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Abstract

We show that Γ(Np), a subspace of exotic Hida-Kubo-Takenaka space
is naturally imbedded into (E)∗, the usual Hida-Kubo-Takenaka space
under some conditions. We also study on Heat Equations associated with
exotic Laplacians, such as Lévy Laplacian.
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1 Inroduction

An infinite dimensional Laplacian introduced by P. Lévy, the so called Lévy
Laplacian, has attracted many scientists. Studying Lévy Laplacian is important
in infinite dimensional analysis, because Lévy Laplacian is inherent to infinite
dimensional spaces. In other words, it does not have an easy finite dimensional
analogue. This is the point that makes Lévy Laplacian difficult and more inter-
esting.

In a paper of Ji-Saito [7], they proved that Lévy Laplacian can be identified
with the Gross Laplacian of other infinite dimensional spaces. This theory is
then extended to more general operators, which are called Exotic Laplacians,
in Accardi-Ji-Saito [2].

Our purpose in this paper is to investigate the relationships between these
special spaces and the usual Hida distributions. We show that regular func-
tionals on special spaces can be naturally imbedded into the usual Hida dis-
tributions. This imbedding enables us to calculate the problems on Exotic
Laplacians as if they were the problems on Gross Laplacians. This makes the
problems much easier, because we know quite well about Gross Laplacian. As
an example, we deal with heat equations generated by Exotic Laplacians in
Section 4.
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2 Preliminaries

We follow the notations of [2] and [7]. Let {ek}∞k=1 be an orthonormal basis of
a complex Hilbert space H , and let {λk}∞k=1 ⊂ R satify

1 < λ1 ≤ λ2 ≤ · · · and
∞∑

k=1

λ−2
k < ∞.

For each p ∈ R and ξ =
∑∞

k=1 αkek ∈ H , set

|ξ|2p =

∞∑

k=1

λ2p
k |αk|2.

For each p ≥ 0, let Ep = {ξ ∈ H ; |ξ|p < ∞} and let E−p be the completion
of H with respect to | · |−p. A countably nuclear Hilbert space E is defined by
E = proj limp→+∞ Ep, and its dual E∗ satisfies E∗ = ind limp→+∞ E−p, thus
we have a basic Gelfand triple E ⊂ H ⊂ E∗.

2.1 Hida-Kubo-Takenaka spces

Let Γ(Ep) denote the Fock space over Ep, i.e.,

Γ(Ep) =

{
φ = (fn)

∞
n=0; fn ∈ E⊗̂n

p , ‖φ‖2H,p =
∞∑

n=0

n!|fn|2
E⊗̂n

p

< ∞
}
.

Identifying Γ(E0) with its dual space, we have

· · · ⊂ Γ(Eq) ⊂ Γ(Ep) ⊂ Γ(E0) ⊂ Γ(E−p) ⊂ Γ(E−q) ⊂ · · ·

for 0 < p < q, and we have a higher Gelfand triple

(E) = proj lim
p→+∞

Γ(Ep) ⊂ Γ(H) ⊂ (E)∗ = ind lim
p→+∞

Γ(E−p).

The exponential vector associated with ξ ∈ E is defined by

φξ =

(
1, ξ,

ξ⊗2

2!
, · · · , ξ

⊗n

n!
, · · ·

)
.

It is easy to see that φξ ∈ (E). The S-transform of an element Φ ∈ (E)∗ is
defined by

SΦ(ξ) = 〈〈Φ, φξ〉〉, ξ ∈ E,

where 〈〈·, ·〉〉 denotes the canonical C-bilinear form on (E)∗ × (E).
The trace operator τ is defined by

τ =

∞∑

k=1

e∗kJe ⊗ e∗k,
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which belongs to E−1/2 ⊗E−1/2. And the Gross Laplacian ∆G on (E) is repre-
sented by

∆Gφ = ((n+ 2)(n+ 1)τ⊗̂2
fn+2)

for any φ = (fn)
∞
n=0.

Let a ∈ (1/2,∞). Let Dom(∆c,2a−1) denote the set of all Φ ∈ (E)∗ such
that the limit

∆̃c,2a−1SΦ(ξ) = lim
N→∞

1

N2a−1

N∑

k=1

〈(SΦ)′′(ξ), ek ⊗ ek〉, (ξ ∈ E)

exists for each ξ ∈ E and the functional ∆̃c,2a−1(SΦ) is the S-transform of an
element in (E)∗. The Exotic Laplacian ∆2a−1 on Dom(∆c,2a−1) is defined by

∆c,2a−1Φ = S−1(∆̃c,2a−1SΦ).

2.2 Exotic Hida-Kubo-Takenaka spaces

Let a parameter a ∈ (1/2,∞) be fixed, and let a sequence {ea,k}∞k=1 ⊂ E∗

satisfy the following three conditions:
(C1) for each k1, k2,

lim
N→∞

1

N2a−1

N∑

j=1

〈ea,k1 , ej〉〈ea,k2 , ej〉 =
{
1 k1 = k2

0 k1 6= k2,

(C2) There exists some p > 0 and M > 0 satisfying

|ea,k|−p ≤ M

for all k.
(C3) for any α = {αk}∞k=1 ∈ ℓ1 with α 6= 0,

∑
αkea,k 6= 0,

where the sum is taken in E∗.

Example 2.1. Set

ea,k =
√
2a− 1

∞∑

m=1

ei2πqkrmma−1em,

where {qk}∞k=1 = [0, 1) ∩Q and {rm} = {0, 1,−1, 2,−2, · · ·}.
This example, which is taken from [2], satisfies (C1), (C2) and (C3).

Proof. Since

N∑

j=1

〈ea,k1 , ej〉〈ea,k2 , ej〉 = (2a− 1)

N∑

j=1

ei2π(qk2−qk1 )rj j2a−2,
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it is easy to see that {ea,k} satisfies (C1). By the definition of | · |−p,

|ea,k|2−(2a−1) =

∞∑

m=1

1

λ2
m

· m
2a−2

λ4a−4
m

< +∞,

which implies (C2). To see (C3), for each α ∈ ℓ1, set a measure µα on [0, 1) by

µα =

∞∑

k=1

αkδqk .

Assume
∑

αkea,k = 0, then

µα(n) =

∫

[0,1)

ei2πnxdµα(x) =

∞∑

k=1

αke
i2πqkn = 0,

for any n ∈ Z, because 〈∑αkea,k, em〉 = 0 for all m ∈ N. This shows µα = 0,
and hence α = 0.

Let Hc,2a−1 denote the Hilbert space with orthonormal basis {ea,k}∞k=1, then
by (C1), its inner product 〈·, ·〉c,2a−1 is characterized by

〈z, w〉c,2a−1 = lim
N→∞

1

N2a−1

N∑

k=1

〈z, ek〉〈w, ek〉 (1)

for all z, w ∈ Span{ea,1, ea,2, · · · }. And by (C2), (1) holds for all z =
∑

αkea,k
and w =

∑
βkea,k, where α, β ∈ l1.

Note that Hc,2a−1 does not contain every x ∈ E∗ which has the limit

limN→∞
1

N2a−1

∑N
j=1 |〈x, ej〉|2.

Now let us formulate Hida-Kubo-Takenaka space. Let {λa,k}∞k=1 ⊂ R satify

1 < λa,1 ≤ λa,2 ≤ · · · and
∞∑

k=1

λ−2
a,k < ∞,

then by the same procedure as in Sec.2, we have another basic Gelfand triple
Na ⊂ Hc,2a−1 ⊂ N ∗

a , called the exotic triple and the associated trace

τa =
∞∑

k=1

ea,k ⊗ ea,k ∈ Na,−1/2 ⊗Na,−1/2

is called the exotic trace of order 2a− 1.
By the same procedure as in Sec.2.1, we have a chain of Fock spaces

· · · ⊂ Γ(Na,q) ⊂ Γ(Na,p) ⊂ Γ(Na,0) ⊂ Γ(Na,−p) ⊂ Γ(Na,−q) ⊂ · · · , 0 < p < q,

and we have another higher Gelfand triple

(Na) = proj lim
p→+∞

Γ(Na,p) ⊂ Γ(Hc,2a−1) ⊂ (Na)
∗ = ind lim

p→+∞
Γ(Na,−p).
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which is called exotic Hida-Kubo-Takenaka space of order 2a− 1.
The associated Gross Laplacian ∆G,2a−1 is defined on (Na) and is repre-

sented by

∆G,2a−1φ = ((n+ 2)(n+ 1)τa⊗̂2
fn+2)

for any φ = (fn)
∞
n=0 ∈ (Na).

Note that in the case a = 1, Deliac,1 is the Lévy Laplacian. This case is
studied in [7].

3 Proof of the Main Theorem

In this section, we prove that Γ(Np) is imbedded into (E)∗ under conditions
(C1)-(C3).

Lemma 3.1. Let fn be an element in N⊗n
a,1 ∩ E⊗n

−p , then the inequality

|fn|E⊗n
−p

≤ Mn

(
∞∑

k=1

λ−2
a,k

)n/2

|fn|N⊗n
a,1

holds.

Proof. Set

bk1,k2,··· ,kn
= 〈ea,k1 ⊗ ea,k2 ⊗ · · · ⊗ ea,kn

, fn〉c,2a−1,

then

fn =

∞∑

k1,k2,··· ,kn=1

bk1,k2,··· ,kn
ea,k1 ⊗ ea,k2 ⊗ · · · ⊗ ea,kn

,

where the convergence is defined in terms of N⊗n
a,1 . We have

∞∑

k1,k2,··· ,kn=1

|bk1,k2,··· ,kn
|2λ2

a,k1
λ2
a,k2

· · ·λ2
a,kn

= |fn|2N⊗n
a,1

,

and, by Cauchy-Schwarz inequality, we obtain




∞∑

k1,k2,··· ,kn=1

|bk1,k2,··· ,kn
|




2

≤
∞∑

k1,k2,··· ,kn=1

|bk1,k2,··· ,kn
|2λ2

a,k1
λ2
a,k2

· · ·λ2
a,kn

·
∞∑

k1,k2,··· ,kn=1

λ−2
a,k1

λ−2
a,k2

· · ·λ−2
a,kn

=

(
∞∑

k=1

λ−2
k

)n

|fn|2N⊗n
a,1

< ∞,
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which shows {bk1,k2,··· ,kn
} ∈ ℓ1(Nn). Now, by (C2), we obtain

|fn|E⊗n
−p

≤ sup
k1,k2,··· ,kn

|ea,k1 ⊗ ea,k2 ⊗ · · · ⊗ ea,kn
|E⊗n

−p
·

∞∑

k1,k2,···kn=1

|bk1,k2,··· ,kn
|

≤ Mn

(
∞∑

k=1

λ−2
a,k

)n/2

|fn|N⊗n
a,1

.

More precisely, “fn ∈ N⊗n
a,1 ∩E⊗n

−p ” should imply the existance of a universal

setX satisfyingN⊗n
a,1 ⊂ X andE⊗n

−p ⊂ X . In this case, however, it is not appriori

given. The above lemma suggests a reasonable inclusion map i : N⊗n
a,1 → E⊗n

−p

defined by

N⊗n
a,1 ∋ fn 7→ {bk1,k2,··· ,kn

} ∈ ℓ1

7→
∞∑

k1,k2,···kn=1

bk1,k2,··· ,kn
ea,k1 ⊗ ea,k2 ⊗ · · · ⊗ ea,kn

∈ E⊗n
−p .

Theorem 3.2. N⊗n
a,1 is imbedded into E⊗n

−p by the above inclusion map i.

Proof. What is left is to show that i is injective.
There is no need to show in the case n = 1, because it is condition (C3).

Assume that i is injective when n = m. Let {bk1,··· ,km,km+1} satisfy

∞∑

k1,··· ,km,km+1=1

bk1,··· ,km,km+1ea,k1 ⊗ · · · ⊗ ea,km
⊗ ea,km+1 = 0.

By taking the right contraction with ej , we have

∞∑

k1,···km=1




∞∑

km+1=1

bk1,··· ,km,km+1〈ea,km+1 , ej〉


 ea,k1 ⊗ · · · ⊗ ea,km

= 0

for all j ∈ N. By the assumption, we obtain

∞∑

km+1=1

bk1,··· ,km,km+1〈ea,km+1 , ej〉

for all k1, · · · km and j. Now, by (C3), bk1,··· ,km,km+1 = 0.

Corollary 3.3. Let φ = (fn) ∈ Γ(Na,1), then φ is included in Γ(E−q) for some
q ∈ N.
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Proof. Let m ∈ N satisfy λm
1 ≥ M(

∑∞

i=1 λ
−2
i )1/2, then by Lemma 3.1, we have

|fn|E⊗n

−(p+m)
≤ |fn|N⊗n

a,1
,

and hence we obtain

‖φ‖2H,p =

∞∑

n=0

n!|fn|2E⊗n

−(p+m)

≤
∞∑

n=0

n!|fn|2N⊗n
a,1

= ‖φ‖2Na,1
.

The results given in [2] is rewritten in the following way.

Theorem 3.4. Let φ = (fn)
∞
n=1 ∈ (Na), then i(φ) ∈ Dom(∆c,2a−1) and

i(∆G,2a−1φ) = ∆c,2a−1i(φ).

4 Exotic heat equations

In this section, as an application of the results in the previous section, we
consider the heat equation associated with the Exotic Laplacian:

∂

∂t
u(t, ·) = ∆c,2a−1u(t, ·)
u(0, ·) = Φ.

(2)

We call u : [0, T ) ∋ t 7→ u(t, ·) ∈ (E)∗ is a solution of (2) for 0 ≤ t < T if:
(i) t 7→ u(t, ·) is continuous on [0, T ) in the strong topology on (E)∗

(ii) t 7→ u(t, ·) is differentiable on (0, T ) in the strong topology on (E)∗

(iii) u(t, ·) ∈ Dom(∆c,2a−1) for any t ∈ (0, T )
and satisfies (2).

It is difficult to find a solution for every initial condition Φ. However, if Φ is
regular in Exotic sense, we can apply the results on the heat equation associated
with the Gross Laplacian to obtain the regularity of the solution in Exotic sense,
then the solution can be imbedded into the usual Hida-Kubo-Takenaka space.

We use the following property on the Gross Laplacian. See e.g. [8] for the
proof.

Lemma 4.1. Let p > 1 satisfy

λ
2(p−1)
a,1 > 2.

Then, for φ = (fn) ∈ Γ(Na,p) and 0 ≤ t < λ
2(p−1)
a,1 /|τa|N⊗2

a,−1
,

Pa,tφ =

(
∞∑

m=0

(n+ 2m)!

n!m!
tm(τ⊗m

a ⊗̂2mfn+2m)

)
∈ Γ(Na,1),
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and Pa,tφ is the solution of

∂

∂t
u(t, ·) = ∆G,2a−1u(t, ·)
u(0, ·) = Φ,

where the topology is that of Γ(Na,1).

Using this lemma and the relationship

i(∆G,2a−1φ) = ∆c,2a−1i(φ), φ = (fn)
∞
n=0 ∈ Γ(Na,p)

for p > 1, we obtain the following.

Theorem 4.2. Let φ ∈ (E)∗. Assume that there exists {ea,k} and {λa,k} such

that Φ = i(φ) with φ ∈ Γ(Na,p), where p > 1 satisfy λ
2(p−1)
a,1 > 2. Then, i(Pa,tφ)

is a solution of (2) for 0 < t < λ
2(p−1)
a,1 /|τa|N⊗2

a,−1
.

In particular, if Φ = i(φ) with φ ∈ (Na), then i(Pa,tφ) is a solution of (2)
for t > 0.
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[10] P. Lévy, Problèmes Concrets d’Analyse Fonctionelle, Gauthier-Villars,
Paris, 1951.

9


	1 Inroduction
	2 Preliminaries
	2.1 Hida-Kubo-Takenaka spces
	2.2 Exotic Hida-Kubo-Takenaka spaces

	3 Proof of the Main Theorem
	4 Exotic heat equations

