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Convergence of Infinite Composition of Entire

Functions

Shota Kojima

Abstract

The purpose of the present article is to obtain the condition that

the function defined by infinite composition of entire functions be-

comes an entire function. Moreover, as an example of such functions,

we study a function called Poincaré function.

1 Introduction

It seems that there are no article studying infinite composition of functions
with a similar purpose to this article. In order to state our theorem, we
require the following notation.

Definition 1.1 Let f ◦ g be the composition of functions f and g, that is,

(f ◦ g)(z) := f(g(z)).

We denote (f ◦ g)(z) by f(z) ◦ g(z) for convenience of expression.

For example
(z + 1) ◦ (z + 2) = z + 3.

Definition 1.2 Given integers d,N with N ≥ d, define

N

R
n=d

fn(z) : = fd(z) ◦ fd+1(z) ◦ fd+2(z) ◦ · · · ◦ fN(z)

= fd(fd+1(· · ·fN−1(fN(z)) · · · ).
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Some important functions, such as sin z, ez , are expressed by infinite compo-
sition of polynomials as follows:

Proposition 1.1 For any z ∈ C, we have

1

2
(e2z − 1) =

∞

R
n=1

(
z +

z2

2n

)
,

sin

(
2z√
3
+

π

6

)
− 1

2
=

∞

R
n=1

(
z +

z2

(−2)n

)
,

(
sinh

√
z
)2

=
∞

R
n=1

(
z +

z2

4n

)
.

These equalities are proved in Section 3. From the equalities above, we expect
that there are remarkable functions defined by infinite composition of entire
functions. Thus it is significant to study the convergence of

∞

R
n=1

fn(z) = lim
N→∞

N

R
n=1

fn(z) = f1(z) ◦ f2(z) ◦ · · · , where fn(z) is entire.

Our main purpose is to prove the following theorem.

Theorem 1.1 Let cn,r (n = 1, 2, . . . , r = 2, 3, . . .) be complex numbers such

that

fn(z) := z +
∞∑

r=2

cn,rz
r

are entire functions. We set

Cn := max
r=2,3,4,...

{|cn,r|1/(r−1)}.

Suppose that the series
∞∑

n=1

Cn

is convergent. Then the sequence of functions

N

R
n=1

fn(z) =
N

R
n=1

(
z + cn,2z

2 + cn,3z
3 + · · ·+ cn,pz

p + · · ·
)

2



is uniformly convergent on arbitrary closed disk. In particular, the limit

function

∞

R
n=1

fn(z) =
∞

R
n=1

(
z + cn,2z

2 + cn,3z
3 + · · ·+ cn,pz

p + · · ·
)

= lim
N→∞

N

R
n=1

(
z + cn,2z

2 + cn,3z
3 + · · ·+ cn,pz

p + · · ·
)

is entire.

Considering the case where fn(z) is a polynomial of degree 2, we obtain the
following.

Corollary 1.1 Let {cn}∞n=1 be a sequence of complex numbers such that

∞∑

n=1

|cn|

is convergent. Then the function

∞

R
n=1

(
z + cnz

2
)
= lim

N→∞

N

R
n=1

(
z + cnz

2
)

is uniformly convergent on every compact subset of C, and it defines an entire

function.

Example 1.1 The infinite composition

∞

R
n=1

(
z +

z3

n3

)

is an entire function. Indeed, for cn,3 = n−3, the series
∑∞

n=1 |cn,3|1/2 =∑∞
n=1 n

−3/2 is convergent.

Example 1.2 Let s be a complex number with |s| > 1. Then the infinite
composition

F (z) :=
∞

R
n=1

(
z +

z2

sn

)

is an entire function. Indeed, for cn,2 = s−n, the series
∑∞

n=1 |cn,2| =
∑∞

n=1 |s|−n

is convergent. This function is studied in Section 3.
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We now introduce Poincaré functions. (For more details, see [1].) The mero-
morphic functions f(z) satisfying the following functional equation are called
Poincaré functions ([5]):

f(sz) = h(f(z)),

where s is a complex number with |s| > 1, and h(z) is a rational function.
The function F (z) in Example 2 satisfies

F (sz) = sF (z) + sF (z)2

(see Section 3). Thus the function F (z) can be regarded as a Poincaré func-
tion. Poincaré functions have been studied by some mathematicians ([1], [2],
[3], [5]). However it seems that the expression of Poincaré functions by R is
not known.

2 Proof of Theorem 1.1

In this section we shall give a proof of Theorem 1.1. First we define

Definition 2.1 For any analytic function

f(z) =
∞∑

n=0

anz
n,

we define

f̂(z) =
∞∑

n=0

|an|zn.

Second, we prove lemmas needed later.

Lemma 2.1 Let

f(z) := z +

∞∑

n=2

anz
n, g(z) := z +

∞∑

n=2

bnz
n

be entire functions. Then for every z ∈ C,

f̂ ◦ g(|z|) ≤ f̂(ĝ(|z|)), (1)

|f(z)− z| ≤ f̂(|z|)− |z|. (2)

4



Proof. We first prove (1). There exists complex number Hn, which depends
on a2, . . . , an, b2, . . . , bn, such that

f(g(z)) = z +

∞∑

n=2

Hn(a2, a3, . . . , an, b2, b3, . . . , bn)z
n.

The inequality

|Hn(a2, a3, . . . , an, b2, b3, . . . , bn)| ≤ Hn(|a2|, |a3|, . . . , |an|, |b2|, |b3|, . . . , |bn|)

yields

f̂ ◦ g(|z|) ≤ |z|+
∞∑

n=2

Hn(|a2|, |a3|, . . . , |an|, |b2|, |b3|, . . . , |bn|)|z|n

= f̂(ĝ(|z|)).

Inequality (2) is immediate. 2

Lemma 2.2 Let d be an integer and let cn,r(n = d, d + 1, . . . , r = 2, 3, . . .)
be complex numbers such that

fn(z) := z +
∞∑

r=2

cn,rz
r

are entire functions for all n ≥ d. We set

Fm(z) :=
m

R
n=d

f̂n(z).

Then, for any z ∈ C and any integer m ≥ d ,

F̂m(|z|) ≤
(

m

R
n=d

f̂n(z)

)
◦ |z|, (3)

|
m

R
n=d

fn(z)− z| ≤
(

m

R
n=d

f̂n(z)

)
◦ |z| − |z|, (4)

|
m

R
n=d

fn(z)| ≤
(

m

R
n=d

f̂n(z)

)
◦ |z|. (5)
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Proof. We first prove (3) by induction on m. If m = d, then inequality
(3) immediately follows. Next we suppose that (3) holds for m(≥ d). Then
combining (1) in Lemma 2.1 and the inductive assumption yields

F̂m+1(|z|) ≤ F̂m(f̂m+1(|z|)) ≤
(

m

R
n=d

f̂n(z)

)
◦ |z| ◦ f̂m+1(|z|) =

(
m+1

R
n=d

f̂n(z)

)
◦ |z|.

This completes the proof of (3) . Next we shall prove (4).

|
m

R
n=d

fn(z)− z| ≤ F̂m(|z|)− |z| ( (2) in Lemma2.1)

≤
(

m

R
n=d

f̂n(z)

)
◦ |z| − |z| ( (3) in Lemma2.2).

This completes the proof of (4). Finally, inequality (5) follows from the
triangle inequality and (4). 2

Lemma 2.3 Let d be integer and let cn,r(n = d, d + 1, . . . , r = 2, 3, . . .) be

complex numbers such that

fn(z) := z +
∞∑

r=2

cn,rz
r

are entire functions. Suppose that

Cn := max
r=2,3,...

{|cn,r|
1

r−1} > 0 for all n ≥ d

Then, for |z| < 1/
∑m

n=dCn and for any integer m, d with m ≥ d,

(
m

R
n=d

f̂n(z)

)
◦ |z| ≤ |z|

1− |z|
∑m

n=dCn

.

Proof. We shall prove this by induction on m. Let m = d. It follows from
|cd,p| ≤ Cd

p−1 that, for |z| < 1/Cd,

f̂d(|z|) = (z + |cd,2|z2 + |cd,3|z3 + · · ·+ |cd,p|zp + · · · ) ◦ |z|
≤ |z|+ Cd|z|2 + Cd

2|z|3 + · · ·+ Cd
p−1|z|p + · · ·

=
|z|

1− Cd|z|
.
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Next suppose that the statement of Lemma 2.3 is valid if m = N (N ≥ d).
Noting

1∑N+1
n=d Cn

≤ 1

Cd + CN+1

<
1

CN+1

,

we have, for |z| < (
∑N+1

n=d Cn)
−1,

f̂N+1(|z|) = |z|+ |cN+1,2||z|2 + |cN+1,3||z|3 + · · ·+ |cN+1,p||z|p + · · ·
≤ |z|+ CN+1|z|2 + CN+1

2|z|3 + · · ·+ CN+1
p−1|z|p + · · ·

=
|z|

1− CN+1|z|
. (6)

Therefore we have

f̂N+1(|z|) ≤
|z|

1− CN+1|z|
for |z| <

(
N+1∑

n=d

Cn

)−1

. (7)

Now we set g(z) = z/(1 − CN+1z). Then g(z) is steadily increasing for 0 ≤
z < 1/CN+1. Noting this and

1∑N+1
n=d Cn

<
1

CN+1

,

we obtain, for |z| < 1/
∑N+1

n=d Cn,

z

1− CN+1z
◦ |z| <

z

1− CN+1z
◦ 1∑N+1

n=d Cn

=
1∑N+1

n=d Cn − CN+1

=
1∑N

n=dCn

. (8)

Combining this with (7) yields

f̂N+1(|z|) <
1∑N

n=dCn

for |z| <
(

N+1∑

n=d

Cn

)−1

.

Hence we can use the inductive assumption as follows:
For |z| < (

∑N+1
n=d Cn)

−1,
(

N

R
n=d

f̂n(z)

)
◦ f̂N+1(|z|) ≤

z

1− z
∑N

n=dCn

◦ f̂N+1(|z|). (9)
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We set h(z) = z/(1 − z
∑N

n=dCn). Then h(z) is steadily increasing for 0 ≤
z < 1/

∑N
n=dCn. Besides, it follows from (6) and (8) that

f̂N+1(|z|) ≤
|z|

1− CN+1|z|
<

1∑N
n=dCn

for |z| <
(∑N+1

n=d Cn

)−1

. From these, inequality (9) is rewritten as

(
N+1

R
n=d

f̂n(z)

)
◦ |z| ≤ z

1− z
∑N

n=dCn

◦ |z|
1− CN+1|z|

for |z| <
(∑N+1

n=d Cn

)−1

. Simplifying the right hand side, we have

(
N+1

R
n=d

f̂n(z)

)
◦ |z| ≤ z

1− z
∑N+1

n=d Cn

◦ |z|

for |z| < 1/
∑N+1

n=d Cn. Hence the induction is complete. 2

Lemma 2.4 Let d be integer and let cn,r(n = d, d + 1, . . . , r = 2, 3, . . .) be

complex numbers such that

fn(z) := z +

∞∑

r=2

cn,rz
r

are entire functions. Let Cn be the constant given in Lemma 2.3, and let

Cn > 0 for every positive integer n. Suppose further that α :=
∑∞

n=1Cn is

convergent. Moreover we set

FN(z) : =
N

R
n=1

fn(z).

Then, for |z| ≤ 1/(4α) and any integers N,M with N > M ≥ 1,

|FN(z)− FM (z)| ≤ 1

α2

N∑

n=M+1

Cn.

Proof. We set

y(z) : =
N

R
n=M+1

fn(z).

8



Our task is to estimate |FN (z)− FM(z)|. First note that

|FN(z)− FM(z)| =
∣∣∣
M

R
n=1

fn(z) ◦
N

R
n=M+1

fn(z)−
M

R
n=1

fn(z)
∣∣∣

= |FM (y(z))− FM(z)| .

To estimate the last expression, we show that

|y(z)| ≤ 1

3α
for |z| ≤ 1

4α
. (10)

Since
1

4α
=

1

4
∑∞

n=1Cn
<

1∑N
n=M+1Cn

, (11)

we can use Lemma 2.3 with m = N, d = M +1 as follows: For |z| ≤ 1/(4α),

|y(z)| ≤
(

N

R
n=M+1

f̂n(z)

)
◦ |z| ((5) in Lemma 2.2)

≤ |z|
1− |z|

∑N
n=M+1Cn

(Lemma 2.3)

≤ 1/(4α)

1− 1
4α

∑N
n=M+1Cn

≤ 1

4α−
∑∞

n=1Cn

=
1

3α
.

Hence we obtain (10). Next, let γ be a circle with center 0 and radius 1/(2α).
For |z| ≤ 1/(4α), we can use Cauchy’s theorem as follows:

|FN(z)− FM(z)| = |FM(y(z))− FM (z)|

=

∣∣∣∣
1

2πi

∫

γ

(
FM(ζ)

ζ − y(z)
− FM(ζ)

ζ − z

)
dζ

∣∣∣∣ (note : |y(z)| ≤ 1

3α
)

≤ 1

2π

∫

γ

|y(z)− z||FM(ζ)|
|ζ − y(z)||ζ − z| |dζ |

≤ 1

2α

|y(z)− z|max|ζ|= 1

2α

|FM(ζ)|
( 1
2α

− 1
3α
)( 1

2α
− 1

4α
)

= 12α|y(z)− z| max
|ζ|= 1

2α

|FM(ζ)|. (12)

9



We first estimate |y(z)− z|. For |z| ≤ 1/(4α),

|y(z)− z| ≤
(

N

R
n=M+1

f̂n(z)

)
◦ |z| − |z| ((4) in Lemma 2.2)

≤ |z|
1− |z|

∑N
n=M+1Cn

− |z| (Lemma 2.3 (note (11) ) )

=
|z|2

∑N
n=M+1Cn

1− |z|∑N
n=M+1Cn

≤ 1

16α2

1

1− 1
4α
α

N∑

n=M+1

Cn =
1

12α2

N∑

n=M+1

Cn. (13)

Next we shall estimate max|ζ|= 1

2α

|fM(ζ)|. For |z| ≤ 1/(4α),

max
|ζ|= 1

2α

|FM(ζ)| ≤
(

M

R
n=1

f̂n(z)

)
◦ 1

2α
((5) in Lemma 2.2)

≤
1
2α

1− 1
2α
α

(Lemma2.3)

=
1

α
. (14)

From (12), (13), and (14), we deduce that

|FN (z)− FM(z)| ≤ 1

α2

N∑

n=M+1

Cn for |z| ≤ 1

2α
.

This completes the proof of the lemma. 2

Proof of Theorem 1.1. We apply the same notation as in Lemma 2.4. Now
we consider two cases.
Case 1 Suppose that there exists a number m such that Cn = 0 for all
n ≥ m.
Then for all N > m,

FN(z) =
N

R
n=1

fn(z) =
m−1

R
n=1

fn(z) ◦
N

R
n=m

fn(z) =
m−1

R
n=1

fn(z).

Accordingly, in this case, the theorem is true.
Case 2 Suppose that Cn > 0 for infinitely many n. If there are numbers

10



n such that Cn = 0, then we can ignore them. Because Cn = 0 means
fn(z) = z, and z is the unit element of composition. Hence we can suppose
without loss of generality that Cn > 0 for every positive integer n.

From now on, we change the assumption of Theorem 1.1 into

Cn > 0 for all n,

and we shall prove the theorem.
Let r1 > 0 be any real number. Then it is sufficient to prove that

Fm(z) =
m

R
n=1

fn(z)

is uniformly convergent for |z| ≤ r1.
From Lemma 2.4, we have

FN(z) =
N

R
n=1

fn(z) is uniformly convergent on |z| ≤ 1

4α
.

In the same way, let αm :=
∑∞

n=mCn, we have

N

R
n=m

fn(z) is uniformly convergent on |z| ≤ 1

4αm
.

From the assumption, the series α =
∑∞

n=1Cn is convergent, and hence, for
any r1 > 0, there exists positive integer m1 such that

αm1
=

∞∑

n=m1

Cn ≤ 1

4r1
namely r1 ≤

1

4αm1

. (15)

Therefore we find that for any r1 > 0, there exists number m1 > 1 such that

N

R
n=m1

fn(z) is uniformly convergent on |z| ≤ r1.

Since the function Rm1−1
n=1 fn(z) is an entire function, we deduce that for any

r1 > 0,

FN (z) =
m1−1

R
n=1

fn(z) ◦
N

R
n=m1

fn(z) is uniformly convergent on |z| ≤ r1

11



(see Remark below). Since r1 > 0 is an arbitrary real number and {Fm(z)}
is a sequence of entire functions, the limit function

lim
N→∞

FN (z) =
∞

R
n=1

fn(z)

is also an entire function of z.
Remark : Let p(z) be an entire function, and let {Fm(z)}∞m=1 be a sequence
of entire functions. Suppose that Fm(z) is uniformly convergent for |z| ≤ r2.
Then p(z) ◦ Fm(z) = p(Fm(z)) is uniformly convergent for |z| ≤ r2. 2

3 Proof of Proposition 1.1

In this section, we give a proof of Proposition 1.1. We first prove some
lemmas.

Lemma 3.1 We set

h1(z) =
1

2
(e2z − 1), h2(z) = sin

(
2z√
3
+

π

6

)
− 1

2
, h3(z) =

(
sinh

√
z
)2

.

Then

h1(2z) = 2(h1(z) + h1(z)
2), h1(0) = 0, h′

1(0) = 1

h2(−2z) = −2(h2(z) + h2(z)
2), h2(0) = 0, h′

2(0) = 1

h3(4z) = 4(h3(z) + h3(z)
2), h3(0) = 0, h′

3(0) = 1.

Proof. The lemma follows from elementary calculations. 2

Lemma 3.2 Let s be a fixed complex number with |s| > 1. Suppose that an

entire function f(z) satisfies

f(sz) = s(f(z) + f(z)2),

f(0) = 0, and f ′(0) = 1. Then

f(z) = lim
N→∞

N

R
n=1

(
z +

z2

sn

)
.

12



Hence the function satisfying the above condition is uniquely determined. A
generalization of this statement is known (It has been shown in [4, pp66-68]
that the inverse function of f(z) is uniquely determined ). To prove Lemma
3.2, we require the following lemma.

Lemma 3.3 Suppose that the functions pn(z), qn(z), n = 1, 2, 3, . . . are entire
functions. Suppose further that

pn(z) is uniformly convergent to p(z) on every compact subset of C,

and

lim
n→∞

qn(z) = q(z)

exists and becomes entire function. Then for each z ∈ C, we have

lim
n→∞

pn(qn(z)) = p(q(z)).

Proof. The lemma follows from

|p(q(z))− pn(qn(z))| ≤ |p(q(z))− p(qn(z))|+ |p(qn(z))− pn(qn(z))|.
Proof of Lemma 3.2. Let |s| > 1. It follows from the assumption that f(z)
can be written as in the form

f(z) = z +
∞∑

n=2

an(s)z
n, (16)

and satisfies
f(z) = s

(
z + z2

)
◦ f
(z
s

)
.

We repeatedly use the relation as follows:

f(z) =

(
z +

z2

s

)
◦
(
sf
(z
s

))

=

(
z +

z2

s

)
◦ sz ◦ s(z + z2) ◦ f

( z

s2

)

=

(
z +

z2

s

)
◦ s2z ◦ (z + z2) ◦ z

s2
◦ s2z ◦ f

( z

s2

)

=

(
z +

z2

s

)
◦
(
z +

z2

s2

)
◦
(
s2f

( z

s2

))

= · · ·
=

(
N

R
n=1

(
z +

z2

sn

))
◦
(
sNf

( z

sN

))
.

13



Hence we deduce

f(z) = lim
N→∞

{(
N

R
n=1

(
z +

z2

sn

))
◦
(
sNf

( z

sN

))}
. (17)

From (16), we have

lim
N→∞

sNf
( z

sN

)
= z for every z ∈ C. (18)

Since RN
n=1

(
z + z2

sn

)
is convergent on every compact subset of C from The-

orem 1.1, combining Equation (18), Equation (17), and Lemma 3.3 yields

f(z) = lim
N→∞

N

R
n=1

(
z +

z2

sn

)
.

2

Proof of Proposition 1.1. The proposition follows by Lemma 3.1 and Lemma
3.2. 2
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