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GROTHENDIECK ∞-GROUPOIDS,

AND STILL ANOTHER DEFINITION OF ∞-CATEGORIES

GEORGES MALTSINIOTIS

Abstract. The aim of this paper is to present a simplified version of the
notion of ∞-groupoid developed by Grothendieck in “Pursuing Stacks” and to
introduce a definition of ∞-categories inspired by Grothendieck’s approach.

Introduction

The precise definition of Grothendieck ∞-groupoids [5, sections 1-13] has been
presented in [7]. In this paper, we give a slightly simplified version of this no-
tion, and a variant leading to a definition of (weak) ∞-categories [8], very close
to Batanin’s operadic definition [2]. The precise relationship between these two
notions is investigated by Ara in [1].

The basic intuition leading to the definition of a ∞-groupoid is presented as fol-
lows by Grothendieck (for a ∞-groupoid F , with set of i-cells Fi): “Intuitively, it
means that whenever we have two ways of associating to a finite family (ui)i∈I of
objects of an ∞-groupoid, ui ∈ Fn(i), subjected to a “standard” set of relations on
the ui’s, an element of some Fn, in terms of the ∞-groupoid structure only, then
we have automatically a “homotopy” between these built-in in the very structure of
the ∞-groupoid, provided it makes at all sense to ask for one . . . ” [5, section 9].
This leads him to the notion of coherator, category C endowed with a “universal
∞-cogroupoid”, a ∞-groupoid being a presheaf on C satisfying some left exact-
ness conditions, improperly called Segal conditions in the literature. In particular,
Grothendieck ∞-groupoids define an algebraic structure species, and the category
of ∞-groupoids is locally presentable.

The notion of a ∞-groupoid depends on the choice of a coherator. Two different
coherators give rise in general to non-equivalent categories of ∞-groupoids. Never-
theless, the two notions of∞-groupoid are expected to be equivalent in some subtler
way. Grothendieck illustrates this fact as follows: “Roughly saying, two different
mathematicians, working independently on the conceptual problem I had in mind,
assuming they both wind up with some explicit definition, will almost certainly get
non-equivalent definitions – namely with non-equivalent categories of (set-valued,
say) ∞-groupoids! And, secondly and as importantly, that this ambiguity however
is an irrelevant one. To make this point a little clearer, I could say that a third
mathematician, informed of the work of both, will readily think out a functor or
rather a pair of functors, associating to any structure of Mr. X one of Mr. Y and
conversely, in such a way that by composition of the two, we will associate to a
X-structure (T say) another T ′, which will not be isomorphic to T of course, but
endowed with a canonical ∞-equivalence (in the sense of Mr. X ) T ≃

∞
T ′, and the

same on the Mr. Y side. Most probably, a fourth mathematician, faced with the
same situation as the third, will get his own pair of functors to reconcile Mr. X
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2 GEORGES MALTSINIOTIS

and Mr. Y, which very probably won’t be equivalent (I mean isomorphic) to the
previous one. Here however a fifth mathematician, informed about this new per-
plexity, will probably show that the two Y -structures U and U ′, associated by his
two colleagues to an X-structure T , while not isomorphic, also admit however a
canonical ∞-equivalence between U and U ′ (in the sense of the Y -theory). I could
go on with a sixth mathematician, confronted with the same perplexity as the previ-
ous one, who winds up with another ∞-equivalence between U and U ′ (without being
informed of the work of the fifth), and a seventh reconciling them by discovering an
∞-equivalence between these equivalences. The story of course is infinite, I better
stop with seven mathematicians, . . . ” [5, section 9].

One of the reasons of Grothendieck’s interest in ∞-groupoids is that (weak)
∞-groupoids are conjectured to modelize homotopy types (it’s well known that
strict ∞-groupoids don’t): “Among the things to be checked is of course that when
we localize the category of ∞-groupoids with respect to morphisms which are “weak
equivalences” in a rather obvious sense (N.B. – the definition of the πi’s of an
∞-groupoid is practically trivial!), we get a category equivalent to the usual ho-
motopy category Hot.” [5, section 12]. This conjecture is still not proven, for any
definition of∞-groupoid giving rise to an algebraic structure species, although some
progress has been done in this direction by Cisinski [4]. It becomes tautological if
we define ∞-groupoids as being Kan complexes or topological spaces! But the cat-
egories of such are not locally presentable. In a letter to Tim Porter, Grothendieck
clearly explains that this was not the kind of definition he was looking for: “my
main point is that your suggestion that Kan complexes are “the ultimate in lax
∞-groupoids” does not in any way meet with what I am really looking for, and this
for a variety of reasons, . . . ”[6].

One of the peculiarities of Grothendieck’s definition of ∞-groupoids is that this
notion is not a particular case of a concept of lax ∞-category. Nevertheless, it was
realized in [8] that a slight modification of the notion of coherator gives rise to such
a concept. This new formalization of lax ∞-categories is very close, although not
exactly equivalent, to the notion introduced by Batanin [2]. From a technical point
of view, the basic difference is that the first is based on universal algebra, whereas
the second on a generalization of the notion of operads, the globular operads. The
precise relationship between the two concepts is studied in [1].

In the first section, Grothendieck’s definition of ∞-groupoids is presented (in a
two-page slightly simplified form), introducing the notion of “coherator for a theory
of ∞-groupoids”. Some examples of such coherators are given. The aim of the very
long (too long?) last subsection 1.7 is to convince the reader of the pertinence of
Grothendieck’s concept, and define some structural maps in ∞-groupoids, useful in
the next section.

In section 2, homotopy groups and weak equivalences between ∞-groupoids are
introduced. The pair of adjoint functors “classifying space” of a ∞-groupoid and
“fundamental ∞-groupoid” of a topological space are defined. Grothendieck’s con-
jecture is presented.

In section 3, the only really original part of this paper, an interpretation of the
notion of coherator for a theory of ∞-groupoids, in terms of lifting properties and
weak factorization systems, is given.

In the last section, the definition of ∞-categories of [8] is presented, introducing
the notion of “coherator for a theory of∞-categories”. The reader mainly interested
by this definition can read directly this section after 1.4 and skip everything in
between.

In appendix A, a technical result used in section 3 is proved.
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1. Grothendieck ∞-groupoids

1.1. The category of globes. The globular category or category of globes is the
category G generated by the graph

D0

σ1 //

τ1

// D1

σ2 //

τ 2

// · · ·
σi−1

//

τ i−1

// Di−1

σi //

τ i

// Di

σi+1
//

τ i+1

// · · · ,

under the coglobular relations

σi+1σi = τ i+1σi and σi+1τ i = τ i+1τ i , i > 1 .

For every i, j, such that 0 6 i 6 j, define

σ
j
i = σj · · ·σi+2σi+1 and τ

j
i = τ j · · · τ i+2τ i+1 ,

and observe that

HomG(Di,Dj) =





{σji , τ
j
i} , if i < j ,

{1Di
} , if i = j ,

∅ , else.

1.2. Globular sums. Let C be a category, G // C a functor, and let Di, σi, τi,

σji , τ
j
i be the image in C of Di, σi, τ i, σ

j
i , τ

j
i respectively. A standard iterated

amalgamated sum, or more simply a globular sum, of length m, in C is an iterated
amalgamated sum of the form

(Di1 , σ
i1
i′1
)∐Di′1

(τ i2
i′1
, Di2 , σ

i2
i′2
) ∐Di′2

· · · ∐Di′
m−1

(τ im
i′m−1

, Dim) ,

colimit of the diagram

Di1 Di2 Di3 Dim−1 Dim

· · ·

Di′1

σ
i1
i′
1

__@@@@@
τ
i2
i′
1

??~~~~~
D′
i′2

σ
i2
i′
2

__@@@@@
τ
i3
i′
2

??~~~~~

Di′m−1

σ
im−1

i′
m−1

ccHHHHHH
τ
im

i′
m−1

<<yyyyyy
,

where m > 1, and for every k, 1 6 k < m, i′k is strictly smaller then ik and ik+1.
Such a globular sum is completely determined by the table of dimensions

(
i1 i2 · · · im

i′1 i′2 · · · i′m−1

)
,

and will be simply denoted

Di1 ∐Di′
1

Di2 ∐Di′
2

· · · ∐Di′
m−1

Dim .

1.3. Globular extensions. A category C, endowed with a functor G // C, is
called a globular extension if globular sums exist in C. For example, any functor
from G to a cocomplete category defines a globular extension. A morphism from a
globular extension to another is a functor under G, commuting with globular sums.
There exists a universal globular extension G // Θ0, called a globular completion of
G, satisfying the following universal property: for every globular extension G // C,
there exists a morphism of globular extensionsΘ0

// C, unique up to unique natural
isomorphism (inducing the identity on objects coming from G). This universal
globular extension, defined up to equivalence of categories, can be constructed, for
example, by taking the closure by globular sums of G embedded by the Yoneda

functor in the category Ĝ of globular sets (or ∞-graphs), i.e. presheaves on G.
The objects of Θ0 are rigid, i.e. have no non-trivial automorphisms, and there is
a combinatorial description of the category Θ0 in terms of planar trees [1, 3, 8],
leading to a skeletal incarnation of Θ0 (such that isomorphic objects are equal), the
objects being in bijection with tables of dimensions. In the sequel we choose, once
and for all, such a skeletal model of Θ0.
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1.4. Coherators for a theory of ∞-groupoids. Let C be a category, G // C
a functor, and let Di, σi, τi be the image in C of Di, σi, τ i respectively. A pair of
parallel arrows in C is a pair (f, g) of arrows f, g : Di

// X in C such that either
i = 0, or i > 0 and fσi = gσi, fτi = gτi. A lifting of such a pair (f, g) is an
arrow h : Di+1

// X such that f = hσi+1, g = hτi+1. A coherator for a theory
of ∞-groupoids, or more simply a Gr-coherator, is a globular extension G // C
satisfying the following two conditions:

a) Every pair of parallel arrows in C has a lifting in C.

b) There exists a “tower” of globular extensions (called tower of definition of the
Gr-coherator C) with colimit C

G // C0
// C1

// · · · // Cn
// Cn+1

// · · · // C ≃ lim
−→

Cn ,

where for every n > 0, Cn is a small category, Cn
// Cn+1 a morphism of globular

extensions, and satisfying the following properties:

b0 ) G // C0 is a globular completion;
bn) for every n > 0, there exists a family of pairs of parallel arrows in Cn such

that Cn+1 is the universal globular extension obtained from Cn by formally
adding a lifting for every pair in this family.

Condition (b0) implies that the category C0 is equivalent to Θ0. We will usually
assume that C0 is equal to Θ0 (and that the functor G // C0 is the canonical
inclusion G // Θ0). Condition (bn) means, more precisely, that there exists a family
(fi,gi)i∈In of pairs of parallel arrows in Cn, and for every i ∈ In, a lifting hi in Cn+1

of the image of the pair (fi,gi) in Cn+1, satisfying the following universal property.
For every globular extension G // C and every morphism of globular extensions
Cn

// C, if for every i ∈ In a lifting hi of the image of the pair (fi,gi) in C is
given, then there exists a unique morphism of globular extensions F : Cn+1

// C
such that for every i in In, F (hi) = hi and such that the triangle

Cn
//

$$H
HHHHHHH
Cn+1

F

��

C

is commutative. It can be easily seen that the functorsCn
// Cn+1 induce bijections

on the sets of objects, so that we can suppose that all categories Cn and C have
same objects, indexed by tables of dimensions (or planar trees). Furthermore, it can
be proved (cf. 2.6) that for any Gr-coherator C, the induced functor Θ0 = C0

// C
is faithful. In particular, the category G will be usually identified to a (non-full)
subcategory of C. It is conjectured that all functors Cn

// C are faithful.

1.5. Grothendieck ∞-groupoids. Let G // C be a Gr-coherator. A ∞-groupoid
of type C, or more simply a ∞-C-groupoid, is a presheaf G : Cop // Set on C such
that the functor Gop : C // Setop preserves globular sums. In other terms, for any
globular sum in C, the canonical map

G(Di1 ∐Di′1

· · · ∐Di′
m−1

Dim) // G(Di1 )×G(Di′1
) · · · ×G(Di′

m−1
) G(Dim )

is a bijection, the right hand side being the standard iterated fiber product or globular
product, limit of the diagram

G(Di1 )

G(σ
i1
i′1
) %%J

JJJJJ
G(Di2 )

G(τ
i2
i′1

)yytttttt G(σ
i2
i′2
)

%%J
JJJJJ

G(Dim)

G(τ im

i′
m−1

)xxppppppp
· · ·

G(Di′1
) G(Di′2

) G(Di′m−1
) .

The category of ∞-C-groupoids is the full subcategory of Ĉ, category of presheaves
on C, whose objects are ∞-C-groupoids.
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1.6. Examples of Gr-coherators. There is a general method for constructing
inductively Gr-coherators. Take C0 = Θ0. Suppose that Cn is defined and choose
a set En of pairs of parallel arrows in Cn. Define Cn+1 as the universal globular
extension obtained by formally adding a lifting for each pair in En (an easy cat-
egorical argument shows that such a universal globular extension exists, is unique
up to unique isomorphism, and that the functor Cn

// Cn+1 induces a bijection
on the sets of objects [1, section 2.6]). Let C be the colimit C = lim

−→
Cn. For an

arbitrary choice of the sets En, C need not be a Gr-coherator, as there is no reason
for condition (a) in 1.4 to be satisfied. A sufficient (but not necessary) condition for
C to be a Gr-coherator is that every pair of parallel arrows in C is the image of a
pair in En, for some n > 0. Three important examples can be constructed (among
many others) by this method.

1)The canonical Gr-coherator C = Ccan . This example is obtained by taking
En to be the set of all pairs of parallel arrows in Cn.

2) The Batanin-Leinster Gr-coherator C = CBL . It is obtained by defining
En to be the set of pairs of parallel arrows in Cn that are not the image of a pair
in En′ , for some n′ < n [1, 4.1.4].

3) The canonical reduced Gr-coherator C = Cred . It is constructed by
taking En to be the set of pairs of parallel arrows in Cn that do not have already
a lifting in Cn.

It is easily seen that examples 1 and 2 satisfy the sufficient condition stated
above. The example 3 does not satisfy this condition; nevertheless, it is clear that
Cred is a Gr-coherator. It is possible to put even more restrictive conditions on the
sets En and still obtain a Gr-coherator. It seems that it is not possible to find a
minimal way for choosing the sets En.

1.7. Some structural maps. Fix a Gr-coherator C and a ∞-C-groupoid
G : Cop // Set. The restriction of G to the subcategory G of C defines a ∞-graph,
called the underlying ∞-graph:

G0 G1
t1

oo

s1oo
· · ·

t2

oo

s2oo
Gi−1

ti−1

oo

si−1
oo

Gi
ti

oo

sioo
· · ·

ti+1

oo

si+1
oo

,

where Gi = G(Di), si = G(σi) and ti = G(τ i). The elements of Gi are the i-cells
of G, and si, ti are the source and target maps respectively, satisfying the globular
relations :

sisi+1 = siti+1 , tisi+1 = titi+1 , i > 1 .

Operations and coherence arrows in the ∞-C-groupoid G are defined using the
existence of lifting arrows for pairs of parallel arrows in the Gr-coherator C. In
what follows, we give some examples of such structural maps of G (for more details
see [1, section 4.2]). When there is no ambiguity, let’s denote by

Dik

cank // Di1 ∐Di′1

· · · ∐Di′
m−1

Dim

the canonical map of the k-th summand into a globular sum.

1.7.1. Level 1 binary composition. For every i > 1, the two composite arrows

Di−1
σi // Di

can2 // Di ∐Di−1 Di

Di−1

τ i // Di

can1 // Di ∐Di−1 Di

,
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form a pair of parallel arrows in C, therefore there is a lifting ∇
i : = ∇

i
1 such that

Di

∇
i=∇

i
1

((PPPPPPPPPPPPPPPPP

∇
iσi = can2σi ,

∇
iτ i = can1τ i .

Di−1

σi

OO

τ i

OO

can2σi //

can1τ i

// Di ∐Di−1 Di

We deduce a map

Gi ×Gi−1 Gi ≃ G(Di ∐Di−1 Di)
G(∇i)

// G(Di) = Gi ,

associating to each pair of i-cells (x, y) such that si(x) = ti(y) a i-cell

x ∗ y : = x
i
∗ y : = x

i
∗
1
y : = G(∇i)(x, y)

such that

si(x ∗ y) = si(y) and ti(x ∗ y) = ti(x) .

This defines a “vertical” or “level 1” composition of i-cells. The lifting ∇
i need not

be unique, but if ∇′i is such another lifting (defining another vertical composition

∗′ on i-cells), then (∇i,∇′i) is a pair of parallel arrows in C, and there exists a
lifting Γ : Di+1

// Di ∐Di−1 Di such that Γσi+1 = ∇
i and Γ τ i+1 = ∇

′i, hence a
map c : Gi ×Gi−1 Gi // Gi+1, associating to each pair (x, y) of “composable” i-cells

a “homotopy” (i+ i)-cell c(x, y) of source x ∗ y and target x ∗′ y.

1.7.2. Level 2 binary composition. Given for every i > 1 a lifting ∇
i = ∇

i
1 as

above, observe that, for i > 2, the two composite arrows

Di−1

∇
i−1
1 // Di−1 ∐Di−2 Di−1

σi∐Di−2
σi

// Di ∐Di−2 Di

Di−1

∇
i−1
1 // Di−1 ∐Di−2 Di−1

τ i∐Di−2
τ i

// Di ∐Di−2 Di

,

form a pair of parallel arrows in C. Therefore there is a lifting ∇
i
2 such that

Di

∇
i
2

((QQQQQQQQQQQQQQQQQQQQQQQ

∇
i
2σi = (σi ∐Di−2 σi)∇

i−1
1 ,

∇
i
2τ i = (τ i ∐Di−2 τ i)∇

i−1
1 .

Di−1

σi

OO

τ i

OO

(σi∐Di−2
σi)∇

i−1
1

//

(τ i∐Di−2
τ i)∇

i−1
1

// Di ∐Di−2 Di

We deduce a map

Gi ×Gi−2 Gi ≃ G(Di ∐Di−2 Di)
G(∇i

2) // G(Di) = Gi ,

associating to each pair of i-cells (x, y) such that the iterated source of x in Gi−2 is
equal to the iterated target of y, a i-cell (level 2 composition of x and y)

x
i
∗
2
y : = G(∇i

2)(x, y)

such that

si(x
i
∗
2
y) = si(x)

i−1
∗
1
si(y) and ti(x

i
∗
2
y) = ti(x)

i−1
∗
1
ti(y) .
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1.7.3. Level l binary composition. The above construction can be iterated in
order to obtain by induction on l > 2, for every i > l, a map ∇

i
l : Di

// Di∐Di−l
Di,

lifting of the pair of parallel arrows
(
(σi∐Di−l

σi)∇
i−1
l−1 , (τ i∐Di−l

τ i)∇
i−1
l−1

)
, defining

a map

Gi ×Gi−l
Gi ≃ G(Di ∐Di−l

Di)
G(∇i

l) // G(Di) = Gi ,

associating to each pair of i-cells (x, y) such that the iterated source of x in Gi−l is
equal to the iterated target of y, a i-cell (level l composition of x and y)

x
i
∗
l
y : = G(∇i

l)(x, y)

such that

si(x
i
∗
l
y) = si(x)

i−1
∗
l−1

si(y) and ti(x
i
∗
l
y) = ti(x)

i−1
∗
l−1

ti(y) .

1.7.4. Level 1 m-ary composition. There are many more general compositions
in the structure of the ∞-C-groupoid G. For example, let m be an integer, m > 2.
For every i > 1, the two composite arrows

Di−1
σi // Di

canm // Di ∐Di−1 · · · ∐Di−1 Di ,

Di−1
τ i // Di

can1 // Di ∐Di−1 · · · ∐Di−1 Di ,

with target the globular sum of length m, form a pair of parallel arrows in C, hence
a lifting

∇
i,m
1 : Di

// Di ∐Di−1 · · · ∐Di−1 Di ,

inducing a map

Gi ×Gi−1 · · · ×Gi−1 Gi

i,m
∗
1

: =G(∇i,m
1 )

// Gi .

This map defines a m-ary composition, associating to each “composable” m-uple
(x1, . . . , xm) of i-cells, a i-cell

i,m
∗
1
(x1, . . . , xm) = G(∇i,m

1 )(x1, . . . , xm)

such that

si
( i,m
∗
1
(x1, . . . , xm)

)
= si(xm) and ti

( i,m
∗
1
(x1, . . . , xm)

)
= ti(x1) .

1.7.5. Associativity constraint for level 1 binary composition. For every
i > 1, observe that the two composite arrows

Di

∇
i

// Di ∐Di−1 Di

∇
i∐Di−1

1
Di // Di ∐Di−1 Di ∐Di−1 Di

Di

∇
i

// Di ∐Di−1 Di

1
Di

∐Di−1
∇

i

// Di ∐Di−1 Di ∐Di−1 Di

,

(where ∇
i = ∇

i
1 is as in 1.7.1) form a pair of parallel arrows in C, therefore there

exists a lifting

α : = αi : = αi1 : Di+1
// Di ∐Di−1 Di ∐Di−1 Di .

We deduce a map

Gi ×Gi−1 Gi ×Gi−1 Gi
a: =ai1: =G(αi

1) // Gi+1 ,

associating to each triple of “composable” i-cells (x, y, z) an associativity constraint
(i+ 1)-cell ax,y,z such that (in the notations of 1.7.1)

si+1(ax,y,z) = (x ∗ y) ∗ z and ti+1(ax,y,z) = x ∗(y ∗ z) .
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1.7.6. Associativity constraint for level 2 binary composition. The con-
struction of associativity constraints for higher-level compositions becomes more
complicated. For example, for the level 2 composition, observe (in the notations
of 1.7.2) that

(
(∇i

2 ∐Di−2 1Di
)∇i

2, (1Di
∐Di−2 ∇

i
2)∇

i
2

)
, i > 2 ,

is not a pair of parallel arrows as

(∇i
2 ∐Di−2 1Di

)∇i
2σi = (σi ∐Di−2 σi ∐Di−2 σi)(∇

i−1
1 ∐Di−2 1Di−1

)∇i−1
1

6= (σi ∐Di−2 σi ∐Di−2 σi)(1Di−1
∐Di−2 ∇

i−1
1 )∇i−1

1 = (1Di
∐Di−2 ∇

i
2)∇

i
2σi

and similarly with σi replaced by τ i. In order to be able to define an associativity
constraint for level 2 composition, verify that the two following composite arrows

Di

∇
i
1 // Di∐Di−1Di

((τ i∐Di−2
τ i∐Di−2

τ i)α
i−1
1 , (∇i

2∐Di−2
1
Di

)∇i
2)
// Di∐Di−2Di∐Di−2Di,

Di

∇
i
1 // Di∐Di−1Di

((1
Di

∐Di−2
∇

i
2)∇

i
2, (σi∐Di−2

σi∐Di−2
σi)α

i−1
1 )

// Di∐Di−2Di∐Di−2Di

form a pair of parallel arrows. Hence a lifting

αi2 : Di+1
// Di ∐Di−2 Di ∐Di−2 Di ,

inducing a map

Gi ×Gi−2 Gi ×Gi−2 Gi
ai2: =G(αi

2) // Gi+1 ,

associating to each triple of i-cells (x, y, z) “composable” over Gi−2 an associativity
constraint (i+ 1)-cell ai2;x,y,z such that (in the notations of 1.7.1, 1.7.2 and 1.7.5)

si+1(a
i
2;x,y,z) = ai−1

1; ti(x),ti(y),ti(z)

i
∗
1

(
(x

i
∗
2
y)

i
∗
2
z
)
,

ti+1(a
i
2;x,y,z) =

(
x
i
∗
2
(y

i
∗
2
z)
)
i
∗
1
ai−1
1; si(x),si(y),si(z)

.

It is left as an exercise to the reader to proceed to the construction of associativity
constraints for higher-level compositions.

1.7.7. Pentagon and exchange constraints. Similarly, Mac Lane’s pentagon
and Godement’s exchange rule give rise to “higher” constraints, defined by choosing
suitable pairs of parallel arrows (see [1, 4.2.4]).

1.7.8. Units. Let i > 0. The most trivial pair of parallel arrows is (1Di
, 1Di

). It
gives rise to a lifting κi such that

Di+1

κi

&&L
LLLLLLLLLLLLL

κiσi+1 = 1Di
= κiτ i+1 .

Di

σi+1

OO

τ i+1

OO

1
Di //

1
Di

// Di

It defines a map

ki : = G(κi) : Gi // Gi+1 ,

associating to each i-cell x a unit (i + 1)-cell idx : = ki(x) such that

si+1(idx) = x = ti+1(idx)

(the name of unit and the notation being justified by what follows).
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1.7.9. Unit constraints. Let i > 1. Observe (using the notations of 1.7.1
and 1.7.8) that

(
(τ iκi−1, 1Di

)∇i, 1Di

)
and

(
(1Di

,σiκi−1)∇
i, 1Di

)

are pairs of parallel arrows, hence liftings λi,ρi : Di+1
// Di such that

λiσi+1 = (τ iκi−1, 1Di
)∇i , λiτ i+1 = 1Di

,

ρiσi+1 = (1Di
,σiκi−1)∇

i , ρiτ i+1 = 1Di
.

We deduce maps

Gi
li: =G(λi) // Gi+1 , Gi

ri: =G(ρi) // Gi+1

associating to each i-cell x a left, respectively right, unit constraint (i+1)-cell li(x),
respectively ri(x), such that (in the notations of 1.7.1 and 1.7.8)

si+1(li(x)) = idti(x)
i
∗
1
x , ti+1(li(x)) = x ,

si+1(ri(x)) = x
i
∗
1
idsi(x) , ti+1(ri(x)) = x .

1.7.10. Triangle constraint. In a similar way a triangle higher constraint can be
defined, involving associativity, left and right unit constraints (see [1, 4.2.4]).

1.7.11. Level 1 inverse. For every i > 1, (τ i,σi) is a pair of parallel arrows,
hence a lifting ωi : = ωi1 : Di

// Di such that

ωiσi = τ i and ωiτ i = σi .

We deduce a map wi : = wi1 : = G(ωi1) : Gi
// Gi, associating to a i-cell an “inverse”

i-cell x−1 : = wi1(x) such that

si(x
−1) = ti(x) and ti(x

−1) = si(x) .

(the name of “inverse” and the notation being justified by what follows).

1.7.12. Level 1 inverse constraints. Let i > 1. Observe (using the notations
of 1.7.1, 1.7.8 and 1.7.11) that

(
(ωi, 1Di

)∇i,σiκi−1

)
and

(
(1Di

,ωi)∇i, τ iκi−1

)

are pairs of parallel arrows, hence liftings γi, δi : Di+1
// Di such that

γiσi+1 = (ωi, 1Di
)∇i , γiτ i+1 = σiκi−1 ,

δiσi+1 = (1Di
,ωi)∇i , δiτ i+1 = τ iκi−1 .

We deduce maps

Gi
gi: =G(γi) // Gi+1 , Gi

di: =G(δi) // Gi+1 ,

associating to each i-cell x a left, respectively right, inverse constraint (i + 1)-cell
gi(x), respectively di(x), such that (in the notations of 1.7.1, 1.7.8 and 1.7.11)

si+1(gi(x)) = x−1 i∗
1
x , ti+1(gi(x)) = idsi(x) ,

si+1(di(x)) = x
i
∗
1
x−1 , ti+1(di(x)) = idti(x) .

1.7.13. Level 2 inverse. Let i > 2. Observe (using the notations of 1.7.11) that
(σiω

i−1
1 , τ iω

i−1
1 ) is a pair of parallel arrows, hence a lifting ωi2 : Di

// Di defining
a map wi2 : = G(ωi2) : Gi // Gi, associating to a i-cell x a “level 2 inverse” i-cell
wi2(x) such that

si(w
i
2(x)) = wi−1

1 (si(x)) and ti(w
i
2(x)) = wi−1

1 (ti(x)) .
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1.7.14. Level l inverse. The above construction can be iterated in order to
obtain by induction on l > 2, for every i > l, a map ωil : Di

// Di, lifting of the

pair of parallel arrows (σiω
i−1
l−1 , τ iω

i−1
l−1), defining a map wil : = G(ωil) : Gi // Gi,

associating to a i-cell x a “level l inverse” i-cell wil(x) such that

si(w
i
l(x)) = wi−1

l−1(si(x)) and ti(w
i
l (x)) = wi−1

l−1(ti(x)) .

It is left as an exercise to the reader to define level l inverse constraints relating
level l inverse with level l binary composition.

2. Grothendieck’s conjecture.

2.1. The homotopy groups of a ∞-groupoid. Fix a Gr-coherator C and a
∞-C-groupoid G : Cop // Set. We will freely use the notations of the structural
maps introduced in the previous section.

For every i > 0, we define a homotopy relation ∼i between i-cells of G by

x ∼i y
def
⇐⇒ ∃h ∈ Gi+1 si+1(h) = x , ti+1(h) = y .

The homotopy relation is an equivalence relation:

a) Reflexivity. Let x be a i-cell. We have (cf. 1.7.8):

si+1(idx) = x and ti+1(idx) = x ,

therefore x ∼i x.
b) Symmetry. Let x, y be two i-cells such that x ∼i y. By definition, there

exists a (i + 1)-cell h such that si+1(h) = x and ti+1(h) = y, therefore (cf. 1.7.11)

si+1(h
−1) = ti+1(h) = y and ti+1(h

−1) = si+1(h) = x ,

and hence y ∼i x.

c) Transitivity. Let x, y, z be three i-cells such that x ∼i y and y ∼i z. By
definition, there exist two (i+ 1)-cells h, k such that

si+1(h) = x , ti+1(h) = y , si+1(k) = y , ti+1(k) = z .

In particular, (k, h) is an element of the (globular) fiber product Gi+1 ×Gi
Gi+1, so

k ∗h is defined and (cf. 1.7.1)

si+1(k ∗h) = si+1(h) = x and ti+1(k ∗h) = ti+1(k) = z ,

which proves that x ∼i z.

Two i-cells x, y are called homotopic if x ∼i y. We denote by Gi the quotient of
the set Gi of i-cells by the homotopy equivalence relation ∼i. We define the set of
connected components of the ∞-C-groupoid G as the set Π0(G) : = G0 : = G0/ ∼0.

Suppose now that i > 1 and observe that if x, y are two homotopic i-cells, then
the globular relations imply that si(x) = si(y) and ti(x) = ti(y). Therefore the
maps si, ti : Gi

// Gi−1 induce maps si, ti : Gi // Gi−1. On the other hand, the
equivalence relation ∼i is compatible with the composition ∗ =

i
∗
1
. Let us prove for

example that if x1, x2 are two homotopic i-cells, then for every i-cell y with target
the common source of x1 and x2, the i-cells x1 ∗ y and x2 ∗ y are homotopic. By
definition, there exists a (i + 1)-cell h such that si+1(h) = x1 and ti+1(h) = x2. If
we denote by h′ the (i+ 1)-cell

h′ = h
i+1
∗
2

idy ,

then we have (cf. 1.7.2 and 1.7.8)

si+1(h
′) = si+1(h)

i
∗
1
si+1(idy) = x1

i
∗
1
y and ti+1(h

′) = ti+1(h)
i
∗
1
ti+1(idy) = x2

i
∗
1
y ,

and hence x1 ∗ y and x2 ∗ y are homotopic. Therefore the map
i
∗
1
: Gi ×Gi−1 Gi // Gi

induces a map Gi×Gi−1 Gi // Gi. The existence of the associativity constraint and
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the unit constraints (cf. 1.7.5 and 1.7.9) implies that this composition defines a cat-
egory ̟i(G) with object set Gi−1, arrow set Gi, and target and source maps si, ti.
The existence of the inverse constraints (cf. 1.7.12) implies that this category is a
groupoid. The remark at the end of 1.7.1 proves that this groupoid is independent
of the choice of the lifting ∇

i
1 defining the composition

i
∗
1
. For more details, see [1],

propositions 4.3.2, 4.3.3.

Let x be a 0-cell of G, x ∈ G0, and i an integer, i > 1. The i-th homotopy group
of G at x is the group

πi(G;x) : = Hom̟i(G)(k(x), k(x)) ,

where using the notations of 1.7.8, k = ki−2 . . . k1k0. In order to justify this
definition, it should be verified that this group is, up to canonical isomorphism,
independent of the choice of the lifting arrows κj , 0 6 j 6 i− 2, giving rise to the
maps kj .

2.2. Weak equivalences of ∞-groupoids. Fix a Gr-coherator C. A morphism
f : G // G′ of ∞-C-groupoids is called a weak equivalence or a ∞-equivalence if the
following two conditions are satisfied:

a) the map Π0(f) : Π0(G) // Π0(G
′), induced by f , is a bijection;

b) for every i > 1 and every 0-cell x of G, the map

πi(f ;x) : πi(G;x) // πi(G
′; f(x)) ,

induced by f , is an isomorphism of groups.

2.3. Grothendieck’s conjecture (weak form). For every Gr-coherator C, the
localization of the category of ∞-C-groupoids by the ∞-equivalences is equivalent to
the homotopy category of CW-complexes.

For a strategy for proving this conjecture, see [7]. A more precise form of this
conjecture is given below (cf. 2.8).

2.4. The topological realization of the category of globes. For i > 0, let Di

be the i-dimensional topological disk

Di = {x ∈ R
i | ‖x‖ ≤ 1} ,

where ‖x‖ denotes the Euclidian norm of x, and for i > 0,

σi, τi : Di−1
� � // Di

the inclusions defined by

σi(x) =
(
x, −

√
1− ‖x‖2

)
, τi(x) =

(
x,

√
1− ‖x‖2

)
, x ∈ Di−1 .

The maps σi and τi factorize through the (i − 1)-dimensional sphere, boundary
of Di,

Si−1 = ∂Di = {x ∈ R
i | ‖x‖ = 1} ,

identifying Di−1 to the lower respectively upper hemisphere of Si−1. As the maps
σi, τi, i > 0, satisfy the coglobular relations, the assignment

Di
� // Di , σi

� // σi , τ i
� // τi

defines a functor G // Top from the category of globes (cf. 1.1) to the category of
topological spaces. It is easy to verify that this functor is faithful, identifying G to
the (non-full) subcategory of Top with objects the disks Di, i > 0, and morphisms
generated by the inclusions σi, τi, i > 0.

2.5. Topological spaces as a globular extension. As the category Top of
topological spaces is cocomplete, Top endowed with the functor G // Top, defined
above, is a globular extension (cf. 1.3). By the universal property of Θ0, there
exists a morphism of globular extensions Θ0

// Top, unique up to unique natural
isomorphism, extending the functor G // Top. It is easy to verify that this functor
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is faithful, identifying Θ0 to the (non-full) subcategory of Top with objects globular
sums of disks and morphisms continuous maps

X = Di1∐Di′1

Di2∐Di′2

· · · ∐Di′
m−1

Dim

ϕ
// Dj1∐Dj′1

Dj2∐Dj′2

· · · ∐Dj′
n−1

Djn = Y

such that for every k, 1 6 k 6 m, there exists an integer l, 1 6 l 6 n, and a
commutative square

Dik

ψ
//

cank

��

Dil

canl

��

X ϕ
// Y ,

with ψ the image of an arrow of G, i.e. a composite of σi’s or τi’s. All objects of
this subcategory are contractible spaces.

2.6. The fundamental ∞-groupoid of a space. Let C be a Gr-coherator.
In order to associate functorially to every topological space a ∞-C-groupoid, it’s
enough to define a ∞-cogroupoid of type C in Top, i.e. a functor

C // Top

preserving globular sums. The fundamental ∞-groupoid of a topological space X
can then be defined as the composite of the opposite functor

Cop // Top
op

with the representable presheaf on Top defined by X

HomTop( ? , X) : Topop // Set .

Let

G // Θ0 = C0
// C1

// · · · // Cn
// Cn+1

// · · · // C ≃ lim
−→

Cn

be a tower of definition of the Gr-coherator C. We have already defined a functor
Θ0

// Top preserving globular sums. In order to prove that this functor can be
extended to a functor C // Top preserving globular sums, i.e. to a morphism of
globular extensions, it’s enough to prove that for every n > 0, any morphism of
globular extensionsCn

// Top can be extended to a morphism of globular extensions
Cn+1

// Top. Using the universal property of Cn+1, it’s enough to prove that for
every globular sum X in Top, every i > 0, and every pair (f, g) : Di

// X of
continuous maps such that if i > 0, we have

fσi = gσi and fτi = gτi ,

there exists a continuous map h : Di+1
// X such that

f = hσi+1 and g = hτi+1 .

Di+1

h

''O
O

O
O

O
O

O
O

O
O

Di

f
//

g
//

σi+1

OO

τi+1

OO

X

As X is a contractible space, the map X // ∗ of X to the point is a trivial fibration.
Therefore, as the inclusion Si

� � // Di+1 is a cofibration, the existence of such a map
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h is a consequence of the lifting property of the following square

Si = Di ∐Si−1 Di� _

(σi+1,τi+1)

��

(f,g)
// X

��

Di+1

h

77n
n

n
n

n
n

n
n

n
// * .

The functor C // Top defined this way is not independent of the choice of the
relevant lifting maps h. Nevertheless, it is conjectured that this dependence is
inessential (cf. 2.8). As the functor Θ0

// Top is faithful, the existence of the
extension C // Top implies that the functor Θ0

// C is faithful. It is not known if
the functors Cn

// Top extending Θ0
// Top can be chosen faithful, which would

imply the conjecture that the functors Cn
// C are faithful (cf. 1.4).

2.7. The classifying space of a ∞-groupoid. Fix a Gr-coheratorC and choose,
as above, an extension C // Top of the canonical functor Θ0

// Top, preserving
globular sums. As the category Top is cocomplete, this functor induces a pair of
adjoint functors

Ĉ // Top , Top // Ĉ

between the category of presheaves onC and the category of topological spaces. The

functor Top // Ĉ factors through the full subcategory GrC∞ of Ĉ, of ∞-C-groupoids,
associating to a topological space X its fundamental ∞-groupoid, defined in the
previous section.

Top //

Π∞ %%J
JJ

JJ
JJ

J Ĉ

GrC∞

?�

OO

Therefore there is an induced pair of adjoint functors

GrC∞
B // Top , Top

Π∞ // GrC∞ ,

where B is the restriction of the functor Ĉ // Top to the subcategory GrC∞ of Ĉ.
For a ∞-C-groupoid G, the topological space B(G) is called the classifying space
of G.

2.8. Grothendieck’s conjecture (precise form). The functors B and Π∞ are
compatible with the weak equivalences of ∞-groupoids and of spaces, and induce mu-
tually quasi-inverse equivalences of the localized categories. Furthermore, different
extensions C // Top of the functor Θ0

// Top induce isomorphic functors between
the localized categories.

2.9. The ∞-groupoid of an object in a model category. A similar construc-
tion can be done in any Quillen model category, such that all objects are fibrant
([5], section 12). For more details on this construction, see [1, section 4.4].

3. Coherators and weak factorization systems

3.1. Lifting properties. Fix a category C. Recall that given two arrows i : A // B
and p : X // Y of C, i has the left lifting property with respect to p, or equivalently p
has the right lifting property with respect to i, if for every commutative solid arrow
square

A
a //

i

��

X

p

��

B
b

//

h

>>~
~

~
~

Y ,
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there exists a dotted arrow such that the total diagram is commutative:

a = hi and b = ph .

If F is a class of arrows of C, we denote by l(F) (resp. r(F)) the class of arrows of
C having the left (resp. right) lifting property with respect to all arrows in F . The
classes l(F) and r(F) are stable under composition and retracts. Sometimes arrows
in r(F) are called F -fibrations and arrows in cof(F) : = l(r(F)), F -cofibrations,
and if C has a final object ∗ (resp. an initial object ∅), an object X of C is called
F -fibrant (resp. F -cofibrant) if the map X // ∗ (resp. ∅ // X) is a F -fibration
(resp. a F -cofibration).

3.2. Weak factorization systems. A weak factorization system in C is a pair
(A,B) of classes of arrows of C such that the following conditions are satisfied:

a) A and B are stable under retracts;
b) arrows in A have the left lifting property with respect to arrows in B (or

equivalently arrows in B have the right lifting property with respect to
arrows in A);

c) every arrow f in C can be factored as f = pi, with i ∈ A and p ∈ B.

It is well known that the conjunction of conditions (a) and (b) is equivalent to the
conjunction of equalities

A = l(B) and B = r(A) .

3.3. Cellular maps. Let C be a cocomplete category and F a class of arrows in C.
A F -cellular map in C is a map obtained as transfinite composition of pushouts
of (small) sums of arrows in F . The class of F -cellular maps in C is denoted
by cell(F). It is easy to verify that cell(F) is stable under pushouts, sums and
transfinite composition, and that it contains isomorphisms. It is the smallest class
containing F and stable under pushouts and transfinite composition. It is equal to
the class of maps obtained by transfinite composition of pushouts of arrows in F .
There is an inclusion

cell(F) ⊂ cof(F) = l(r(F)) .

An object X of C is called F -cellular if the map from the initial object of C to X is
a F -cellular map.

3.4. Set of arrows admissible for the small object argument. Let C be a
cocomplete category and I a (small) set of arrows in C. The set of arrows I is said
to be admissible for the small object argument, or more simply admissible, if there
exists a well ordered set J satisfying the following conditions:

a) J does not have a maximal element;
b) for every J-diagram (Xj)j∈J such that all maps Xj

// Xj′ , j 6 j′, are
I-cellular maps, and every arrow A // B in I, the canonical map

lim
−→
j

Hom(A,Xj) // Hom(A, lim
−→
j

Xj)

is a bijection.

For example, if all domains of maps in I are α-presentable for some regular cardinal
α, then I is admissible. In particular if C is locally presentable, then any (small) set
of arrows in C is admissible. Recall the small object argument:

Proposition 3.5. Let C be a cocomplete category and I a (small) set of arrows in
C. If I is admissible for the small object argument, then every arrow f of C can be
factored as f = pi, with i ∈ cell(I) and p ∈ r(I). In particular,

(cof(I), r(I)) (cof(I) = l(r(I)))
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is a weak factorization system. Moreover, cof(I) is the smallest class of arrows in
C containing I stable under pushouts, transfinite composition and retracts, and it is
equal to the class of retracts of arrows in cell(I).

3.6. Finitely presentable objects. Recall that an object A of C is called finitely
presentable if it is ℵ0-presentable, i.e. if for every small filtered category J , and
every functor X : J // C, the canonical map

lim
−→
J

Hom(A,X) // Hom(A, lim
−→
J

X)

is a bijection. When the domains of the arrows in a (small) set I are finitely
presentable, I is in particular admissible, and the following lemma gives a more
precise description of cell(I):

Lemma 3.7. Let C be a cocomplete category and I a (small) set of arrows in C. If
the domains of the arrows in I are finitely presentable, then an arrow X // Y is in
cell(I) if and only if there exists a sequence of maps

X = X0
i0 // X1

i1 // · · ·
in−1

// Xn
in // Xn+1

in+1
// · · · // Y ≃ lim

−→
Xn ,

identifying X // Y to the canonical map X = X0
// lim
−→

Xn ≃ Y , such that for

every n > 0, the arrow in is a pushout of a (small) sum of arrows in I.

For a proof of this lemma, see appendix A, proposition A.6.

3.8. Let F be a class of arrows in C and λ an ordinal. We denote by cellλ(F) the
class of arrows obtained by λ-indexed transfinite composition of pushouts of (small)
sums of arrows in F . With this notation, the lemma 3.7 says that if I is a (small)
set of arrows in C, with finitely presentable domains, then cell(I) = cellω(I), where
ω is the smallest countable ordinal. More generally, it can be shown that if I is a
(small) set of arrows in C, with α-presentable domains, for some regular cardinal α,
then cell(I) = cellλ(I), where λ is the smallest ordinal of cardinality α.

3.9. Globular extensions under Θ0. Let Θ0\Cat be the category of small

categories under Θ0, whose objects are pairs (C,Θ0
// C), where C is a small

category and Θ0
// C a functor, and whose morphisms are (strictly) commutative

triangles

C

��

Θ0

66mmmmmmmm

((QQQQQQQQ

C′ .

Denote by Θ0\Gl -Ext the full subcategory of Θ0\Cat whose objects are pairs

(C,Θ0
// C) such that C, endowed with the composite functor

G // Θ0
// C ,

is a globular extension and the functor Θ0
// C a morphism of globular extensions

(i.e. preserves globular sums). It is easy to see that any morphism of Θ0\Gl -Ext
preserves globular sums and therefore defines a morphism of the underlying globular
extensions. In other terms, the category Θ0\Gl -Ext is the category of globular
extensions under the universal globular extension Θ0. It’s nothing else then the
category of globular extensions endowed with a fixed choice of objects representing
the globular sums, and morphisms of globular extensions compatible with these
choices.
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3.10. The left adjoint to the inclusion functor Θ0\Gl -Ext
// Θ0\Cat. Let

(C,Θ0
// C) be any object of Θ0\Cat. By a standard categorical construction [1,

section 2.6], there exists a globular extension C with a morphism C // C in G\Cat

G //

''PPPPPPPPPPPPPPP Θ0
// C

��

C ,

satisfying the following universal property: for every morphism C // C′ of globular
extensions under Θ0, there exists a unique morphism of globular extensions C // C′

such that the following triangle is commutative

C

��   
@@

@@
@@

@@

C // C′ .

Moreover, the functor C // C induces a bijection on the sets of objects. It is easy
to see that the assignment

(C,Θ0
// C)

� // (C,Θ0
// C // C)

defines a functorΘ0\Cat
// Θ0\Gl -Ext, which is a left adjoint of the full and faithful

inclusion Θ0\Gl -Ext
// Θ0\Cat, the canonical map C // C corresponding to the

unit of the adjunction. In particular, as the category Θ0\Cat is complete and
cocomplete, the same holds for Θ0\Gl -Ext. Furthermore, one can easily verify that
the inclusionΘ0\Gl -Ext

// Θ0\Cat preserves filtered colimits, and as a consequence
the category Θ0\Gl -Ext is locally presentable.

3.11. The generating cofibrations. Let X be an object of Θ0 and i an integer,
i > 0. Denote by Θ0[X, i] the globular extension obtained from Θ0 by formally
adding two arrows

Di

f=f(X,i)
//

g=g(X,i)

// X

satisfying (in case i > 0) the relations

fσi = gσi , fτ i = gτ i ,

i.e. by formally adding a pair of parallel arrows, andΘ0[X, i]
′ the globular extension

obtained from Θ0[X, i] by formal adjunction of a lifting h = h(X,i) for the pair
(f(X,i),g(X,i)). Define

I = {Θ0[X, i] // Θ0[X, i]
′ | i > 0 , X ∈ Ob Θ0} .

Observe that as Θ0 is a small category, I is a (small) set. On the other hand, we
have the following immediate lemma:

Lemma 3.12. The categories Θ0[X, i] (as well as Θ0[X, i]
′), considered as cate-

gories under Θ0, are finitely presentable objects of Θ0\Gl -Ext.

In particular, the set I is admissible for the small object argument, and applying
proposition 3.5, we get:

Proposition 3.13. Every arrow f of Θ0\Gl -Ext can be factored as f = pi, with

i ∈ cell(I) and p ∈ r(I). In particular,

(cof(I), r(I)) (cof(I) = l(r(I)))
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is a weak factorization system. Moreover, cof(I) is the smallest class of arrows in

Θ0\Gl -Ext containing I stable under pushouts, transfinite composition and retracts,

and it is equal to the class of retracts of arrows in cell(I).

We can now state the principal result of this section, roughly saying that Gr-coher-
ators are exactly the I-fibrant I-cellular objects of Θ0\Gl -Ext. More precisely:

Theorem 3.14. An object (C,Θ0
// C) of Θ0\Gl -Ext is I-fibrant and I-cellular

if and only if C, endowed with the composite map G // Θ0
// C, is a Gr-coherator.

Proof. Let (C,Θ0
// C) be an object of Θ0\Gl -Ext. Observe that, for X an object

of Θ0 and i an integer, i > 0, by definition of Θ0[X, i], there is a bijection of the set
Hom

Θ0\Gl - Ext(Θ0[X, i], C) with the set of pairs of parallel arrows in C, with domain

Di and codomain X. Furthermore, a map from Θ0[X, i] to C has an extension to
Θ0[X, i]

′ if and only if the corresponding pair of parallel arrows has a lifting.

On the other hand, it is easy to verify that if (fk, gk)k∈K , fk, gk : Dik
// Xk, is

a family of pairs of parallel arrows in C, the universal globular extension C // C′

obtained from C by formally adding a lifting for every pair in this family, can be
constructed by the following pushout square in Θ0\Gl -Ext

∐
k∈K

Θ0[Xk, ik] //

��

C

��

∐
k∈K

Θ0[Xk, ik]
′ // C′ ,

where the upper horizontal arrow is defined by the maps Θ0[Xk, ik] // C corre-
sponding to the pairs of parallel arrows (fk, gk), k ∈ K.

Suppose now that C is a Gr-coherator. Then the functor Θ0
// C induces a

bijection of the sets of objects, and the previous considerations imply that the
condition (a) of the definition of a Gr-coherator means exactly that (C,Θ0

// C)
is a I-fibrant object of Θ0\Gl -Ext, and that the condition (b) of the definition

implies that (C,Θ0
// C) is I-cellular. The converse is an immediate consequence

of lemma 3.7. �

3.15. Gr-Pseudo-coherators. A Gr-pseudo-coherator is a globular extension
(C,G // C) such that every pair of parallel arrows in C with codomain a globu-
lar sum has a lifting in C. As observed in the proof above, the condition (a)
in the definition of a Gr-coherator can be replaced by the condition of being a
Gr-pseudo-coherator. If (C,G // C) is a globular extension with C a small cate-
gory, and Θ0

// C the unique (up to unique isomorphism) morphism of globular
extensions defined by the universal property of Θ0, then (C,Θ0

// C) is an object
of Θ0\Gl -Ext, and (C,G // C) is a Gr-pseudo-coherator if an only if (C,Θ0

// C)
is a I-fibrant object of Θ0\Gl -Ext.

Proposition 3.16. Let C be a Gr-coherator and C a Gr-pseudo-coherator. Then
there exists a morphism of globular extensions from C to C.

Proof. Choosing a small full subcategory of C containing globular sums, we can
suppose that C is small. By the universal property of Θ0, C and C define objects
of Θ0\Gl -Ext, denoted also by C and C, the first being, in particular, a I-cellular

object (cf. 3.14) and the second being I-fibrant (cf. 3.15). Therefore the proposition
is a consequence of the lifting properties between I-cellular maps and I-fibrations.

∅

��

// C

��

C //

>>~
~

~
~

∗ �
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3.17. The Gr-pseudo-coherator Top. The considerations of paragraph 2.6 show
that the category Top of topological spaces, endowed with the canonical functor
G // Top, defined by topological disks (cf. 2.4), is a Gr-pseudo-coherator. For C a
Gr-coherator, proposition 3.16 gives a formal interpretation of the construction of
the topological ∞-C-cogroupoid C // Top, explained in paragraph 2.6.

4. A definition of lax ∞-categories

4.1. Globular theories. A globular theory is a globular extension (C,G // C)
such that the morphism of globular extensions Θ0

// C, defined by the universal
property of Θ0, is faithful and induces a bijection of the sets of isomorphism classes
of objects. Replacing C by an equivalent category, we can suppose, without loss
of generality, that this functor induces a bijection of the sets of objects, as we will
always assume in the sequel. We will identify Θ0 to a (non-full) subcategory of
C, and we will say that an arrow f of C is globular if f is in Θ0. The arrow f
will be called algebraic if for every decomposition f = gf ′, with g globular, g is an
identity. A morphism of globular theories is a morphism of the underlying globular
extensions.

4.2. Generalized cosource and cotarget maps. Let

X = Di1 ∐Di′1

Di2 ∐Di′2

· · · ∐Di′
m−1

Dim

an object of Θ0. The dimension of X is the integer i = max{ik | 1 6 k 6 m}. If
i > 0, we define an object ∂X of Θ0, of dimension i − 1,

∂X : = Di1
∐Di′1

Di2
∐Di′2

· · · ∐Di′
m−1

Dim
,

where, for 1 6 k 6 m,

ik =

{
ik , ik < i ,

i− 1 , ik = i ,

and arrows σX, τX : ∂X // X of Θ0

σX : = ǫ1 ∐Di′
1

ǫ2 ∐Di′
2

· · · ∐Di′
m−1

ǫm , τX : = η1 ∐Di′
1

η2 ∐Di′
2

· · · ∐Di′
m−1

ηm ,

where, for 1 6 k 6 m,

ǫk =

{
1Dik

, ik < i ,

σik , ik = i ,
ηk =

{
1Dik

, ik < i ,

τ ik , ik = i .

4.3. Admissible pairs of arrows. Let C be a globular theory. A pair of parallel
arrows admissible for a theory of ∞-categories, or more simply an admissible pair
of arrows of C, is a pair (f, g) of parallel arrows f, g : Di

// X (cf. 1.4) such that
either the arrows f and g are algebraic, or there exist decompositions

f = σXf
′ and g = τXg

′

Di

f
//

f ′

!!D
DD

DD
DD

D X Di

g
//

g′
!!D

DD
DD

DD
D X

∂X

σ
X

==||||||||
∂X

τ
X

==||||||||

with f ′ and g′ algebraic. The property for a parallel pair of arrows (f, g) to be
admissible is not symmetric: if (f, g) is admissible, (g, f) need not be admissible.

4.4. Coherators for a theory of ∞-categories. A coherator for a theory of
∞-categories, or more simply a Cat-coherator, is a globular theory G // C satisfying
the following two conditions:
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a) Every admissible pair of arrows in C has a lifting in C.

b) There exists a “tower” of globular theories (called tower of definition of the
Cat-coherator C) with colimit C

G // C0
// C1

// · · · // Cn
// Cn+1

// · · · // C ≃ lim
−→

Cn ,

where for every n > 0, Cn
// Cn+1 is a morphism of globular theories, satisfying

the following properties:

b0 ) G // C0 is a globular completion;
bn) for every n > 0, there exists a family of admissible pairs of arrows in Cn

such that Cn+1 is the universal globular extension obtained from Cn by
formally adding a lifting for every pair in this family.

Condition (b0) implies that the canonical functor from Θ0 to C0 is an isomorphism.
We will usually suppose that C0 is equal to Θ0. Condition (bn) means, more
precisely, that there exists a family (fi,gi)i∈In of admissible pairs of arrows in Cn,
and for every i ∈ In, a lifting hi in Cn+1 of the image of the pair (fi,gi) in Cn+1,
satisfying the following universal property. For every globular extension G // C and
every morphism of globular extensions Cn

// C, if for every i ∈ In a lifting hi of
the image of the pair (fi,gi) in C is given, then there exists a unique morphism of
globular extensions F : Cn+1

// C such that for every i in In, F (hi) = hi and such
that the triangle

Cn
//

$$H
HHHHHHH
Cn+1

F

��

C

is commutative.

4.5. Lax ∞-categories. Let G // C be a Cat-coherator. A ∞-category of type
C, or more simply a ∞-C-category, is a presheaf F : Cop // Set on C such that the
functor F op : C // Setop preserves globular sums. In other terms, for any globular
sum in C, the canonical map

F (Di1 ∐Di′
1

· · · ∐Di′
m−1

Dim) // F (Di1)×F (Di′
1
) · · · ×F (Di′

m−1
) F (Dim)

is a bijection, the right hand side being the globular product, limit of the diagram

F (Di1 )

F (σ
i1
i′
1
) %%J

JJJJJ
F (Di2)

F (τ
i2
i′
1
)yytttttt F (σ

i2
i′
2
)

%%J
JJJJJ

F (Dim)

F (τ im

i′
m−1

)xxppppppp
· · ·

F (Di′1
) F (Di′2

) F (Di′m−1
) .

The category of ∞-C-categories is the full subcategory of Ĉ, category of presheaves
on C, whose objects are ∞-C-categories.

4.6. Examples of Cat-coherators. As in the case of Gr-coherators, there is
a general method for constructing inductively Cat-coherators. Take C0 = Θ0.
Suppose that Cn is defined and choose a set En of admissible pairs of arrows in
Cn. Define Cn+1 as the universal globular extension obtained by formally adding
a lifting for each pair in En, and C as the colimit C = lim

−→
Cn. In order for C to be

a Cat-coherator, one has to verify first that the globular extensions Cn, n > 0, are
globular theories, and secondly that C satisfies the condition (a) in 4.4. The first
of these conditions is conjectured to be always true, and is proved in [1, section 5.4]
with a mild hypothesis always verified in the examples: it is enough that E0 contains
all the pairs (1Di

, 1Di
), i > 0. For the second condition to be verified, it is sufficient

(but not necessary) that every admissible pair of arrows in C is the image of a pair
in En, for some n > 0. Three important examples can be constructed (among many
others) by this method.



20 GEORGES MALTSINIOTIS

1) The canonical Cat-coherator. This example is obtained by taking En to
be the set of all admissible pairs of arrows in Cn.

2) The Batanin-Leinster Cat-coherator. It is obtained by defining En to be
the set of admissible pairs of arrows in Cn that are not the image of a pair in En′ ,
for some n′ < n [1, 4.1.4].

3) The canonical reduced Cat-coherator. It is constructed by taking En to
be the set of admissible pairs of arrows in Cn that do not have already a lifting
in Cn.

It is easily seen that examples 1 and 2 satisfy the sufficient condition stated
above. The example 3 does not satisfy this condition; nevertheless, it is clear that
it defines a Cat-coherator. It is possible to put even more restrictive conditions on
the sets En and still obtain a Cat-coherator. It seems that it is not possible to find
a minimal way for choosing the sets En.

4.7. Structural maps. LetC be a Cat-coherator. Those of the structural maps for
∞-groupoids defined in paragraph 1.7 that do not concern inverses (i.e. 1.7.1-1.7.10)
exist equally well in ∞-C-categories. To see this, one has to verify that the pairs of
parallel arrows giving rise to these structural maps are admissible. This is proved
in [1, 4.2.7], under the mild hypothesis considered above. It is conjectured that it
is always true.

Appendix A. Proof of lemma 3.7

A.1. Let C be a cocomplete category and F a class of arrows of C. Denote imds(F)
the class of pushouts of (small) sums of arrows in F . It is easy to verify that
imds(F) is stable under pushouts and sums, and that it contains isomorphisms. It
is the smallest class containing F and stable under pushouts and sums. There is an
inclusion

imds(F) ⊂ cell(F) .

A.2. A commutative square

D =

X
f

//

x

��

Y

y

��

X ′
f ′

// Y ′

in C is called F -special if there exists a commutative square

A
i //

a

��

B

b

��

X ′
f ′

// Y ′ ,

with i in imds(F), such that the square

A ∐X
i∐f

//

(a,x)

��

B ∐ Y

(b,y)

��

X ′
f ′

// Y ′
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is cocartesian (a pushout square). The property of being a F -special square is a
property of a square in an oriented plane: if D is F -special the square

X
x //

f

��

X ′

f ′

��

Y y
// Y ′

need not be F -special.

Lemma A.3. Let C be a category, consider a commutative diagram in C

A
i //

u

��

(1)

B

v

��

A′ u′

//

i′

��

(1′)

X
g

//

g′

��

(2)

Y

h

��

B′
v′

// Y ′
h′

// Z

and the induced commutative square

A∐ A′ i∐ i′ //

(u,u′)

��

(3)

B ∐B′

(hv,h′v′)

��

X
hg=h′g′

// Z .

If (1) and (1′) are cocartesian (pushout) squares, then the square (3) is cocartesian
if and only if the square (2) is cocartesian.

Proof. Consider the following commutative diagram

A
i //

(I)

��

B

��
::

::
::

::
: A′ i′ //

����
��

��
��

�
B′

(I′)

��

A ∐ A′

(u,u′) (II)

��

i∐ 1
A′

// B ∐ A′

(v,gu′)

��

1B ∐ i′
// B ∐B′

(hv,h′v′)

��

(II′)

��

X g
// Y

h
// Z ,

where the squares (I) and (I′) are cocartesian. Suppose that the squares (1) and
(1′) are cocartesian. As the squares (I) and (II) ◦ (I) = (1) are cocartesian, so is
(II). Therefore the square (3) = (II′) ◦ (II) is cocartesian if and only if (II′) is
cocartesian. On the other hand as (I′) is cocartesian, (II′) is cocartesian if and only
if (II′) ◦ (I′) = (2) ◦ (1′) is cocartesian. Finally, as (1′) is cocartesian, (2) ◦ (1′) is
cocartesian if and only if (2) is cocartesian, which proves the lemma. �

Lemma A.4. Let C be a cocomplete category and F a class of arrows of C. A
commutative square in C

D =

X
f

//

x

��

Y

y

��

X ′
f ′

// Y ′
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is F-special if and only if there exists a commutative diagram

A
i //

a

��

B

b

��

X ′
f ′

// Y ′ ,

with i in imds(F), such that the induced square

A
i //

��

B

b

��

X ′ ∐X Y // Y ′

(where A // X ′∐XY is the composite map A
a // X ′ can// X ′∐XY and X ′∐XY // Y ′

is the canonical map defined by the commutative square D) is cocartesian.

Proof. This lemma is an immediate consequence of the previous one, applied to the
following solid commutative diagram

X
f

//

x

��

Y

��

y

��

A
a //

i

��

X ′ //

��

f ′

&&

X ′ ∐X Y

��

B //

b

77B ∐A X
′ // Y ′ ,

defined in the obvious way. �

Lemma A.5. Let C be a cocomplete category and F a class of arrows of C.

a) Every cocartesian square in C is F-special.

b) Let

X
f

//

x

��

Y

y

��

X ′
f ′

// Y ′

be a F-special square. If f is in imds(F), then f ′ is in imds(F), too.

c) The class of F-special squares is stable under “vertical” transfinite composi-
tion. More precisely, let J be a well-ordered set, with minimal element 0, and

X : J // Ar(C) , j
� // Xj = Xj,0

// Xj,1

a functor from J to the category of arrows of C, satisfying the following conditions:

i) if j + 1 is the successor of j in J , then the square

Xj,0 //

��

Xj,1

��

Xj+1,0 // Xj+1,1

is F-special;
ii) if j 6= 0 is not the successor of an element of J , then Xj ≃ lim

−→j′<j
Xj′ .
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Then the square

X0,0 //

��

X0,1

��

lim
−→j∈J

Xj,0 // lim
−→j∈J

Xj,1

is F-special.

Proof. The assertions (a) and (b) are tautological. Let’s prove (c). Suppose given
a functor X : J // Ar(C) as in (c). By hypothesis (i), if j + 1 is the successor of
some j in J , there exists a commutative square

Aj
ij

//

��

Bj

��

Xj+1,0 // Xj+1,1
,

with ij in imds(F), such that the square

Aj ∐Xj,0 //

��

Bj ∐Xj,1

��

Xj+1,0 // Xj+1,1

is cocartesian. For every j in J , choose such a commutative square. We will prove
by transfinite induction on j that the “evident” commutative square

(∗j)

(
∐
j′<j

Aj′
)
∐X0,0 //

��

(
∐
j′<j

Bj′
)
∐X0,1

��

Xj,0 // Xj,1

is cocartesian, which will prove the assertion by stability of cocartesian squares
under colimits. For j = 0, there is nothing to prove. Suppose that the square (∗j)
is cocartesian for some j in J , and let j + 1 be the successor of j. Consider the
commutative diagram

(
∐
j′<j

Aj′
)
∐ Aj ∐X0,0 //

��

(
∐
j′<j

Bj′
)
∐Bj ∐X0,1

��

Aj ∐Xj,0 //

��

Bj ∐Xj,1

��

Xj+1,0 // Xj+1,1 .

The upper square is cocartesian as sum of two cocartesian squares, and the lower
one is cocartesian by hypothesis. So the composite square (∗j+1) is cocartesian.
Finally if j 6= 0 is not the successor of an element of J , and if for every j′ < j,
(∗j′) is cocartesian, then (∗j) is cocartesian by stability of cocartesian squares under
colimits. �

Proposition A.6. Let C be a cocomplete category and I a (small) set of arrows of
C. If the domains of the arrows in I are finitely presentable, then (in the notations
of 3.8)

cellω(I) = cell(I) .
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Proof. The inclusion

cellω(I) ⊂ cell(I)

being trivial, it’s enough to prove the opposite inclusion. Recall that cell(I) is equal
to the class of maps obtained by transfinite composition of pushouts of arrows in I
(cf. 3.3). So, let J be a well-ordered set, with minimal element 0, and

(Xj)j∈J , (Xj′
// Xj)j′6j

a J-indexed inductive system with values in C (functor J // C), satisfying the fol-
lowing two conditions:

a) if j + 1 is the successor of j in J , then there exists a cocartesian (pushout)
square

Aj
aj

//

ij

��

Xj

��

Bj
bj

// Xj+1

with ij in I;
b) if j 6= 0 is not the successor of an element of J , then Xj ≃ lim

−→j′<j
Xj′ .

We have to prove that the canonical map X0
// lim
−→j∈J

Xj is in cellω(I).

In the sequel, we suppose that for every j ∈ J we have chosen a cocartesian
square as in (a).

We will define by transfinite induction a J-indexed inductive system

(Yj)j∈J , (Yj′ // Yj)j′6j ,

where for every j ∈ J ,

Yj = Yj,0 // Yj,1 // Yj,2 // · · · // Yj,n // Yj,n+1
// · · ·

is a sequence of maps in C, endowed with an isomorphism lim
−→n∈N

Yj,n
∼ // Xj , nat-

ural in j, satisfying the following conditions:

0) for every j ∈ J , Yj,0 = X0 and Yj′,0 // Yj,0, j
′ 6 j, is the identity, and for

every n ∈ N, Y0,n // Y0,n+1 is in imds(I);
1) if j + 1 is the successor of j in J , then for every n ∈ N,

Yj,n //

��

Yj,n+1

��

Yj+1,n // Yj+1,n+1

is a I-special square;
2) if j 6= 0 is not the successor of an element of J , then Yj ≃ lim

−→j′<j
Yj′ .

This will prove the proposition. Indeed, if we set

Y : = lim
−→
j∈J

Yj =
(
Y0 : = lim

−→
j∈J

Yj,0 // Y1 : = lim
−→
j∈J

Yj,1 // Y2 : = lim
−→
j∈J

Yj,2 // · · ·
)
,

then by lemma A.5, (b), (c), for every n ∈ N, Yn // Yn+1 will be in imds(I) and
therefore the canonical map

X0 ≃ lim
−→
j∈J

Yj,0 = Y0 // lim
−→
n∈N

Yn = lim
−→
n∈N

lim
−→
j∈J

Yj,n ≃ lim
−→
j∈J

lim
−→
n∈N

Yj,n ≃ lim
−→
j∈J

Xj

will be in cellω(I).
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So let’s construct such an inductive system. Define Y0 by

Y0 : = X0
= // X0

= // X0
// · · · // X0

= // X0
// · · · ,

lim
−→n∈N

Y0,n = lim
−→n∈N

X0
∼ // X0being the evident isomorphism. If j 6= 0 is not the

successor of an element of J , and if Yj′ and the isomorphism lim
−→n∈N

Yj′,n
∼ // Xj′are

defined for j′ < j, define the sequence Yj by Yj : = lim
−→j′<j

Yj′ , and the isomorphism

lim
−→n∈N

Yj,n
∼ // Xjas the colimit of the isomorphisms lim

−→n∈N
Yj′,n

∼ // Xj′ . Suppose

now that

Yj = Yj,0 // Yj,1 // Yj,2 // · · · // Yj,n // Yj,n+1
// · · · , lim

−→
n∈N

Yj,n
∼ // Xj

are defined, and let’s define the sequence Yj+1, where j + 1 is the successor of j,
and construct the dotted part of the diagram

Yj,0 //

��

Yj,1 //

��

· · · // Yj,n //

��

Yj,n+1 //

��

· · · , lim
−→n∈N

Yj,n
∼ //

��

Xj

��

Yj+1,0 // Yj+1,1 // · · · // Yj+1,n // Yj+1,n+1 // · · · , lim
−→n∈N

Yj+1,n
∼ // Xj+1 .

Recall that we have a cocartesian (pushout) square

(∗)

Aj
aj

//

ij

��

Xj

��

Bj
bj

// Xj+1

with ij in I. As Aj is of finite presentation, there exists n0 ∈ N such that aj
factorizes through Yj,n0 , and we can choose a minimal such n0.

Yj,n0

can
��

Aj

aj
''OOOOOOOOOOO

77o
o

o
o

o
lim
−→

Yj,n

≀
��

Xj

For every n 6 n0, set Yj+1,n : = Yj,n, the arrow Yj,n // Yj+1,n being the identity.
The remaining part of the diagram is defined by constructing the following solid
diagram of cocartesian (pushout) squares

Aj //

ij

��

Yj,n0
//

�� %%J
J

J
J

J
Yj,n0+1 //

��

Yj,n0+2 //

��

· · ·

Bj // Z // Yj+1,n0+1 // Yj+1,n0+2 // · · · ,

the map Yj+1,n0 = Yj,n0
// Yj+1,n0+1 being the above dotted arrow. The isomor-

phism lim
−→n∈N

Yj+1,n
∼ // Xj+1 is deduced from the limit cocartesian square

Aj

ij

��

// lim
−→n>n0

Yj,n ≃ lim
−→n∈N

Yj,n

��

Bj // lim
−→n>n0

Yj+1,n ≃ lim
−→n∈N

Yj+1,n ,
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the cocartesian square (∗), and the isomorphism lim
−→n∈N

Yj,n
∼ // Xj . It remains to

prove that the squares

Yj,n //

��

Yj,n+1

��

Yj+1,n // Yj+1,n+1

are I-special. For n 6= n0 these squares are cocartesian, hence I-special by lemma A.5,
(a). If n = n0, this is a consequence of lemma A.4 and the above construction. �

The same proof with only minor changes shows the more general result stated
in 3.8.
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