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WEIGHTED BERGMAN PROJECTIONS AND KERNELS:

Lp REGULARITY AND ZEROS

YUNUS E. ZEYTUNCU

Abstract. We investigate L
p regularity of weighted Bergman projec-

tions and zeros of weighted Bergman kernels for the weights that are
radially symmetric and comparable to 1 on the unit disc.

1. Introduction

1.1. Setup and Notation. Let D denote the unit disc in C
1 and let λ(r)

be a non-negative function on [0, 1) that is comparable to 1.

Definition 1.1. A function λ(r) on [0, 1) is said to be comparable to 1 and
denoted by λ ∼ 1, if there exists C > 0 such that 1

C
≤ λ(r) ≤ C for all

r ∈ [0, 1).

We consider λ as a radial weight on D by setting λ(z) = λ(|z|). We denote
the Lebesgue measure on C by dA(z) and the space of square integrable
functions on D with respect to the measure λ(z)dA(z) by L2(λ). This is a
Hilbert space with the inner product and the norm defined by

〈f, g〉λ =

∫

D

f(z)g(z)λ(z)dA(z) and ||f ||2λ =

∫

D

|f(z)|2λ(z)dA(z).

The space of holomorphic functions that are in L2(λ) is denoted by A2(λ).
The Bergman inequality (see the first page of [6]) shows that A2(λ) is a closed
subspace of L2(λ). The orthogonal projection between these two spaces is
called the weighted Bergman projection and denoted by Bλ, i.e.

(1.2) Bλ : L2(λ) → A2(λ).

It follows from the Riesz representation theorem that Bλ is an integral
operator. The kernel is called the weighted Bergman kernel and denoted by
Bλ(z, w), i.e. for any f ∈ L2(λ),

(1.3) Bλf(z) =

∫

D

Bλ(z, w)f(w)λ(w)dA(w).
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For a radial weight λ as above, the monomials {zn}∞n=0 form an orthogo-
nal basis for A2(λ) and after normalization the weighted Bergman kernel is
given by, Bλ(z, w) =

∑∞
n=0 αn(zw̄)

n where αn = 1

2π
∫
1

0
r2n+1λ(r)dr

.

The general theory and details can be found in [7] and [11].

1.2. Questions and Results. Both the weighted Bergman projection and
the weighted Bergman kernel are canonical objects on the weighted space
(D, λ). It is a fundamental problem how the perturbations of λ affect the
analytic properties of these canonical objects. In this note, we are particu-
larly interested in the following questions.

I. For a given radial weight λ on D as above, does the weighted kernel
Bλ(z, w) have zeros in D× D?

II. For a given radial weight λ on D as above, for which values of
p ∈ (1,∞) is the weighted projection Bλ bounded from Lp(λ) to
Lp(λ)?

The answers for both of the questions are known for λ(r) ≡ 1. In this case,
a direct computation gives that

(1.4) B1(z, w) =
1

π

∞
∑

n=0

(n+ 1)(zw̄)n =
1

π(1− zw̄)2
.

This closed form immediately tells that B1(z, w) never vanishes inside D×D.
Moreover, this explicit form and Schur’s lemma prove that B1 is bounded
from Lp(1) to Lp(1) for all p ∈ (1,∞).

For an arbitrary radial weight, in general, we do not have such a closed
form for the kernel and it requires more work to answer questions above.
In the next two sections, we prove the following two theorems that answer
Questions I and II.

Theorem 1.5. There exists a radial weight λ on D, comparable to 1, such
that the kernel function Bλ(z, w) has zeros.

Theorem 1.6. Suppose λ is a non-negative radial weight on D that is com-
parable to 1. Then the weighted Bergman projection Bλ is bounded from
Lp(λ) to Lp(λ) for all p ∈ (1,∞).
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In the sprit of the problem above, these two theorems say that a com-
parable perturbation of the radial weight on D might change the vanishing
properties of the kernel but does not alter the Lp mapping properties of the
projection.

I thank J.D. McNeal, my advisor, for introducing me to this field and
helping me with various points. I thank H.P. Boas for helpful remarks on
an earlier version of this paper.

2. Zeros of Weighted Bergman Kernels

Question I recalls the well-known Lu Qi-Keng problem that asks about
the zeros of Bergman kernels as the underlying domain changes. A detailed
survey of this problem can be found in [2].
In this section, after the proof of Theorem 1.5, we use the Forelli-Rudin

formula from [7] (also called inflation principle in [3]) to explore zeros of
Bergman kernels in higher dimensions.

Proof of Theorem 1.5. Define λ(r) =

{

18, 0 ≤ r ≤ 1
4

1, 1
4
< r ≤ 1

For this weight, we explicitly compute the coefficients αn and get

αn =
1

2π

16n+1(2n + 2)

16n+1 + 17
.

We split the product (1− zw̄)2Bλ(z, w) into two parts as

(1− zw̄)2
∞
∑

k=0

αk(zw̄)
k =

=α0 + (α1 − 2α0)zw̄ +
∞
∑

k=2

(αk − 2αk−1 + αk−2)(zw̄)
k

:=L(t) + S(t)

where L(t) denotes the linear part, S(t) denotes the series part and t stands
for zw̄. Note that L(t) has a zero in D by explicitly computing α0 and α1.
Indeed, α0 =

16
33π

and α1 =
512
273π

so L(t) vanishes at t = −91
170

.

Next, we show that

min
|t|=1−ǫ

|L(t)| > max
|t|=1−ǫ

|S(t)|(2.1)

for small enough ǫ > 0.
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It is clear that max|t|=1−ǫ |S(t)| <
∑∞

k=2 |αk−2αk−1+αk−2|, so it is enough
to show

min
|t|=1−ǫ

|L(t)| >

∞
∑

k=2

|αk − 2αk−1 + αk−2|.(2.2)

By using the explicit formula for αk, we get for k ≥ 2,

αk − αk−1 =
32× 162k + 34× 16k(15k + 16)

(16k + 17)(16k+1 + 17)

αk−1 − αk−2 =
2× 162k−1 + 34× 16k−1(15k + 1)

(16k + 17)(16k−1 + 17)
.

By comparing right hand sides, we note that αk − αk−1 < αk−1 − αk−2.
Therefore, we get αk − 2αk−1 + αk−2 < 0 for k ≥ 2 and hence the sum on
the right hand side of (2.2) is telescoping and converges to

α1 − α0 − lim
k→∞

(αk − αk−1) = (α1 − α0)− 2.

On the other hand, by a direct calculation, for small enough ǫ > 0,

min
|t|=1−ǫ

|L(t)| = (α1 − 3α0)− ǫ(α1 − 2α0).

Thus, it remains to show

(α1 − 3α0)− ǫ(α1 − 2α0) > (α1 − α0)− 2,

for small enough ǫ, in order to get the inequality (2.2). The last inequality is
verified by plugging in the actual values of α’s and we get the inequality (2.1).

Once the inequality (2.1) is obtained, we use Rouche’s theorem: L(t) has
a zero in |t| < 1 − ǫ and |L(t)| > |S(t)| on |t| = 1 − ǫ for small enough ǫ;
therefore, the sum L(t) + S(t) = (1 − t)2

∑∞
k=0 αkt

k has a zero in D. Since
(1− t)2 does not vanish in D we conclude that Bλ(z, w) has zeros in D×D.

�

Remark. The same argument can be applied to more weights. We can show

that by choosing A, x > 0 suitably, if we define λ(r) =

{

A, 0 ≤ r ≤ x

1, x < r ≤ 1
then again the weighted Bergman kernel has zeros in D× D.
Furthermore, we can modify these discontinuous functions so that we get

smooth radial weight functions for which the weighted Bergman kernels have
zeros.
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For higher dimensional application, let us take the particular weight λ in
the proof of Theorem 1.5 and consider the following Reinhardt domain in
C

2

Ω = {(z, w) ∈ C
2 : z ∈ D and |w|2 < λ(z)}.

Let BΩ [(z, w), (t, s)] denote the unweighted Bergman kernel of the domain
Ω and Bλ(z, t) be the weighted Bergman kernel of D. We have the following
relation between these kernels (see [7], [8], [3]),

(2.3) BΩ[(z, 0), (t, 0)] =
1

π
Bλ(z, t).

Thus, when the weighted kernel has a zero so does the unweighted kernel
in higher dimension.

Remark. H.P. Boas observed that Theorem 1.5 can be also proven by using
Ramadanov’s approximation theorem in [9]. A direct computation shows
that the weighted Bergman kernel for the weight (1 + kδ0), where δ0 is the
Dirac mass at z = 0 and k > 0, has a zero in D × D. We approximate
(1 + kδ0) by smooth functions φn that are all comparable to 1. Then Ra-
madanov’s theorem and Hurwitz’s theorem together say that the weighted
kernels Bφn

(z, w) must have zeros in D × D after a certain value of n. See
[1] for the details of this method.

3. Lp mapping properties

Before we prove Theorem 1.6, we generalize Question II to the following
setup. For a given sequence of complex numbers {βn}, define a Bergman
type integral operator as:

(3.1) Tf(z) =

∫

D

K(z, w)f(w)λ(w)dA(w) where K(z, w) =
∞
∑

n=0

βn(zw̄)
n

and investigate the Lp boundedness of these operators. The following nec-
essary condition is easy to prove.

Proposition 3.2. If the operator T , defined in (3.1), is bounded from Lp(1)

to Lp(1) for some p ∈ (1,∞) then lim supn→∞
|βn|
n

is finite.

Unfortunately, it turns out that this necessary condition is not sufficient.

Namely, there exists a sequence {γn} such that lim supn→∞
|γn|
n

is finite but
the associated operator by (3.1) is not bounded from Lp0(1) to Lp0(1) for
some p0 ∈ (1,∞). See the third section of [4].
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Schur’s lemma is one of the most commonly used arguments to prove
boundedness of integral operators and in this section we need this lemma.
The proof can be found in [11].

Lemma 3.3 (Schur). (X,A, µ) be a sigma finite measure space and K(x, y)
be a positive measurable function on X ×X . For p ∈ (1,∞) suppose there
exists a positive measurable function h(x) on X and a finite number C > 0
such that

∫

X

K(x, y)h(x)pdµ(x) ≤ Ch(y)p for a.e. y ∈ X

and
∫

X

K(x, y)h(y)qdµ(y) ≤ Ch(x)q for a.e. x ∈ X

where 1
p
+ 1

q
= 1.

Then the operator Of(y) =
∫

X
K(x, y)f(x)dµ(x) is bounded on Lp(X, µ).

We prove the next lemma by invoking Schur’s lemma.

Lemma 3.4. Let {βn} be a bounded sequence of complex numbers. Then
the operator defined by

(3.5) Sf(z) =

∫

D

∣

∣

∣

∣

∣

∞
∑

n=0

βn(zw̄)
n

∣

∣

∣

∣

∣

2

f(w)dA(w)

is bounded from Lp(1) to Lp(1) for all p ∈ (1,∞).

Proof. It is enough to show the inequalities in (3.3) are satisfied with the
correct choice of auxiliary function h(x). Particularly, we take h(w) = (1−
|w|2)ǫ and prove that for any −1 < ǫ < 0, there exists Cǫ > 0 such that for
any z ∈ D

I(ǫ, z) :=

∫

D

∣

∣

∣

∣

∣

∞
∑

n=0

βn(zw̄)
n

∣

∣

∣

∣

∣

2

(1− |w|2)ǫdA(w) ≤ Cǫ(1− |z|2)ǫ.

We first use the orthogonality of monomials to get

I(ǫ, z) =

∫

D

(

∞
∑

n=0

βn(zw̄)
n

)(

∞
∑

n=0

βn(z̄w)
n

)

(1− |w|2)ǫdA(w)

=

∞
∑

n=0

|βn|
2|z|2n

∫

D

|w̄|2n(1− |w|2)ǫdA(w).
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Using boundedness of βn’s and adding up the geometric series we obtain

I(ǫ, z) .

∫

D

∞
∑

n=0

|z|2n|w̄|2n(1− |w|2)ǫdA(w)

=

∫

D

(1− |w|2)ǫdA(w)

(1− |zw|2)

=π

∫ 1

0

(1− r)ǫ

(1− |z|2r)
dr.

We break up the last integral into two pieces and estimate separately (recall
that ǫ ∈ (−1, 0))

I(ǫ, z) = π

∫ |z|2

0

(1− r)ǫ

(1− |z|2r)
dr + π

∫ 1

|z|2

(1− r)ǫ

(1− |z|2r)
dr

≤ π

∫ |z|2

0

(1− r)ǫ

(1− r)
dr + π

1

1− |z|2

∫ 1

|z|2
(1− r)ǫdr

= π

(

1

ǫ
−

(1− |z|2)ǫ

ǫ

)

+ π
(1− |z|2)ǫ+1

(1− |z|2)(ǫ+ 1)

≤
−π

ǫ
(1− |z|2)ǫ +

π

ǫ+ 1
(1− |z|2)ǫ

=

(

−π

ǫ
+

π

ǫ+ 1

)

(1− |z|2)ǫ.

Therefore, we conclude that there exists Cǫ > 0 such that for any z ∈ D

I(ǫ, z) ≤ Cǫ(1− |z|2)ǫ.

Since the kernel is symmetric, we similarly get the second inequality in
(3.3). Now for given p ∈ (1,∞) choose ǫ = −1

pq
to finish the proof.

�

By using this lemma, we obtain the following sufficient condition.

Proposition 3.6. If {βn} is a sequence such that the difference sequence
{βn+1−βn} is bounded then the associated operator T , by (3.1), is bounded
from Lp(1) to Lp(1) for all p ∈ (1,∞).

Remark. If λ ≡ 1 then βn = 1
π
(n+ 1) so the difference sequence is not only

bounded but it is constant βn+1 − βn = 1
π
.
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Proof. We start with the decomposition of the kernel function K(z, w).

K(z, w) =
∞
∑

n=0

βn(zw̄)
n =

1

1− zw̄

∞
∑

n=0

bn(zw̄)
n

=
∞
∑

n=0

(zw̄)n
∞
∑

n=0

bn(zw̄)
n for a sequence {bn}.

It is easy to see that βn =
∑n

k=0 bk, which implies bn = βn − βn−1 (set
β−1 = 0). Hence, by the assumption in the statement of the proposition,
{bn} is a bounded sequence. Furthermore,

|Tf(z)| =

∣

∣

∣

∣

∫

D

K(z, w)f(w)dA(w)

∣

∣

∣

∣

≤

∫

D

∣

∣

∣

∣

∣

∞
∑

n=0

(zw̄)n
∞
∑

n=0

bn(zw̄)
n

∣

∣

∣

∣

∣

|f(w)|dA(w)

≤





∫

D

∣

∣

∣

∣

∣

∞
∑

n=0

(zw̄)n

∣

∣

∣

∣

∣

2

|f(w)|dA(w)





1

2




∫

D

∣

∣

∣

∣

∣

∞
∑

n=0

bn(zw̄)
n

∣

∣

∣

∣

∣

2

|f(w)|dA(w)





1

2

:=|S1f(z)|
1

2 |S2f(z)|
1

2

where S1 and S2 are respective integral operators. We integrate both sides
with respect to z and apply the Cauchy-Schwarz inequality

∫

D

|Tf(z)|pdA(z) ≤

∫

D

|S1f(z)|
p

2 |S2f(z)|
p

2dA(z)

||Tf ||2pp ≤||S1f ||
p
p||S2f ||

p
p.

Note that, S1 and S2 are operators of the type in (3.4) and we know such
operators are bounded from Lp(1) to Lp(1). Therefore, we get

||Tf ||2pp ≤ ||S1f ||
p
p||S2f ||

p
p ≤ C1||f ||

p
pC2||f ||

p
p ≤ C||f ||2pp .

This finishes the proof of Proposition 3.6.
�

We now give the proof of Theorem 1.6.

Proof. We know that Bλ is an integral operator of the form (3.1). Since
λ ∼ 1, it is enough to show Bλ is bounded from Lp(1) to Lp(1). We use
Proposition 3.6 to do this. Namely, we show that the coefficients αn of
Bλ(z, w) satisfy the condition in (3.6).
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αn+1 − αn =
1

∫

D
|z|2n+2λ(z)dA(z)

−
1

∫

D
|z|2nλ(z)dA(z)

=

∫

D
(1− |z|2)|z|2nλ(z)dA(z)

∫

D
|z|2n+2λ(z)dA(z)

∫

D
|z|2nλ(z)dA(z)

∼

∫

D
(1− |z|2)|z|2ndA(z)

∫

D
|z|2n+2dA(z)

∫

D
|z|2ndA(z)

since λ ∼ 1

∼

∫ 1

0
(1− r2)r2n+1dr

∫ 1

0
r2n+3dr

∫ 1

0
r2n+1dr

after switching to polar coordinates

=(2n+ 4)(2n+ 2)

∫ 1

0

(1− r2)r2n+1dr

=2

We obtain that the sequence {αn+1 − αn} is bounded and this finishes the
proof of Theorem 1.6.

�

Remark. An alternative way of proving Theorem 1.6 is to show that Bλ(z, w)
is a standard kernel in the sense of Coifman-Weiss [5] on the space of homo-
geneous type (D, |.|, λ) where |.| is the Euclidean distance.

Remark. A generalization and an alternative proof of Theorem 1.6 appear
in [10].

References

[1] Harold P. Boas. The Lu Qi-Keng conjecture fails generically. Proc. Amer. Math. Soc.,
124(7):2021–2027, 1996.

[2] Harold P. Boas. Lu Qi-Keng’s problem. J. Korean Math. Soc., 37(2):253–267, 2000.
Several complex variables (Seoul, 1998).

[3] Harold P. Boas, Siqi Fu, and Emil J. Straube. The Bergman kernel function: explicit
formulas and zeroes. Proc. Amer. Math. Soc., 127(3):805–811, 1999.

[4] Stephen M. Buckley, Pekka Koskela, and Dragan Vukotić. Fractional integration,
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