Coz [5] (see also [6] and [2]) which allows us to find bounded Palais-Smale sequences taking q sufficiently small.

The first result in this paper is the following

Theorem 1.1. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a continuous function satisfying

$$|f(s)| \leqslant c_1 + c_2 |s|^{r-1} \tag{f_1}$$

for some r < 5 and for all $s \in \mathbb{R}$. Then, there exists $\bar{q} > 0$ such that for all $0 < q \leq \bar{q}$ problem (\mathcal{P}) has at least a nontrivial solution.

As well known, when we consider the Schrödinger equation in a bounded domain $\Omega \subset \mathbb{R}^3$

$$\begin{cases} -\Delta u + mu = |u|^{p-1}u & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

the exponent p = 5 is critical, due to the fact that the space $H_0^1(\Omega)$ is compactly embedded into $L^{p+1}(\Omega)$ for p < 5. In order to get compactness in our system, we need to control the growth of nonlinear terms in both the equations. In particular, a condition as ($\mathbf{f_1}$) seems to be the right one to have compactness with respect to the variable Φ . Actually, the exponent r = 5 turns out to be critical for our system, and in this sense we are justified to refer to the limit hypothesis as the *critical growth condition* for function *f*.

In the second part of the paper, we are interested in studying system (\mathcal{P}) assuming (\mathbf{f}_2) instead of (\mathbf{f}_1). The difficulties arising in this situation can be overcome assuming a further hypothesis on the sign of the function f. We are able to get this partial result concerning (\mathcal{P}) only for $\varepsilon = 1$

Theorem 1.2. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a continuous function satisfying (f₂) and

$$f(s)s \ge 0 \tag{1}$$

for all $s \in \mathbb{R}$ and assume that $\varepsilon = 1$. Then, there exists $\bar{q} > 0$ such that for all $0 < q \leq \bar{q}$ problem (\mathcal{P}) has at least a nontrivial solution.

The paper is organized as follows:

- In section 2 we introduce the functional setting where we study the problem and the variational tools we use.
- In section 3 we provide the proof of Theorem 1.1.
- Finally, in section 4, we consider the critical case, and give a proof for Theorem 1.2.

Throughout the paper we will use the symbols H^{-1} to denote the dual space of $H_0^1(\Omega)$, $\langle \cdot, \cdot \rangle$ to denote the duality between $H_0^1(\Omega)$ and H^{-1} , and $||u||_{H_0^1} := (\int_{\Omega} |\nabla u|^2)^{\frac{1}{2}}$ for the norm on $H_0^1(\Omega)$. Moreover $||\cdot||_p$ will denote the usual L^p -norm.

We point out the fact that in the sequel we will use the symbols C, C_1 , C_2 , C_3 and so on, to denote positive constants whose value might change from line to line.

2 Variational tools

Standard arguments can be used to prove that problem (P) is variational and the related functional $J_q: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ is given by

$$J_q(u,\Phi) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{\varepsilon}{4} \int_{\Omega} |\nabla \Phi|^2 dx + \varepsilon q \int_{\Omega} F(u) \Phi dx - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} dx$$

Since $F(u) \in L^{\frac{6}{5}}(\Omega) \hookrightarrow H^{-1}$ for all $u \in L^{\frac{6r}{5}}(\Omega)$, then certainly we have that for all $u \in H^1_0(\Omega)$ there exists a unique $\Phi_u \in H^1_0(\Omega)$ which solves

$$-\Delta \Phi = 2qF(u) \tag{2}$$

in H^{-1} . In particular, we are allowed to consider the following map

$$u \in L^{\frac{\operatorname{or}}{5}}(\Omega) \mapsto \Phi_u \in H^1_0(\Omega) \tag{3}$$

which is continuously differentiable by the implicit function theorem applied to $\frac{\partial H}{\partial \Phi}$ where, for any $(u, \Phi) \in L^{\frac{6r}{5}}(\Omega) \times H^1_0(\Omega)$, H is defined as follows

$$H(u,\Phi) = \frac{1}{4} \int_{\Omega} |\nabla \Phi|^2 - q \int_{\Omega} F(u)\Phi.$$

So, it is well defined the C^1 functional

$$I_q(u) := J_q(u, \Phi_u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{\varepsilon}{4} \int_{\Omega} |\nabla \Phi_u|^2 dx + \varepsilon q \int_{\Omega} F(u) \Phi_u dx - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} dx.$$
(4)

Multiplying the second equation by Φ_u and integrating, we have

$$\int_{\Omega} |\nabla \Phi_u|^2 \, dx = 2q \int_{\Omega} F(u) \Phi_u \, dx \tag{5}$$

and then, combining (5) with (4), we get

$$I_q(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \varepsilon \frac{q}{2} \int_{\Omega} F(u) \Phi_u dx - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} dx.$$
(6)

By using standard variational arguments as those in [3], the following result can be easily proved.

Proposition 2.1. Let $(u, \Phi) \in H_0^1(\Omega) \times H_0^1(\Omega)$, then the following propositions are equivalent:

- (a) (u, Φ) is a critical point of functional J_q ;
- (b) u is a critical point of functional I_q and $\Phi = \Phi_u$.

So we are led to look for critical points of I_q . To this end, we need to investigate the compactness property of its Palais-Smale sequences.

It is easy to see that the usual arguments to prove boundedness do not work. Indeed, assuming that $(u_n)_n \in (H_0^1(\Omega))^{\mathbb{N}}$ is a Palais-Smale sequence, namely $I_q(u_n)$ is bounded and $I'_q(u_n) \to 0$ in H^{-1} , we should deduce the following inequality

$$C_1 + C_2 ||u_n|| \ge I_q(u_n) - \frac{1}{p+1} \langle I'_q(u_n), u_n \rangle.$$
 (7)

Moreover, by the definition of map Φ_u , we have that

$$\langle \partial_{\Phi} J_q(u_n, \Phi_{u_n}), \Phi'(u_n)u_n \rangle = 0$$

and then, since

$$\langle I'_q(u_n), u_n \rangle = \langle \partial_u J_q(u_n, \Phi_{u_n}), u_n \rangle$$

from (7) we deduce that

$$\left(\frac{1}{2} - \frac{1}{p+1}\right) \int_{\Omega} |\nabla u_n|^2 dx + \varepsilon \frac{q}{2} \int_{\Omega} F(u_n) \Phi_{u_n} dx - \varepsilon \frac{q}{p+1} \int_{\Omega} f(u_n) u_n \Phi_{u_n} dx \leqslant C_1 + C_2 ||u_n||.$$

Generalized SPE

In classical SPE ($\varepsilon = 1$ and f(t) = t) we should deduce the boundedness of the sequence $(u_n)_n$ for $p \ge 3$. In our general situation we need a different approach.

Let T>0 and $\chi:[0,+\infty[\to[0,1]$ be a smooth function such that $\|\chi'\|_{L^\infty}\leqslant 2$ and

$$\chi(s) = \begin{cases} 1 & \text{if } 0 \leqslant s \leqslant 1 \\ 0 & \text{if } s \geqslant 2. \end{cases}$$

We define a new functional $I_q^T : H_0^1(\Omega) \to \mathbb{R}$ as follows

$$I_{q}^{T}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^{2} dx + \varepsilon \frac{q}{2} \chi \left(\frac{\|u\|_{H_{0}^{1}}}{T}\right) \int_{\Omega} F(u) \Phi_{u} dx - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} dx$$
(8)

for all $u \in H_0^1(\Omega)$. We are going to find a critical point of this new functional.

3 Subcritical case

First of all, we have to prove that functional I_q^T satisfies mountain pass geometry. More precisely, we have the following result:

Lemma 3.1. Under hypothesis ($\mathbf{f_1}$), there exists $\bar{q} \in \mathbb{R}_+ \cup \{+\infty\}$ such that for all $0 < q < \bar{q}$ functional I_q^T satisfies:

- (i) $I_q^T(0) = 0;$
- (ii) there exist constants $\rho, \alpha > 0$ such that

$$I_q^T(u) \ge \alpha$$
 for all $u \in H_0^1(\Omega)$ with $||u||_{H_0^1} = \rho$;

(iii) there exists a function $\bar{u} \in H_0^1(\Omega)$ with $\|\bar{u}\|_{H_0^1} > \rho$ such that $I_q^T(\bar{u}) < 0$.

Proof

- (i) It is trivial;
- (ii) If $\varepsilon = 1$ we deduce our assert for $\bar{q} = +\infty$ observing that, by (5), it is

$$\varepsilon \frac{q}{2} \int_{\Omega} F(u) \Phi_u dx \ge 0$$

If $\varepsilon = -1$ we need some estimates. By Holder inequality we have

$$\int_{\Omega} F(u)\Phi_u dx \leqslant \left(\int_{\Omega} |F(u)|^{6/5} dx\right)^{5/6} \left(\int_{\Omega} |\Phi_u|^6 dx\right)^{1/6}.$$
 (9)

Then, from (2), by using Sobolev embedding $H^1_0(\Omega) \hookrightarrow L^6(\Omega)$, we get

$$\begin{split} \int_{\Omega} |\nabla \Phi_u|^2 dx &= q \int_{\Omega} F(u) \Phi_u dx \\ &\leqslant q \left(\int_{\Omega} |F(u)|^{6/5} dx \right)^{5/6} \left(\int_{\Omega} |\Phi_u|^6 dx \right)^{1/6} \\ &\leqslant Cq \left(\int_{\Omega} |F(u)|^{6/5} dx \right)^{5/6} \left(\int_{\Omega} |\nabla \Phi_u|^2 dx \right)^{1/2}. \end{split}$$

So, we have obtained that

$$\left(\int_{\Omega} |\nabla \Phi_u|^2 dx\right)^{1/2} \leqslant Cq \left(\int_{\Omega} |F(u)|^{6/5} dx\right)^{5/6} \tag{10}$$

By using this inequality in (9), taking again into account the continuous embedding $H_0^1(\Omega) \hookrightarrow L^6(\Omega)$, we have

$$\int_{\Omega} F(u)\Phi_u dx \leqslant Cq \left(\int_{\Omega} |F(u)|^{6/5} dx\right)^{5/3}.$$
 (11)

Since for (f_1) it is

$$|F(s)|^{6/5} \leqslant C_1 |s|^{6/5} + C_2 |s|^{\frac{6r}{5}} \tag{12}$$

for all $s \in \mathbb{R}$, by (11) and (12) we deduce that

$$\int_{\Omega} F(u) \Phi_u dx \leqslant q(C_1 \|u\|_{6/5}^2 + C_2 \|u\|_{\frac{6r}{5}}^{2r}).$$
(13)

By using (13) and the immersion of $H_0^1(\Omega)$ into $L^p(\Omega)$ spaces, we have

$$\begin{split} I_q^T(u) &\ge \frac{1}{2} \|u\|_{H_0^1}^2 - \frac{q}{2} \int_{\Omega} F(u) \Phi_u dx - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} dx \\ &\ge \frac{1}{2} \|u\|_{H_0^1}^2 - \frac{q^2}{2} (C_1 \|u\|_{6/5}^2 + C_2 \|u\|_{\frac{6r}{5}}^{2r}) - \frac{1}{p+1} \|u\|_{p+1}^{p+1} \\ &\ge \frac{1}{2} \|u\|_{H_0^1}^2 - \frac{q^2}{2} (C_1 \|u\|_{H_0^1}^2 + C_2 \|u\|_{H_0^1}^{2r}) - \frac{C}{p+1} \|u\|_{H_0^1}^{p+1}. \end{split}$$

Thus, if q is such that $q^2C_1 < 1$ and ρ is small enough, there exists $\alpha > 0$ such that $I_q^T(u) \ge \alpha$ for all $u \in H_0^1(\Omega)$ with $||u||_{H_0^1} = \rho$.

(iii) Let $u \in H_0^1(\Omega)$, $u \neq 0$ and $t > \frac{2T}{\|u\|_{H_0^1}}$. Then, we have

$$\begin{split} I_q^T(tu) &= \frac{t^2}{2} \int_{\Omega} |\nabla u|^2 dx \\ &+ \varepsilon \frac{q}{2} \chi \left(\frac{t ||u||_{H_0^1}}{T} \right) \int_{\Omega} F(tu) \Phi_{tu} dx - \frac{t^{p+1}}{p+1} \int_{\Omega} |u|^{p+1} dx \\ &= \frac{t^2}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{t^{p+1}}{p+1} \int_{\Omega} |u|^{p+1} dx \\ \text{since } \chi \left(\frac{t ||u||_{H_0^1}}{T} \right) &= 0. \end{split}$$

Thus, for t large enough, $I_q^T(tu)$ is negative.

Lemma (3.1) allows us to define, for $q < \bar{q}$,

Generalized SPE

where

$$\Gamma = \{ \gamma \in \mathcal{C}([0,1], H_0^1(\Omega)) \mid \gamma(0) = 0, I_q^T(\gamma(1)) < 0 \}$$

Certainly there exists a Palais-Smale sequence at mountain pass level m_q^T , that is a sequence $(u_n)_n$ in $H_0^1(\Omega)$ such that

$$I_q^T(u_n) \to m_q^T \tag{15}$$

and

$$(I_q^T)'(u_n) \to 0. \tag{16}$$

Proof of Theorem 1.1 We show that for a suitable small \bar{q} and every $q < \bar{q}$, the Palais-Smale sequence previously obtained at mountain pass level m_q^T admits a subsequence converging to a critical point of I_q .

Let $(u_n)_n$ in $H_0^1(\Omega)$ be a Palais-Smale sequence satisfying (15) and (16). Now we show that, if q is small enough, for n large enough $(u_n)_n$ lies in the ball of $H_0^1(\Omega)$ of radius T, that is where functionals I_q^T and I_q coincide. In order to prove it, we firstly estimate the mountain pass level m_q^T .

Set $u \in H_0^1(\Omega)$, $u \neq 0$ and let $\overline{t} > 0$ be such that the path $\overline{\gamma}(t) = t\overline{t}u$ belongs to Γ . For all $t \in [0, 1]$ it is

$$\begin{split} I_q^T(t\bar{t}u) &= \frac{t^2}{2} \int_{\Omega} |\nabla \bar{t}u|^2 dx \\ &+ \varepsilon \frac{q}{2} \chi \left(\frac{t \|\bar{t}u\|_{H_0^1}}{T} \right) \int_{\Omega} F(t\bar{t}u) \Phi_{t\bar{t}u} dx - \frac{t^{p+1}}{p+1} \int_{\Omega} |\bar{t}u|^{p+1} dx \end{split}$$

From (13) we obtain

$$\max_{t \in [0,1]} I_q^T(\gamma(t)) \leq \max_{t \in [0,1]} \left(C_1 t^2 \int_{\Omega} |\nabla u|^2 \, dx - C_2 t^{p+1} \int_{\Omega} |u|^{p+1} \, dx \right) + q^2 \max_{t \in [0,1]} \chi\left(\frac{t\bar{t} \|u\|_{H_0^1}}{T}\right) \left(C_3 t^2 \|\bar{t}u\|_{H_0^1}^2 + C_4 t^{2r} \|\bar{t}u\|_{H_0^1}^{2r} \right) \leq C + q^2 (C_5 T^2 + C_6 T^{2r})$$

Then, from (14) we get

$$m_q^T \leqslant C + q^2 (C_5 T^2 + C_6 T^{2r})..$$
 (17)

We claim that, if *T* is sufficiently large, then $\limsup_n \|u_n\|_{H_0^1} \leq T$. By contradiction, we will assume that there exists a subsequence (relabeled u_n) such that for all $n \ge 1$ we have $\|u_n\|_{H_0^1} > T$. From (8) we deduce that

$$\langle (I_q^T)'(u_n), u_n \rangle = \int_{\Omega} |\nabla u_n|^2 dx + \mathcal{A}_n + \mathcal{B}_N + \mathcal{C}_N - \int_{\Omega} |u_n|^{p+1} dx$$

where

$$\mathcal{A}_N = \varepsilon q \chi' \left(\frac{\|u_n\|_{H_0^1}}{T}\right) \frac{\|u_n\|_{H_0^1}}{T} \int_{\Omega} F(u_n) \Phi_{u_n} dx$$
$$\mathcal{B}_n = \varepsilon \frac{q}{2} \chi \left(\frac{\|u_n\|_{H_0^1}}{T}\right) \int_{\Omega} f(u_n) u_n \Phi_{u_n} dx$$

and

$$\mathcal{C}_n = \varepsilon \frac{q}{2} \chi \left(\frac{\|u_n\|_{H_0^1}}{T} \right) \int_{\Omega} F(u_n) \Phi'_{u_n}[u_n] dx.$$

Since the functional

$$S(u) = \int_{\Omega} |\nabla \Phi_u|^2 dx - 2q \int_{\Omega} F(u) \Phi_u dx, \ u \in H^1_0(\Omega)$$

is everywhere equal to 0, we have that

$$0 = \langle S'(u), u \rangle = \int_{\Omega} (\nabla \Phi_u | \nabla \Phi'_u[u]) dx - q \int_{\Omega} f(u) \Phi_u u dx - q \int_{\Omega} F(u) \Phi'_u[u] dx.$$

On the other hand, multiplying the second equation of the system for $\Phi'_u[u]$, we have that

$$\int_{\Omega} (\nabla \Phi_u | \nabla \Phi'_u[u]) dx = 2q \int_{\Omega} F(u) \Phi'_u[u] dx$$

and then

$$\int_{\Omega} F(u) \Phi'_u[u] dx = \int_{\Omega} f(u) \Phi_u u dx$$

We deduce that $\mathcal{B}_n = \mathcal{C}_n$ for any $n \ge 1$. By using (15) and (16) we obtain

$$m_q^T + o_n(1) \|u_n\|_{H_0^1} = I_q^T(u_n) - \frac{1}{p+1} \langle (I_q^T)'(u_n), u_n \rangle$$

$$= \frac{p-1}{2(p+1)} \|u_n\|_{H_0^1}^2 + \mathcal{D}_n$$

$$- \frac{1}{p+1} \mathcal{A}_n - \frac{2}{p+1} \mathcal{B}_n, \qquad (18)$$

where

$$\mathcal{D}_n = \varepsilon \frac{q}{2} \chi \left(\frac{\|u_n\|_{H_0^1}}{T} \right) \int_{\Omega} F(u_n) \Phi_{u_n} dx$$

But for (f_1) and (13) we have that

$$\max\left(\mathcal{A}_n, \mathcal{B}_n, \mathcal{C}_n, \mathcal{D}_n\right) \leqslant q^2 (C_1 T^2 + C_2 T^{2r})$$

Thus, by our contradiction hypothesis, (17) and (18), we obtain that

$$T^2 \leq ||u_n||^2_{H^1_0} \leq C + C_1 T + q^2 (C_2 T^2 + C_3 T^{2r}).$$

If $T^2 > C + C_1 T$, we can find \bar{q} such that for any $q < \bar{q}$ the previous inequality turns out to be a contradiction.

The contradiction arises from the assumption that $\limsup_n ||u_n||_{H_0^1} > T$ so we have that the sequence $(u_n)_n$ is bounded in the $H_0^1(\Omega)$ norm by T, and $I_q^T(u_n)$ coincides with $I_q(u_n)$. We deduce that $\{u_n\}_n$ is a bounded Palais-Smale sequence of the functional I_q .

Let $u_0 \in H_0^1(\Omega)$ be such that, up to subsequences, $u_n \rightharpoonup u_0$ in $H_0^1(\Omega)$. The last step is to prove that this convergence is also strong. But this is an easy consequence of the fact that, since $H_0^1(\Omega) \hookrightarrow L^s(\Omega)$ compactly for any $s \in [1, 6[$, we have

$$u_n \to u_0 \text{ in } L^p(\Omega),$$

 $u_n \to u_0 \text{ in } L^{\frac{6r}{5}}(\Omega)$

and, then, for the continuity of the map (3), it is

$$\Phi_{u_n} \to \Phi_{u_0}$$
 in $H_0^1(\Omega)$.

4 Critical case

In this section we are going to study the system

$$\begin{cases}
-\Delta u + q\Phi f(u) = |u|^{p-1}u & \text{in }\Omega \\
-\Delta \Phi = 2qF(u) & \text{in }\Omega \\
u = 0 & \text{on }\partial\Omega \\
\Phi = 0 & \text{on }\partial\Omega
\end{cases}$$
(19)

assuming that f satisfies the hypotheses of Theorem 1.2.

Remark 4.1. From hypothesis (1) we may deduce something more about the sign of Φ_u . Indeed, since $F(s) = \int_0^s f(t) dt$, certainly F is a nonnegative function. From this and the maximum principle, also the solutions of the second equations of the system must be nonnegative.

Proof Assuming (f₂) instead of (f₁) we can repeat the same arguments of Lemma 3.1 in the previous section, and we can find \bar{q} sufficiently small such that for any $q < \bar{q}$ there exists a bounded Palais-Smale sequence for I_q at the level $m_q := m_q^T$ for some T. By (5) we deduce that also $(\Phi_{u_n})_n$ is bounded in $H_0^1(\Omega)$. Up to subsequences, there exist $u_0 \in H_0^1(\Omega)$ and $\Phi_0 \in H_0^1(\Omega)$ such that

$$u_n \rightharpoonup u_0 \text{ in } H_0^1(\Omega) \tag{20}$$

$$\Phi_{u_n} \rightharpoonup \Phi_0 \text{ in } H^1_0(\Omega). \tag{21}$$

By (f_2) and (20) we also have

$$F(u_n) \rightharpoonup F(u_0) \text{ in } L^{\frac{9}{5}}(\Omega)$$
 (22)

$$f(u_n)u_n \rightharpoonup f(u_0)u_0 \text{ in } L^{\frac{9}{5}}(\Omega).$$
(23)

We show that $\Phi_0 = \Phi_{u_0}$.

Let us consider a test function $\psi \in C_0^{\infty}(\Omega)$. From the second equation of our problem we obtain

$$\int_{\Omega} (\nabla \Phi_{u_n} | \nabla \psi) dx = 2q \int_{\Omega} F(u_n) \psi dx.$$

Passing to the limit and using (21) and (22), we have that

$$\int_{\Omega} (\nabla \Phi_0 | \nabla \psi) dx = 2q \int_{\Omega} F(u_0) \psi dx.$$

So Φ_0 is a weak solution of $-\Delta \Phi = 2qF(u_0)$, and then, by uniqueness, it is $\Phi_0 = \Phi_{u_0}$. Since $(u_n)_n$ is a Palais-Smale sequence, for any $\psi \in C_0^{\infty}(\Omega)$ we have

$$\int_{\Omega} (\nabla u_n | \nabla \psi) dx + q \int_{\Omega} \Phi_{u_n} f(u_n) \psi dx = \int_{\Omega} |u_n|^{p-1} u_n \psi dx + o_n(1).$$

Passing to the limit, by (20) and (23) we have

$$\int_{\Omega} (\nabla u_0 | \nabla \psi) dx + q \int_{\Omega} \Phi_{u_0} f(u_0) \psi dx = \int_{\Omega} |u_0|^{p-1} u_0 \psi dx$$
(24)

that is u_0 is a weak solution of (19).

It remains to prove that $u_0 \neq 0$.

By using the density of test functions in $H_0^1(\Omega)$, from (24) we get

$$\int_{\Omega} |\nabla u_0|^2 dx + q \int_{\Omega} \Phi_{u_0} f(u_0) u_0 dx - \int_{\Omega} |u_0|^{p+1} dx = 0.$$
 (25)

For (20) and (21), certainly

$$f(u_n)u_n\Phi_{u_n} \to f(u_0)u_0\Phi_{u_0}$$
 a.e.

up to subsequences. Taking into account Remark 4.1 and (1), Fatou's Lemma implies

$$\int_{\Omega} f(u_0) u_0 \Phi_{u_0} dx \le \liminf_n \int_{\Omega} f(u_n) u_n \Phi_{u_n} dx.$$
(26)

Moreover, since p is subcritical, it is

$$\lim_{n} \int_{\Omega} |u_{n}|^{p+1} dx = \int_{\Omega} |u_{0}|^{p+1} dx.$$
 (27)

Since $(u_n)_n$ is bounded, we have that $\langle I'_q(u_n), u_n \rangle \to 0$, that is

$$\int_{\Omega} |\nabla u_n|^2 dx + q \int_{\Omega} f(u_n) u_n \Phi_{u_n} dx = \int_{\Omega} |\nabla u_n|^{p+1} dx + o_n(1).$$
(28)

Now we prove that $||u_n||_{H_0^1(\Omega)} \to ||u_0||_{H_0^1(\Omega)}$ which, together with (20), ensures us the strong convergence.

By lower weak semicontinuity we know that

$$\int_{\Omega} |\nabla u_0|^2 dx \le \liminf_n \int_{\Omega} |\nabla u_n|^2 dx.$$

On the other hand, for (26) and (27), from (25) and (28) we deduce

$$\limsup_{n} \int_{\Omega} |\nabla u_{n}|^{2} dx = \limsup_{n} \left(-q \int_{\Omega} f(u_{n}) u_{n} \Phi_{u_{n}} dx + \int_{\Omega} |\nabla u_{n}|^{p+1} dx \right)$$
$$= -\liminf_{n} q \int_{\Omega} f(u_{n}) u_{n} \Phi_{u_{n}} dx + \int_{\Omega} |\nabla u_{0}|^{p+1} dx$$
$$\leq -q \int_{\Omega} f(u_{0}) u_{0} \Phi_{u_{0}} dx + \int_{\Omega} |\nabla u_{0}|^{p+1} dx = \int_{\Omega} |\nabla u_{0}|^{2} dx$$

Then, we have

$$\lim_{n} \int_{\Omega} |\nabla u_{n}|^{2} dx = \int_{\Omega} |\nabla u_{0}|^{2} dx.$$

By continuity of the functional I_q , we conclude that $I_q(u_0) = m_q > 0$, and thus u_0 is a nontrivial solution.

10

References

- [1] A. Ambrosetti, On Schrödinger-Poisson Systems, Milan J. Math, 76 (2008), 257-274.
- [2] A. Azzollini, P. d'Avenia, A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 779–791.
- [3] V. Benci, D. Fortunato, *An eigenvalue problem for the Schrödinger-Maxwell equations*, Topol. Methods Nonlinear Anal., **11** (1998), 283–293.
- [4] M. Berti, P. Bolle, *Periodic solutions of nonlinear wave equations with general nonlinearities*, Comm. Math. Phys., **243**, (2003), 315-328.
- [5] L. Jeanjean, S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11, (2006), 813–840.
- [6] H. Kikuchi, Existence and stability of standing waves for Schrdinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7, (2007), 403–437.
- [7] E.H. Lieb, Existence and uniqueness of the minimizating solution of Choquard's nonlinear equation, Stud. Appl. Math., 57, (1976/1977), 93-105.
- [8] P. L. Lions, *The Choquard equation and related questions*, Nonlin. Anal., 4, (1980), 1063-1073.
- [9] D. Mugnai, *The Schrödinger-Poisson system with positive potential* (preprint).
- [10] L. Pisani, G. Siciliano, Neumann condition in the Schrdinger-Maxwell system, Topol. Methods Nonlinear Anal., 29, (2007), 251–264.
- [11] L. Pisani, G. Siciliano, Note on a Schrdinger-Poisson system in a bounded domain, Appl. Math. Lett. 21, (2008), 521–528.
- [12] D. Ruiz, G. Siciliano, A note on the Schrdinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud. 8, (2008), 179–190.
- G. Siciliano, Multiple positive solutions for a Schrdinger-Poisson-Slater system, J. Math. Anal. Appl. 365, (2010), 288–299.