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GENERALIZED LANDAU-LIFSHITZ EQUATION INTO Sn

CHONG SONG AND JIE YU

Abstract. In this paper, a type of integrable evolution equation–the gen-
eralized Landau-Lifshitz equation into Sn is considered. We deal with this
equation from a geometric point of view by rewriting it in a geometric form.
Through the geometric energy method, we show the global well-posedness of
the corresponding Cauchy problem.

1. Introduction

Let u be a map from S1×R to the n-dimensional sphere Sn, which is embedded
into R

n+1. In this paper the following equation:

(1.1) ut = (uxx +
3

2
|ux|

2u)x +
3

2
(u,Au)ux, |u|2 = 1

is considered. Here A is a constant symmetric matrix and (·, ·) denotes the standard
inner product on R

n+1. Without loss of generality we may assume that A is a
diagonal matrix, i.e. A = diag(r1, · · · , rn). We will also use 〈·, ·〉 to denote the
metric on Sn. It is compatible with the inner product on R

n+1 in the sense that
〈X,Y 〉 = (X,Y ) for any tangent vector fields X,Y ∈ TSn.

For n = 1, with the trigonometric parameterizations of a circle, equation (1.1)
becomes a well-known model in the theory of exactly integrable systems [3]. For
n = 2, equation (1.1) defines an infinitesimal symmetry for the well-known Noe-
mann system [15] describing the dynamics of a particle on the sphere Sn under the
influence of field with the quadratic potential U = 1

2 (u,Au). Besides, equation (1.1)
coincides with the higher symmetry of third order for the famous Landau-Lifshitz
equation

(1.2) ut = u× uxx + (Au)× u, |u|2 = 1.

Here the symbol ‘×’ denotes a vector product. Thus system (1.1) is a generalized
Landau-Lifshitz equation into n-dimensional sphere Sn.

In [6], I. Z. Golubchik and V. V. Sokolov showed that for any dimension n and
matrix A the system (1.1) is exactly integrable by the inverse scattering method,
and has an infinite number of symmetries. After that, Meshkov and Sokolov [9]
used the symmetry approach to give a complete classification of integrable vector
evolution equations similar to equation (1.1). In 2008, S. Igonin, J. Van De Leur,
G. Manno, and V. TrushkovIn [7] successfully applied the Wahlquist-Estabrook
method to recover the infinite-dimensional Lie algebra related to this system. For
more reference on this topic, see also [1, 2, 11].

However, from the perspective of partial differential equations, one may naturally
propose the problem of well-posedness of the corresponding Cauchy problem of
equation (1.1) in appropriate Sobolev spaces. In this paper, we intend to provide
such results. Let ∇x denote the covariant derivative ∇ ∂

∂x
on the pull-back bundle

u∗TSn induced from the Levi-Civita connection ∇ on Sn, then

∇2
xux = uxxx + 3(ux, uxx)u + 〈ux, ux〉ux.
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Therefore, equation (1.1) can be rewritten as a geometric flow on Sn:

(1.3) ut = ∇2
xux +

1

2
|ux|

2ux +
3

2
(u,Au)ux.

When n = 2 and A ≡ 0, equation (1.3) coincides with the geometric KdV Flow de-
fined by Sun and Wang [13]. In this sense, equation (1.1) is a type of generalization
of the so-called KdV Flow.

The Cauchy problem corresponding to equation (1.1), i.e. (1.3) is

(1.4)







ut = ∇2
xux +

1

2
|ux|

2ux +
3

2
(u,Au)ux,

u(0) = u0,

where u0 is an initial map from S1 into Sn. Now it is natural for us to treat this
problem as a geometric evolution equation and implement the so-called geometric
energy method (see Section 2). This method relies heavily on the geometric struc-
ture of equation (1.3) and seems more intrinsic. With this powerful tool, we prove
the global well-posedness of Cauchy problem (1.4). Our main result is the following
theorem.

Theorem 1.1. Suppose u0 ∈ W k,2(S1, Sn) for k ≥ 3, then the Cauchy prob-
lem (1.4) admits a unique global solution u ∈ L∞(R+,W k,2(S1, Sn)).

We sketch our strategy as follows:
First, we prove the local existence of solution to Cauchy problem (1.4) by per-

turbing the system with a 4th order term −ǫ∇3
xux, where ǫ > 0 is a small positive

number. Namely, we consider the following perturbed system:

(1.5)







ut = −ǫ∇3
xux +∇2

xux +
1

2
|ux|

2ux +
3

2
(u,Au)ux,

u(0) = u0.

This is a 4th order parabolic system and it is well-known that there exists a unique
local solution uǫ of (1.5) with smooth initial data. Then we use this solution to
approximate the desired solution of (1.4) by vanishing the perturbing term, i.e. by
letting ǫ go to 0. The key step is to establish an uniform estimate of the solution uǫ

for ǫ > 0, see Lemma 3.4. With this estimate, we are able to show that uǫ converges
to a limit map u which is a local solution to Cauchy problem (1.4). Furthermore,
a careful calculation yields the uniqueness of the solution.

Next, instead of computing conservation laws of the integrable system, we define
the following ‘energy’ integrals:

E2(u) =

∫

S1

|∇xux|
2 −

1

4

∫

S1

|ux|
4 −

9

4

∫

S1

(u,Au)|ux|
2 +

∫

S1

(ux, Aux),

E3(u) =

∫

S1

|∇2
xux|

2 −

∫

S1

〈ux,∇xux〉
2 −

3

2

∫

S1

|ux|
2|∇xux|

2.

Then we show that these geometric energies satisfy semi-conversation laws under
the flow (1.3), i.e.

d

dt
E2(u) ≤ C(E2(u) + 1),

d

dt
E3(u) ≤ C(E3(u) + 1),

where C is a constant depending only on the W 3,2-norm of the initial data u0, the
matrix A and the existing time of the solution. Applying Gronwall’s inequality, we
get the bound of these energies, which implies a global bound of the W 3,2-norm of
the solution. A standard argument then yields the global existence of solution to
Cauchy problem (1.4).



GENERALIZED LANDAU-LIFSHITZ EQUATION INTO Sn 3

Though we only discuss the situation when u is a map from S1 to Sn, the same
result also holds for u mapping from the real line R

1. Actually, one may check this
by following the argument in [5]. The crucial fact is that the interpolation inequality
in Theorem 2.1 is scaling invariant, and hence the main estimate in Lemma 3.4 does
not depend on the diameter of the domain. Thus we have the following

Theorem 1.2. Suppose u0 ∈ W k,2(R1, Sn) for k ≥ 3, then the Cauchy prob-
lem (1.4) admits a unique global solution u ∈ L∞(R+,W k,2(R1, Sn)).

The rest of this paper is arranged as follows: we first recall the geometric energy
method in Section 2. Then we apply this method to show the local existence and
uniqueness of solution to the Cauchy problem (1.4) in Section 3 and Section 4
respectively. Next we compute the semi-conservation laws we need in Section 5. At
last, we finish the proof of global existence in Section 6.

2. Geometric energy method

In this section, we recall the geometric energy method. This method was first
introduced by Ding and Wang in their seminar paper [5] to show the local well-
posedness of the Schrödinger flow. Then similar methods were employed to treat
different kinds of problems in geometric analysis. It is especially powerful when
applied to non-linear evolution equations. For example, Kenig, etc. [8] showed the
same method works efficiently for a difference scheme to approach the Schrödinger
flow equation. Song and Wang [12] used a similar method to prove the local
well-posedness of the wave map with potential, which implies the existence of
Schrödinger solitons on Lorentzian manifolds. Moser [10] also defined a geometric
energy to deal with the biharmonic map. Recently, Sun and Wang [13] applied this
method to investigate the geometric KdV flow.

The geometric energy method starts with a kind of geometric Sobolev-type norms
defined on Riemannian vector bundles. Its main idea is to derive a priori estimates
of the geometric energies, i.e. the geometric Sobolev norms of the solution. Since
the geometric norm naturally involves with the geometry of the underlying man-
ifolds, it seems more intrinsic to investigate these norms instead of the classical
Sobolev norms when dealing with specific equations with geometric backgrounds.
However, these norms are non-linear in general and harder to be dealt with than the
normal ones, because the Sobolev embedding theorems fail to hold. Fortunately,
Ding and Wang [5] discovered a generalized Gagliardo-Nirenberg inequality for the
geometric Sobolev norms which plays the key role in the geometric energy method.
Moreover, they found these geometric norms are in some sense equivalent to the
normal Sobolev norms. We summarize their results with two theorems in the rest
part of this section.

Let π : E → M be a Riemannian vector bundle over an m-dimensional closed
Riemannian manifold M and D denote the covariant derivative on E induced by
the Riemannian metric. Then we can define a Sobolev norm which we denote by
Hk,p for any k ≥ 1 and p > 0 via the bundle metric for every section s ∈ Γ(E) by

‖s‖Hk,q =
k

∑

l=0

‖Dls‖Lq .

Theorem 2.1. ([5]) Suppose s ∈ C∞(E) is a section where E is a vector bundle
on M . Then we have

∥

∥Djs
∥

∥

Lp ≤ C ‖s‖
a
Hk,q ‖s‖

1−a
Lr ,
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where 1 ≤ p, q, r ≤ ∞, and j/k ≤ a ≤ 1(j/k ≤ a < 1 if q = m/(k − j) 6= 1) are
numbers such that

1

p
=

j

m
+

1

r
+ a(

1

q
−

1

r
−

k

m
).

The constant C only depends on M and the numbers j, k, q, r, a.

Corollary 2.2. Suppose s ∈ C∞(E) is a section where E is a vector bundle on
S1. Then we have

(2.1) ‖s‖L∞ ≤ C ‖s‖
1
2

H1,2 ‖s‖
1
2

L2

Proof. Since m = 1, just let j = 0, p = ∞, a = 1/2, k = 1, q = 2, r = 2 and apply
Theorem 2.1. �

Especially, for a map u ∈ C∞(S1, N), the pull-back bundle u∗(TN) is a Rie-
mannian vector bundle on 1-dimensional manifold M = S1. So the above inequal-
ity (2.1) applies for section s = ∇l

xux ∈ Γ(u∗(TN)) with l ≥ 0, which yields

(2.2)
∥

∥∇l
xux

∥

∥

L∞
≤ C ‖ux‖

1
2

Hl+1,2 ‖ux‖
1
2

L2 ≤ C ‖ux‖Hl+1,2 .

For any map u from a m-dimensional Riemannian manifold M to a compact
Riemannian manifold N which can be embedded into a Euclidean space R

K , we
have two kinds of Sobolev norms– namely, the above Hk,p norms of section Du =
∇u ∈ Γ(u∗TN) and the normal W k,p Sobolev norms of function u : M → R

K , i.e.

‖u‖Wk,p =

k
∑

l=0

‖∇lu‖Lq ,

where∇ denotes the covariant derivative of functions onM . Ding andWang showed
that for k > m/2, the Hk,p norm of Du is equivalent to the W k+1,p norm of u.
Precisely, we have

Theorem 2.3. ([5]) Assume that k > m/2. Then there exists a constant C =
C(N, k) such that for all u ∈ C∞(M,N),

‖∇u‖Wk−1,2 ≤ C

k
∑

i=1

‖Du‖
i
Hk−1,2

and

‖Du‖Hk−1,2 ≤ C
k

∑

i=1

‖∇u‖iWk−1,2

In our case, m = 1 and k can be any positive integer. That means, for all k ≥ 1,
the Sobolev norms ‖ux‖Wk,2 are equivalent to the nonlinear norms ‖ux‖Hk,2 of the
same order.

3. Local existence

A basic property of the flow (1.3) is that it preserves the perturbed energy

(3.1) E1(u) =
1

2

∫

S1

|ux|
2dx+

1

2

∫

S1

(u,Au)dx.

Lemma 3.1. E1 is conserved under the flow (1.3).
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Proof. A direct computation yields:

1

2

d

dt

∫

S1

|ux|
2

=

∫

S1

〈∇tux, ux〉 =

∫

S1

〈∇xut, ux〉

=−

∫

S1

〈∇2
xux +

1

2
|ux|

2ux +
3

2
(u,Au)ux,∇xux〉

=−

∫

S1

〈∇2
xux,∇xux〉 −

1

2

∫

S1

|ux|
2〈ux,∇xux〉 −

3

2

∫

S1

(u,Au)〈ux,∇xux〉.

The first two terms vanishes, when integrating by parts. Thus,

(3.2)
1

2

d

dt

∫

S1

|ux|
2 =

3

2

∫

S1

|ux|
2(u,Aux).

On the other hand, using equation (1.1), we have

1

2

d

dt

∫

S1

(u,Au) =

∫

S1

(ut, Au)

=−

∫

S1

(uxx +
3

2
|ux|

2u,Aux) +
3

2

∫

S1

(u,Au)(ux, Au)

=−
3

2

∫

S1

|ux|
2(u,Aux).

(3.3)

From (3.2) and (3.3), we get
d

dt
E1(u(t)) = 0.

Lemma 3.1 follows. �

Since the matrix A is constant and |u| = 1 on the sphere Sn, we have

(3.4)

∫

S1

(u,Au)dx ≤ C.

Thus we get the following easy corollary:

Lemma 3.2. ‖ux‖L2 is bounded under flow (1.3). Moreover, the following inequal-
ity holds:

(3.5) ‖ux‖L∞ ≤ C‖ux‖
1
2

H1,2 .

Proof. The first statement follows directly form Lemma 3.1 and (3.4). Combining
this and the interpolation inequality (2.1), we get

‖ux‖L∞ ≤ C‖ux‖
1
2

H1,2‖ux‖
1
2

L2 ≤ C‖ux‖
1
2

H1,2 .

�

To attain the local existence, we approximate equation (1.3) by a 4th-order
parabolic system:

(3.6)







ut = −ǫ∇3
xux +∇2

xux +
1

2
|ux|

2ux +
3

2
(u,Au)ux,

u(0) = u0.

where ǫ > 0 is a small number.
Since N = Sn is a submanifold of Rn+1, u could be considered as a mapping

from S1 into R
n+1. The equation (3.6) then becomes a fourth order parabolic

equation in R
n+1 which is analogous to the heat flow of biharmonic map. By the

standard parabolic theory (See [14], for example), equation (3.6) admits a local
solution uǫ ∈ C∞([0, Tǫ) × S1, Sn), if the initial map u0 is smooth. Moreover, one
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can verify that u(t) lies on the sphere Sn for any t ∈ [0, Tǫ), if the initial map
does [16].

Similarly to Lemma 3.1, one can prove the following lemma through direct com-
putation.

Lemma 3.3. If uǫ : [0, Tǫ) × S1 → Sn is a solution to the Cauchy problem (3.6),
then

E1(uǫ(t)) ≤ E1(u0)), ∀t ∈ [0, T ).

Next we approximate the solution of the original system (1.4) by vanishing the
perturbing term, i.e. letting ǫ go to 0. To achieve this goal, we need the following
lemma which provides an uniform estimate on the solutions of (3.6) for ǫ > 0 .

Lemma 3.4. Let u0 ∈ C∞(S1, Sn) and u ∈ C∞([0, Tǫ) × S1, Sn) be a solution of
(3.6) with ǫ ∈ (0, 1]. Then for any integer k ≥ 2, there exists a Tk > 0 which is
independent of ǫ, such that

(3.7) ‖∇xu(t)‖Hk,2 ≤ C(k, ‖∇xu0‖Hk,2), t ∈ [0, Tk].

Proof. For any l ≥ 2, we compute

1

2

d

dt

∫

S1

|∇l
xux|

2 =

∫

S1

〈∇t∇
l
xux,∇

l
xux〉

=

∫

S1

〈∇l
x∇tux +Ql(ut, ux),∇

l
xux〉

=

∫

S1

〈∇l+1
x (−ǫ∇3

xux +∇2
xux),∇

l
xux〉

+
1

2

∫

S1

〈∇l+1
x (|ux|

2ux + 3(u,Au)ux),∇
l
xux〉+

∫

S1

〈Ql(ut, ux),∇
l
xux〉

:=I1 + I2 + I3,

(3.8)

where Ql(ut, ux) denotes the curvature terms, and will be treated later.
For the first term in (3.8), it is easy to see

(3.9) I1 = −ǫ

∫

S1

〈∇l+4
x ux,∇

l
xux〉+

∫

S1

〈∇l+3
x ux,∇

l
xux〉 = −ǫ

∫

S1

|∇l+2
x ux|

2.

For the second term, we have

(3.10)
I2 =

1

2

∫

S1

〈∇l+1
x (|ux|

2ux),∇
l
xux〉+

3

2

∫

S1

〈∇l+1
x ((u,Au)ux),∇

l
xux〉

:= J1 + J2

We first estimate J1. After differentiating, we get

(3.11)

J1 ≤|

∫

S1

〈∇l+1
x ux, ux〉〈ux,∇

l
xux〉|+

1

2
|

∫

S1

〈ux, ux〉〈∇
l+1
x ux,∇

l
xux〉|

+ C
∑

a,b,c

∫

S1

|∇a
xux||∇

b
xux||∇

c
xux||∇

l
xux|,

where the sum is taken over all integers a, b, c satisfying

(3.12) a+ b+ c = l+ 1, and l ≥ a, b, c ≥ 0.

For the first two terms in (3.11), integrating by parts, we have

(3.13)

∫

S1

〈∇l+1
x ux, ux〉〈ux,∇

l
xux〉 = −

∫

S1

〈∇l
xux,∇xux〉〈ux,∇

l
xux〉,

and
∫

S1

〈ux, ux〉〈∇
l+1
x ux,∇

l
xux〉 = −

∫

S1

〈ux,∇xux〉〈∇
l
xux,∇

l
xux〉,
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Thus these two terms are of the same form as the summation term in (3.11), only
with a = l and b = 1, c = 0. Now we may recall inequality (2.2) to estimate

∫

S1

|∇l
xux||∇xux||ux||∇

l
xux| ≤ ‖∇xux‖L∞‖ux‖L∞‖∇l

xux‖
2
L2

≤ C‖ux‖
4
Hl,2 .

Note that we used the assumption l ≥ 2 here. However for l = 1, this term is also
bounded by

(3.14)

∫

S1

|∇xux|
3|ux| ≤ C‖ux‖

4
H2,2 .

For the other terms of the summation where a, b, c ≤ l − 1, we have
∫

S1

|∇a
xux||∇

b
xux||∇

c
xux||∇

l
xux| ≤ ‖∇a

xux‖L∞‖∇b
xux‖L∞‖∇c

xux‖L∞‖∇l
xux‖L1

≤ C‖ux‖
4
Hl,2 .

Hence, we find J1 bounded by

(3.15) J1 ≤ C‖ux‖
4
Hl,2 .

Similarly, the second term J2 satisfies

J2 ≤3|

∫

S1

(Dl+1
x u,Au)〈ux,∇

l
xux〉|+

3

2
|

∫

S1

(u,Au)〈∇l+1
x ux,∇

l
xux〉|

+ C
∑

a,b,c

∫

S1

|Da
xu||D

b
xu||∇

c
xux||∇

l
xux|,

where Dx denotes the derivative of functions, and the sum is taken over all integers
a, b, c satisfying (3.12). Now we may treat J2 in almost the same way as J1, except
that we shift to the classical Sobolev inequalities for the terms in the Euclidean
inner product (·, ·) this time. Still, we can obtain

(3.16) J2 ≤ C‖ux‖
2
W l,2‖ux‖

2
Hl,2 ≤ C‖ux‖

4
Hl,2 ,

since the W l,2 and H l,2 Sobolev norms are equivalent by Theorem 2.3.
Combining (3.10),(3.15),(3.16), we get

(3.17) I2 ≤ C‖ux‖
4
Hl,2 .

Finally we turn to the third term, i.e. the curvature term

I3 =

∫

S1

〈Ql(ut, ux),∇
l
xux〉 =

∑

a,b,c

Ca,b,c

∫

S1

〈R(∇a
xut,∇

b
xux)∇

c
xux,∇

l
xux〉,

where the sum is taken over all integers a, b, c satisfying

a+ b+ c = l − 1, and l − 1 ≥ a, b, c ≥ 0,

and Ca,b,c are combination numbers bounded by a constant Cl only depending on
l. Substituting ut by equation (3.6), we get

I3 ≤ Cl

∑

a,b,c

{

−ǫ

∫

S1

〈R(∇a+3
x ux,∇

b
xux)∇

c
xux,∇

l
xux〉

+

∫

S1

〈R(∇a+2
x ux,∇

b
xux)∇

c
xux,∇

l
xux〉

+
1

2

∫

S1

|∇a
x(|ux|

2ux + 3(u,Au)ux)||∇
b
xux||∇

c
xux||∇

l
xux|

}

:= Cl(J4 + J5),
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where J4 denotes the higher-order terms with ∇d
xux, d ≥ l + 1, while J5 denotes

the summation of the rest terms. We only need to deal with J4 here, since all the
lower-order terms in J5 can be bounded. Namely, after a similar argument as the
estimate of I2, which we omit here, we can obtain

J5 ≤ C‖ux‖
6
Hl,2 .

On the other hand, there are four terms in J4, i.e.

J4 = −ǫ(

∫

S1

〈R(∇l+2
x ux, ux)ux,∇

l
xux〉+

∫

S1

〈R(∇l+1
x ux,∇xux)ux,∇

l
xux〉

+

∫

S1

〈R(∇l+1
x ux, ux)∇xux,∇

l
xux〉) +

∫

S1

〈R(∇l+1
x ux, ux)ux,∇

l
xux〉.

The last term can be handled as we have done in (3.13). For the first term, it
follows from Young’s inequality that for any 0 < δ < 1

|ǫ

∫

S1

〈R(∇l+2
x ux, ux)ux,∇

l
xux〉| ≤ ǫ

∫

S1

|∇l+2
x ux||∇

l
xux||ux|

2

≤ ǫδ

∫

S1

|∇l+2
x ux|

2 +
ǫ

δ

∫

S1

|∇l
xux|

2|ux|
4

≤ ǫδ

∫

S1

|∇l+2
x ux|

2 +
C

δ
‖ux‖

6
Hl,2 .

Similarly, for the rest two terms in J4,

ǫ(

∫

S1

〈R(∇l+1
x ux,∇xux)ux,∇

l
xux〉+

∫

S1

〈R(∇l+1
x ux, ux)∇xux,∇

l
xux〉)

≤ǫδ

∫

S1

|∇l+1
x ux|

2 +
4ǫ

δ

∫

S1

|∇l
xux|

2|∇xux|
2|ux|

2

≤ǫδ

∫

S1

|∇l+1
x ux|

2 +
C

δ
‖ux‖

6
Hl,2 .

Note that we assume l ≥ 2 again in the above. As for l = 1, it is obviously bounded
by C‖ux‖

6
H2,2 . Hence, if we choose δ = 1/Cl, we get

J4 ≤
ǫ

Cl

∫

S1

|∇l+2
x ux|

2 +
ǫ

Cl

∫

S1

|∇l+1
x ux|

2 + C‖ux‖
6
Hl,2 ,

which now implies

(3.18) I3 ≤
ǫ

2

∫

S1

|∇l+2
x ux|

2 +
ǫ

2

∫

S1

|∇l+1
x ux|

2 + C‖ux‖
6
Hl,2 .

Correspondingly, for l = 1 we have

(3.19) I3 ≤
ǫ

2

∫

S1

|∇3
xux|

2 + C‖ux‖
6
H2,2 .

Combining (3.8),(3.9),(3.17) and (3.18), we arrive at
(3.20)

1

2

d

dt
|∇l

xux|
2 ≤ −

ǫ

2

∫

S1

|∇l+2
x ux|

2 +
ǫ

2

∫

S1

|∇l+1
x ux|

2 + C‖ux‖
4
Hl,2 + C‖ux‖

6
Hl,2 ,

,for any l ≥ 2. Also for the case l = 1, the above arguments together with
(3.14),(3.19) shows that

(3.21)
1

2

d

dt

∫

S1

|∇xux|
2 ≤ −

ǫ

2

∫

S1

|∇3
xux|

2 + C‖ux‖
4
H2,2 + C‖ux‖

6
H2,2 .

Summing inequality (3.20) from l = 2 to k, and putting (3.21) and Lemma 3.3 into
account, we conclude that there exists a constant Ck depending only on k such that

d

dt
‖ux‖

2
Hk,2 ≤ Ck(1 + ‖ux‖

2
Hk,2)

3
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for any k ≥ 2.
For this ordinary differential inequality with respect to ‖ux‖

2
Hk,2 , whose initial

data is u(0) = u0, there exist Tk = T (‖∇xu0‖Hk,2) for all k ≥ 2 such that

‖ux(t)‖
2
Hk,2 ≤ C(k, ‖∇xu0‖Hk,2), ∀t ∈ (0, Tk].

Thus we complete the proof of the lemma. �

Remark 3.5. Actually, we can say more for k > 2. With the same procedure but
more careful treatment with the interpolations (See [5, 13]), one can prove that

(3.22)
d

dt
‖ux‖

2
Hk,2 ≤ C(k, ‖ux‖Hk−1,2)(1 + ‖ux‖

2
Hk,2).

One important fact is that the expression (3.22) is a linear differential inequality
for ‖ux‖

2
Hk,2 , therefore the existing time of the solution only depends on the existing

time of ‖ux‖Hk−1,2 , which in turn equals to T0 = T (‖∇xu0‖H2,2) = T (‖u0‖W 3,2) by
induction.

Now we are ready to prove the local existence of the solution to Cauchy prob-
lem (1.4). We state this result in a separate theorem.

Theorem 3.6. Suppose u0 ∈ W k,2(S1, Sn) for k ≥ 3, then the Cauchy prob-
lem (1.4) admits a local solution u ∈ L∞([0, T ),W k,2(S1, Sn)) for some positive
number T > 0. Moreover, if the initial data u0 is smooth, so is the solution u.

Proof. We first assume the initial map u0 is smooth. By Lemma 3.4, we know that
the Cauchy problem (3.6) admits a unique smooth solution uǫ ∈ C∞([0, T )×S1, Sn)
which satisfies the estimates (3.7) with T only depending on ‖u0‖W 3,2 . Then by
Theorem 2.3, we have for any integer p > 0 and ǫ ∈ (0, 1]:

sup
t∈[0,T ]

||uǫ||Wp,2(N) ≤ Cp(N, u0),

where Cp(N, u0) does not depend on ǫ. Thus, by sending ǫ → 0 and applying the
embedding theorem of Sobolev spaces to u, we have uǫ → u ∈ Cp(S1 × [0, T ]) for
any p. It is easy to check that u is a solution to the Cauchy problem (1.4).

Next, if u0 ∈ W k,2(S1, Sn) for k ≥ 3, then we can always choose a sequence
ui
0 ∈ C∞(S1, Sn), such that ui

0 converges to u0 inW k,2(S1, Sn). Now for each initial
data ui

0, we have a solution ui ∈ C∞([0, T i) × S1, Sn) to Cauchy problem (1.4).
They all satisfy estimate (3.7), i.e.

‖∇xu
i(t)‖Hk−1,2 ≤ C(k, ‖∇xui‖Hk−1,2) ≤ C(k, ‖∇xu0‖Hk−1,2), t ∈ [0, T i])

Moreover, we have an uniform lower bound on the existing time T i, i.e.

T i = T (‖ui
0‖W 3,2) ≥ T = T (‖u0‖W 3,2).

Again by Theorem 2.3, we have

sup
t∈[0,T ]

‖ui(t)‖Wk,2 ≤ C(k, ‖u0‖Wk,2).

Therefore there exists a subsequence {uj} and a map u ∈ L∞([0, T ],W k,2(S1, Sn))
such that

uj → u [weakly∗] in L∞([0, T ],W k,2(S1, Sn)).

It is easy to verify that the limit map u we get above is indeed a strong solution
of Cauchy problem (1.4). �
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4. Uniqueness

This section is devoted to prove the following uniqueness theorem. This result
relies heavily on the geometric structure of equation (1.3).

Theorem 4.1. Suppose u0 ∈ W k,2(S1, Sn) for k ≥ 3, then the solution of Cauchy
problem (1.4) is unique.

Proof. Suppose u and v are two solutions of Cauchy problem (1.4) with same initial
data u0. Let w = u− v, then w satisfies the following equation:

wt = wxxx + 3[(ux, uxx)u − (vx, vxx)v]

+
3

2
[|ux|

2ux − |vx|
2vx] +

3

2
[(u,Au)ux − (v,Av)vx]

= : wxxx + 3I1 +
3

2
I2 +

3

2
I3.

(4.1)

By inserting intermediate terms, we have

I1 = (ux, uxx)u− (ux, vxx)u+ (ux, vxx)u− (vx, vxx)u+ (vx, vxx)u − (vx, vxx)v

= (ux, wxx)u+ (wx, vxx)u + (vx, vxx)w.

Similarly, for the last two terms in (4.1), we have

I2 = (wx, ux)ux + (wx, vx)ux + (vx, vx)wx,

and

I3 = (w,Au)ux + (w,Av)ux + (v,Av)wx.

Now, we are going to compute d
dt‖w‖W 1,2 . First, it’s easy to see

1

2

d

dt
‖w‖2L2 =

∫

S1

(wt, w)

=

∫

S1

(wxxx, w) + 3

∫

S1

(ux, wxx)(u,w)

+ 3

∫

S1

(wx, vxx)(u,w) + 3

∫

S1

(vx, vxx)|w|
2

+
3

2

∫

S1

(wx, ux)(ux, w) + (wx, vx)(ux, w) + (vx, vx)(wx, w)

+
3

2

∫

S1

(w,Au)(ux, w) + (w,Av)(ux, w) + (v,Av)(wx, w)

≤ C(‖u‖W 3,2 + ‖v‖W 3,2)‖w‖2W 1,2 .

(4.2)

Next, we claim that

−
1

2

d

dt
‖wx‖

2
L2

=

∫

S1

(wt, wxx)

=

∫

S1

(wxxx, wxx) + 3

∫

S1

(ux, wxx)(u,wxx)

+ 3

∫

S1

(wx, vxx)(u,wxx) + 3

∫

S1

(vx, vxx)(w,wxx)

+
3

2

∫

S1

(wx, ux)(ux, wxx) + (wx, vx)(ux, wxx) + (vx, vx)(wx, wxx)

+
3

2

∫

S1

(w,Au)(ux, wxx) + (w,Av)(ux, wxx) + (v,Av)(wx, wxx)

≤ C(‖u‖W 3,2 + ‖v‖W 3,2)‖w‖2W 1,2 .

(4.3)
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We shall examine this term by term carefully. First of all, it’s obvious
∫

S1

(wxxx, wxx) = 0.

Also, it’s easy to check

3

∫

S1

(vx, vxx)(w,wxx)+
3

2

∫

S1

(w,Au)(ux, wxx) + (w,Av)(ux, wxx)

≤ C(‖u‖W 3,2 + ‖v‖W 3,2)‖w‖2W 1,2 .

Furthermore, by integrating by parts, we have

3

2

∫

S1

(wx, ux)(ux, wxx) + (vx, vx)(wx, wxx) + (v,Av)(wx, wxx)

= −
3

2

∫

S1

(wx, ux)(uxx, wx) + (vx, vxx)(wx, wx) + (v,Avx)(wx, wx)

≤ C(‖u‖W 3,2 + ‖v‖W 3,2)‖wx‖
2
L2.

Similarly,

3

2

∫

S1

(wx, vx)(ux, wxx)

=
3

2

∫

S1

(wx, vx)(wx, wxx) + (wx, vx)(vx, wxx)

≤
3

2
‖vx‖L∞‖wxx‖L∞‖wx‖

2
L2 −

3

2

∫

S1

(wx, vx)(vxx, wx)

≤ C(‖u‖W 3,2 + ‖v‖W 3,2)‖wx‖
2
L2.

Thus there are only two terms left, i.e.

(4.4) 3

∫

S1

(ux, wxx)(u,wxx) and 3

∫

S1

(wx, vxx)(u,wxx).

To treat them, we observe that |u|2 = 1 implies (u, ux) = 0, hence (u, uxx) +
(ux, ux) = 0. Therefore,

(u,wxx) =(u, uxx − vxx) = −(ux, ux)− (u, vxx)

= − (ux, ux) + (ux, vx)− (ux, vx) + (vx, vx) + (v, vxx)− (u, vxx)

= − (ux, wx)− (wx, vx)− (w, vxx).

Taking this into account, we can bound (4.4) in the same way as above. Namely,
we have

3

∫

S1

(ux, wxx)(u,wxx) + 3

∫

S1

(wx, vxx)(u,wxx) ≤ C(‖u‖W 3,2 + ‖v‖W 3,2)‖w‖2W 1,2 .

So we proved the claim and finally get from (4.2) and (4.3) that

d

dt
‖w‖2W 1,2 ≤ C(‖u‖W 3,2 + ‖v‖W 3,2)‖w‖2W 1,2 .

Thus Lemma 3.4 implies

‖w(t)‖2W 1,2 ≤ C‖w(0)‖2W 1,2 .

Since u and v share the same initial data, we know w(0) = 0. Hence we conclude
that w(t) = 0, i.e. the solution is unique. �
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5. Semi-conservation laws

After getting a local solution u ∈ L∞([0, T ),W k,2(S1, Sn)) of Cauchy prob-
lem (1.4), what we need to do next is to derive an uniform estimate of ‖u‖W 3,2 for
all t ∈ [0, T ). Then Theorem 1.1 ensures that the local solution can be extended to
a global solution. In geometric evolution problems, this is usually done by finding
some energy conservation laws, see [4, 13, 17] for example. However, in the current
situation we fail to find conservation quantities except the energy E1(u). Never-
theless, we do find semi-conservation laws for two higher order energies which is
sufficient to prove the global existence.

Remark 5.1. Our goal here is to bound the norm ‖ux‖H2,2 , which is equivalent to
the Sobolev norm ‖u‖W 3,2, for all existing time t ∈ [0, T ). However, there are some
unexpected terms emerging, when we calculate d

dt‖ux‖H2,2 directly. These ‘bad’
terms can’t be controlled by the linear form of ‖ux‖H2,2 , which is necessary when
carrying out Gronwall’s inequality. Luckily, we find some other energies which sat-
isfy semi-conservative laws. More importantly, these semi-conservative laws implies
a global bound of ‖u‖W 3,2.

Through out this section, we let u ∈ L∞([0, T ),W k,2(S1, Sn)) be a local solution
of Cauchy problem (1.4) on the time interval [0, T ), and use C to denote constants
which may depend on the initial data, the matrix A and the maximal time T . First
we define a second order ‘energy’

E2(u) =

∫

S1

|∇xux|
2 −

1

4

∫

S1

|ux|
4 −

9

4

∫

S1

(u,Au)|ux|
2 +

∫

S1

(ux, Aux).

To derive the semi-conservation law, we take the time derivative
(5.1)
d

dt
E2(u) =

d

dt

∫

S1

|∇xux|
2−

1

4

d

dt

∫

S1

|ux|
4−

9

4

d

dt

∫

S1

(u,Au)|ux|
2+

d

dt

∫

S1

(ux, Aux)

and compute the four terms in (5.1) one by one.
Using the equation (1.3) and changing the order of derivatives, we have

d

dt

∫

S1

|∇xux|
2

=2

∫

S1

〈∇t∇xux,∇xux〉

=2

∫

S1

〈∇x∇xut,∇xux〉+ 2

∫

S1

〈R(ux, ut)ux,∇xux〉

=2

∫

S1

〈ut,∇
3
xux〉+ 2

∫

S1

〈R(ux,∇
2
xux)ux,∇xux〉

+

∫

S1

〈R(ux, ux)ux,∇xux〉|ux|
2 + 3

∫

S1

〈R(ux, ux)ux,∇xux〉(u,Au)

=2

∫

S1

〈ut,∇
3
xux〉+ 2

∫

S1

〈R(ux,∇
2
xux)ux,∇xux〉

:=I1 + I2
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Here we noticed that the curvature tensor R on Sn is constant, hence ∇xR ≡ 0.
We first compute the term I1.

I1 =2

∫

S1

〈∇2
xux +

1

2
〈ux, ux〉ux +

3

2
(u,Au)ux,∇

3
xux〉

=2

∫

S1

〈∇2
xux,∇

3
xux〉+

∫

S1

〈ux, ux〉〈ux,∇
3
xux〉+ 3

∫

S1

(u,Au)〈ux,∇
3
xux〉

=− 2

∫

S1

〈∇xux, ux〉〈ux,∇
2
xux〉 −

∫

S1

〈ux, ux〉〈∇xux,∇
2
xux〉

− 6

∫

S1

(ux, Au)〈ux,∇
2
xux〉 − 3

∫

S1

(u,Au)〈∇xux,∇
2
xux〉

=2

∫

S1

〈∇xux, ux〉〈∇xux,∇xux〉+

∫

S1

〈∇xux, ux〉〈∇xux,∇xux〉

+ 6

∫

S1

(uxx, Au)〈ux,∇xux〉+ 6

∫

S1

(ux, Aux)〈ux,∇xux〉

+ 6

∫

S1

(ux, Au)〈∇xux,∇xux〉+ 3

∫

S1

(ux, Au)〈∇xux,∇xux〉

=3

∫

S1

〈∇xux, ux〉〈∇xux,∇xux〉+ 6

∫

S1

(uxx, Au)〈ux,∇xux〉

+ 6

∫

S1

(ux, Aux)〈ux,∇xux〉+ 9

∫

S1

(ux, Au)〈∇xux,∇xux〉

For I2, since ∇xR ≡ 0, we have

I2 =2

∫

S1

〈R(ux,∇
2
xux)ux,∇xux〉

=

∫

S1

〈R(ux,∇
2
xux)ux,∇xux〉 −

∫

S1

〈R(∇xux,∇xux)ux,∇xux〉

−

∫

S1

〈(∇xR)(ux,∇xux)ux,∇xux〉 −

∫

S1

〈R(ux,∇xux)∇xux,∇xux〉

−

∫

S1

〈R(ux,∇xux)ux,∇
2
xux〉

=0.

Thus for the first term in (5.1), we get

d

dt

∫

S1

|∇xux|
2

=3

∫

S1

〈∇xux, ux〉〈∇xux,∇xux〉+ 6

∫

S1

(uxx, Au)〈ux,∇xux〉

+ 6

∫

S1

(ux, Aux)〈ux,∇xux〉+ 9

∫

S1

(ux, Au)〈∇xux,∇xux〉.

(5.2)
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On the other hand,

d

dt

∫

S1

|ux|
4

=4

∫

S1

〈∇tux, ux〉〈ux, ux〉

=− 4

∫

S1

〈ut,∇xux〉〈ux, ux〉 − 8

∫

S1

〈ut, ux〉〈ux,∇xux〉

=− 4

∫

S1

〈∇2
xux,∇xux〉〈ux, ux〉 − 2

∫

S1

〈ux, ux〉〈ux, ux〉〈ux,∇xux〉

− 6

∫

S1

(u,Au)〈ux,∇xux〉〈ux, ux〉 − 8

∫

S1

〈∇2
xux, ux〉〈ux,∇xux〉

− 4

∫

S1

〈ux, ux〉〈ux, ux〉〈ux,∇xux〉 − 12

∫

S1

(u,Au)〈ux, ux〉〈ux,∇xux〉

=4

∫

S1

〈∇xux,∇xux〉〈ux,∇xux〉 − 6

∫

S1

(u,Au)〈ux,∇xux〉〈ux, ux〉

+ 8

∫

S1

〈∇xux, ux〉〈∇xux,∇xux〉 − 12

∫

S1

(u,Au)〈ux, ux〉〈ux,∇xux〉

=12

∫

S1

〈∇xux,∇xux〉〈ux,∇xux〉+ 9

∫

S1

(ux, Au)〈ux, ux〉〈ux, ux〉.

(5.3)

Besides,

d

dt

∫

S1

(u,Au)〈ux, ux〉

=2

∫

S1

(ut, Au)〈ux, ux〉+ 2

∫

S1

(u,Au)〈∇tux, ux〉

=2

∫

S1

(ut, Au)〈ux, ux〉 − 2

∫

S1

(u,Au)〈ut,∇xux〉 − 4

∫

S1

(ux, Au)〈ut, ux〉

=2

∫

S1

(∇2
xux, Au)〈ux, ux〉+

∫

S1

(ux, Au)〈ux, ux〉
2

+ 3

∫

S1

(u,Au)(ux, Au)〈ux, ux〉 − 2

∫

S1

(u,Au)〈∇2
xux,∇xux〉

−

∫

S1

(u,Au)〈ux, ux〉〈ux,∇xux〉 − 3

∫

S1

(u,Au)2〈ux,∇xux〉

− 4

∫

S1

(ux, Au)〈∇
2
xux, ux〉 − 2

∫

S1

(ux, Au)〈ux, ux〉
2

− 6

∫

S1

(ux, Au)(u,Au)〈ux, ux〉

=2

∫

S1

(∇2
xux, Au)〈ux, ux〉 −

1

2

∫

S1

(ux, Au)〈ux, ux〉
2

+ 3

∫

S1

(u,Au)(ux, Au)〈ux, ux〉+ 4

∫

S1

(ux, Au)〈∇xux,∇xux〉

+ 4

∫

S1

(uxx, Au)〈∇xux, ux〉+ 4

∫

S1

(ux, Aux)〈∇xux, ux〉

(5.4)

To proceed, we recall that

∇2
xux = uxxx + 3(ux, uxx)u + 〈ux, ux〉ux.
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So for the first term in the last equality of (5.4), we have

2

∫

S1

(∇2
xux, Au)〈ux, ux〉

=2

∫

S1

(uxxx, Au)〈ux, ux〉+ 6

∫

S1

〈ux, uxx〉(u,Au)〈ux, ux〉

+ 2

∫

S1

〈ux, ux〉
2(ux, Ax)

=2

∫

S1

(ux, Aux)〈∇xux, ux〉 − 4

∫

S1

(uxx, Au)〈∇xux, ux〉

−

∫

S1

(ux, Au)〈ux, ux〉
2

(5.5)

(5.4) and (5.5) yields

d

dt

∫

S1

(u,Au)〈ux, ux〉

=4

∫

S1

(ux, Au)〈∇xux,∇xux〉+ 6

∫

S1

(ux, Aux)〈∇xux, ux〉

+ 3

∫

S1

(u,Au)(ux, Au)〈ux, ux〉 −
3

2

∫

S1

(ux, Au)〈ux, ux〉
2

(5.6)

For the last term in (5.1), we have

d

dt

∫

S1

(ux, Aux)

=2

∫

S1

(uxt, Aux) = −2

∫

S1

(ut, Auxx)

=− 2

∫

S1

〈∇2
xux +

1

2
〈ux, ux〉ux +

3

2
(u,Au)ux, Auxx〉

=− 2

∫

S1

(∇2
xux, Auxx)−

∫

S1

〈ux, ux〉(ux, Auxx)− 3

∫

S1

(u,Au)(ux, Auxx)

=− 2

∫

S1

(uxxx, Auxx)− 6

∫

S1

(u,Auxx)〈ux,∇xux〉 − 2

∫

S1

(ux, Auxx)〈ux, ux〉

−

∫

S1

〈ux, ux〉(ux, Auxx) + 3

∫

S1

(ux, Au)(ux, Aux)

=− 6

∫

S1

(u,Auxx)〈ux,∇xux〉+ 3

∫

S1

(ux, Aux)〈ux,∇xux〉

+ 3

∫

S1

(ux, Au)(ux, Aux)

(5.7)

Here we notice that ∇xux = uxx + 〈ux, ux〉u and ∇2
xux = uxxx + 3(ux, uxx)u +

〈ux, ux〉ux.
Combining (5.2),(5.3),(5.6) and(5.7), we finally get

d

dt
E2(u) =

9

4

∫

S1

(ux, Au)|ux|
4 + 3

∫

S1

(ux, Au)(ux, Aux)

−
9

2

∫

S1

(ux, Aux)〈∇xux, ux〉 −
27

4

∫

S1

(u,Au)(ux, Au)〈ux, ux〉.

(5.8)
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Now we can derive the desired Gronwall-type inequality. Since A is a constant
matrix and |u| = 1, (5.8) yields

d

dt
E2(u) ≤ C

∫

S1

|ux|
5 + C

∫

S1

|ux|
3 + C

∫

S1

|ux|
3|∇xux|

≤ C

∫

S1

|ux|
5 + C

∫

S1

|ux|
3|∇xux|.

(5.9)

At this point, we may recall that Lemma 3.2 provides the desired bounds for
both ‖ux‖L2 and ‖ux‖L∞ . Therefore,

∫

S1

|ux|
5 ≤‖ux‖

3
L∞

∫

S1

|ux|
2

≤C‖ux‖
3/2
H1,2‖ux‖

2
L2

≤C

∫

S1

|∇xux|
2 + C.

(5.10)

Furthermore,
∫

S1

|ux|
3|∇xux| ≤‖ux‖

2
L∞

∫

S1

|ux||∇xux|

≤C‖ux‖H1,2 · ‖ux‖L2‖∇xux‖L2

≤C

∫

S1

|∇xux|
2 + C.

(5.11)

So we arrive at

(5.12)
d

dt
E2(u) ≤ C

∫

S1

|∇xux|
2 + C.

Next, we claim that the integral
∫

S1 |∇xux|
2 is controlled by E2(u). Indeed,

∫

S1

|∇xux|
2 =E2(u) +

1

4

∫

S1

|ux|
4 +

9

4

∫

S1

(u,Au)|ux|
2 −

∫

S1

(ux, Aux)

≤E2(u) + C

∫

S1

|ux|
4 + C.

(5.13)

By the same virtual of the estimate (5.10), we have
∫

S1

|ux|
4 ≤‖ux‖

2
L∞

∫

S1

|ux|
2

≤C‖ux‖H1,2‖ux‖
2
L2

≤C(ǫ‖ux‖
2
H1,2 +

1

ǫ
‖ux‖

4
L2)

≤Cǫ

∫

S1

|∇xux|
2 + C.

(5.14)

Here we employed Young’s inequality with ǫ,i.e.

ab ≤
ǫa2

2
+

b2

2ǫ
, for a, b > 0.

Thus if we choose ǫ sufficiently small, we proved the claim from (5.13) and (5.14)
that

(5.15)

∫

S1

|∇xux|
2 ≤ CE2(u) + C.

Consequently, we conclude from (5.12) and(5.15) that

(5.16)
d

dt
E2(u) ≤ CE2(u) + C.
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By Gronwall’s inequality, we finally arrive at

Lemma 5.2. Suppose u : S1×[0, T ) → Sn is a solution to the cauchy problem (1.4),
then for all t ∈ [0, T )

E2(u(t)) ≤ C(T ),

∫

S1

|∇xux(t)|
2dx ≤ C(T ),

where C(T ) is a constant depending on T and the initial data u0.

Our last ingredient in proving the global existence is the semi-conservation law
for a third order energy, which is given by

(5.17) E3(u) =

∫

S1

|∇2
xux|

2 −

∫

S1

〈ux,∇xux〉
2 −

3

2

∫

S1

|ux|
2|∇xux|

2.

Similarly, we have the following lemma.

Lemma 5.3. Suppose u : S1×[0, T ) → Sn is a solution to the cauchy problem (1.4),
then for all t ∈ [0, T )

E3(u(t)) ≤ C(T ),

∫

S1

|∇2
xux(t)|

2dx ≤ C(T ),

where C(t) is a constant depending on T and the initial data u0.

It takes a lot of efforts to find the energy functional E3 which satisfies the semi-
conservation law and therefore bounded under the flow. The spirit is all the same
as that of E2 demonstrated in the proof of Lemma 5.2. So we are going to omit
the lengthy computation which mainly involves integration by parts and changing
orders of derivatives, and only give the key steps instead.

The time-derivative of E3(u) consists of four terms. A long computation yields

d

dt

∫

S1

|∇2
xux|

2

=2

∫

S1

〈∇3
xut,∇

2
xux〉+ 2

∫

S1

〈∇x(R(ut, ux)ux),∇
2
xux〉

+ 2

∫

S1

〈R(ut, ux)∇xux,∇
2
xux〉

=6

∫

S1

〈ux,∇
2
xux〉〈∇xux,∇

2
xux〉+ 9

∫

S1

〈ux,∇xux〉|∇
2
xux|

2

+ 6

∫

S1

(uxxx, Au)〈ux,∇
2
xux〉+ 15

∫

S1

(ux, Au)|∇
2
xux|

2

+ 18

∫

S1

(uxx, Au)〈∇xux,∇
2
xux〉+ 18

∫

S1

(ux, Aux)〈∇xux,∇
2
xux〉

+ 18

∫

S1

(uxx, Aux)〈ux,∇
2
xux〉.

(5.18)
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For the second term, we have

d

dt

∫

S1

〈ux,∇xux〉
2

=2

∫

S1

〈∇xut,∇xux〉〈ux,∇xux〉+ 2

∫

S1

〈ux,∇x∇tux〉〈ux,∇xux〉

+ 2

∫

S1

〈ux, R(ut, ux)ux〉〈ux,∇xux〉

=6

∫

S1

〈ux,∇
2
xux〉〈∇xux,∇

2
xux〉+ 3

∫

S1

〈ux,∇xux〉
3

+ 15

∫

S1

(ux, Au)〈ux,∇xux〉
2 + 6

∫

S1

|ux|
2(uxx, Au)〈ux,∇xux〉

+ 6

∫

S1

|ux|
2(ux, Aux)〈ux,∇xux〉

(5.19)

Besides, for the third term,

d

dt

∫

S1

|ux|
2|∇xux|

2

=2

∫

S1

〈∇xut, ux〉|∇xux|
2 + 2

∫

S1

|ux|
2〈∇x∇xut,∇xux〉

+ 2

∫

S1

|ux|
2〈R(ut, ux)ux,∇xux〉

=6

∫

S1

〈ux,∇xux〉|∇
2
xux|

2 + 15

∫

S1

(ux, Au)|ux|
2|∇xux|

2

+ 3

∫

S1

|ux|
2〈ux,∇xux〉|∇xux|

2 + 6

∫

S1

|ux|
2(uxx, Au)〈ux,∇xux〉

+ 6

∫

S1

|ux|
2(ux, Aux)〈ux,∇xux〉

(5.20)

Putting these three terms together, we get

d

dt
E3(u) =6

∫

S1

(uxxx, Au)〈ux,∇
2
xux〉+ 15

∫

S1

(ux, Au)〈∇
2
xux,∇

2
xux〉

− 3

∫

S1

〈ux,∇xux〉
3 + {lower order terms}.

(5.21)

The key point in the above is that all the ‘bad’ terms, i.e. the higher order terms
including

∫

S1

〈ux,∇
2
xux〉〈∇xux,∇

2
xux〉,

∫

S1

〈ux,∇xux〉|∇
2
xux|

2

vanish in the summation. Because we have already shown that ‖ux‖H1,2 and
‖ux‖L∞ are bounded by Lemma 3.2 and Lemma 5.2. The other terms left, though
seems a lot, are all controllable. Here we only take the term

∫

S1〈ux,∇xux〉
3 for

example to demonstrate this. Similar to the estimate of E2, the interpolation
inequality–namely, Corollary 2.2–plays an important role here.

∫

S1

〈ux,∇xux〉
3 ≤ C‖ux‖

3
L∞‖∇xux‖

3
L∞

≤ C‖ux‖
3
2

H1,2 · ‖∇xux‖
3
2

H1,2‖∇xux‖
3
2

L2

≤ C

∫

S1

|∇2
xux|

2 + C.

(5.22)
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Finally, we can get

(5.23)
d

dt
E3(u) ≤ C

∫

S1

|∇2
xux|

2 + C ≤ CE3(u) + C.

Here, the constant C depends on T and ‖u0‖W 2,2 . Thus, E3 is bounded in [0, T )
by Gronwall’s inequality. Moreover, we also have

∫

S1

|∇2
xux|

2 ≤ C(T ).(5.24)

6. Global existence

In this section we finish the proof of Theorem 1.1.
Let u be the local smooth solution of (1.4) which exists on the maximal time

interval [0, T ). If T = ∞, then Theorem 1.1 holds true. Thus we only need to
consider the case where T < ∞.

From Lemma 5.2 and Lemma 5.3, we have

sup
t∈[0,T )

‖ux‖H2,2 ≤ C,

where C depends on T and the W 3,3-norm of the initial data u0. By Theorem 2.3,
the W 3,2-Sobolev norm of u is bounded by

(6.1) sup
t∈[0,T )

‖u‖W 3,2 ≤ C sup
t∈[0,T )

‖ux‖
3
H2,2 ≤ C(T, ‖u0‖W 3,2).

Thus by Theorem 3.6, if T is finite, we can find a local solution u1 of (1.4)
satisfying the initial value condition

u1(x, 0) = u(x, T − ǫ),

where 0 < ǫ < T is a small number. By uniqueness Theorem 4.1, we know that
u and u1 coincides on the overlapped time interval. Then from Lemma 3.4, one
can see that u1 exists on the time interval [0, T1) with T1 > 0 only depending on
the Sobolev norm ‖u(x, T − ǫ)‖W 3,2 . However, this norm is in turn decided by the
initial data ||u0||W 3,2 . The uniform bound (6.1) implies T1 is independent of ǫ.
Thus, by choosing ǫ sufficiently small, we can glue u and u1 together to obtain a
solution of the Cauchy problem (1.4) on a larger time interval [0, T − ǫ+T1), where
T − ǫ + T1 > T . This contradicts to the maximality of T . Hence T = ∞ and the
proof is done.
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