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Abstract

Angiogenesis is a key process in the tumoral growth which allows the cancerous tissue to impact on
its vasculature in order to improve the nutrient’s supply and the metastatic process. In this paper, we
introduce a model for the density of metastasis which takes into account for this feature. It is a two
dimensional structured equation with a vanishing velocity field and a source term on the boundary.
We present here the mathematical analysis of the model, namely the well-posedness of the equation
and the asymptotic behavior of the solutions, whose natural regularity led us to investigate some
basic properties of the space Wdiv(Ω) = {V ∈ L

1; div(GV ) ∈ L
1}, where G is the velocity field of

the equation.

AMS 2010 subject classification: 35A01, 35B40, 35B65, 47D06, 92D25.

Keywords : 2D structured populations, semigroup, asymptotic behavior, malthus parameter, trans-
port equation.
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∗CMI-LATP, UMR 6632, Université de Provence, Technopôle Château-Gombert, 39, rue F. Joliot-Curie, 13453 Marseille

cedex 13, France. E-mail: benzekry@phare.normalesup.org
†Laboratoire de Toxicocinétique et Pharmacocinétique UMR-MD3. 27, boulevard Jean Moulin 13005 Marseille. France.

1

http://arxiv.org/abs/1009.2863v1


1 Introduction

In the seventies, Judah Folkman puts forward the assumption that a cancer tissue, like other tissues,
needs nutrients and oxygen conveyed by the blood vessels. Consequently, tumoral growth and develop-
ment of metastasis are dependent on angiogenesis, a process consisting in building and developing the
vascularization. From this discovery, a new anti-cancer therapeutic way is open : to starve cancer by
depriving it of its vascularization. If for the last two decades, more than ten antiangiogenics drugs have
been developed, mainly monoclonal antibodies and tyrosin kinase inhibitors, the administration proto-
cols are far from being optimal. It is enough for example to consult the publication [13] to realize the
paroxystic effects they can induce.

Thus, a tool for in silico studying the administration protocols for antiangiogenic drugs could largely
contribute to optimize the effectiveness of the treatments, in particular to avoid some therapeutic failures.
In this direction, the construction of a mathematical model taking into account the mechanisms of tumoral
angiogenesis and the effect of the antiangiogenics agents proves to be an essential stage in order to improve
the use of antiangiogenic therapies. Some work (for example in [22] and [5]) was made with the aim of
qualitatively studying the effects of antiangiogenic therapies on the control of the primitive tumor growth.
In this work we propose a modeling which purpose is to describe the action of the currently used clinical
protocols, not only on the tumoral growth, but also on the production of metastases.

The model is a combination of the PDE model for the metastasis density proposed by [17] and studied
in [3, 9], with the ODE model for each metastasis’ growth of Folkman et al. [16]. This transport equation
endowed with a non-local boundary condition expressing creation of metastasis can be classified as part
of the so-called structured population equations arising in mathematical biology which have the following
general expression





∂tρ+ div(F (t,X, ρ)) = −µ(t,X, ρ) Ω
−G · −→ν ρ(t, σ) = B(t, σ, ρ) σ ∈ ∂Ω s.t. G · −→ν (σ) < 0
ρ(0, X) = ρ0(X) Ω

.(1)

The introduction of such equations in the linear case is due to Sharpe and Lotka in 1911 [24] and
McKendrick in 1926 [18]. Although these equations have been widely studied both in the linear and
nonlinear cases (for an introduction to the linear theory see the book of Perthame [20] and to the
nonlinear one see the book of Webb [27], as well as [21] for a survey), a complete general theory has not
been achieved yet, even in the linear case. Indeed, most of the models have the so called structuring
variable X being one-dimensional and often representing the age, thus evolving with F (t, a, ρ) = ρ. A
difficulty on the regularity of solutions is introduced when the velocity is non-constant and vanishes (see
[3, 9]). Dealing with situations in dimensions higher than one is not a common thing.

In our case, the model is a linear equation, with

F (t,X, ρ) = G(X)ρ

structured in two variables : X = (x, θ) with x the size of metastasis and θ the so-called “angiogenic
capacity”. The velocity field G vanishes on the boundary of the domain, which is a square. Moreover, we
have an additional source term in the boundary condition of the equation :

−G · −→ν ρ(t, σ) = N(σ)

∫
β(X)ρ(t,X) + f(t, σ).

As far as we now, the mathematical analysis for multi-dimensional models is done only in situations where
one of the structured variables is the age and thus with the first component of G being constant (see
for instance [26, 1, 11]). In the context of the follicular control during the ovarian process, a nonlinear
model structured in dimension two with both components of the velocity field G being non-constant is
introduced in [14] but no mathematical analysis is performed due to the complexity of the model.
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In the present paper, we address the problem of the mathematical analysis of our model, namely :
existence, uniqueness, regularity and asymptotic behavior of the solutions. Following the method used in
[2] and [3], we use a semigroup approach to deal with the existence and regularity of the solutions. The
main difficulties we have to deal with in this two dimensional problem come from the singularity of the
velocity field, as well as the presence of a time-dependent source term in the boundary condition. During
the study, we take a particular attention on the problems of regularity of the solutions and approximation
of weak solutions by regular ones, which led us to study the space Wdiv(Ω) (see the appendix) . The paper
is organized as follows : in the section 2 we present the model, in the section 3 we study the properties
of the underlying operator and in the section 4 we apply our study to the evolution equation from our
model.

2 Model

The model we developed is an improvement of the model proposed by [17] and studied in [3]. We want
now to take into account the key process of angiogenesis in the tumoral growth and integrate it in the
metastatic evolution. To do this, we combine a renewal equation describing the evolution of the density
of metastasis with an ODE model of tumoral growth including angiogenesis developed by Hahnfeldt et
al. in [16].

2.1 The ODE model of tumoral growth under angiogenic control

We present now the model of Hahnfeldt et al. from [16]. Let x(t) denote the size of a given tumor at
time t. The growth of the tumor is modeled by a gompertzian growth rate, which expression is :

(2) g1(x) = ax ln

(
θ

x

)
,

where a is a parameter representing the velocity of the growth and θ the carrying capacity of the envi-
ronment. The idea is now to take θ as a variable of the time, representing the degree of vascularization
of the tumor and called ”angiogenic capacity”. The variation rate for θ derived in [16] is :

(3) g2(x, θ) = cx− dθx
2

3 ,

If we denote X(t) = (x(t), θ(t)) and define G(X) = (g1(x, θ), g2(x, θ)) we have the following system of
ODE modeling the tumoral growth :





dX
dt = G(X)

X(t0) =

(
x0

θ0

)
(4)

In the figure 1, we present some numerical simulations of the phase plan of the system.
This system has been studied by A. d’Onofrio and A. Gandolfi in [10]. We define

b =
( c
d

) 3

2

, Ω = (1, b) × (1, b), Γ = ∂Ω

We will now turn our interest to the flow defined by the solutions of the system of ODE, as it will play
a fundamental role in the sequel. We define the application

Φ :
[0,∞[×Γ → Ω

(τ, σ) 7→ Φτ (σ)

as being the solution of the system (4) at time τ with the initial condition σ. We use of this application
in order to see Ω as Ω ≃ ]0,∞[×Γ. More precisely, we will show that Φ is an homeomorphism locally
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Figure 1: Phase plan of the ODE system (4).

bilipschitz ]0,∞[×Γ∗ → Ω where Γ∗ := Γ\{(b, b)}. In order to have a candidate for the inverse of Φ, we
define for (x, θ) ∈ Ω

τ(x, θ) = inf{τ ≥ 0| Φ−τ (x, θ) ∈ Γ∗}
σ(x, θ) = Φ−τ(x,θ)(x, θ)

The qualitative properties of the ODE imply the existence of such a couple (τ, σ) (the field points inward
along Γ∗ and the solutions all converge to X∗ (see [10]) so going back in time they meet the boundary),
and the Cauchy-Lipschitz theorem implies uniqueness because the system is autonomous and thus the
characteristics don’t cross each other in the phase plane. The time τ(x, θ) is the time spent in Ω and
σ(x, θ) is the entrance point of the characteristic passing through the point (x, θ). From the Lipschitz
regularity of Ω we can’t expect Φ to be globally C1, this is why we introduce the following open sets :

Ωi = {Φτ (σ); σ ∈ Γi, τ ∈]0,∞[}, i = 1, 2, 3, 4

where
Γ1 =](1, 1), (1, b)[, Γ2 =](1, b), (b, b)[, Γ3 =](b, b), (b, 1)[, Γ4 =](b, 1), (1, 1)[

The restriction of Φ to ]0,∞[×Γi is a diffeomorphism, as established in the following proposition.

Proposition 2.1 (Properties of the flow).
(i) The application Φ is a diffeomorphism ]0,∞[×Γi → Ωi and for every τ ≥ 0 and almost every σ ∈ Γ

(5) JΦ(τ, σ) = G · −→ν (σ)e

∫
τ

0
div(G(Φs(σ)))ds

where JΦ(τ, σ) is the Jacobian of Φ.
(ii) Globally, Φ is an homeomorphism ]0,∞[×Γ∗ → Ω locally bilipschitz.

Remark 1. The regularity proven here on Φ validates the use of Φ as a change of variables (see [12] for
locally Lipschitz changes of variables).

Proof.
• Φ is one-to-one and onto. Let X = (x, θ) ∈ Ω. We have Φ(τ(X), σ(X)) = X because Φ−τ(X)(X) =

σ(X) implies X = Φτ(X)(σ(X)) (indeed Φ−τ is the inverse of Φτ when τ is fixed). In the same way,
(τ(Φτ (σ)), σ(Φτ (σ))) = (τ, σ). Thus Φ is one-to-one and onto and Φ−1(x, θ) = (τ(x, θ), σ(x, θ)).

• Φ is a diffeomorphism on ]0,∞[×Γi. Using the general theorem of dependency on the initial
conditions for ODEs, Φ is C1(]0,∞[×Γi) and if we call σ(s) a parametrization of Γi, we have ∂Φ

∂s (τ, σ(s)) =

DyΦτ (σ(s)) ◦σ′(s), and the following characterization of ∂Φ
∂s (τ, σ(s)) stands : for each s, it is the solution

of the differential equation {
dZ
dτ = DG(Φ) ◦ Z
Z(0) = σ′(s)
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Using this characterization, we can derive the formula (5) for the Jacobian JΦ(τ, σ). We have JΦ(τ, σ) =
∂Φ
∂s ∧ ∂Φ

∂τ = ∂Φ
∂s ∧G(Φ), and differentiating in τ , we get

∂

∂τ
JΦ(t, σ) = DG ◦

∂Φ

∂s
∧G(Φ) +

∂Φ

∂s
∧DG ◦G(Φ)

= trace(DG)JΦ(t, σ) = div(G)JΦ(t, σ)

Hence, for all σ(s), using that JΦ(0, σ(s)) = σ′(s) ∧ G(σ(s)) = |σ′(s)|G · −→ν (σ(s)) 6= 0, we obtain the
formula

(6) JΦ(t, σ(s)) = |σ′(s)|G · −→ν (σ(s)) exp(

∫ t

0

div(G(Φ(τ, σ(s))))dτ) 6= 0

We get (5) by choosing a parametrization with velocity equal to one.

Remark 2. In the sequel, we fix this parametrization

We can then apply the global inversion theorem to conclude that Φ is a C1-diffeomorphism ]0,∞[×Γi →
Ωi.

• Globally. From the given properties of the vector field G, we can extend the flow to a neighborhood
V of Ω, and we have that it is C1(]0,∞[×V ) (see [8], XI p.305). Hence Φ, which is the restriction of this
application to ]0,∞[×Γ∗ with Γ∗ being Lipschitz, is locally Lipschitz. Remark here that it is not globally
Lipschitz since ∂

∂σ Φτ (σ) can blow up when τ goes to infinity, due to the singularity at X∗.
To show that Φ−1 is also locally Lipschitz on Ω we consider some compact set K ⊂ Ω and show

that Φ−1 is Lipschitz on K. We define Ki = Ωi ∩ K, and K̃i := Φ−1(Ki) ⊂]0,∞[×Γi. Now since Φ

is the restriction of a globally C1 application, we have Φ ∈ C1(K̃i), meaning that its differential DΦ is

continuous until the boundary of K̃i. Moreover using the formula (6), we see that the value of DΦ on ∂K̃i

is invertible since we avoid the singularity X∗. Hence, using the continuity of the inverse application we
obtain that DΦ−1 = (DΦ)−1 is continuous on Ki. Thus Φ−1 ∈ C1(Ki) and so it is Lipschitz on each Ki.
As the global continuity of Φ−1 on Ω is deduced from the continuity on Ω of X 7→ τ(X), it is Lipschitz
on K.

2.2 A renewal equation for the density of metastasis

Starting from the velocity field G of the previous subsection for one given tumor, we now derive a
renewal equation for the density ρ(t, x, θ) of metastasis at time t, size (= number of cells) x and so
called ”angiogenic capacity” θ. The term density for ρ means that the number of metastasis at time
t in an infinitesimal volume centered in (x, θ) and of size dxdθ is ρ(t, x, θ)dxdθ. We assume that each
metastasis evolves in the space (x, θ) with the velocity G(x, θ). Expressing the conservation of the number
of metastasis, we obtain

(7) ∂tρ+ div(ρG) = 0.

The metastasis cannot have size nor angiogenic capacity bigger than the parameter b, and we assume
them to have size and angiogenic capacity bigger than 1. We are thus driven to consider the transport
equation (7) in the square Ω = (1, b) × (1, b). The field G pointing inward all along the boundary, we
need now to precise the boundary condition on Γ.

Metastasis do not only grow in size and angiogenic capacity, they are also able to emit new metastases.
We denote by β(x, θ, σ) the birth rate of new metastasis with size and angiogenic capacity σ ∈ Γ by
metastasis of size x and angiogenic capacity θ, and by f(t, σ) the term corresponding to metastasis
produced by the primary tumor. Expressing the equality between the entering flux of metastasis and the
number of new born, we derive the following boundary condition on Γ :

−G · −→ν (σ)ρ(t, σ) =

∫

Ω

β(x, θ, σ)ρ(t, x, θ)dxdθ + f(t, σ)

5



We then assume that there is no coupling between (x, θ) and σ in the expression of β, which is traduced
by an expression of β as β(x, θ, σ) = N(σ)β(x, θ). Now let Q :=]0,+∞[×Ω, Σ :=]0,+∞[×Γ. The
equation is





∂tρ+ div(Gρ) = 0 ∀ (t, x, θ) ∈ Q
−G · −→ν ρ(t, σ) = N(σ)

∫
Ω
β(x, θ)ρ(t, x, θ)dxdθ + f(t, σ) ∀ (t, σ) ∈ Σ

ρ(0, x, θ) = ρ0(x, θ) ∀ (x, θ) ∈ Ω
(8)

We will do the following assumptions on the data :

β ∈ L∞, β ≥ 0 a.e., N ∈Lip(Γ) with compact support in Γ∗, N ≥ 0,

∫

Γ

N = 1

G given by (2) and (3)(9)

Remark 3. In practice, the new metastasis only appear with size 1 and there should not exist metastasis
on Γ2,3,4, thus in the biological model we have supp(N) ⊂ Γ1. The expression of β we use in the
biological applications is β(x, θ) = mxα with m and α two positive parameters traducing respectively
the aggressiveness of the cancer and the spatial organization of the vasculature. The source term f has
the following expression in biological applications : f(t, σ) = N(σ)β(Xp(t)) with Xp(t) representing the
primary tumor and being solution of the system (4).

Definition 2.1 (Weak solution). Let ρ0 ∈ L1(Ω) and f ∈ L1(]0,∞[×Γ). We call weak solution of
the equation (8) any function ρ ∈ C([0,∞[;L1(Ω)) which verifies: for every T > 0 and every function

φ ∈ C1
c ([0,+∞[×Ω

∗
)

∫ T

0

∫

Ω

ρ[∂tφ+G · ∇φ]dtdxdθ +

∫

Ω

ρ0(x, θ)φ(0, x, θ)dxdθ(10)

−

∫

Ω

ρ(T, x, θ)φ(T, x, θ)dxdθ −

∫ T

0

∫

Γ

N(σ)

(∫

Ω

β(x, θ)ρ(t, x, θ)dxdθ

)
φ(t, σ)dσdt = 0

Analyzing the equation (8) indicates that the solution is the sum of two terms : an homogeneous one
associated to the initial condition, which solves the equation without the source term f (which we will
refer to as the homogeneous equation)





∂tρ+ div(Gρ) = 0 ∀ (t, x, θ) ∈ Q
−G · −→ν ρ(t, σ) = N(σ)

∫
Ω βρ(t)dxdθ ∀ (t, σ) ∈ Σ

ρ(0, x, θ) = ρ0(x, θ) ∀ (x, θ) ∈ Ω
(11)

and a non-homogeneous term associated to the contribution of the source term f(t, σ) and solution to
the equation (which will be refered as the non-homogeneous equation)





∂tρ+ div(Gρ) = 0 ∀ (t, x, θ) ∈ Q
−G · −→ν ρ(t, σ) = N(σ)

∫
Ω βρ(t)dxdθ + f(t, σ) ∀ (t, σ) ∈ Σ

ρ(0, x, θ) = 0 ∀ (x, θ) ∈ Ω
(12)

For existence and uniqueness of solutions, we will deal with the homogeneous problem using the semigroup
theory and with the non-homogeneous one via a fixed point argument.

2.3 Semigroup formulation for the homogeneous problem

We reformulate (11) as a Cauchy problem

{
∂tρ(t) = Aρ(t)
ρ(0) = ρ0(13)

6



We introduce the following space:

Wdiv(Ω) = {V ∈ L1(Ω)| div(GV ) ∈ L1(Ω)},

and the following operator
A : D(A) ⊂ L1(Ω) → L1(Ω)

V 7→ −div(GV )
,

where

(14) D(A) = {V ∈ Wdiv(Ω); −G.−→ν · γ(V )(σ) = N(σ)

∫

Ω

β(x, θ)V (x, θ)dxdθ, ∀σ ∈ Γ}

We refer to the appendix for a short study of the space Wdiv(Ω), in particular the definition of the
application γ(V ) as the trace application.

There are three definitions of solutions : the classical (or regular) solutions, the mild solutions ([15]
II.6, p.145) and the distributional solutions (2.1 with the source term f = 0), the second and third ones
being two a priori different types of weak solutions. The following proposition proves that the weak and
mild solutions are the same ones.

Proposition 2.2. Let ρ ∈ C([0,∞[;L1(Ω)), then

(ρ is a mild solution of (11)) ⇔ (ρ is a weak solution of (11))

Proof. •First implication ⇒ : It comes from the fact that mild solutions are limit of classical ones which
are weak solutions in the sense of definition 2.1, by passing to the limit in the identity (10).
•Second implication ⇐ : Let ρ ∈ C([0,∞[;L1(Ω)) be a weak solution in the sense of definition 2.1 with

f = 0. Define the function R(t) =
∫ t

0 ρ(s)ds. We verify now that R(t) ∈ Wdiv(Ω) by using the definition.
Fix t ≥ 0 and a function φ ∈ C1

c (Ω). Using the function φ(t, x, θ) ≡ φ(x, θ) in (10), we have

∫

Ω

∫ t

0

ρ(s)ds(G · ∇φ)dxdθ = −

∫

Ω

ρ0(x, θ)φ(x, θ)dxdθ +

∫

Ω

ρ(t, x, θ)φ(x, θ)dxdθ

Therefore R(t) ∈ Wdiv(Ω) and ρ(t) = A
∫ t

0
ρ(s)ds+ ρ0.

We now prove the boundary condition part contained in order to have R(t) ∈ D(A). Let φ(σ) be

a continuous function on Γ, with compact support in Γ∗. We can extend it to a function of Cc(Ω
∗
),

still denoted by φ, by following the characteristics and truncating, namely : φ(Φτ (σ)) = φ(σ)ζ(τ), τ ∈
[0,+∞[, σ ∈ Γ with ζ(τ) being any regular function with compact support in [0,+∞[ such that ζ(0) = 1.

Now, using the density of C1
c (Ω

∗
) in Cc(Ω

∗
), choose a family φǫ ∈ C1

c (Ω
∗
) such that φǫ

L∞

−−→ φ. For each
ǫ, using the remark following the definition of weak solutions with the test function φǫ(t, x, θ) ≡ φǫ(x, θ),
we have for every t ≥ 0

∫

Ω

R(t)G · ∇φǫ +

∫

Ω

ρ0(x, θ)φǫ(x, θ)dxdθ−

∫

Ω

ρ(t, x, θ)φǫ(t, x, θ)dxdθ =

∫

Γ

N(σ)φǫ(σ)dσ

∫

Ω

β(x, θ)R(t)dxdθ

As R(t) ∈ Wdiv(Ω), and −div(GR) = ρ− ρ0 by passing to the limit in ǫ, we obtain

∫

Γ

γ(R(t))G · −→ν φ =

∫

Γ

Nφ

∫

Ω

βR, ∀t ≥ 0

This identity being true for any function φ ∈ Cc(Γ
∗), we have the required boundary condition on R(t).

This ends the proof.

7



3 Properties of the operator

We first remark that (A,D(A)) is closed, by classical considerations and the continuity of the trace
application (prop.A.1).

3.1 Density of D(A) in L1(Ω) and adjoint (A∗, D(A∗)) of the operator

Proposition 3.1. The space D(A) is dense in L1(Ω)

Proof. The proof follows the one done in [2] in dimension 1, although some technical difficulties appear
in dimension 2. Since C1

c (Ω) is dense in L1(Ω), it is sufficient to approximate any function f ∈ C1
c (Ω) by

functions of D(A), for the L1 norm. Thus let f ∈ C1
c (Ω) be a fixed function. Let Σ ⊂⊂ Γ∗ = Γ\(b, b) be

the support of N(σ) and for each n ∈ N let Vn be an open neighborhood of Σ such that mes(Vn) → 0,
and (b, b) /∈ Vn. There exists a function φn ∈ C1

c (R2) such that

φn(x, θ) =

{
1 if (x, θ) ∈ Σ
0 if (x, θ) ∈ V c

n
0 ≤ φn ≤ 1

Then, we extend the function H(σ) = N(σ)
−G·−→ν (σ)

: Γ∗ → R to a Lipschitz function H : Vn ∩ Ω → R (for

example by following the characteristics). Let

hn(x, θ) =

{
(Hφn)(x, θ) if (x, θ) ∈ Vn ∩ Ω

0 if (x, θ)Ω\Vn

It satisfies hn ∈ W 1,∞(Ω) and hn
L1

−−→ 0. Let fn = f + anhn, with

an =

∫
Ω βfdxdθ

1 −
∫

Ω
βhndxdθ

.

Since ||hn||L1(Ω) → 0 and β is in L∞, for n sufficiently large 1 − |
∫

Ω βhndxdθ| ≥ 1/2 and |an| ≤

2||β||L∞ ||f ||L1 . Then fn
L1

−−→ f and furthermore, since hn ∈ W 1,∞(Ω) ⊂ W 1,1(Ω) ⊂ Wdiv(Ω), we have
fn ∈ D(A).

We are now interested in characterizing the adjoint of the operator (A,D(A)). We will see that the first
eigenvector of (A∗, D(A∗)) plays an important role in the structure of the equation in the asymptotic
behavior (see theorem 4.1).

Proposition 3.2 (Domain and expression of A∗).

(15) D(A∗) = {U ∈ L∞; G · ∇U ∈ L∞} := W∞
div(Ω)

A∗U = G · ∇U + β

∫

Γ

U(σ)N(σ)dσ.

Proof. • The first inclusion for the domain of A∗ is a consequence of the property A.1. The second
inclusion D(A∗) ⊂ W∞

div(Ω) requires a little much of work. For a function U ∈ D(A∗), we will show that
φ 7→< U, div(Gφ) > can be extended in a continuous linear form on L1, which will allow us to conclude
using the Riesz theorem that U ∈ W∞

div. To do this, it is sufficient to show that there exists a constant
c ≥ 0 such that

(16) | < U,Aφ >D′,D | ≤ c||φ||L1 ∀φ ∈ D(Ω)

This is almost done by the definition of the domain D(A∗) except the fact that D(Ω) is not a subset of
D(A). We are driven to use the following trick. Define the space :

D0(Ω) = {φ ∈ D(Ω);

∫

Ω

βφ = 0}
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which is a subspace of D(A). We will project a given function in D(Ω) on D0(Ω). Let φ1 ∈ D(Ω) be a

fixed function such that

∫

Ω

βφ1 = 1. Then

φ = φ−

(∫
βφ

)
φ1

︸ ︷︷ ︸
∈D0(Ω)⊂D(A)

+

(∫
βφ

)
φ1

︸ ︷︷ ︸
∈Rφ1

.

So eventually, denoting as c1 the constant given by the belonging of U to D(A∗)

| < U,Aφ >D′,D | = | < U,A(φ−

(∫
βφ

)
φ1) > + < U,

(∫
βφ

)
Aφ1 > |

≤ (c1 + c1||β||L∞ ||φ1||L1 + ||β||L∞ ||U ||L∞ ||Aφ1||L1)||φ||L1

which shows (16) and thus yields the result.

3.2 Spectral properties and dissipativity

In order to have a candidate for a stable asymptotic distribution of the solutions of our equation, we are
interested in the stationary eigenvalue problem :





(λ, V,Ψ) ∈ R
∗
+ ×D(A) ×D(A∗)

AV = λV, A∗Ψ = λΨ∫
Ω
VΨdxdθ = 1, Ψ ≥ 0,

∫
Γ
NΨdσ = 1

(17)

Proposition 3.3. [Existence of solutions to the eigenproblem] Under the assumption

(18)

∫ ∞

0

∫

Γ

β(Φτ (σ))N(σ)dτdσ > 1,

there exists a unique solution (λ0, V,Ψ) to the eigenproblem (17). Moreover, we have the following
spectral equation on λ0 :

(19)

∫ +∞

0

∫

Γ

β(Φτ (σ))N(σ)e−λ0τdτdσ = 1

The direct eienvector is given by

V (Φτ (σ)) = Cλ0
N(σ)e−λ0τ |JΦ|−1, ∀τ > 0, a.e σ ∈ Γ

where Cλ0
is a positive constant and |JΦ| is the jacobian of Φ from section 2.1. The adjoint eigenvector

Ψ is given by :

(20) Ψ(Φτ (σ)) = eλ0τ

∫ ∞

τ

β(Φs(σ))e−λ0sds ∀τ > 0, a.e σ ∈ Γ.

Hence we have
infβ

λ0
≤ Ψ(x, θ) ≤

supβ

λ0
∀(x, θ) ∈ Ω

Remark 4. In the model we use in practice, where β(x, θ) = mxα the condition (18) is fulfilled since∫ ∞

0

∫

Γ

β(Φτ (σ))N(σ)dτdσ = ∞, and the inequalities on Ψ write

m

λ0
≤ Ψ(x, θ) ≤

mbα

λ0
∀(x, θ) ∈ Ω
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Proof. • The direct eigenproblem.
⋄ We use the following change of variable, which consists in transforming a function of Wdiv(Ω) into a
function of W 1,1((0,+∞) ; L1(Γ)) :

Ṽ (τ, σ) = −V (Φτ (σ))|JΦ|, ∀τ ∈ [0,+∞[, σ ∈ Γ

where we recall that |JΦ| = −G · −→ν (σ)e

∫
τ

0
div(G(Φs(σ)))ds

is the jacobian of the application Φ : (τ, σ) 7→
Φτ (σ) (see section 2.1).

Rewriting the problem on Ṽ and denoting β̃(τ, σ) = β(Φτ (σ)), we get

{
∂τ Ṽ + λṼ = 0

Ṽ (0, σ) = N(σ)
∫
β̃Ṽ dτdσ′

(21)

Direct computations show that Problem 21 has a solution if

(22) 1 =

∫ ∞

0

∫

Γ

N(σ)β̃(τ, σ)e−λτdσdτ

and conversely, if λ0 is a solution of the equation (22), we get solutions to the problem (21) given by

(23) Ṽ (τ, σ) = Cλ0
N(σ)e−λ0τ

and we can then fix the constant Cλ0
> 0 in order to have the normalization condition 1 =

∫
Ω
VΨdxdθ

with Ψ the dual eigenvector defined below.
⋄ We now prove that there exists a unique solution to equation (22) under the hypothesis (18). Indeed,
let us define the function F : R → R by

(24) F (λ) =

∫ ∞

0

(∫

Γ

N(σ)β̃(τ, σ)

)
e−λτdσdτ

It is the Laplace transform of the function τ 7→
∫

Γ N(σ)β̃(τ, σ)dσ. The condition (18) means that
F (0) > 1 and F being strictly decreasing on R and continue on ]0,+∞[, the equation (22) has a unique
solution in R, λ0 ∈]0,+∞[.

⋄ From (23), we obtain that Ṽ ∈ W 1,1((0,+∞) ; L1(Γ)). Using theorem A.1 from the appendix, we
deduce that V ∈ Wdiv(Ω).

Remark 5. Here the theorem A.1 takes its interest since it is not completely obvious that the composition
of Ṽ by Φ−1 would give a function in Wdiv(Ω), due to the fact that the change of variable Φ (and Φ−1)
is not globally Lipschitz.

• The adjoint eigenproblem.
⋄ Expression of Ψ. Using the expression of the adjoint operator (A∗, D(A∗)) from the proposition 3.2,
the adjoint spectral problem reads, along the characteristics : find Ψ ∈ W∞

div(Ω) such that

(25) ∂τ Ψ(Φτ (σ)) = λ0Ψ(Φτ (σ)) − β(Φτ (σ))

∫

Γ

Ψ(σ′)N(σ′)dσ′

from which we get, for each function Ψ(σ) defined on the boundary, a solution to the equation given by

(26) Ψ(Φτ (σ)) = Ψ(σ)eλ0τ −

∫

Γ

Ψ(σ′)N(σ′)dσ′

∫ τ

0

β(Φs(σ))eλ0(τ−s)

⋄ Non-negative solution. To get a non-negative solution we are driven to the following condition

Ψ(σ) ≥

∫

Γ

Ψ(σ′)N(σ′)dσ′

∫ ∞

0

β(Φs(σ))e−λ0sds, a.e σ ∈ Γ
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Now, if the inequality is strict, multiplying byN(σ) and integrating on Γ gives 1 >
∫

Γ

∫ ∞

0
β(Φs(σ))e−λ0sdsdσ

which belies the spectral equation (22). We are thus driven to choose

(27) Ψ(σ) =

∫

Γ

Ψ(σ′)N(σ′)dσ′

∫ ∞

0

β(Φs(σ))e−λ0sds, ∀σ ∈ Γ

Defining g(σ) =
∫ ∞

0 β(Φs(σ))e−λ0sds, this means that Ψ(σ) is in the vector space generated by g. Then
it remains to have the suitable normalization constant. Remembering the spectral equation (22) verified
by λ0 shows that the function Ψ(σ) = g(σ) is appropriate. We finally get (20) from (26), which gives

Ψ ∈ L∞ and ||Ψ||L∞ ≤ ||β||L∞

λ0
.

⋄ Regularity of Ψ. Using the equation (25) verified by Ψ we get ∂τ Ψ(Φτ (σ)) ∈ L∞ and so using the
conjugation theorem of W∞

div(Ω) and W 1,∞((0,∞) ; L∞(Γ)) (theorem A.1), we have Ψ ∈ W∞
div(Ω).

Using the change of variables Ṽ (τ, σ) = V (Φτ (σ))|JΦ|, the theorem A.1 and the proposition A.1, we can
follow the methods of the one-dimensional case done in [3, 2] thanks to the decoupling of β(x, θ, σ) in
N(σ) × β(x, θ), to obtain the following proposition.

Proposition 3.4. (i) For Re(λ) > λ0, we have Im(λI −A) = L1(Ω).
(ii) The operator (A− ωI,D(A)) is dissipative for every ω ≥ ||β||L∞(Ω).

Applying the Lumer-Philips theorem, we obtain

Corollary 3.1. Under the assumptions (9) the operator (A,D(A)) generates a semigroup on L1(Ω)
denoted by etA and we have

|||etA||| ≤ et||β||L∞

4 Existence and asymptotic behavior

4.1 Well-posedness of the equation

4.1.1 Existence for the non-homogeneous problem

Proposition 4.1.

(i) Let f ∈ L1(]0,∞[;L1(Γ)) and assume (9). There exists a unique solution of the non-homogeneous
problem (12), denoted by T f and we have

T f ∈ C([0,∞[;L1(Ω))

(ii) If f ∈ C1([0,∞[;L1(Γ)) and f(0) = 0 then

T f ∈ C1([0,∞[;L1(Ω)) ∩ C([0,∞[;Wdiv(Ω))

Moreover, we have the positivity property

(f ≥ 0) ⇒ (T f ≥ 0)

Proof. The proof is based on a fixed point argument. It is divided in three steps : first we prove the point
(ii) using the Banach fixed point theorem, then thanks to an estimate in C([0,∞[, L1(Ω)) we construct
the weak solutions as limits of regular solutions, and finally we prove uniqueness.
• Step 1. ⋄ As usual now, we first simplify the problem using the conjugation theorem (theorem A.1).

We use the change of variable ρ̃ = ρ(Φτ (σ))|JΦ| and still denoting ρ for ρ̃ and β for β̃ = β(Φτ (σ)), we
consider the following non-homogeneous problem with nonzero initial condition





∂tρ+ ∂τρ = 0
ρ(t, σ) = N(σ)

∫
βw + f(t, σ)

ρ(0) = ρ0
(28)
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Let ρ0 ∈ D(A) and f ∈ C1([0,∞[;L1(Γ)) with f(0) = 0. For T > 0 we define the space

XT = {w ∈ C1([0, T ];L1(]0,∞[;L1(Γ)); w(0, ·) = ρ0}

It is a complete metric space. To w ∈ XT we associate the solution ρ of the equation (28), namely

ρ(t, τ, σ) =

{
N(σ)

∫ ∞

0

∫

Γ

βw(t − τ, τ ′, σ′)dτ ′dσ′ + f(t− τ, σ)

}

︸ ︷︷ ︸
:=H(t−τ,σ)

1t>τ + ρ0(τ − t, σ)1t<τ

and define the linear operator Tρ0,f by Tρ0,fw := ρ. Note here that w ≥ 0 implies ρ ≥ 0 if ρ0 ≥ 0 and
f ≥ 0, and that H ∈ C1([0, T ];L1(Γ)).
⋄ Regularity of ρ. We now show that ρ ∈ XT and that ρ ∈ C([0, T ];W 1,1((0,+∞) ; L1(Γ))). Indeed we
have

(29) ρ(t, τ, σ)1t>τ = H(t− τ, σ)1t>τ , ρ(t, τ, σ)1t<τ = ρ0(τ − t, σ)1t<τ .

From these expressions we get that ρ ∈ C([0, T ];L1(]0,∞[;L1(Γ))) since the two functions H and ρ0 are
in L1.

Moreover, H(0, σ) = N(σ)
∫
βρ0 = ρ0(0) from the compatibility conditions contained in the facts that

w ∈ XT , f(0) = 0 and ρ0 ∈ D(A). This allows to conclude that ρ(t, · ) ∈ C([0,∞[;L1(Γ)). Further-
more, from the expressions (29), we see that for each t ρ(t, ·) ∈ W 1,1((0, t), L1(Γ)) ∩W 1,1((t,∞), L1(Γ))
since ρ0 ∈ D(A) and H ∈ C1([0, T ];L1(Γ)). Combining this with the continuity in τ gives ρ(t, ·) ∈
W 1,1((0,+∞) ; L1(Γ)). Finally from the expression of ∂τρ obtained differentiating in τ the expressions
(29) we get ρ ∈ C([0, T ],W 1,1((0,+∞) ; L1(Γ))).

It remains to show that ρ ∈ C1([0, T ];L1(]0,∞[;L1(Γ))). For the sake of simplicity we forget the
dependency on σ. We define for almost every t and τ

∂tρ(t, τ) := ∂tH(t− τ)1t>τ − ∂tρ
0(τ − t)1t<τ

Now we compute

1

h
||ρ(t+ h) − ρ(t) − h∂tρ(t)||L1([0,∞[) =

1

h
||H(t+ h− ·) −H(t− ·) − h∂tH(t− ·)||L1([0,t[)

+
1

h
||H(t+ h− ·) − ρ0(· − t) − h∂tρ

0(τ − t)||L1(]t,t+h[)

︸ ︷︷ ︸
A

+
1

h
||ρ0(· − t− h) − ρ0(· − t) − h∂tρ

0(· − t)||L1([t+h,∞[)

The first and the last terms go to zero when h tends to zero since H is in C1([0, T ];L1(]0,∞[)) and ρ0 is
in D(A). To deal with the last term A, we write

A ≤
1

h

∫ t+h

t

|H(t+ h− τ) − ρ0(τ − t)|dτ +

∫ t+h

t

∂tρ
0(τ − t)dτ

The first term goes to zero because of the compatibility condition H(0) = ρ0(0) and also the last one
because ∂tρ

0 ∈ L1. We can then conclude ρ ∈ C1([0, T ];L1(]0,∞[)).
⋄ The previous considerations show that the operator Tρ0,f has values in XT . Now, if w1 and w2 are in
XT we compute

||Tρ0,fw1 − Tρ0,fw2||XT
≤ T ||β||L∞ ||w1 − w2||XT

Using a bootstrap argument we prove the existence of a solution on [0,∞[ and transporting the regularity
facts back to Ω by using the conjugation theorem A.1 ends the point (ii).
• Step 2. Denote by T f the fixed point of the operator T0,f , defined up to now only when f is regular
and satisfies the compatibility condition f(0) = 0, one has
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Lemma 4.1. Let f ∈ C1([0,∞[;L1(Γ)) with f(0) = 0 and T f be the solution of the equation (28) with
a zero initial condition. Then for all T > 0

||T f ||C([0,T ];L1(Ω)) ≤ eT ||β||∞

∫ T

0

|f(s)|e−||β||∞sds

Proof. The solution T f = ρ being regular, the function |ρ| also verifies the equation and integrating on
Ω yields

d

dt

∫

Ω

|ρ|(t)dτdσ = |

∫

Ω

βρ(t)dxdθ +

∫

Γ

f(t, σ)dσ| ≤ ||β||∞

∫

Ω

|ρ|(t)dxdθ +

∫

Γ

|f(t, σ)|dσ

and a Gronwall lemma gives the result.

Now by a density argument and using the previous lemma, we can construct a solution T f ∈ C([0,∞[;L1(Ω))
when f ∈ L1(]0,∞[;L1(Γ)). This solution can be constructed non-negative whenever f is non-negative
itself.
• Step 3. It remains to show the uniqueness of the solution. If ρ1 and ρ2 are two solutions of the non-
homogeneous equation (28), then ρ1 − ρ2 is a weak solution of the homogeneous equation (11) with zero
initial condition. From the proposition 2.2 the weak solutions in the sense of the distributions are the
same than the mild solutions and thus ρ1 − ρ2 is a mild solution of the homogeneous equation and hence
is zero by uniqueness of the mild solutions

4.1.2 Existence for the global problem

Theorem 4.1 (Existence and uniqueness).
• Let ρ0 ∈ L1(Ω) and f ∈ L1(]0,∞[×Γ), and assume (9). There exists a unique weak solution of the
equation (8), given by

ρ = etAρ0 + T f

with T f being a weak solution of the non-homogeneous equation (12).
• If ρ0 ∈ D(A) and f ∈ C1([0,∞[;L1(Γ)) and verifies f(0) = 0, then we have

ρ ∈ C1([0,∞[;L1(Ω)) ∩ C([0,∞[;Wdiv(Ω))

4.2 Properties of the solutions and asymptotic behavior

In the next proposition, we prove some useful properties of the solutions, which appear in the L1
Ψ norm

defined by

(30) ||f ||L1

Ψ

=

∫

Ω

|f |Ψdxdθ,

with Ψ the dual eigenvector from proposition 3.3. We should notice that when β ∈ L∞ and β ≥ δ > 0,
by the inequalities from proposition 3.3, the L1

Ψ norm is equivalent to the L1 norm. Hence the solutions
have finite L1

Ψ norm. The main idea in the proof of the following proposition is to use various entropies
in the space L1

Ψ, and is based on ideas from [20] and [19]

Proposition 4.2. Let ρ0 ∈ L1(Ω) and ρ the solution of the equation (8). The following properties hold :

(i)

(31)

∫

Ω

|ρ(t)|Ψ ≤ eλ0t

{∫

Ω

|ρ0|Ψ +

∫ t

0

∫

Γ

Ψ(σ)e−λ0s|f |(s, σ)dσds

}
, ∀t ≥ 0
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(ii) (Evolution of the mean-value in L1
Ψ)

∫

Ω

ρ(t)Ψ = eλ0t

{∫

Ω

ρ0Ψ +

∫ t

0

∫

Γ

Ψ(σ)e−λ0sf(s, σ)dσds

}
, ∀t ≥ 0

(iii) (Comparison principle) If f ≥ 0

ρ0
1 ≤ ρ0

2 ⇒ ρ1(t) ≤ ρ2(t) ∀t ≥ 0

Proof. Each time we aim to prove something on weak solutions, we will start proving it for classical
solutions and then use the density of D(A) to conclude. So, let do the calculations with a strong solution
ρ associated to an initial condition ρ0 in D(A) and a function f ∈ C1(]0,∞[;L1(Γ)) with f(0) = 0, for
which the calculations can be justified. We first remark that the dual eigenvector Ψ which belongs to
W∞

div(Ω) verifies the following equation :

(32) G · ∇Ψ − λ0Ψ = −β

since by the construction of Ψ and the spectral equation
∫

Γ Ψ(σ)N(σ)dσ = 1. Defining ρ̃(t, x, θ) =

e−λ0tρ(t, x, θ) we have the following equation on ρ̃ :

(33) ∂tρ̃+ div(Gρ̃) + λ0ρ̃ = 0,

with the same initial condition as for ρ and a suitable boundary condition. Using that ρ̃ ∈ Wdiv(Ω),
Ψ ∈ W∞

div(Ω) and the proposition A.2, we obtain the following equation on ρ̃Ψ :

(34) ∂t(ρ̃Ψ) + div(Gρ̃Ψ) = −βρ̃

(i) Let us first state the following lemma.

Lemma 4.2. Let ρ0 ∈ L1(Ω) and ρ be the associated weak solution of the equation (8). Then the function
|ρ| solves the same equation, with suitable initial and boundary conditions.

Proof. For a regular solution of the equation ρ associated to a regular initial condition ρ0 ∈ D(A) and a
regular data f , we can use the proposition A.2 with the function H(·) = | · | to have that |ρ(t)| ∈ Wdiv(Ω)
and

div(G|ρ|) = sgn(ρ)G · ∇ρ+ |ρ|div(G)

Since ρ is regular in time, by multiplying the equation by sgn(ρ) we get the result. For a solution
ρ(t) ∈ L1(Ω) we obtain the result by density of the strong solutions.

Thanks to this lemma we have the equation (34) written on |ρ̃|, from which we get, integrating in (x, θ),
that

d

dt

∫

Ω

|ρ̃|Ψdxdθ = −

∫

Γ

γ(|ρ̃|)ΨG · −→ν dσ −

∫

Ω

β(x, θ)|ρ̃(t, x, θ)|dxdθ

=

∫

Γ

Ψ(σ)

∣∣∣∣N(σ)

∫

Ω

β(x, θ)ρ̃(t, x, θ)dxdθ + e−λ0tf(t, σ)

∣∣∣∣ −

∫

Ω

β(x, θ)|ρ̃|(t, x, θ)|dxdθ

≤

∫

Γ

|f(t, σ)|Ψ(σ)

and thus deduce the first property by integrating in time. To deal with weak solutions we again use the
density of regular solutions.
(ii) To obtain the evolution of the mean value, we integrate in space and use again a density argument.
(iii) Writing the solution of the global problem as ρ = etAρ0 + T f , we only have to prove the positivity
for the homogeneous part since the positivity of the non-homogeneous one has been established in the
proposition 4.1. It can be proved in the same way as the first point but using the negative part function
instead of the absolute value.
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Proposition 4.3 (Asymptotic behavior). Assume that
∫ ∞

0

∫

Γ

β(Φτ (σ))N(σ)dτdσ > 1,

and that there exists µ > 0 such that β − µΨ ≥ 0. Let ρ0 ∈ L1(Ω), f ∈ L1(]0,∞[×Γ), ρ the associated
solution to the global problem and (λ0, V,Ψ) ∈ R

∗
+ ×D(A) ×D(A∗) be solutions to the direct and adjoint

eigenproblems. We have :

||ρ(t)e−λ0t −m(t)V ||L1

Ψ

≤ e−µt

{
||ρ0 −m0V ||L1

Ψ

+ 2

∫ t

0

e−(λ0−µ)s

∫

Γ

|f |(s, σ)Ψ(σ)ds

}
,

where ||f ||L1

Ψ

=

∫

Ω

|f |Ψ, and m(t) =

∫

Ω

ρ(t)Ψ =

∫

Ω

ρ0Ψ +

∫ t

0

e−λ0s

∫

Γ

f(s, σ)Ψ(σ)dσds.

Remark 6. Notice that choosing µ < λ0 gives the convergence of the integral
∫ ∞

0
e−(λ0−µ)s

∫
Γ

|f |(s, σ)Ψ(σ)ds
and thus the convergence to zero of the right hand side of the inequality.

Remark 7. The hypothesis of the theorem are fulfilled in the case of biological applications where
β(x, θ) = mxα, because we have then β ≥ m > 0 and Ψ ∈ L∞.

Proof. Again we start with a regular solution ρ(t, x, θ). We then follow the calculation done in [20] III.7
pp.66-67, adapting the method to take into account the contribution of the source term. Define the
function

h(t, x, θ) = ρ(t, x, θ)e−λ0t −m(t)V

which satisfies
∫

Ω h(t)Ψ = 0 for all non-negative t, by the property of evolution of the mean value and
since

∫
Ω
VΨ = 1. As the direct eigenvector V solves the equation (33), h solves the equation

∂th+ div(hG) + λ0h = −e−λ0tFV

where F (t) :=

∫

Γ

f(t, σ)Ψ(σ). Multiplying the equation by the function sgn(h) gives the following

equation on |h|
∂t|h| + div(|h|G) + λ0|h| = −e−λ0tFV sgn(h)

Multiplying this equation by Ψ, the equation on Ψ by |h| and then summing the both gives

∂t(|h|Ψ) + div(G|h|Ψ) = −β|h| − e−λ0tFVΨsgn(h)

Now integrating in (x, θ) yields :

d

dt

∫

Ω

|h|Ψdxdθ =

∫

Γ

Ψ(σ)

∣∣∣∣N(σ)

∫

Ω

βhdxdθ + e−λ0tf(t, σ)

∣∣∣∣ dσ −

∫

Ω

β|h|dxdθ

− e−λ0tF

∫

Ω

VΨsgn(h)dxdθ

Now we use that ∣∣∣∣N(σ)

∫

Ω

βhdxdθ + e−λ0tf(t, σ)

∣∣∣∣ =

(
N(σ)

∫

Ω

βhdxdθ

)
sgn(h(σ))+

(
e−λ0tf(t, σ)

)
sgn(h(σ))

to obtain

d

dt

∫

Ω

|h|Ψdxdθ =

∫

Γ

Ψ(σ)N(σ)sgn(h(σ))dσ

∣∣∣∣
∫

Ω

βhdxdθ

∣∣∣∣ −

∫

Ω

β|h|dxdθ

︸ ︷︷ ︸
A

+

∫

Γ

e−λ0tf(t, σ)sgn(h(σ))Ψ(σ)dσ − e−λ0tF

∫

Ω

VΨsgn(h)dxdθ

︸ ︷︷ ︸
B
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• We first deal with the term A. Using that
∫

Ω
hΨ = 0 and remembering that

∫
Γ
NΨ = 1 we compute

A ≤

∣∣∣∣
∫

Ω

βhdxdθ − µ

∫

Ω

Ψhdxdθ

∣∣∣∣ −

∫

Ω

β|h|dxdθ ≤

∫

Ω

(β − µΨ)|h|dxdθ −

∫

Ω

β|h|dxdθ

≤ −µ

∫

Ω

Ψ|h|dxdθ

where we used that β − µΨ ≥ 0.

• A direct majoration, the positivity of the eigenvectors V and Ψ and the fact that

∫

Ω

VΨ = 1 gives,

denoting F (t) :=

∫

Γ

|f(t, σ)|Ψ(σ), that B ≤ 2e−λ0tF (t)

• A Gronwall lemma finally gives

∫

Ω

|h(t)|Ψ ≤ e−µt

{∫

Ω

|h(0)|Ψ + 2

∫ t

0

e−(λ0−µ)sF (s)ds

}

which is the required result. For an initial data in L1(Ω), remark that it is possible to pass to the limit
in the previous expression.

5 Conclusion and perspectives

In the present paper, we achieved the first step of our program consisting in elaborating and applying
a model of metastatic growth including the tumoral angiogenesis process : the mathematical analysis
of the direct problem. To do this, we used semigroup techniques and also the characteristics in order
to study the natural regularity of the solutions to our equation, which led us to a short study of the
space Wdiv(Ω). This theoretical study brings to light the quantity λ0 as characterizing the asymptotic
growth of the metastatic process. This parameter has biological relevance and finding the best way of
controlling its value by means of antiangiogenic drugs can be of great interest. The crucial problem is now
the identification of the parameters of the model from biological data, in order to predict the optimized
administration protocol for antiangiogenic drugs.

To achieve this, we need to perform efficient numerical simulations of the equation. Due to the large
disproportion of the boundary condition and the solution itself, as well as the size of the domain (typically
b = 1011 for humans) and the behavior of the characteristics attached to the velocity field G (see figure
1), performing good simulations of the equation is not an easy task. In particular, classical upwind
schemes are not efficient. We are currently working on a characteristic scheme which follows the one
used in [3]. We will then include the anti-angiogenic treatment in the equation, which mathematically
means transforming G in a non-autonomous vector field. We will also address the inverse problem and
the parameter identification. Our model has the good property that it has a small number of parameters.
So we hope that it can be used efficiently to make predictions. We want to study mathematically the
parameter identification.

A A short study of Wdiv(Ω)

Let
Ω = (1, b) × (1, b), Γ = ∂Ω

and G the vector field on Ω with components given by (2) and (3). Consider the space

Wdiv(Ω) := {V ∈ L1(Ω) | ∃g ∈ L1(Ω) s. t.

∫

Ω

V G · ∇φ = −

∫

Ω

gφ, ∀φ ∈ C1
c (Ω)}
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The function g of this definition is denoted div(GV ). We endow this space with the norm

||V ||Wdiv
= ||V ||L1 + ||div(GV )||L1

With this norm, Wdiv(Ω) is a Banach space. In the following we also denote this space by W 1
div(Ω).

Remark 8. If div(G) ∈ L∞ and V ∈ Wdiv(Ω), we can define

G · ∇V := div(GV ) − V div(G) ∈ L1(Ω)

and the space Wdiv(Ω) is also the space of L1 functions such that there exists a function g ∈ L1(Ω)
verifying ∫

Ω

V div(Gφ) = −

∫

Ω

gφ, ∀φ ∈ C1
c (Ω)

This space already appeared for the study of the boundary problem for the transport equation (see
[4, 6, 7]).

In the same way, we define the space

W∞
div(Ω) = {U ∈ L∞(Ω)| G · ∇U ∈ L∞(Ω)}

A.1 Conjugation of Wdiv(Ω) and W 1,1((0, +∞) ; L1(Γ))

For a function V ∈ L1, the fact of belonging to Wdiv(Ω) means that it is weakly derivable along the
characteristics. The next theorem makes this more precise.

Theorem A.1 (Conjugation of Wdiv(Ω) and W 1,1((0,+∞) ; L1(Γ))). Let p = 1 or ∞. The spaces
W p

div(Ω) and W 1,p((0,+∞); Lp(Γ)) are conjugated via Φ in the following sense :

V ∈ W p
div(Ω) ⇔ (V ◦ Φ)|JΦ|1/p ∈ W 1,p((0,+∞); Lp(Γ))

Moreover, for V ∈ W p
div(Ω) we have almost everywhere

∂τ (V ◦ Φ|JΦ|1/p) =

{
(div(GV ) ◦ Φ)|JΦ| if p = 1

(G · ∇V ) ◦ Φ if p = ∞

and the application
W p

div(Ω) → W 1,p((0,+∞); Lp(Γ))

V 7→ V ◦ Φ|JΦ|1/p

is an isometry.

Remark 9.

• In particular, we deduce from the theorem applied to the function V = 1 that |JΦ| ∈ W 1,1((0,+∞) ; L1(Γ))
and we recognize the well known formula

∂τ |JΦ| = div(G)|JΦ|, a.e

• Since by proposition 2.1, we have |JΦ|−1 ∈ W 1,∞
loc (]0,∞[×Γ∗) we deduce that

V (Φτ (σ)) = V (Φτ (σ))|JΦ| × |JΦ|−1 ∈ W 1,1
loc (]0,∞[ ; L1

loc(Γ∗))

with
∂τV (Φτ (σ)) = G · ∇U(Φτ (σ))
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Proof. We first show the theorem on W 1
div(Ω) and then for W∞

div(Ω)

• We prove now (V ∈ Wdiv(Ω)) ⇒ (Ṽ := (V ◦ Φ)|JΦ| ∈ W 1,1((0,+∞) ; L1(Γ))). Let V ∈ Wdiv(Ω)

and remark that Ṽ ∈ L1(]0,∞[×Γ) since |JΦ| is the Jacobian of the change of variable between Ω and
]0,∞[×Γ∗. Then, using the definition of W 1,1((0,+∞) ; L1(Γ)) we have to prove that there exists a

function g ∈ L1(]0,∞[×Γ) such that for every function ψ̃ ∈ C∞
c (]0,∞[)

∫ ∞

0

Ṽ (τ, σ)ψ̃′(τ)dτ = −

∫ ∞

0

g(τ, σ)ψ̃(τ)dτ, a.e. σ ∈ Γ.

As we aim to use the change of variable Φ which lives in ]0,∞[×Γ, we will rather prove that for every
function ζ ∈ Lip(Γ) (the Lipschitz functions on Γ)

∫

Γ

{∫ ∞

0

Ṽ (τ, σ)ψ̃′(τ)dτ

}
ζ(σ)dσ =(35)

∫

Γ

{
−

∫ ∞

0

div(GV )(Φτ (σ))|JΦ|ψ̃(τ)dτ

}
ζ(σ)dσ

which is sufficient to prove the result. Let now define the function

ψ(x, θ) := ψ̃(τ(x, θ))

with τ(x, θ) the time spent in Ω defined in the section 2.1. Then ψ has compact support in Ω and
is Lipschitz as the composition of a regular function and a Lipschitz function (see prop. 2.1 for the
locally Lipschitz regularity of the function (x, θ) 7→ τ(x, θ)), thus differentiable almost everywhere and

the reverse formula ψ̃(τ) = ψ(Φτ (1, 1)) (or ψ(Φτ (σ)) for any σ ∈ Γ since the function ψ depends only on
the time spent in Ω) yields

ψ̃′(τ) = G · ∇ψ(Φτ (1, 1)), a.e. τ ∈]0,∞[

since τ 7→ Φτ (1, 1) is C1. Doing now the change of variables in the left hand side of (35) yields

(36)

∫

Γ

{∫ ∞

0

Ṽ (τ, σ)ψ̃′(τ)dτ

}
ζ(σ)dσ =

∫

Ω

V (x, θ)ζ(σ(x, θ))G · ∇ψ(x, θ)dxdθ

Still denoting ζ(x, θ) the function ζ(σ(x, θ)), we remark that this function only depends on the entrance
point σ(x, θ) and thus we have

(G · ∇ζ)(Φτ (σ)) = ∂τ (ζ(Φτ (σ))) = ∂τ (ζ(σ)) = 0, ∀τ ≥ 0, a.e σ

To pursue the calculation, we need to regularize the Lipschitz functions ζ and ψ in order to use them in
the distributional definition of div(GV ). We use the following lemma, whose proof can be found in [25],
p.60.

Lemma A.1. Let f ∈ W 1,∞(Ω) with Ω a Lipschitz domain. Then there exists a sequence fn ∈ C∞(Ω)
such that

fn
W 1,p

−−−→ f ∀ 1 ≤ p < ∞, fn → f L∞ weak − ∗, ∇fn → ∇f L∞ weak − ∗

Now let ψn → ψ and ζm → ζ as in the lemma. From the demonstration of the lemma which is done by
convolution with a mollifier, since ψ has compact support, so does ψn for n large enough. Now remark
that for each n and m

G · ∇(ψnζm) = ζmG · ∇ψn + ψnG · ∇ζm

The function ψnζm is now valid in the distributional definition of div(GV ) and we have
∫

Ω

V ζmG · ∇ψndxdθ =

∫

Ω

V G · ∇(ψnζm)dxdθ −

∫

Ω

V ψnG · ∇ζm

= −

∫

Ω

div(GV )ψnζmdxdθ −

∫

Ω

V ψnG · ∇ζmdxdθ
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Letting first n going to infinity, then m and remembering that G · ∇ζ = 0 yields
∫

Ω

V ζG · ∇ψdxdθ = −

∫

Ω

div(GV )ψζdxdθ

Now doing back the change of variables Φ−1 gives the identity (35).

• We show now the reverse implication. Let Ṽ ∈ W 1,1((0,+∞) ; L1(Γ)) and ψ ∈ C∞
c (Ω). Define

V (x, θ) := (Ṽ ◦ Φ−1)|JΦ−1 | and ψ̃(τ, σ) := ψ(Φτ (σ)). Hence ψ̃ is C1
c in the variable τ and we have

∂τ ψ̃ = (G · ∇ψ) ◦ Φ. Now

∫

Ω

V G · ∇ψdxdθ =

∫

Γ

∫ ∞

0

Ṽ (τ, σ)∂τ ψ̃(τ, σ)dτdσ = −

∫

Γ

∫ ∞

0

∂τ Ṽ ψ̃dτdσ

= −

∫

Ω

∂τ Ṽ ◦ Φ−1ψdxdθ

Hence we have proved that V ∈ Wdiv(Ω) and that div(GV ) = ∂τ Ṽ ◦ Φ−1.
• We prove now the part of the theorem on W∞

div(Ω). Let U ∈ W∞
div(Ω) ⊂ Wdiv(Ω). Then U ◦ Φ ∈

L∞(]0,∞[×Γ). Moreover, following the second point of the remark following the theorem, we have

∂τU(Φτ (σ)) = G · ∇U(Φτ (σ)) ∈ L∞(]0,∞[×Γ).

Using that for Ũ ∈ W 1,∞((0,+∞);L∞(Γ)) we have locallyG·∇U := ∂τ Ũ◦Φ−1 ∈ L∞(Ω) with U = Ũ◦Φ−1

gives the reverse implication.

A.2 Trace theorem, integration by part and calculus of functions in Wdiv(Ω)

Thanks to the theorem A.1, we can now transport the theory of vector-valued Sobolev spaces to Wdiv(Ω),
for which we refer to [12].

Proposition A.1 (Trace in Wdiv(Ω) and integration by part). Let p = 1 or ∞ and V ∈ W p
div(Ω). We

call trace of V the following function

γ(V )(σ) = (V ◦ Φ)(0, σ), ∀σ ∈ Γ

We have γ(V )G · −→ν ∈ Lp(Γ) and there exists C > 0 such that

||γ(V )G · −→ν ||Lp(Γ) ≤ C||V ||W p

div
(Ω), ∀V ∈ W p

div(Ω)

Moreover, if V ∈ Wdiv(Ω) and U ∈ W∞
div(Ω). Then

∫ ∫

Ω

Udiv(GV ) +

∫ ∫

Ω

V G · ∇U = −

∫

Γ

γ(V )γ(U)G · −→ν

Proof. It is a direct consequence of the properties of functions inW 1,1((0,+∞) ; L1(Γ)) and inW 1,∞((0,∞) ; L∞(Γ))
and the conjugation theorem A.1.

Proposition A.2.

(i) Let V ∈ Wdiv(Ω) and U ∈ W∞
div(Ω). Then UV ∈ Wdiv(Ω) and

div(GV U) = V (G · ∇U) + Udiv(GV )

(ii) Let H : R → R a Lipschitz function and V ∈ Wdiv(Ω). Then

H(V ) ∈ Wdiv(Ω)

and, almost everywhere
div(GH(V )) = H ′(V )G · ∇V +H(V )div(V )
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Proof. (i) is a consequence of the product of a function in W 1,1((0,+∞) ; L1(Γ)) and a function in
W 1,∞((0,∞) ; L∞(Γ)).
(ii) Let H and V satisfying the hypothesis. First remark that H being Lipschitz and Ω bounded,

the function H(V ) is in L1(Ω). Now define Ṽ (τ, σ) = V (Φτ (σ)). We will show that H(Ṽ )|JΦ| ∈

W 1,1((0,+∞) ; L1(Γ)), in order to apply theorem A.1. The function Ṽ is in W 1,1
loc (]0,∞[ ; L1

loc(Γ
∗)) (see

remark 9). Thus it is absolutely continuous in τ and H being Lipschitz yields H(Ṽ ) absolutely continuous.

Hence H(Ṽ ) ∈ W 1,1
loc (]0,∞[ ; L1

loc(Γ∗)). We conclude the proof by using that

∂τ (H(Ṽ )|JΦ|) = ∂τ (H(Ṽ ))|JΦ| + div(G)H(Ṽ )|JΦ|

= H ′(Ṽ )∂τ Ṽ |JΦ| + div(G)H(Ṽ )|JΦ| ∈ L1(]0,∞[×Γ)

which requires the following lemma (see [23]) to have ∂τ (H(Ṽ )) = H ′(Ṽ )∂τ Ṽ .

Lemma A.2. Let H be a Lipschitz function, I a real interval, X a Banach space and u ∈ W 1,1(I ; X).
Then H ◦ u ∈ W 1,1(I ; X), and almost everywhere

(H ◦ u)′ = H ′(u)u′
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