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Some of the 95 families of weighted K3 hypersurfaces have been known to
have the isometric lattice polarizations. It is shown that weighted K3 hyper-
surfaces in such families are to one-to-one correspond by explicitly constructing
the monomial birational morphisms among the weighted projective spaces. All
the weight systems having the isometric Picard lattices commonly possess an
anticanonical sublinear system, being confirmed that the Picard lattice of the
sublinear system we obtained is the same as those of the complete linear systems.
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1 Introduction

There is a famous list of 95 families of weighted K3 hypersurfaces [7][5]. The
Picard lattice of the minimal model of a generic member of each family has
been computed by Belcastro [2]. Here the Picard lattice of a K3 surface S

means the Picard group PicS together with the cup product. Some of the
lattices are found to be isometric. So one may expect that the corresponding
families of K3 surfaces would coincide, in the sense that the period maps have
the same image. It is impossible to identify the whole complete anticanonical
linear systems, since the dimensions of the systems do not always coincide.
Nevertheless, we show that there exists an identification between subfamilies. In
fact, for all such pairs, there exists an explicit monomial birational map between
the weighted projective spaces which induces, on the families of minimal models,
an isomorphim between subfamilies of K3 surfaces. Moreover, the subfamilies
are general enough, namely, the generic member of each subfamily has the same
Picard lattice as the original family. We remark that these maps are compatible
with logarithmic moment maps and keep the amoebas of K3 surfaces.
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We first explain the idea by a toy model, namely the family of elliptic curves
in the projective plane. Let P1 and P2 be distinct points in P

2, and L be the
line through them. Blow up P1 and P2, blow down the strict transform of L,
and we get P

1 × P
1. We write the transform of P1, P2 and L in P

1 × P
1 as

H1, H2 and Q, respectively. A general cubic in P
2 is mapped to an element of

|3H1+3H2−3Q| in P
1×P

1, which is not anticanonical. Take an anticanonical
sublinear system L = |3L−P1−P2|, which is seven-dimensional. The transform
of L in P

1×P
1 is |2H1+2H2−Q|, which is an anticanonical sublinear system.

The correspondence of Newton polygons is discribed below, which also involves
the complete anticanonical linear system of the Del Pezzo surface of degree 7.

Figure 1: Correspondence of Newton polygons.

2 Setup

Let a := (a0, a1, a2, a3) be a list of positive integers, which are called weights.
Let P (a) be the weighted projective space ProjC[W,X, Y, Z] where degrees
of W,X, Y, Z are a0, a1, a2, a3, respectively. We can assume without a loss of
generality that a0 ≤ a1 ≤ a2 ≤ a3 and also that the weights are well-posed, that
is, every greatest common divisor of all but one of the ai’s is one. Let M(a) be
the group of exponents of degree-zero rational monomials

{

(m0,m1,m2,m3) ∈ Z
4

∣

∣

∣

∣

∣

3
∑

i=0

aimi = 0

}

.

It is easy to see that M := Z
3 ∼= M(a). Define a rational tetrahedron

∆(a) := {(m0,m1,m2,m3) ∈ M(a)⊗R | mi ≥ −1}.

After the multiplication of the monomial WXY Z, ∆(a) ∩M(a) generates sec-
tions of the anticanonical bundle of P (a) as a vector space.

In general, given a bounded rational convex polyhedron ∆ in R
n, one has

an n-dimensional projective toric variety P∆ in a standard way. P∆(a) is
isomorphic to P (a), and contains the three-dimensional algebraic torus T :=
SpecC[M ].

A convex subpolyhedron ∆ in ∆(a) determines an anticanonical linear sub-
system, which corresponds to a family of Laurent polynomials in C[M ] with
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degree zero and Newton polytope in ∆. Each polynomial F determines the zero
set ZF in T . The zero set ZF in P∆ usually has singularities. The minimal res-
olution SF of ZF is a K3 surface if and only if ZF has no boundary component
and the singularities are only rational double points. In that case, for a generic
F we denote the Picard lattice PicSF by Λ∆. If ∆ = ∆(a), SF is K3 if and
only if a is in the ‘famous 95’ list. In this case we write Λ∆ as Λ(a).

Assume that ∆ is a bounded lattice polyhedron and contains the origin as
the only lattice point in its interior. ∆ is called reflexive if the polar dual of ∆
is also a lattice polyhedron[1]. For 3-dimensional ∆, the reflexivity is equivalent
to that P∆ is a Fano 3-fold with only canonical Gorenstein singularities, and
that the minimal model of a general anticanonical member is a K3 surface.

3 Result

We state the main theorem.

Theorem 3.1 Let two weights a and b be in the ‘famous 95’ with isometric
Picard lattices. Then there exist subspaces Da (resp. Db) of the anticanonical
complete linear system of P (a) (resp.P (b)), and an isomorphism ϕ : Da → Db

with the following properties. (1) If the minimal model of X ∈ Da is a K3
surface, then the minimal model of ϕ(X) is an isomorphic K3 surface to X as
minimal models, and vice versa. (2) The Picard lattices of the minimal models
of generic members of Da, Db are isometric to Λ(a) ≃ Λ(b).

The theorem follows from the proposition below:

Proposition 3.2 Under the assumption of the theorem, there exists a group
isomorphism M(a) ∼= M(b), and a common reflexive subpolyhedron ∆ of ∆(a)
and ∆(b), with the following properties. (1) the associated birational maps ϕa :
P∆- -→P (a) and ϕb : P∆- -→P (b) map the general anticanonical members
of P∆ to those of P (a) and P (b), (2) The lattices Λ(a), Λ(b) and Λ∆ are
isometric.

No. Families The vertices of ∆ Picard lattice

13 P (1, 3, 8, 12) ⊃ (24) Z2,W 24,W 3X7,WX5Y, Y 3, X4Z E6 ⊥ U

72 P (1, 2, 5, 7) ⊃ (15) WZ2,W 15,WX7, X5Y, Y 3, X4Z (8)

50 P (1, 4, 10, 15) ⊃ (30) Z2,W 30,W 2X7, X5Y, Y 3 E7 ⊥ U

82 P (1, 3, 7, 11) ⊃ (22) Z2,W 22,WX7, X5Y,WY 3 (9)

9 P (1, 4, 5, 10) ⊃ (20) W 20, X5, Z2, Y 2Z,WXY 3,W 5Y 3 T2,5,5

71 P (1, 3, 4, 7) ⊃ (15) W 15, X5,WZ2, Y 2Z,XY 3,W 3Y 3 (10)

14 P (1, 6, 14, 21) ⊃ (42) Z2, Y 3, X7,W 42 E8 ⊥ U

28 P (1, 3, 7, 10) ⊃ (21) WZ2, Y 3, X7,W 21 (10)
45 P (1, 4, 9, 14) ⊃ (28) Z2,WY 3, X7,W 28

51 P (1, 5, 12, 18) ⊃ (36) Z2, Y 3,WX7,W 36

38 P (1, 6, 8, 15) ⊃ (30) Z2,W 30, X5, XY 3,W 6Y 3 E8 ⊥ A1 ⊥ U

77 P (1, 5, 7, 13) ⊃ (26) Z2,W 26,WX5, XY 3,W 5Y 3 (11)

20 P (1, 6, 8, 9) ⊃ (24) W 6Z2,W 24, X4, XZ2, Y 3 E8 ⊥ A2 ⊥ U

59 P (1, 5, 7, 8) ⊃ (21) W 5Z2,W 21,WX4, XZ2, Y 3 (12)

26 P (2, 4, 5, 9) ⊃ (20) WZ2,W 10, X5, Y 4 D8 ⊥ D4 ⊥ U

34 P (2, 6, 7, 15) ⊃ (30) Z2,W 15, X5,WY 4 (14)
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26 P (2, 4, 5, 9) ⊃ (20) WZ2,W 5Y 2, Y 4, X5,W 8X D8 ⊥ D4 ⊥ U

34 P (2, 6, 7, 15) ⊃ (30) Z2,W 8Y 2,WY 4, X5,W 12X (14)
76 P (2, 5, 6, 13) ⊃ (26) Z2,W 8X2, X4Y,WY 4,W 13

27 P (2, 3, 8, 11) ⊃ (24) WZ2,W 12, X8, Y 3 E8 ⊥ D4 ⊥ U

49 P (2, 5, 14, 21) ⊃ (42) Z2,W 21,WX8, Y 3 (14)

16 P (3, 6, 7, 8) ⊃ (24) Z3,W 3Y Z,W 6X,X4,WY 3 E8 ⊥ (A2)
3
⊥ U

54 P (3, 5, 6, 7) ⊃ (21) Z3,W 3XZ,W 7,WY 3, X3Y (16)

43 P (3, 4, 11, 18) ⊃ (36) Z2,W 12, X9,WY 3 E8 ⊥ E6 ⊥ U

48 P (3, 5, 16, 24) ⊃ (48) Z2,W 16,WX9, Y 3 (16)

43 P (3, 4, 11, 18) ⊃ (36) Z2,W 6Z,W 8X3, X9,WY 3,W 7XY E8 ⊥ E6 ⊥ U

48 P (3, 5, 16, 24) ⊃ (48) Z2,W 8Z,W 11X3,WX9, Y 3,W 9XY (16)
88 P (2, 5, 9, 11) ⊃ (27) XZ2,W 8Z,W 11X,WX5, Y 3,W 9Y

68 P (3, 4, 10, 13) ⊃ (30) XZ2, X5Y,W 2X6, Y 3,W 10 E8 ⊥ E7 ⊥ U

83 P (4, 5, 18, 27) ⊃ (54) Z2,W 9Y,W 11X2, Y 3,WX10 (17)
92 P (3, 5, 11, 19) ⊃ (38) Z2,W 9Y,W 11X,XY 3,WX7

30 P (5, 7, 8, 20) ⊃ (40) Z2,W 4Z,WX5,W 5XY, Y 5 E8 ⊥ T2,5,5

86 P (4, 5, 7, 9) ⊃ (25) Y Z2,W 4Z,X5,W 5X,WY 3 (18)

46 P (5, 6, 22, 33) ⊃ (66) Z2,W 12X,X11, Y 3 E2

8 ⊥ U

65 P (3, 5, 11, 14) ⊃ (33) XZ2,W 11,WX6, Y 3 (18)
80 P (4, 5, 13, 22) ⊃ (44) Z2,W 11,WX8, XY 3

56 P (5, 6, 8, 11) ⊃ (30) Y Z2,W 6, X5, XY 3 E2

8 ⊥ A1 ⊥ U

73 P (7, 8, 10, 25) ⊃ (50) Z2,W 6X,X5Y, Y 5 (19)

Table 1: Monomial transformations of the weighted projective spaces.

Remark. We explain the notation of the Table 1. 1) The ‘No.’ follows [7].
2) We list only the families who have isometric Picard lattices in the famous 95.
There are many other families of toric K3 hypersurfaces.
3) In ‘the vertices of ∆’, we state only the vertices of ∆, but not other lattice
points in ∆ (e.g. lattice points on edges and faces). For each set of families in
Table 1, monomials in the same column (punctuated by commas) correspond.
For example, the correspondence between No. 16 and No. 54 shown in Table 1
is determined as follows:

No.16 No.54
Z3 ↔ Z3,

W 3Y Z ↔ W 3XZ,

W 6X ↔ W 7,

X4 ↔ WY 3,

WY 3 ↔ X3Y.

4) ‘Picard lattices’ is due to [2] and Picard numbers are in the parenthesis.

Proof. For each a, we can choose a polyhedron ∆ as the convex hull of
corresponding points inM(a) designated in the table. Each birational transform
of the weighted projective spaces is given by a correspondence between sets of
rational monomials. It is routine to check that, for weights a and b in each set of
rows, the correspondence of rational monomials gives an isomorphism between
M(a) andM(b), and that the polyhedrons are reflexive and isomorphic as lattice
polyhedrons.
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P (a), P (b) and P∆ contain T in common. Thus, for a polynomial F whose
Newton polyhedron is in ∆, the same zero locus ZF is contained in those three
spaces. The compactifications are naturally birational. We remark that the zero
locus of F in the projective toric varieties may contain some boundary divisors,
thus may be different according to the ambient spaces. This does not happen for
Gorenstein K3 hypersurfaces since the boundary divisors are a finite union of
toric orbits, thus a finite sum of rational varieties. Since ∆ is reflexive, a general
anticanonical divisor of P∆ has a K3 surface as its minimal model. Thus there
are isomorphisms among the three families of K3 surfaces which are minimal
models of anticanonical divisors, over an open subspace in a projective space,
whose dimension is the number of the lattice points in ∆ minus one.

One can compute the Picard lattice Λ∆ of a general K3 surface by using
[6], and check that Λ∆ is isomorphic to both of Λ(a) and Λ(b). For that, it is
enough to check that the rank of Λ∆ coincides with that of Λ(a) and Λ(b), since
Λ∆ contains Λ(a) and Λ(b), and Picard lattices are primitively embedded in the
K3 lattice by Hodge theory. �

For a tetrahedron ∆(a) with a a weight, let N(∆(a)) denote the full Newton
polyhedron of ∆(a).

Remark. If more than three families have the isometric Picard lattice, some
subtleties occur. For instance, as stated in Table 1, correspondence between
No. 26 and No. 34 does not fully extend to correspondence including No. 76.
One should take a smaller subfamily to establish a correspondence including all
three as follows:

Ν(∆ (2,4,5,9)) Ν(∆ (2,6,7,15))

∆

∆

Ν(∆ (2,5,6,13))

Ν(∆ (2,4,5,9))
Ν(∆ (2,6,7,15))

Figure 2: above: ∆ for Nos. 26 and 34, below: ∆ for Nos. 26, 34 and 76.

The full Newton polyhedrons of Nos. 26 and 34 are isomorphic, so that ∆
for this pair is to be isomorphic to these polyhedrons, whilst one may have to
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“remove” vertices of the full Newton polytopes of Nos. 26, 34 and 76 to obtain
∆ for the set of these three weights.

Remark. When ∆ is symmetric, clearly other monomial transformations exist;
in the list below, the monomials in bold can be exchanged in a row.

No. Families The vertices of ∆ Picard lattice
16 P (3, 6, 7, 8) ⊃ (24) Z

3,W 3Y Z,W 6X,X4,WY
3 E8 ⊥ (A2)

3 ⊥ U

54 P (3, 5, 6, 7) ⊃ (21) Z
3,W 3XZ,W 7,WY 3,X3

Y (16)
30 P (5, 7, 8, 20) ⊃ (40) Z2,W 4Z,WX

5,W 5XY,Y 5 E8 ⊥ T2,5,5

86 P (4, 5, 7, 9) ⊃ (25) Y Z2,W 4Z,X5,W 5X,WY
3 (18)

46 P (5, 6, 22, 33) ⊃ (66) Z2,W 12
X,X11, Y 3 E2

8 ⊥ U

65 P (3, 5, 11, 14) ⊃ (33) XZ2,W 11,WX
6, Y 3 (18)

80 P (4, 5, 13, 22) ⊃ (44) Z2,W 11,WX
8, XY 3

56 P (5, 6, 8, 11) ⊃ (30) Y Z2,W 6,X5,XY
3 E2

8 ⊥ A1 ⊥ U

73 P (7, 8, 10, 25) ⊃ (50) Z2,W 6
X,X5

Y ,Y 5 (19)
Table 2: Other monomial transformations.

For example, Nos. 16 and 54 have correspondences as follows:

∆

Ν(∆(3,6,7,8)) Ν(∆(3,5,6,7))

Figure 3: Subfamily of Nos. 16 and 54

Remark. The restriction of the Picard group of a resolution of the ambient
space P∆ do not always generate Λ∆. We denote by L0 the orthogonal com-
plement of the image of the restriction in the Picard lattice.

In each set of weights with the isometric Picard lattices, one of the weights
has a dual weight system[4], with one exception, the pair Nos. 16 and 54. There
is no reflexive subpolyhedron with L0 = 0 for that pair. Although they have
a dual weight system, Nos. 26, 34 and 76, and Nos. 27 and 49 never contain a
reflexive subpolyhedron with L0 = 0.

Remark. The real part of logarithmic function gives a homomorphism (C×)n →
R

n; (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|). For a hypersurface Z in (C×)n, the
image is called the amoeba of Z.

Generally, a monic rational monomial birational map of toric varieties is the
morphism which is induced by an isomorphism of the complex tori as complex
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Lie groups. Therefore, it gives a linear isomorphism between amoebas of K3
surfaces.
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