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A semigroup variety is said to be a Rees-Sushkevich variety if it is contained in a

periodic variety generated by 0-simple semigroups. S. I. Kublanovsky has proven that a

variety V is a Rees—Sushkevich variety if and only it does not contain any of special finite

semigroups. These semigroups are called indicator Burnside semigroups. It is shown that

indicator Burnside semigroups have polynomially decidable equational theory. Also it is

shown that each indicator Burnside semigroups generate a finitely based variety.
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1. Introduction

In the foundational work by Sushkevich [18], finite simple semigroups have been

characterized in terms of special matrices over finite groups. Then Rees [14] gener-

alized Sushkevich’s results to periodic simple semigroups. Namely, he proved that

periodic completely 0-simple semigroups can be described by the same construction

as used by Sushkevich. Recall that a semigroup is called 0-simple if it does not

have ideals except itself and possibly 0. A 0-simple semigroup is called completely

0-simple if it has a minimal non-zero idempotent. Following Kublanovsky [5] any

subvariety of a periodic variety generated by 0-simple semigroups a Rees-Sushkevich

variety. Rees—Sushkevich varieties have been studied in a number of articles (see,

for instance, [5,6,7,8,10,15] or Section 9 in the recent survey [22]). In particular, as

established by Hall et al. [3] the variety RSn generated by all completely 0-simple

semigroups over groups of exponent dividing n is finitely based

x2 = xn+2, xyx = (xy)n+1x, (xhz)nxyz = xyz(xhz)n

.

It is natural to consider the following question: are finitely based Rees—

Sushkevich varieties recognizable within the class of all semigroup varieties? In

other words: for a given set Π of semigroup identities, is it possible to recognize

whether or not the variety defined by Π is a Rees—Sushkevich variety? Clearly,

this question is a special case of the general problem of deducing identities, which is

undecidable in the class of all semigroups as was shown by Murskii [11]. It turns out,
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the problem of recognizing Rees—Sushkevich varieties is decidable (see Proposition

2.2).

This result shows that there exists an algorithm that determines whether the

variety defined by a given finite system of identities is a Rees—Sushkevich vari-

ety. However, such algorithm has exponential complexity. Thus it is important to

understand whether there exists a polynomial algorithm that recognizes Rees—

Sushkevich varieties. The following main result of this paper gives an affirmative

answer to this question.

Theorem 1.1. There exists a polynomial algorithm that determines whether the

variety defined by a given finite system of identities is a Rees—Sushkevich vari-

ety. Specifically, each indicator Burnside semigroup have a polynomially decidable

equational theory.

Note that the identity-checking problem for a finite semigroup is decidable and

is co-NP. [4,16].

Another major issue in the study of identities is a finite basis property. S. Oates

and M. B. Powell [12] proved that each finite group generate a finitely based variety.

As opened the first P. Perkins [13] found a finite semigroup which generates infinitely

based variety. His example was a matrix semigroup

{(

1 0

0 0

)

,

(

0 1

0 0

)

,

(

0 0

1 0

)

,

(

0 0

0 1

)

,

(

0 0

0 0

)

,

(

1 0

0 1

)}

,

over an arbitrary field. This semigroup is called the 6-element Brandt monoid and

denoted by B1
2 . Finite basis property for finite semigroup varieties is being actively

studied [17,24]. General problem was posed by A. Tarski [19]. R. McKenzie proved

that Tarski’s problem is undecidable in the class of all finite groupoids. The same

question in the class of all finite semigroups is still open. So it is interesting question:

Do each indicator Burnside semigroup generate a finitely based variety? The second

main result of this paper gives an affirmative answer to this question.

Theorem 1.2. Each indicator Burnside semigroup generate a finitely based variety.

Note that, there exists a finite semigroup which has a polynomially decidable

equational theory while generates an infinitely based variety [23].

2. Background

We adopt the standard terminology and notation of semigroup theory (see [2]) and

universal algebra ([1]). For reader’s convenience, we recall a few basic definitions,

notation and results appeared below.

Denote by X countably infinite set (the alphabet) whose elements are referred

to as letters. Let X+ be the free semigroup over X . Elements of X+ are referred to

as words.
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If x is a letter and u is a word, then Occ(x, u) denotes the number of occurrences

of x in u. If Occ(x, u) > 0, then we say that the word u contains x. The content of

u is the set C(u) of letters occurring in u. Denote by l(u) the length of u, that is

the number of letters in u counting multiplicity. The head (respectively, tail) of u

is the first (respectively, the last) letter in u and it is denoted by h(u) (respectively,

by t(u)). Further, for a word u = x1x2 · · ·xn and an integer s ≤ n we denote by

hs(u) the letter xs and by ts(u) the letter xn−s+1; in particular h1(u) = h(u) is the

head and t1(u) = t(u) is the tail of the word u.

We write u ≈ v to stand for a semigroup identity. An identity is non-trivial if

u 6= v as elements of X+. A non-trivial identity is called a permutational identity if

it is of the form x1x2...xn ≈ xπ(1)xπ(2)...xπ(n), where x1, ..., xn are distinct letters

in X and π is a non-trivial permutation of {1, ..., n}. The symmetric group on n

symbols is denoted by Sn.

A letter x is simple in the word u if it occurs exactly once in u. A word u is simple

if all of its letters are simple in it. The set of all simple letters of a word u is denoted

by S(u). The left core of a word u is the simple word obtained from u by retaining

the first occurrence of each letter, it is denoted by LC(u). The right core of a word u

is defined dually, it is denoted by RC(u). For example, LC(x6y2zxt2xt7s) = xyzts

and RC(x6y2zxt2xt7s) = yzxts.

Let Σ be a set of identities. The deducibility of an identity u ≈ v from the

identities in Σ is denoted by Σ ⊢ u ≈ v. The variety defined by Σ is denoted by

V (Σ). The variety generated by a semigroup S is denoted by S or V (S). If a variety

V satisfies an identity u ≈ v we write V � u ≈ v.

Let u be a word. The word u is called an isoterm in the variety V if an identity

u ≈ v holds in V if and only if u = v. The word u is called (p, q)-trivial if u is a

isoterm in the variety defined by the identity x1x2 · · ·xp ≈ xqp+1. An identity u ≈ v

is called (p, q)-trivial if words u, v are (p, q)-trivial.

We denote by L2 (respectively, R2) the 2-element left-zero (right-zero) semi-

groups, by N2 and Y2 the 2-element semigroup with zero multiplication and 2-

element semilattice, respectively, and by Cn the cyclic group of order n. The cyclic

semigroup 〈c | cr = cr+d〉 of index r and period d is denoted by Cr,d. For conve-

nience, let us denote by Nk the semigroup Ck,1.

Let S be a semigroup. The semigroup S1 means the semigroup arising from a

semigroup S by adjunction of an identity element 1, unless S already has an identity,

in which case S1 = S.

Lemma 2.1. The following statements holds

1. The variety L2 (respectively, R2) is given by the identity x ≈ xy (respectively,

x ≈ yx) and satisfies an identity u ≈ v if and only if h(u) = h(v) (respectively,

t(u) = t(v)).

2. The variety L1

2
(respectively, R1

2
) is given by the identities x ≈ x2, xy ≈ xyx

(respectively, x ≈ x2, xy ≈ yxy) and satisfies an identity u ≈ v if and only if

LC(u) = LC(v) (respectively, RC(u) = RC(v)).
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3. The variety Y2 is given by the identities x ≈ x2, xy ≈ yx and satisfies an identity

u ≈ v if and only if C(u) = C(v).

4. The variety Cn is given by the identities x ≈ xyn, xy ≈ yx and satisfies an

identity u ≈ v if and only if Occ(x, u) ≡ Occ(x, v) mod n for any letter x ∈ X+.

5. The variety N2 is given by the identity xy ≈ z2 and satisfies a non-trivial identity

u ≈ v if and only if l(u), l(v) > 1.

6. The variety N1

2
is given by the identities x2 ≈ x3, xy ≈ yx and satisfies an

identity u ≈ v if and only if C(u) = C(v) and S(u) = S(v).

7. The variety N3 is given by the identities xyz ≈ w3 and xy ≈ yx, and satisfies

an identity u ≈ v if and only if either l(u), l(v) ≥ 3 or u ≈ v is equivalent to

xy ≈ yx.

Proof. These result are well-known results and easy to prove.

An element a ∈ S is indecomposable if the equation a = xy has no solutions

in S. It is easy to see that if a finite semigroups S has an indecomposable element

then N2 ∈ S.

Lemma 2.2. (Kublanovsky [5], Theorem 1) A semigroup variety V is a Rees—

Sushkevich variety if and only if it contains none of the following semigroups:

A = 〈x, y | x = x2; y2 = 0;xy = yx〉

B = 〈x, y | x2 = 0; y2 = 0;xyx = yxy〉

Cλ = 〈x, y | x2 = x3;xy = x;x2y = 0; y2 = 0〉

Cρ = 〈x, y | x2 = x3; yx = x; yx2 = 0; y2 = 0〉

N3 = 〈x | x3 = 0〉

D = 〈x, y | x2 = 0; y = y2; yxy = 0〉

Kn = 〈x, y | x2 = 0; y2 = yn+2; yxy = 0;xyqx = 0, (q = 2, ..., n);xyx = xyn+1x〉

Fλ = 〈x, y | xy = xyx = xy2; yx = yxy = yx2;x2 = x2y = x3; y2 = y2x = y3〉

Fρ = 〈x, y | xy = yxy = x2y; yx = xyx = y2x;x2 = yx2 = x3; y2 = xy2 = y3〉

Wλ = 〈a, x, y | a2 = x2 = y2 = xy = yx = 0; ax = axax; ay = ayay;xa =

xaxa; ya = yaya;xay = xax; yax = yay〉

Wρ = 〈a, x, y | a2 = x2 = y2 = xy = yx = 0;xa = xaxa; ya = yaya; ax =

axax; ay = ayay;xay = yay; yax = xax〉

L1
2 = 〈a, x, y | x = x2; y = y2; a = a2;xy = x; yx = y; ax = xa = x; ay = ya = y〉

R1
2 = 〈a, x, y | x = x2; y = y2; a = a2;xy = y; yx = x; ax = xa = x; ay = ya =

y〉

These semigroups are called indicator Burnside semigroups.

Lemma 2.3. (Perkins [13], Theorem ?) Each commutative semigroup generate a

finitely based variety.

Lemma 2.4. (Trakhtman [21], Theorem ?) Each semigroup with ≤ 5 elements

generate a finitely based variety.
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3. Proof of main results

To prove main results, we need to verify that each of indicator Burnside semigroups

generates a finitely based and polynomially recognizable variety. For varieties L1

2
,R1

2

and N3, the desirable conclusion immediately follows from Lemma 2.1. Other in-

dicator Burnside semigroups are considered below. The section is divided into six

subsection.

3.1. Semigroup A

The variety A is finitely based because it is commutative (see Lemma 2.3). The

following statement gives an identity basis of A.

Lemma 3.1. The variety A coincides with the variety N1

2
, whence it is given by

the identities x2 ≈ x3 and xy ≈ yx.

Proof. In view of Lemma 2.1, it is suffices to verify that A = N1

2
. It is easy to see

that N1

2
⊂ A. Indeed, N1

2 is the homomorphic image of the semigroup A under the

homomorphism that maps x into 1, xy and y into a, and 0 into 0. Suppose that

there exists an identity u ≈ v such that N1

2
� u ≈ v but A 2 u ≈ v. Then there

exists a map φ : X+ → A such that φ(u) 6= φ(v). But σ(φ(u)) = σ(φ(v)) because

N1

2
� u ≈ v. Therefore, without loss of generality we can assume that φ(u) = y,

φ(v) = xy. But the element y is indecomposable in the semigroup A. In this case the

word u consists of one letter u = x. But the word u is an isoterm in the variety N1

2
.

Therefore, u ≡ v and A satisfies the identity u ≈ v. This contradiction completes

the proof.

3.2. Semigroup B

The semigroup B is a 4-nilpotent semigroup, and it is easy to verify that each finite

nilpotent semigroup is finitely based and generate a variety whose finite membership

problem admits a linear algorithm.

Lemma 3.2. The variety B satisfies a non-trivial identity u ≈ v if and only if one

of the following statements hold:

1. Words u, v are not (4, 2)-trivial,

2. u ≈ v has the form abc ≈ cba,

3. u ≈ v has the form aba ≈ bab.

Proof. Necessity. Assume that identity u ≈ v holds in the variety B. It is easy to

see that for all x1, x2, x3, x4, x5 ∈ B we have x1x2x3x4 = x25 = 0. Therefore, if there

exists a homomorphism such that φ(u) 6= 0 then l(u) ≤ 4 and x2 is not a subword of

u for all x ∈ X . Hence, u is (4, 2)-trivial if and only if v is (4, 2)-trivial too. Assume

that the statement 1 does not hold. Then it is easy to see that words u and v has

the same length, because words u, v are not (p, q)-trivial. We observe also that the
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word ab is isoterm in the variety B. Thus, we can suppose that l(u) = l(v) = 3. In

this case we find that C(u) = C(v). First, suppose that the word u is simple. Then

u, v are products of three different letter, u = x1x2x3 and v = xπ(1)xπ(2)xπ(3). If

π(2) 6= 2 then x1x3 or x3x1 is a subword of v. In this case we can consider the

homomorphism, such that:

φ(a) =

{

x, if either a = x1 or a = x3;

y, otherwise

Then we can note that φ(v) = xxy or φ(v) = yxx. In both cases we find that

φ(v) = 0 but φ(u) = xyx. A contradiction. This shows that v = x3x2x1. This

means that the identity u ≈ v has the form abc ≈ cba.

It remains to consider the case when the word u is not simple. Then u equals

x1x2x1. Since C(u) = C(v) and the identity u ≈ v is not trivial, we can observe

that the word v equals x2x1x2. This means that the identity u ≈ v has the form

aba ≈ bab.

Sufficiency. It is easy to see that if statements 2 or 3 hold then the identity

u ≈ v holds in the variety B. If the statement 1 holds then φ(u) = φ(v) for all

homomorphisms φ : X → B. In other words, the identity u ≈ v holds in the variety

B.

Lemma 3.2 allows to find an identity basis of the variety B.

Lemma 3.3. The identities

a2 ≈ bcde, (1)

abc ≈ cba, (2)

aba ≈ bab (3)

form an identity basis of the variety B.

Proof. Suppose that the identity u ≈ v holds in the variety B. We can apply

Lemma 3.2. If the identity u ≈ v satisfies statement 1 then it follows from the

identity a2 ≈ bcde. If the identity u ≈ v satisfies statement 2 or 3 then it follows

from the identity (2) or (3) respectively. Hence identities (1),(2) and (3) constitute

an identity basis of the variety B.

3.3. Semigroups Cλ and Cρ

The variety Cλ is finitely based because Cλ consists of 5 elements, while each

semigroup with ≤ 5 elements generates a finitley based variety by Lemma 2.4. Next

we find a finite identity basis of the variety Cλ and show that it is polynomially

recognizable.

By duality, we consider only the semigroup Cλ.

Lemma 3.4. Let u, v be words. The following are equivalent:
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1. The variety Cλ satisfies the identity u ≈ v;

2. The following are satisfied:

(i) C(u) = C(v),

(ii) Occ(h(u), u) = 1 if and only if Occ(h(v), v) = 1,

(iii) if Occ(h(u), u) = 1 then h(u) = h(v),

(iv) Occ(h2(u), u) = 1 if and only if Occ(h2(v), v) = 1,

(v) if Occ(h2(u), u) = 1 then h(u) = h(v) and h2(u) = h2(v).

3. The following are satisfied:

(i) C(u) = C(v).

(ii) one of the following statement hold:

i. h(u) = h(v), h2(u) = h2(v) and Occ(h(u), u) = Occ(h(v), v) =

Occ(h2(u), u) = Occ(h2(v), u) = 1,

ii. h(u) = h(v), h2(u) = h2(v), Occ(h2(u), u) = Occ(h2(v), v) = 1 and

Occ(h(u), u) , Occ(h(v), v) > 1,

iii. h(u) = h(v), Occ(h(u), u) = Occ(h(v), v) = 1 and Occ(h2(u), u) =

Occ(h2(v), v) > 1,

iv. Occ(h(u), u), Occ(h(v), v), Occ(h2(u), u), Occ(h2(v), v) > 1.

Proof. The equivalence of the statements 2 and 3 is verified easily.

1 =⇒ 2. Assume that an identity u ≈ v holds in the variety Cλ. It easy to

see that Y2 ∈ Cλ. Therefore the statement (i) holds by Lemma 2.1. Suppose that

Occ(h(u), u) = 1 but Occ(h(v), v) > 1. Suppose that h(u) 6= h(v). Consider a

homomorphism such that

φ1(a) =

{

xy, if a = h(u);

x2, otherwise

Then φ1(u) = xyx2k = xy and φ1(v) = 0. We obtain that φ1(u) = xy 6= 0 =

φ1(v) in contradiction with assumption that Cλ � u ≈ v.

Let now h(u) = h(v). Then φ1(u) = xyx2k = xy and φ1(v) = 0 . But φ1(u) =

xy 6= 0 = φ1(v) in contradiction with assumption that Cλ � u ≈ v.

We show that Occ(h(u), u) = 1 if and only if Occ(h(v), v) = 1. Let us observe

that if Occ(h(u), u) = 1 and h(u) 6= h(v) then φ1(u) = xy 6= 0 = φ(v). Hence (iii)

holds.

Proof of the conditions (ii), (iii) is similar to (iv), (v). Unless we should con-

sider another map. To prove (iv), (v) it is sufficiently to consider the following

homomorphism

φ2(a) =

{

y, if a = h2(u);

x, otherwise

2 =⇒ 1. Let an identity u ≈ v satisfies conditions (i)-(v). Let φ be the map from X+

to Cλ. Since Y2 ∈ Cλ so we can assume that φ(a) 6= 0 for all a ∈ X . The identity
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u ≈ v is not trivial. Thus l(u), l(v) ≥ 3 follows from conditions (ii), (iii), (iv),

(v). It is easy to see that Cλxy = {0} and CλCλy = {0}. Therefore if φ(a) = xy

(respectively, φ(a) = y) for the letter a ∈ X such that a 6= h(u) (respectively,

a 6= h(u), h2(u)) then we have φ(u) = φ(v) = 0.

Suppose that φ(h(u)) ∈ {y, xy}. If there exists a letter b ∈ C(u)\{h(u)} such

that φ(b) /∈ {x, x2} then φ(u) = φ(v) = 0. Otherwise, conditions (ii), (iii) imply

that φ(u) = φ(v) = φ(h(u)).

Let now φ(h(u)) ∈ {x, x2}. If φ(h2(u)) = y. Then Occ(h2, u) = Occ(h2(v), v) =

1 and h2(u) = h2(v), h(u) = h(v). If φ(h(u)) = x2 or there exist a letter b ∈

C(u)\{h(u), h2(u)} such that φ(b) /∈ {x, x2} then φ(u) = φ(v) = 0. Otherwise

conditions (iii),(iv) imply that φ(u) = φ(v) = xy.

It remains to consider the case when φ(h2(u)) 6= y. Then φ(h2(u)) ∈ {x, x2}.

Consider a letter b ∈ C(u)\{h(u), h2(u)}. Note that we discussed cases φ(b) ∈

{xy, y, 0}. So φ(b) ∈ {x, x2} and we have φ(u) = φ(v) = x2.

We obtain φ(u) = φ(v) in all cases. Hence the identity u ≈ v holds in the variety

Cλ.

Now, we are ready to find an identity basis of the variety Cλ.

Lemma 3.5. The identities

a2 ≈ a3 (4)

a2b ≈ b2a (5)

abc ≈ abc2 (6)

form a identity basis of the variety Cλ.

Proof. Note that the identity

abcd ≈ abdc (7)

follows from identities (5), (6). Indeed,

abcd ≈(6) abc2d ≈(5) abd2c ≈(6) abdc

Also the identity

a2b2 ≈ b2a2 (8)

follows from identities (5), (6):

a2b2 ≈(6) a2b ≈(5) b2a ≈(6) b2a2

Consider an identity u ≈ v such that Cλ � u ≈ v. We can apply Lemma 3.4.

Consider all possible casses:

1. h(u) = h(v), h2(u) = h2(v). Then the identity u ≈ v has the form abu′ ≈ abv′

such that Y2 � u′ ≈ v′. In this case the identity u′ ≈ v′ follows from identities

a ≈ a2, ab ≈ ba. Hence, the identity abu′ ≈ abv′ follows from identities (6),(7).
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2. h(u) = h(v), h2(u) 6= h2(v). Then the identity u ≈ v has the form abu′bu′′ ≈

acv′cv′′. Applying identities (6), (7) we find that the identity u ≈ v is equivalent

to ab2c2u′′′ ≈ ac2b2v′′′ where Y2 � u′′′ ≈ v′′′. Hence, the identity ab2c2u′′′ ≈

ac2b2v′′′ follows from identities (6), (7), (8).

3. h(u) 6= h(v). Then applying identities (4), (5), (6), (8) we can find that the

identity u ≈ v is equivalent to x21...x
2
k ≈ x2

π(1)...x
2
π(k) where π ∈ Sk. But this

identity follows from (8). Therefore, the identity u ≈ v follows from identities

(4), (5), (6).

We have proved that an identity u ≈ v follows from identities (4),(5) and (6)

whenever it holds in the variety Cλ. This evidently implies the desirable conclusion.

3.4. Semigroups Kn and D

Let V a variety defined by a given finite system of identities. To check that the

variety V is a Rees-Suchkevich variety we have to verify that Kn /∈ V . But we have

to do it just for such n is dividing a period of V . Hence we verify it for n = 1. It is not

difficult to see that D ⊆ K1 because the semigroupD is a quotient of the semigroup

K1. But it will be easy to see that in fact D = K1. Whence we can assume that the

semigroup D is unnecessary in the list of indicator Rees—Sushkevich semigroups.

Let the word u have the following form u = aWb. Denote by ξn the map from

X+ to Z defined by the rule

ξn(u) =



















0, if l(u) = 2;

0, if either a ∈ C(W ) or b ∈ C(W );

gcd
xi∈C(W )

{Occ(xi,W )}, otherwise.

Lemma 3.6. The variety Kn satisfies a non-trivial identity u ≈ v if and only if

the following conditions are satisfied:

1. C(u) = C(v)

2. C2,n � u ≈ v

3. one of the following conditions are satisfied:

(a) h(u) = h(v), Occ(h(u), u) = Occ(h(v), v) = 1, Occ(t(u), u), Occ(t(v), v) > 1

(b) t(u) = t(v), Occ(t(u), u) = Occ(t(v), v) = 1, Occ(h(u), u), Occ(h(v), v) > 1

(c) h(u) = h(v), t(u) = t(v), Occ(h(u), u) = Occ(h(v), v) = Occ(t(u), u) =

Occ(t(v), v) = 1

(d) h(u) = h(v) = t(u) = t(v), Occ(h(u), u) = Occ(h(v), v) = 2, ξn(u) = ξn(v) =

1

(e) Occ(h(u), u), Occ(h(v), v), Occ(t(u), u), Occ(t(v), v) > 1, ξn(u), ξn(v) 6= 1

Proof. Necessity. Assume that an identity u ≈ v holds in the variety Kn. It is

easy to see that Y2 ∈ Kn. Therefore C(u) = C(v) by Lemma 2.1. The semigroup
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generated by the element y is isomorphic to the semigroup C2,n. So the identity

u ≈ v holds in the variety C2,n. To prove 3 consider possible cases:

1. Occ(h(u), u) = 1, Occ(t(u), u) > 1. Consider the following map

φ(a) =

{

x, if a = h(u);

y2n, otherwise

We obtain φ(u) = xy2n. But the identity u ≈ v holds in the variety Kn, and

thus φ(v) = xy2n. It follows that Occ(h(v), v) = 1 and h(u) = h(v).

2. Occ(t(u), u) = 1, Occ(h(u), u) > 1. Consider the following map

φ(a) =

{

x, if a = t(u);

y2n, otherwise

As in the previous case we find that Occ(t(v), v) = 1 and t(u) = t(v).

Comparing cases 1 and 2 we see that Occ(t(v), v) > 1 and Condition (a)

holds in the first case, while Occ(h(v), v) > 1 and Condition (b) holds in the

second case.

3. Occ(h(u), u) = Occ(t(u), u) = 1. Note that N2 ∈ C2,n ⊆ Kn. So l(u), l(v) > 1

because the identity u ≈ v is not trivial. Applying the same arguments as in pre-

vious cases we find that Occ(h(v), v) = Occ(t(v), v) = 1 and h(u) = h(v), t(u) =

t(v). Hence Statement (c) holds.

4. h(u) = t(u), Occ(h(u), u) = 2. If l(u) = 2 then we have ξn(u) = 0. It follows from

the previous cases that the word ab is isoterm. Therefore the word v has the

form v = a2+kn. Hence Condition (e) holds. Now assume that the word u has

the form u = aWa, where the word W is non-simple. Consider possible cases:

(i) ξn(u) = 1. Then there exists a map φ′ : X+ → C2,n ≤ Kn such that

φ′(W ) = y2n+1. Consider the following map:

φ(a) =

{

a, if a ∈ C(W );

x, otherwise

Then we have φ(u) = xyn+1x = xyx and φ(v) = xyx. But in this case we

can conclude that the word v has the form v = aW ′a, where ξn(v) = 1. Thus

Condition (d) holds.

(ii) ξn(u) 6= 1. Then for all maps we have φ(u) 6= xyx. Thus we have ξn(v) 6= 1

and Occ(h(v), v), Occ(t(v), v) > 1. Therefore Condition (e) holds.

5. Occ(h(u), u), Occ(t(u), u) > 1 and ξn(u) 6= 1. Now, we can apply all previous

arguments to conclude that Occ(h(v), v), Occ(t(v), v) > 1 and ξv(u) 6= 1. Thus

Condition (e) holds.

Sufficiency. Consider an identity u ≈ v that satisfies conditions 1,2 and 3.

Note that the semigroup Kn = ∪6
i=1Fi, where

F1 = {x}
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F2 = {yk | 1 ≤ k ≤ n+ 1}

F3 = {xyk | 1 ≤ k ≤ n+ 1}

F4 = {ykx | 1 ≤ k ≤ n+ 1}

F5 = {xyx}

F6 = {0} and Fi ∩ Fj = ∅ if and only if i 6= j.

Consider a map φ : X+ → Kn. Condition (3) implies that φ(u), φ(v) ∈ Fi for

some i. In turn, Conditions (1),(2) imply that values of words u and v coincide in

Fi. Thus, the identity u ≈ v holds in the variety Kn.

Now, we can prove that the variety Kn is finitely based.

Lemma 3.7. The variety Kn is given by the identity (8) and the following identi-

ties:

a2 ≈ an+2, (9)

abcd ≈ acbd, (10)

abc ≈ abn+1c, (11)

abma ≈ an+1bma, where gcd(m,n) > 1 and m ≤ n. (12)

Proof. Consider an identity u ≈ v such thatKn � u ≈ v. We can apply Lemma 3.6.

Note that identities ak+1bl+1 ≈ bl+1ak+1 follow from identities (8), (10) for all

k, l ≥ 1. Consider possible cases:

1. h(u) = h(v), Occ(h(u), u) = Occ(h(v), v) = 1, Occ(t(u), u), Occ(t(v), v) > 1.

Then the identity u ≈ v has the form au′bu′′b ≈ av′cv′′c. Applying identities (8),

(10) we can get the identity aubk ≈ avbl where b /∈ C(u), C(v). Now applying the

identity (9) we get the identity aubk ≈ avbk. But the identity u ≈ v holds in the

variety Cn ∨Y2. Hence, it follows from identities b ≈ bn+1, bc ≈ cb. Therefore

the identity u ≈ v follows from identities (8), (10), (11).

2. t(u) = t(v), Occ(t(u), u) = Occ(t(v), v) = 1, Occ(h(u), u), Occ(h(v), v) > 1. This

case can be considered in the same way as the previous case by duality.

3. h(u) = h(v), t(u) = t(v), Occ(h(u), u) = Occ(h(v), v) = Occ(t(u), u) =

Occ(t(v), v) = 1. Then the identity u ≈ v has the form au′b ≈ av′b. But the

identity u′ ≈ v′ holds in the variety Cn ∨ Y2. Thus, it follows from identities

b ≈ bn+1, bc ≈ cb. Therefore the identity u ≈ v follows from identities (10), (11).

4. h(u) = h(v) = t(u) = t(v), Occ(h(u), u) = Occ(h(v), v) = 2, ξn(u) = ξn(v) = 1.

Then the identity u ≈ v has the form au′a ≈ av′a. But in this case the identity

u′ ≈ v holds in the variety Cn ∨Y2. Thus, we can apply the same argument as

in the previous case. Therefore the identity u ≈ v follows from identities (10),

(11).

5. Occ(h(u), u), Occ(h(v), v), Occ(t(u), u), Occ(t(v), v) > 1, ξn(u), ξn(v) 6= 1. Note

that applying identities (10), (12) to the identity u ≈ v we can get an

identity u′ ≈ v′ such that for any letter x ∈ C(u′) = C(v′) we have
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Occ(x, u′), Occ(x, v′) > 1. Now applying identities ak+1bl+1 ≈ bl+1ak+1 we get

the identity xk1

1 x
k2

2 ...x
kp

q ≈ xl11 x
l2
2 ...x

lp
q which follows from the identity (9).

Hence identities (8),(9),(10),(11)(12) constitute an identity basis of the variety Kn.

3.5. Semigroups Fλ and Fρ

By duality, it suffices to consider only the semigroup Fλ.

Lemma 3.8. The variety Fλ satisfies a non-trivial identity u ≈ v if and only if

h(u) = h(v) and h2(u) = h2(v)

Proof. Necessity. Assume that the identity u ≈ v holds in the variety Fλ. Note

that the subset {xy, yx} constitutes a semigroup isomorphic to L2. Thus the equality

h(u) = h(v) holds. Now we are going to show that h2(u) = h2(v). Indeed, otherwise

we may assume without loss of generality that h2(u) 6= h(u) and consider the

following map

φ(a) =















x, if a = h(u);

y, if a = h2(u);

x2, otherwise

Then we have φ(u) = xy, φ(v) = x2. But it is in contradiction with hypothesis that

the identity u ≈ v holds in the variety Fλ. Hence h2(u) = h2(v).

Sufficiency. Consider an identity u ≈ v such that h(u) = h(v) and h2(u) =

h2(v). Consider any map φ : X+ → Fλ. Then φ(h(u)h2(u)) = φ(h(v)h2(v)) ∈

{x2, y2, xy, yx}. But φ(h(u)h2(u)), φ(h(v)h2(v)) is a left zero in the semigroup Fλ.

Hence φ(u) = φ(h(u)h2(u)) = φ(h(v)h2(v)) = φ(v). Therefore the identity u ≈ v

holds in the variety Fλ.

Lemma 3.8 readily implies the following

Lemma 3.9. The identity

ab ≈ abc (13)

forms an identity basis of the variety Fλ.

3.6. Semigroups Wλ and Wρ

By duality, we consider only the semigroup Wλ.

To prove results in this section we need the following construction: each word u is

associated with an undirected graph Gr(u) with vertex set C(u)×{0, 1} connected

as follows: we draw an edge from (x, 0) to (y, 1) if and only if xy is a factor of u.

The semigroup B2 plays crucial role here. A identity basis of the variety B2 was

found by Trahtman [20]. But his proof has a gap. Reilly [15] reproved Trahtman’s
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resuls. A solution to the word problem for B2 was first provided by Mashevitsky

[9]. Reilly [15] gave another proof of Mashevitsky’s result in the most convenient

terms. His solution can be stated as follows:

Lemma 3.10. [15, Theorem 5.1] The variety B2 satisfies an identity u ≈ v if and

only if the following conditions are satisfied:

1. C(u) = C(v),

2. the graphs Gr(u), Gr(v) have the same connected components,

3. the vertices (h(u), 1), (h(v), 1) lie in the the same connected component,

4. the vertices (t(u), 0), (t(v), 0) lie in the the same connected component.

We need also the following corollary:

Corollary 3.1. Let the identity u ≈ v hold in the variety B2 and the word u has

the form u = u′xu′′ where x /∈ C(u′u′′) and C(u′) ∩ C(u′′) = ∅. Then the word v

has the form v = v′xv′′ and identities u′ ≈ v′, u′′ ≈ v′′ hold in the variety B2.

Proposition 3.1. [15, Corollary 9.2] The variety L2 ∨ B2 is defined by (4) and

identities

aba ≈ ababa, (14)

ab2c2 ≈ ac2b2. (15)

The semigroup B2 can be presented as

B2 = {(i, j) | i, j ∈ {0, 1}} ∪ {0}

with the following binary operation

(i, j)(k, l) =

{

(i, l), if j = k,

0, otherwise.
.

Denote by Γ the set

{(i, j, k, 1) | i, j, k ∈ {0, 1}} ∪ {(0, 1, 2, 0), (1, 0, 0, 0), (1, 0, 1, 0)}∪ {0}

and define a binary operation by the following formula:

(i1, j1, k1, l1)(i2, j2, k2, l2),=















(i1, j2, k1, 1), if j1 = i2, k1 6= 2,

(i1, j2, k2, 1), if j1 = i2, k1 = 2.

0, otherwise

It is easy to check that this operation is associative i.e. Γ is a semigroup. More

precisely Γ is isomorphic toWλ. Indeed, isomorphism can be define on the generators

as follows: a 7→ (0, 1, 2, 0), x 7→ (1, 0, 0, 0), y 7→ (1, 0, 1, 0), 0 7→ 0.



14 SERGEY BAKULIN

It is easy to see that the semigroup B2 is a homomorphic image of Γ. Define

the homomorphism τ : Γ → B2 on the generators as follows: (0, 1, 2, 0) 7→ (0, 1),

(1, 0, 0, 0) 7→ (1, 0), (1, 0, 1, 0) 7→ (1, 0), 0 7→ 0.

Lemma 3.11. The variety Wλ satisfies an identity u ≈ v if and only if the fol-

lowing conditions are satisfied:

1. L2 ∨B2 � u ≈ v,

2. if (h(u), 0), (h(u), 1) does not lie in the same connected component of Gr(u) then

h2(u) = h2(v).

Proof. Necessity. Let the identity u ≈ v holds in the variety Wλ. Elements

(0, 0, 0, 1), (0, 0, 1, 1) constitute subsemigroup of Wλ isomorphic to L2. The semi-

group B2 is a homomorphic image of Wλ. Hence the identity u ≈ v holds in

the variety L2 ∨ B2. Let us show that if (h(u), 0), (h(u), 1) does not lay in the

same connected component of Gr(u) then h2(u) = h2(v). Assume the converse.

I.e. (h(u), 0), (h(u), 1) does not lie in the same connected component of Gr(u) and

h2(u) 6= h2(v). Then from Lemma 3.10 it is follows that h(u), h2(u), h2(v) are dis-

tinct. From [15] it follows that there exists a homomorphism ψ : X+ → B2 such that

ψ(u) 6= 0 and φ(h(u)) = (0, 1) (since (h(u), 0), (h(u), 1) does not lie in the same con-

nected component of Gr(u)). Let ψ(h2(u)) = (α1, β1), ψ(h2(v)) = (α2, β2), ψ(xi) =

(li, ri) for any letter xi ∈ C(u)\{h(u), h2(u), h2(v)} and ψ(u) = (0, y). Consider a

homomorphism φ : X+ →Wλ defined as follows

h(u) = h(v) 7→ (0, 1, 2, 0),

h2(u) 7→ (α1, β1, 0, 1),

h2(v) 7→ (α2, β2, 1, 1),

xi 7→ (li, ri, 1, 1) for any xi ∈ C(u)\{h(u), h2(u), h2(v)}.

We obtain that φ(u) = (0, y, 0, 1) and φ(v) = (0, y, 1, 1) i.e. φ(u) 6= φ(v). This

contradiction proves the necessity.

Sufficiency. Let the identity u ≈ v satisfies Conditions (1),(2). Let us show

that the identity u ≈ v holds in the variety Wλ. Consider any homomorphism

φ : X+ → Wλ. Since the identity u ≈ v holds in the variety B2 we find τ(φ(u)) =

τ(φ(v)). Thus φ(u), φ(v) lies in the same equivalence class defined by τ . One can

assume that φ(u), φ(v) 6= 0 since equivalence class of [0] consists of one element. Let

φ(u) = (a1, a2, a3, a4) and φ(v) = (b1, b2, b3, b4). Since τ(φ(u)) = τ(φ(v)) we find

that a1 = b1 and a2 = b2. Further, N2 ∈ B2 ⊆ Wλ implies that a4 = b4 = 1. Let

us show that a3 = b3. Let φ(h(u)) = (a1, p, y, z) and φ(h2(u)) = (p, x1, y1, z1). If

(h(u), 0), (h(u), 1) lies in the same connected component of Gr(u) then a3 = b3 = x.

If (h(u), 0), (h(u), 1) does not lie in the same connected component of Gr(u) then

h2(u) = h2(v). If y 6= 2 then a3 = b3 = y. If y = 2 then y1 6= 2 (because otherwise

we would obtain that φ(h(u)h2(u)) = 0). Hence φ(h(u)h2(u)) = (a1, x1, y1, 1). So

a3 = b3 = y1. In both cases we find that a3 = b3. Hence φ(u) = φ(v) i.e. the identity

u ≈ v holds in the variety Wλ.
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Now we are ready to find a finite identity basis of the variety Wλ.

Lemma 3.12. The identities (4), (14) and

abc2d2 ≈ abc2d2 (16)

a2b2 ≈ ab2a (17)

form a identity basis of the variety Wλ.

Proof. Note that the identity

a2ba ≈ aba2 (18)

follows from identities (14), (17). Indeed,

a2ba ≈(14) (a2)(baba) ≈(17) (ababa)a ≈(14) aba2.

Consider an identity au ≈ av which holds in the varietyWλ. Note that Corollary

3.1 implies that a ∈ C(u) if and only if a ∈ C(v). Consider possible cases:

1. a /∈ C(u). Then a /∈ C(v) and (h(u), 0), (h(u), 1) does not lie in the same

connected component of the graph Gr(u). Then by Lemma 3.11 we obtain

h2(u) = h2(v) i.e. the identity au ≈ av has a form abu′ ≈ abv′. By Corol-

lary 3.1 we can observe that identity bu′ ≈ bv′ holds in the variety B2. Then the

identity bu′ ≈ bv′ holds in the variety L2 ∨ B2 and follows from identities (4),

(14), bc2d2 ≈ bd2c2. In this case we find that the identity abu′ ≈ abv′ follows

from identities (4), (14), (16).

2. a ∈ C(u). Then we have a ∈ C(v) and the identity au ≈ av has a form au′au′′ ≈

av′av′′. Consider possible cases:

(a) (h(u), 1), (h(u), 1) lies in the same connected component of the graph Gr(u).

Applying the identity (14) we obtain the identity au′au′au′′ ≈ av′av′av′′.

Note that the identities au′au′′ ≈ au′a2u′′ ≈ av′av′′ ≈ av′a2v′′ holds in the

variety B2 (by Lemma 3.10) and follows from identities (4), (14), bc2d2 ≈

bd2c2 (by Proposition 3.1). Hence the identity au′au′a2u′′ ≈ av′av′a2v′′

follows from identities (4), (14), (16). Now applying the identity a2ba ≈

aba2 we obtain the identity a2u′au′au′′ ≈ a2v′av′av′′. Applying the identity

(14) we obtain the identity a2u′au′′ ≈ a2v′av′′. As we noted the identity

au′au′′ ≈ av′av′′ follows from identities (4), (14), bc2d2 ≈ bd2c2. Hence the

identity au ≈ av follows from identities (4), (14), (16), (17).

(b) (h(u), 1), (h(u), 1) does not lie in the same connected component of the graph

Gr(u). Then h2(u) = h2(v) by Lemma 3.11. Thus the identity au′au′′ ≈

av′av′′ has a form abuau′′ ≈ abvau′′. Applying the identity (14) we obtain

the identity abuabuau′′ ≈ abvabvau′′. But the identity buabuau′′ ≈ bvabvau′′

holds in the variety B2 by Lemma 3.10 and hence follows from identities (4),

(14), bc2d2 ≈ bd2c2. Hence the identity abuabuau′′ ≈ abvabvau′′ follows from

identities (4), (14), (16).
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We obtained that any identity u ≈ v which holds in the variety Wλ follows from

identities (4), (14), (16), (17). Thus they are constitute a identity basis of the variety

Wλ.
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