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Abstract

We study incremental redundancy hybrid ARQ (IR-HARQ) schemes based on punctured, finite-length, LDPC

codes. The transmission is assumed to take place over time varying binary erasure channels, such as mobile

wireless channels at the applications layer. We analyze and optimize the throughput and delay performance of

these IR-HARQ protocols under iterative, message-passing decoding. We derive bounds on the performance that

are achievable by such schemes, and show that, with a simple extension, the iteratively decoded, punctured LDPC

code based IR-HARQ protocol can be made rateless, and operating close to the general theoretical optimum for a

wide range of channel erasure rates.
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I. INTRODUCTION

In communications systems today, transmmission almost always takes place over a time varying channel,

because of, for example, the channel’s physical nature (e.g., wireless) or the length of a session (e.g.,

downloading a large file). Traditional channel coding schemes are ineadequate in these circumstances

because they have fixed redundancy matching only a single channel condition. Similar problems arise in

transmission to multiple users over non-varying but different channels. A number of recently proposed

and/or implemented coding schemes address the time varying and multimuser communication scenarios,

e.g., hybrid ARQ on the physical layer, rateless codes on the applications layer.

Hybrid ARQ transmission schemes combines the conventional ARQ with forward error correction. A

scheme known as incremental redundancy hybrid ARQ (IR-HARQ) or Type II HARQ achieves higher

throughput efficiency by adapting its error correcting code redundancy to varying channel conditions.

Because of that, the scheme has been adopted by a number of standards for mobile phone networks.

IR-HARQ is considered to be one of the most important features of the CDMA2000 1xEV-DO Release 0

and Revision A systems [1], [2]. A historic overview of HARQ schemes, up to 1998, can be found in

[3]. For a survey of more recent developments, we direct the reader to [4] and references therein. In the

third generation wireless standards, the IR-HARQ scheme resides in the physical layer and operates over

time varying fading channels. The scheme is based on a turbo code dating back to the IS-95 standard. A

possible replacement of this code by an LDPC or a fountain code was considered in [5].

Fountain codes are primarily designed to operate over erasure channels. They have superior performance

in applications in which the channel variations are large and/or cannot be reliaably determined a priori.

Because of this robustness, some classes of Fountain codes have been adopted into multiple standards,

such as within the 3GPP MBMS standard for broadcast file delivery and streaming services, the DVB-H

IPDC standard for delivering IP services over DVB networks, and DVB-IPTV for delivering commercial

TV services over an IP network.

We here consider a hybrid ARQ scheme based on punctured LDPC codes over the BEC channel.

The fundamental performances of the HARQ scheme are given by the achieved throughput and the

delay between the beginning of the transmission and the moment when the useful information has been

successfully decoded and is therefore available. Most often, one considers the average throughput and

the average delay of a given retransmission scheme and one seeks an optimal tradeoff between these two
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quantities. To find such a tradeoff is one of the most relevant questions related to the HARQ setting. In

this paper we investigate this issue in the particular case of IR-HARQ schemes based on finite-length,

iteratively decoded LDPC codes and operating over time varying BECs. We proceed by following steps:

(i) accurate approximation of the average throughout and delay, expressed through parameters of the used

code ensemble and of the considered IR-HARQ scheme; (ii) optimization of the mentioned parameters

subject to the optimal choice of both the throughput and the delay.

Note that the issue of determining the average throughput and the average delay has been intensively

investigated, see for instance [5]–[7]. However, the obtained results only give bounds, obtained either

under maximum-likelihood decoding assumption, either under (more practical) iterative decoding, but

based on the bit error probability, which means that the bound is tight only for large code lengths. The

approach taken in this paper is based on the block error performance under iterative decoding, which is

the main novelty compared to existing results.

This paper is organized as follows: In Sec. II, we describe our IR-HARQ scheme and present expressions

for its average throughput and delay. In Sec. III, we define finite-length rate-compatible LDPC codes, used

further in the paper. Section III-C presents a model of the IR-HARQ scheme based on LDPC codes. In

Sec. IV, we define the optimization problem to determine best code and protocol parameters. Section V

presents a modification of the IR-HARQ scheme based on LDPC codes, enlarging its working region,

and the comparison of the modified scheme with the HARQ scheme, based on LT codes. Finally, we then

discuss our observations and future work in Sec VI.

II. INCREMENTAL REDUNDANCY HYBRID ARQ MODEL

A. Multiple Transmissions Protocol and Channel Model

We analyze a particular retransmission protocol, called Incremental Redundancy Hybrid ARQ (IR-

HARQ), also known as Type-II HARQ. We adopt the following multiple transmission model of [8], [9]:

at the transmitter, the user data bits are encoded by a low rate code, referred to as the mother code. Initially,

only a selected number of encoded bits are transmitted, and the decoding is attempted at the receiving

end. If the decoding fails, the transmitter, notified through the feedback, sends additional encoded bits,

thus incrementing the redundancy. Besides the information about the success/failure of the transmission,

the feedback may also carry the channel erasure rate information, to help the transmitter decide to which
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extent to increment the redundancy.

The new transmission may happen under different channel conditions. Decoding is again attempted

at the receiving end, where the new bits are combined with those previously received. The procedure

is repeated after each subsequent transmission request until all the parity bits of the mother code are

transmitted. The channel is modeled as a time-varying BEC such that the channel erasure probability

during the transmission of one block of encoded bits is constant and changes from one block transmission

to another. We denote the channel erasure probability for block m as εm.

The main design parameters of the IR-HARQ scheme are [8], [9]: the maximum possible number M

of transmissions for one block of user data and the fractions qm, m = 1,M of encoded bits assigned to

transmission m. The maximum number of transmissions M is usually predefined by the protocol, while

the fractions qm’s can be either predefined or calculated before each transmission, taking into account the

feedback information about the previous channel erasure rates.

For further analysis of the IR-HARQ scheme, we adopt a probabilistic model in which qm’s are seen as

probabilities, i.e., in which the transmitter assigns a bit to transmission m with probability qm. Clearly, the

transmitter has also the constraint (known as rate compatible puncturing) to assign to transmission m only

the bits which have not been assigned to any of the previous transmissions. Even with this probabilistic

model it is possible to make the scheme rate compatible as follows [8]:

START

Before the IR HARQ protocol starts

1) For each encoded bit, generate a number θv independently and uniformly at random over

[0, 1).

2) Determine M and q1 (or all the qm’s if necessary)

3) Compute p1 as p1 = 1− q1.

4) For each node v s.t. θv ≥ p1, assign bit corresponding to v to transmission 1.

If transmission m− 1 fails for 2 ≤ m < M − 1

1) Determine qm (if not yet determined).

2) Compute pm as pm = pm−1 − qm.

3) For each node v s.t. pm ≤ θv < pm−1, assign the bit corresponding to v to transmission m.

If transmission M − 1 fails
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transmit all remaining bits.

END

In Section IV we determine how qm’s are chosen. The criterion for such choice is to optimize the

performance of the scheme, which are given by its throughput and delay.

B. The Performance Measures

Two standard measures of ARQ protocol efficiency are the throughput and the delay, defined as follows.

Definition 1: A throughput of a retransmission scheme is the number of user data bits accepted at the

receiving end in the time required for transmission of a single bit.

Definition 2: A delay of a retransmission scheme is the number of bits needed to transmit in order to

receive the useful information (user data bits).

In what follows, we are interested by the average throughput η and the average delay τ . We have the

following lemma:

Lemma 2.1: Consider an IR-HARQ scheme with at most M transmissions and a set of fractions

q1, . . . , qM . Let the underlying mother code be of length n and of rate R. Denote by ωm the probability

that it takes exactly m transmissions for the decoding to be successful. Then the average throughput and

delay are determined by following expressions

η =

R

M∑
m=1

ωm

M∑
m=1

ωm

( m∑
j=1

qj

) ; (1)

τ =

n

M∑
m=1

ωm

( m∑
j=1

qj

)
M∑
m=1

ωm

. (2)

Proof: The probability that one of the m ≤M transmissions is successful is
∑M

m=1 ωm. Because our

protocol is limited to M transmissions, if none of these transmissions is successful, the throughput is equal

to 0. When one of the m ≤ M transmissions is successful, the number of user data bits communicated
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to the receiver is Rn. The number of the encoded bits sent to the receiver through the mth transmission

is n
∑m

j=1 qj . So, the average throughput η is given by (1). The calculation for τ is similar.

Note that the above expression for throughput becomes equal to its counterpart in [6] when qm = 1/M .

Moreover, the authors of [6] expressed the quantity ωm in terms of the probability P (m) that the asymptotic

bit erasure rate Pb at the transmission m goes to 0, i.e., P (m) ≈ Prob[P
(m)
b → 0]. For LDPC codes, this

probability has been computed with the help of density evolution. Clearly, P (m) is a lower bound on the

failure probability at transmission m, which thus gives an upper bound on η and a lower bound on τ . We

next develop expressions of these bounds.

A randomly chosen code from an LDPC ensemble of length n has a successful iterative decoding with

high probability when the channel erasure probability ε is smaller than ε∗(n), where ε∗(n) is known as a

finite-length iterative decoding threshold. We will discuss ε∗(n) in Section III.

Now we can state the following result:

Theorem 1: Consider an IR-HARQ scheme based on an LDPC code of rate R and having an iterative

threshold ε∗(n). The following bounds hold:

η ≤


R 1−ε

1−ε∗
(n)
, 0 ≤ ε ≤ ε∗(n);

0, otherwise;

(3)

τ ≥


n

1−ε∗
(n)

1−ε , 0 ≤ ε ≤ ε∗(n);

∞, otherwise.
(4)

Proof: Consider the limit case when M = n. Then the smallest number of received unerased bits,

sufficient for successful decoding, is 1− ε∗(n). The channel with some erasure probability ε < ε∗(n) passes

1− ε bits unerased. Hence, the smallest fraction γ of coded bits to be sent by the transmitter to receive

1− ε∗(n) unerased bits at the receiver is

γ =
1− ε∗(n)

1− ε
.

Note that η ≤ R/γ, and (3) follows immediately.

Now consider the case when M = 1 and n→∞. At least γn bits should be sent to ensure the decoding

success. Hence, τ ≥ γn and (4) follows.



SUBMITTED TO IEEE IT, SEPTEMBER 2010 7

Figure 1 illustrates the derived bounds. Unfortunately, the bounds were shown to be too optimistic for

η

ε

1

1

ηmax = 1− ε
R

R
1−ε∗

(n)

ε∗(n)

n(1− ε∗(n))

n

τ

ε∗(n) ε

Fig. 1. Illustration of the upper bound on the region of attainable throughputs (on the left) and of the lower bound on the region of
attainable delays (on the right) for an IR-HARQ scheme based on a mother LDPC code of code rate R and with the iterative threshold ε∗(n).
The red curve ηmax = 1− ε is the maximum attainable throughput.

finite-length codes for small and medium codelengths. In what follows, we are going to overcome this

difficulty by proposing an accurate approximation for ωm; it will be presented in Section III-C.

Remark 1: Note that the given expressions of η and τ implicitly assume that the feedback from the

receiver to the transmitter is instantaneous. In practice the delay of the feedback transmission is positive,

and we can introduce it in the above expressions as follows. Let the transmission time of one bit in

the forward direction is t1bit. As the feedback propagation delay, i.e. the time interval between two

transmissions, is t, it is equivalent to time needed to transmit nACK = t/t1bit bits in the forward direction.

It is easy to show that the expressions become

η =

R

M∑
m=1

ωm∑M
m=1 ωm

∑
i,j λiqij

, (5)

τ = n

∑M
m=1 ωm

∑
i,j λiqij + nACK

n

∑M
m=1mωm∑M

m=1 ωm
, (6)

where the term nACK
n

∑M
m=1mωm is proportional to the average feedback transmission delay.

III. PERFORMANCE OF (PUNCTURED) FINITE-LENGTH LDPC CODES OVER BEC

As we have seen above, the performance of the IR-HARQ scheme depends on the decoding performance

after each transmission. In this paper we assume that the mother code is an LDPC code. We will see later
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on that the performance after each transmission in such case is related to the decoding performance of

punctured mother code. First let us define the mother code and describe the puncturing technique.

A. Mother Code; Puncturing of the Mother Code

The mother code is assumed to be taken at random from an irregular LDPC code ensemble of length n,

described by degree distributions λ(x) =
∑

i∈V λix
i−1 and ρ(x) =

∑
i∈C ρix

i−1. Given the parity matrix

H of the code, λi (or ρi) represents the fraction of non-zero entries of H , located in columns (or rows)

with exactly i non-zero entries. Also, the chosen LDPC code can be represented by its Tanner graph

with variable and check nodes, where variable nodes correspond to columns of the matrix H , and check

nodes corresponds to matrix rows. A variable node in the Tanner graph is connected to a check node iff

the matrix H contains a non-zero entry in the intersection of the column and of the row, related to the

variable node and to the check node. Hence, λin edges are connected to the variable nodes of degree i,

i ∈ V , and ρjn edges are connected to check nodes of j, j ∈ C.

The LDPC codes have a so called concentration property ( [10]) - any given code takes at random from

ensemble of (λ, ρ)-LDPC codes has the bit error probability close to the average bit error probability Pb

of the ensemble. From this property, the concentration of the block error probability PB for the region

of channel parameters, where PB ∝ Pb, also follows. The concentration allows us to only consider the

average performance of an LDPC ensemble instead of looking at the performance of one particular code,

by using the ensemble analysis techniques, which are well developed in the coding theory.

Assuming the transmission over the BEC with erasure probability ε and n very large, the bit-erasure rate

of given code vanishes for all ε up to some value ε∗ and is non-zero for all ε ≥ ε∗, with high probability.

ε∗ is the so called asymptotic iterative decoding threshold, and it is computed as follows

ε∗ = min
x∈(0,1)

x

λ(1− ρ(1− x))
.

Clearly, ε∗ is an upper bound on the channel erasure probability which can be supported by given LDPC

code.

Puncturing is a technique to obtain a code of a higher rate from a given code of some rate R. It

simply means non-transmitting (puncturing) a part of the encoded bits. The performance of the resulting

code depends on the choice of the punctured bits. One way to make this choice is uniformly at random
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(e.g., by a coin toss of a certain bias for each variable node). This way of puncturing is often called just

random puncturing. Another way to select the bits to puncture is to chose a degree of a punctured node

according to certain (optimized) probability distribution, and then select a node to puncture uniformly at

random from all nodes with the chosen degree. This way of puncturing is often referred to as intentional

puncturing. It has been shown [11] that the intentional puncturing outperforms the random one, and, even

more importantly, it can be designed to conserve the concentration property, whereas, the random one

cannot. Therefore, in what follows we only consider the intentional puncturing.

A puncturing LDPC ensemble of some length n is described by three polynomials: degree distributions

λ(x) and ρ(x) mentioned before and the puncturing degree distribution p(x) =
∑

i∈V pix
i−1, where pi’s

are probabilities with which variable nodes of degree i are punctured. Note that, given pi for some i, the

fraction piλi of edges of the bipartite graph is connected to the punctured variable nodes of degree i.

Notation 1: Let λp(x) =
∑

i∈V piλix
i−1 and λ̄p(x) =

∑
i∈V (1− pi)λixi−1.

It is easy to see that λ(x) = λp(x) + λ̄p(x). Using this notation, the asymptotic iterative threshold of

such punctured LDPC ensemble is

ε∗ = min
x∈(0,1)

x− λp(1− ρ(1− x))

λ̄p(1− ρ(1− x))
, (7)

and its design rate is given by

Rp =
R

1−
∑
i piλi/i∑
i λi/i

, (8)

where R is the code rate of the mother ensemble.

B. Finite-Length Performance

The finite-length of LDPC codes, punctured and unpunctured ones, is presented in this subsection.

Before to proceed further, we present some useful notation.

Notation 2: Let us denote by Λ(x) =
∑

i∈V Λix
i the variable node degree distribution from the node

perspective, where Λi represent the fraction of variable nodes of degree i, i ∈ V . Moreover, Λi =

iλi/
∑

j jλj . Also, given the puncturing degree distribution p(x), let Λ̄p(x) =
∑

i∈V (1− pi)Λix
i−1.
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Notation 3: Finally, we introduce the following notation:

y(x) = 1− ρ(x̄), π(y) = ελ̄p(y) + λp(y),

ξ(x) = (π′(y))2(ȳ)(ρ′(1)− ρ′(x̄)), µ(x) = π′(y)ρ′(x̄),

where x̄ = 1− x and ȳ = 1− y.

Conjecture 1: [12] Assume transmission took place over the BEC with erasure probability ε using a

code chosen at random from a punctured LDPC ensemble with length n. Then, with high probability, its

block erasure rate is given by the following expression

PB = Q

(√
n(ε∗ − ε− βn−2/3)

α

)
, (9)

where α and β are respectively the scaling and the shift parameter, given by

αm =

√
ξ(x∗)

Λ′(1)

(
1

λ̄p(y∗)
−

2λ̄′p(y
∗)ρ′(1− x∗)(1− µ(x∗))

λ̄p(y∗)2 · µ′(x∗)

)
, (10)

βm =

(
b

Λ̄′p(y
∗)x∗ρ′(1− x∗) ·

√
−λ̄p(y∗)µ′(x∗)

)2/3

, (11)

where x∗ satisfies (7), y∗ = y(x∗) and

b = x∗ρ′(1− x∗)λ
′(y∗)

λ(y∗)

y∗ − x∗ρ′(1− x∗)
y∗

+
(x∗ρ′(1− x∗))2

π(y∗)

(
π′′(y∗) +

π′(y∗)

y∗
− π(y∗)′2

π(y∗)

)
+

(
x∗(1− ε∗)ρ′(x̄∗)

y∗

)2

·
∑

l lpl(1− pl)λl+1(y∗)l−1

π(y∗)
.

As we can see, αm and βm only depend on ε∗, x∗ and y∗ and on polynomials λ, ρ and pm. Moreover,

they give a very accurate approximation as it is shown in [12].

Example 1 (Particular case of regular codes): For LDPC codes with parameters λ(x) = xc and ρ(x) =

xd, we have that p(x) = pxc, where 0 ≤ pm ≤ 1. Moreover, its performance parameters become

ε∗ =
ε∗0

1− p
, α =

α0

1− p
, β =

β0

1− p
, (12)

where ε∗0, α0 and β0 are the parameters of the corresponding unpunctured ensemble.
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Remark 2: For an LDPC code ensemble of length n, the finite-length iterative threshold ε∗(n), already

mentioned in Section II, is

ε∗(n) = ε∗ − βn−2/3.

Note that, even for moderate lengths n, ε∗(n) lies close to the asymptotic threshold ε∗.

C. Equivalent Puncturing Model of the IR-HARQ Scheme Based on LDPC Codes

Consider an IR-HARQ scheme described in Section II. Its mother code is an LDPC code chosen at

random from the ensemble of given length n, with degree distributions λ(x) and ρ(x). Since it is irregular,

the IR-HARQ scheme is now parametrized by the maximum number of transmissions M and the sequence

of qij’s for i ∈ V and j = 1,M , where qij denotes the probability with which a bit of degree i is chosen

for transmission j.

Recall that in Section II, only one value qj has been assigned to transmission j. However, if the bits of an

irregular code were chosen to be transmitted with probability qj regardless of their degree, it corresponds

to the random puncturing scheme and the concentration property would be lost [12]. By introducing qij ,

i ∈ V , for transmission j, we obtain the intentional puncturing scheme and conserve the concentration of

code performances around the average performance.

The IR-HARQ protocol can be described with the help of the following equivalent punctured code

model: the bits that the transmitter chooses to sent up to the m-th transmission, can be equivalently seen

as obtained by implementing a puncturing device which punctures a bit corresponding to a variable node

of degree i with probability pim, where pim = 1 −
∑m

j=1 qij , or, as shown within the protocol described

in Section II-A,

pi1 = 1− qi1 and pij = pi(j−1) − qij for 1 < j ≤M. (13)

Further, assume that a transmission j takes place over the BEC with probability εj . When a bit corre-

sponding to a variable node of degree i is assigned to one of the first m transmissions, it, equivalently,

passes through the channel with erasure rate (
∑m

j=1 qijεj)/(
∑m

k=1 qij). So, we can model our IR-HARQ

protocol through transmission m as transmission of the punctured mother code over a BEC with erasure

rate

εm =
∑
i

λi

∑m
j=1 qijεj∑m
k=1 qij

, (14)
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where the considered bit is punctured with probability pim.

The IR-HARQ protocol outlined below implements our model while conforming to rate compatible

puncturing; it is based on the one in Section II-A.

The quantities qij’s being linked to pim’s, now the IR-HARQ performance can be determined through

the performance of punctured versions of the mother code. Let us determine the expected throughput and

delay of our IR-HARQ scheme. Consider the expressions (1) and (2). First we switch to the irregular

case by replacing qm by
∑

i λiqim. Then, we need to define how the ωm’s can be determined. Having

defined the equivalent punctured model and the finite-length performance approximation of punctured

LDPC codes, we define

ωm = P
(m−1)
B − P (m)

B , (15)

where P (m)
B is the finite-length average block erasure rate at transmission m, and it is given by (9).

To show that the proposed approximation of IR-HARQ performances, let us present here one figure

from [9], that shows a good match of the approximation and the numerical results. In Figure 2 the average

throughput of the IR-HARQ scheme with M = 5 and based on regular (3, 6) LDPC codes of length 1024

is compared with its analytical approximation.

η

ε

Fig. 2. Average throughput η versus equivalent channel erasure probability for (3, 6) LDPC codes of length 1024. M = 5. Dashed line -
numerical result, straight line - our estimation.

IV. PERFORMANCE OPTIMIZATION

Using the proposed puncturing representation, we aim to optimize the performance of the IR-HARQ

transmission scheme based on LDPC codes, to be able to decide which bits and how many should be sent

at each transmission. Note that, thanks to the concentration result for punctured LDPC codes, one has

only choose the mother LDPC code and the puncturing degree distributions for each of transmissions, and
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one particular LDPC code ans particular puncturing patterns. The concentration of the punctured LDPC

ensemble ensures that the performance of a particular punctured LDPC code, picked at random from the

designed ensemble, is close to the average performance of this ensemble.

The parameters that we want to optimize are the average throughput η and the average delay τ . In

previous sections, we have seen that η of finite-length schemes has a staircase behavior and thus can be

optimized point-wise, i.e. knowing some particular working points on the ε-axe, one optimizes η to attain

the maximum possible throughput for those points.

In the beginning, let us assume that the estimates of erasure probabilities ε1, . . . , εM are available at

the transmitter. We also fix the acceptable block erasure probability P (M)
B after the maximum number of

transmissions1 and also the feedback propagation delay t.

In the following section we discuss the choice of other initial parameters, which should be fixed before

the optimization, namely: a) the maximum number of transmissions M , b) the codelength n, c) fixed

or maximum transmission block size K and d) the mother (λ, ρ) LDPC code ensemble. Further on, we

investigate how to make the choice a puncturing degree distribution for each transmission m, 1 ≤ m ≤M ,

which leads us to design a rate-adaptable punctured LDPC ensemble, based on the initial (λ, ρ) ensemble

and adapted to transmission conditions. Finally, in the last part we discuss how to get an estimate of

erasure probabilities if they are not available at the transmitter.

A. Choice of Parameters (λ, ρ), n, M and K

The choice of parameters λ(x), ρ(x), n and M depends a lot from the considered application of the

designed IR-HARQ scheme. In this section we only some insights on their choice.

The choice of degree distributions λ(x) and ρ(x) of the mother LDPC ensemble defines an upper

bound on the region of attainable throughputs versus transmission erasure probability. The upper region

is given by the iterative decoding threshold ε∗ and the code rate R of the ensemble, as it was shown

in Theorem 1. Note that the upper bound is achievable when M → n and n is quite large. Clearly,

for practical schemes, i.e. for small values of M and finite n of order of several hundreds/thousands of

bits, the average throughput is smaller. However, the degree distributions λ(x) and ρ(x) are chosen in

such a way that the ε∗ > max(ε1, . . . , εM) and the design rate R is sufficiently large, they can be good

1 In practice, P (M)
B is dictated by the supported application, i.e. image or voice transmission, video streaming etc.
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initial instances for the finite-length performance optimization. Note finally that, if the desired final block

erasure probability P
(M)
B is very low (e.g., 10−5 or lower, depending on the code), it induces additional

constraints on the minimum distance of the code ensemble and, hence, on fractions λ’s and ρ’s. Concerning

the constraints, see for example [13].

The choice of the codelength n is conditioned by the desired value of P (M)
B , which should be attainable

given ε and the chosen (λ, ρ)-pair. This can be verified by the finite-length analysis from [14].

The maximum number of retransmissions M should be chosen depending on a) the coherence time and

b) the delay penalty. The coherence time TC is the time, during which the channel conditions are the same,

and it depends on the transmission environment. Note that in our model we assume the instantaneous

erasure probability εm be constant during all the transmission m. Therefore, knowing d1bit, we can transmit

no more than TC
d1bit

bits at one transmission. From here we obtain that M > d1bitn
TC

. As concerning the delay

penalty, it is proportional to the total time of feedback transmissions, needed to spend in order to transit

a packet of data. To keep the delay penalty low, one should choose M so that the time of one single

transmission, proportional to n
M

, is large compared to the feedback propagation delay t.

In practice, the number of sent bits during one transmission is usually a constant, dictated by the

transmission protocol. However, some application may allow the variable length of the transmission block.

Covering the both cases, we defined the constant transmission block of the first case or the maximum

transmission block of the second case by K. The most often K is chosen to be K = n
M

.

B. Optimization of Puncturing Degree Distributions When εm’s Are Known

We consider the optimization of puncturing degree distributions when ε1, . . . , εM are known at the

transmitter.

C. Cost Function With the Penalty of Feedback

We start with defining a cost function, which needs to be optimized in order to increase the average

throughput and to decrease the average delay. From (5) and (6), the average throughput and delay can be

written as

η =
R

W0

, τ = nW,
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where W0 = 1
n
E[#(sent bits)| successful decoding, nACK = 0] and

W = 1
n
E[#(sent bits)| successful decoding, nACK ]. Thus,

W0 =

∑M
m=1 ωm

∑
i,j λiqij∑M

m=1 ωm

and

W = W0 +
nACK
n

∑M
m=1 mωm∑M

m=1 ωm
.

W is a natural choice of the cost function for our optimization problem, given that the minimum value of

W gives the minimum τ , while η is also maximized. Using (15) and (13), W can be rewritten in terms

of pij’s and P (m)
B ’s:

W =
(1− P (M)

B ) + nACK
n

∑M−1
m=0 (P

(m)
B − P (M)

B )−
∑

i λipi1 +
∑

i λi
∑M−1

m=1 P
(m)
B (pim − pi(m+1))

1− P (M)
B

. (16)

Let p̄j =
∑

i λipij . Hence, finally,

W =
(1− P (M)

B ) + nACK
n

∑M−1
m=0 (P

(m)
B − P (M)

B )− p̄1 +
∑M−1

m=1 P
(m)
B (p̄m − p̄m+1)

1− P (M)
B

, (17)

with

P
(m)
B =


Q
(√

n(ε∗m−εm−βmn−2/3)
αm

)
, if ε ≤ ε∗m;

1, otherwise.

Note that the expressions of ε∗, α and β have been already given in terms of pij’s. The average erasure

probability εm at transmission m is also given by:

εm =
∑
i

λi

∑
j(pi(j−1) − pij)εm

1− pim
. (18)

D. Optimization of Puncturing Degree Distributions

The optimization problem thus reduces to the optimization of puncturing degree distributions pm(x) =∑
i∈V pimx

i−1, 1 ≤ m ≤M − 1, under the constraint of their rate-compatibility, i.e.

argminpijW for ∀i ∈ V and 1 ≤ m ≤M − 1, given 1 ≥ pi1 ≥ pi2 ≥ . . . ≥ pi(M−1) ≥ 0.
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In general, it is a non-linear optimization problem, given that P (m)
B depends on parameters ε∗m, αm and

βm, which themselves are dependent on pim’s. We propose to use a gradient descent optimization to find

a solution. This algorithm is described below.

START

Initialization

For m from 1 to M − 1, find initial puncturing fractions p̃im’s by assuming that the iterative

threshold ε∗m, given by (7), satisfies ε∗m ≥ εm. Moreover, pim’s should satisfy the condition on

K: ∑
i∈V

(p̃i(m−1) − p̃im) =
K

n
or
∑
i∈V

(p̃i(m−1) − p̃im) ≤ K

n
(19)

for constant or variable transmission block size, respectively.

Choose the algorithm step ∆max.

Main part

For m from 1 to M − 1 do iterate until converged:

1) Compute W̃m given pim = p̃im, ∀i.

2) Find ∆im’s minimizing

∆W =
∑
i

∆im
∂W

∂pim
(p̃im) (20)

under the following conditions:

(Maximum changes) : |∆im| ≤ ∆max

(Rate-compatibility) : 0 ≤ p̃im + ∆im ≤ p̃i(m−1), ∀i ∈ V

(Number of sent bits) :
∑

i∈V (p̃i(m−1) − p̃im −∆im) = K
n

or
∑

i∈V (p̃i(m−1) − p̃im −∆im) ≤ K
n

,

for constant and variable block size respectively
3) Set p̃im = p̃im + ∆im.

End of cycle over m

Final part

Set puncturing fractions to be equal to p̃im, ∀i,m.

END

Below there are some details concerning the algorithm:
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• Initialization of pim’s and choice of ∆max: The initial values of puncturing fractions are proposed

to be set as if the used LDPC code were of infinite length. This is an optimistic choice of pim’s

as a finite-length code will behave worse than the infinite-length one with the same parameters.

The fractions are to be found by linear programming, namely one chooses puncturing fractions to

maximize the code rate of the punctured ensemble, under conditions (19). For more details on the

optimization see for instance [11]. Note that, for small m and high values of ε, the solution may

not exist. This means that the decoder will fail independently of chosen fractions. In this case any

puncturing fractions can be chosen, assumed that they are rate-compatible with optimized puncturing

fractions for for further transmissions.

Such an optimized choice of pim’s ensures a good convergence of the gradient descent because it

already lies close to an optimal solution. Hence, the algorithm step ∆max should be chosen quite

small, close to 1
n

.

• Minimization of (20): ∂W
∂pim

equals to

∂W

∂pim
=


−cλi

(
2− P (1)

B

)
+ cp̄1

∂P
(1)
B

∂pi1
, m = 1,

−cλiP (M−1)
B , m = M,

−cλi(P (m−1)
B − P (m)

B ) + cp̄m
∂P

(m)
B

∂pim
, 1 < m < M,

(21)

where c = (1− PB(M))−1 is a constant and

∂P
(m)
B

∂pim
= −
√
n · exp{n

2
(ε∗m − εm − βmn−2/3)2}
√

2πα2
m[
αm

(
∂ε∗m
∂pim

− n−2/3 ∂βm
∂pim

)
− ∂αm
∂pim

(ε∗m − εm − n−2/3βm)

]
, (22)

where ∂αm
∂pim

and ∂βm
∂pim

can be easily found by taking the derivative of (10) and (11), and ∂ε∗m
∂pim

is

obtained by implicit differentiation of the density evolution equation,

∂ε∗m
∂pim

=
λiy

i−1
m (xm − λ(xm))

λ̄p(xm)2
. (23)
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E. An Example of Optimization

Let us consider a particular example of the optimization of an LDPC ensemble for a particular value

of the channel erasure probability. Initial parameters are: n = 2000, M = 5, PB(M) = 0.01 and K =

n/M = 400, where K is the constant size. We are going to optimize the throughput at target erasure

probability εtarget = 0.35, given the maximum channel erasure probability εmax = 0.55.

The following degree distributions have been chosen; λ(x) = 0.220813x+0.353686x3+0.425502x12 and

ρ(x) = 0.390753x4 +0.361589x5 +0.247658x9. This gives rise to an LDPC ensemble with ε∗ = 0.608 and

PB(M = 5, n = 2000, εmax) ≈ 0.009. The optimized puncturing degree distributions at the initialization

stage are

p̃4(x) = 0.6x

p̃3(x) = 0.60264x+ 0.123057x2 + 0.474303x12

p̃2(x) = 0.735093x+ 0.415371x3 + 0.649536x12

p̃1(x) = 0.867547x+ 0.707686x2 + 0824768x12

Note that for i ≤ 2 the block erasure probability at erasure probability ε equals to 1, i.e., the the decoder

will fail with a very high probability, no matter what the puncturing degree distributions are. p̃3(x) and

p̃4(x), however, are the best choice for given initial parameters. Therefore, one needs to do at least 3

transmissions before to start decoding. Knowing this, we can to send three first coded packets one after

another, without spending time waiting for the feedback.

For the initial-stage p(x)’s, the cost function W = 0.677. After the finite-length optimization, we have

W = 0.646 with new p̃3(x) and p̃4(x):

p̃4(x) = 0.1351x+ 0.4649x12, p̃3(x) = 0.7351x+ 0.4649x12.

The average throughput, obtained by the proposed optimization, is shown in red in Figure 3. The throughput

with puncturing degree distributions, obtained at the initialization stage, is shown in blue. Also, the

green line represents the average throughput, obtained without any optimization, but simply after equal

partitioning bits of each degree i (i ∈ V ) between the transmissions. As we can, the throughput at ε = 0.35

has been indeed improved.
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Fig. 3. Impact of the choice of pm(x)’s on the average throughput. The dotted line represents the theoretical limit, the black line - the upper
bound given the mother LDPC code, the green line - no optimization, the blue line - infinite-length optimization, the red line - finite-length
optimization.

Note that the parameter K here operates as a regulator of the number of transmissions. If the number

of sent packets per bit were unbounded, the optimizer would decide to send as many bits as to ensure the

target PB at ε, and if the first transmission were unsuccessful, would send the rest of bits at transmission

2.

F. Particular Case of Regular Codes

The particularity of regular LDPC codes is in the fact that their scaling and shift parameters do not

depend on the puncturing fraction pm. Indeed, based on Example 1, it is easy to see that, for punctured

regular codes,

P
(m)
B = Q

(√
n(ε∗ − ε(1− pm)− βn−2/3)

α

)
, (24)

where ε∗, α and β are parameters of the initial unpunctured regular ensemble. As Q(x) is an increasing

function, P (m)
B is a monotone increasing function in pm and the cost function W takes its minimum at

the smallest possible values of pm, 1 ≤ m < M .

G. Estimation of εm’s at the Transmitter

In general, the estimates ε1, . . . , εM are not known at the transmitter and have to be found, before to

perform the optimization of puncturing degree distributions. The quality of estimation depends on the

knowledge of statistics of the transmission channel (mean, variance, probability distribution) and of the
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amount of feedback, obtained at the transmitter (1 bit representing ACK/NACK, previous channel erasure

probability,...).

A lot of literature is available on the channel estimation. As examples, let us consider several case

when of the channel estimation.

• Known mean: Let the mean ε̄ of the channel erasure probability is known at the transmitter. Then

the puncturing degree distribution can be optimized as discussed before, assuming εm = ε̄, m =

1, . . . ,M − 1.

• Known mean and previous ε’s: Let the mean ε̄ of the channel erasure probability is known and the

receiver transmits to the transmitter the erasure probabilities of previous transmissions ε1, . . . , εm−1.

In this case one can optimize the puncturing degree distributions in the online regime, i.e. just before

to transmit. At transmission 1, the transmitter sends the fraction of coded bits, optimized for ε1 = ε̄, as

it does not have any feedback information. At transmission m > 1, however, the estimation becomes

εm = mε̄−
m−1∑
i=1

εi

and is used in the optimization.

• Known probability distribution and 1-bit feedback: Assume that the probability density function p(ε)

is known and it has the support [εmin, εmax]. Then, for each transmission m,

εm = argmaxε∈[εmin,εmax] Pr(ε = εm|ACK/NACK1, . . . , ACK/NACKm−1)

Also note that, to ensure a good performance of the protocol, one should choose λ(x) and ρ(x) in

such a way that ε∗ ≥ εmax.

V. RATELESS INCREMENTAL REDUNDANCY PROTOCOLS

A. Punctured Schemes with Repetitions

As it can be seen in Fig.1, the IR-HARQ protocols based on punctured codes achieve high throughput

only over a limited region of channel erasure rates. When they are based on iterative decoding and a

mother LDPC code with the threshold ε∗, this region is from 0 to ε∗. Naturally, to cover a larger region,

one can choose a mother LDPC code with ε̃∗ > ε∗. However, such a code may have a lower rate R̃ > R,

and moreover R̃
1−ε̃∗ may be lower than R

1−ε∗ resulting in a lower throughput in the region ε < ε∗ (see
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Fig.1). Compare, for example, the rate 1/2 regular (3, 6) code with ε∗ = 0.4293 to the the rate 2/5 regular

(3, 5) code with ε∗ = 0.5176.

To extend the region of the high throughput for a given mother code, we propose to augment the HARQ

protocol as follows. If after the transmission of all the bits in the codeword the decoding still fails, we

further increment redundancy simply by repeating the same codeword, in the same manner as before (the

same qim). Hence, each coded bit might be transmitted twice through channels with erasure probabilities

ε(1) and subsequently with ε(2). At the receiver side, both received values of the bit are combined together.

So, after two transmissions the bit is erased with probability ε(1) · ε(2). One can continue the transmission

in this manner, making the scheme essentially rateless.

The proposed protocol is therefore the incremental redundancy protocol with repetition. Let us denote

it by IR-Rep-HARQ. Although repetition is in general not optimal, note that it takes place only when the

channel conditions are bad (ε > ε∗), when it actually is a good strategy to follow.

Note that in repetition stage, we can either retransmit the same blocks as the first stage, or determine

new blocks, according to the optimized fractions {qim}. This translates in generating new θ values in the

protocol of Section II-A. We next find expressions for the average throughput and the average delay for

these two cases.

1) Repetition of the same blocks

Assume the IR-Rep-HARQ protocol with the repetition of the same block during the second

transmission of the codeword. Denote the channel erasure probabilities of the first transmission

stage by ε
(1)
1 , . . . , ε

(1)
M and the ones of the repetition stage - by ε

(2)
1 , . . . , ε

(2)
M . Then, similarly to

(1)-(2), the average throughput ηIR−Rep and the average delay τIR−Rep are given by

ηIR−Rep =

R

2∑
r=1

M∑
m=1

ω(r)
m

2∑
r=1

M∑
m=1

ω(r)
m

( m∑
j=1

q̄j

) ; (25)

τIR−Rep =

n
2∑
r=1

M∑
m=1

ω(r)
m

( m∑
j=1

q̄j

)
2∑
r=1

M∑
m=1

ω(r)
m

; (26)
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where q̄j =
∑

i∈V λiqij and ω(r)
m = PB(ε

(r)
m−1)− PB(ε

(r)
m ), with

ε(r)
m =


∑m
j=1 q̄jε

(1)
j∑m

k=1 q̄k
, r = 1;

∑m
j=1 q̄jε

(1)
j ε

(2)
j∑m

k=1 q̄k
+

∑M
j=m+1 q̄jε

(1)
j∑M

k=m+1 q̄k
, r = 2.

(27)

Or, equivalently,

ηIR−Rep = ηr=1(1− PB(ε
(1)
M )) + ηr=1PB(ε

(1)
M ); (28)

where ηr=1 = η, given by (1) and ηr=2 =

R

M∑
m=1

ω(2)
m

M∑
m=1

ω(2)
m

( m∑
j=1

q̄j

) . Similarly,

τIR−Rep = τ(1− PB(ε
(1)
M )) +

2n
M∑
m=1

ω(2)
m

( m∑
j=1

q̄j

)
M∑
m=1

ω(2)
m

PB(ε
(1)
M ). (29)

2) Repetition with different blocks

Assume the IR-Rep-HARQ protocol with the repetition of the block m such that it is chosen at

random from the available, non-repeated bits, according to fractions {qim}i∈V . Then the expressions

for ηIR−Rep and τIR−Rep are the same in the previous case (see (25) and (26)), except that the

equivalent erasure probability ε(r)
m is computed as

ε(r)
m =


∑m
j=1 q̄jε

(1)
j∑m

k=1 q̄k
, r = 1;∑m

j=1 q̄jε
(2)
j (
∑M

k=1 q̄kε
(1)
j ) +

∑M
j=m+1(1− q̄j)(

∑M
k=1 q̄kε

(1)
j ), r = 2.

(30)

Let us develop bounds on ηIR−Rep and τIR−Rep for those two IR-Rep-HARQ schemes.

Theorem 2: The average throughput ηIR−Rep for IR-Rep-HARQ schemes with similar or different

blocks is bounded by

ηIR−Rep ≤



R(1−ε)
1−ε∗

(n)
, ε ≤ ε∗(n);

R

1+
ε−ε∗

(n)

ε−ε2

, ε∗(n) < ε ≤
√
ε∗(n);

0,
√
ε∗(n) < ε ≤ 1.

(31)
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Proof: For ε ≤ ε∗(n), the expression of η is already given by Theorem 1. Let us focus on the case

ε∗(n) < ε ≤
√
ε∗(n). Similar to the reasoning, used to prove Theorem 1, let us consider the limit case of

M = n. Then, at the repetition stage, some fraction γ of bits has been sent twice, which is equivalent to

sending them to a BEC with erasure probability ε2, and the rest - through a BEC with erasure probability

ε. It is easy to see that

(1− γ)ε+ γε2 ≤ ε∗(n).

Hence

γmin =
ε− ε∗(n)

ε− ε2
.

Now note that the total number of sent bits is 2γn+ (1− γ)n = (1 + γ)n. So,

ηIR−Rep =
R

1 + γ
≤ R

1 +
ε−ε∗

(n)

ε−ε2

.

Similarly, the lower bound on τIR−Rep can be proven:

Theorem 3: The average delay τIR−Rep for IR-Rep-HARQ schemes with similar or different blocks is

bounded by

τIR−Rep ≥



n(1−ε∗
(n)

)

1−ε , ε ≤ ε∗(n);

n
(

1 +
ε−ε∗

(n)

ε−ε2

)
, ε∗(n) < ε ≤

√
ε∗(n);

∞,
√
ε∗(n) < ε ≤ 1.

(32)

As an example, the upper bound on the throughput for the scheme, based on (x2, x5) LDPC codes, is

shown. For simplicity of presentation, we assume a large codelength n and ε∗(n) ≈ ε∗. We can see that in

the region of erasure probabilities from 0.43 to 0.63 the repetition of the same codeword gives an almost

linear throughput behavior.

Note that the bounds can be extended to the case of IR-Rep-HARQ schemes with any value R

repetitions. We state it without proof in the following corollary.

Corollary 1: Consider an IR-Rep-HARQ scheme, based on LDPC codes, with R repetitions. Then the
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Fig. 4. Upper bound on the throughput for an IR-Rep-HARQ scheme based on (x2, x5) LDPC codes. The black curve is the maximum
attainable throughput.

following bounds hold:

ηIR−Rep ≤


R

(
1 +

εr−1−ε∗
(n)

εr−1−εr

)−1

, if (ε∗(n))
1/(r−1) ≤ ε ≤ (ε∗(n))

1/r for r = 1, 2, . . . , R;

0, if ε ≥ (ε∗(n))
1/R;

τIR−Rep ≥


n

(
1 +

εr−1−ε∗
(n)

εr−1−εr

)
, if (ε∗(n))

1/(r−1) ≤ ε ≤ (ε∗(n))
1/r for r = 1, 2, . . . , R;

∞, if ε ≥ (ε∗(n))
1/R.

B. Comparison with LT Codes

A natural thing is be to compare the performances of IR-HARQ schemes, based on punctured LDPC

codes, with those based on rateless codes. To do this, let us consider, for instance, LT codes. As IR-HARQ

based on LT codes do not have such a parameter as the maximum number of transmissions M , let us

assume that M = n for IR-HARQ-LDPC schemes, which leads us naturally to comparing the upper

bounds on throughputs of two schemes.

Let there are K information bits to transmit. From Section 5 of [15], the upper bound on the throughput

of LT-based HARQ schemes is then

ηFC−HARQ ≤
1− ε

1 + log2K√
K

.

For LDPC-based schemes, we need to choose the code rate and the code ensemble. Let us take two
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code ensembles, already considered in the paper: regular (x2, x5) LDPC codes of rate 1/2 and irregular

LDPC codes of rate 0.37, optimized in Section IV-E.

Figure 5 presents the comparison. Three dashed curves present upper bounds for throughputs of LT-

based HARQ schemes with K = 500, 5000 and 50000 from bottom to top. The straight lines are the

upper bounds for throughputs of LDPC-based IR-HARQs with one repetition, the lower one corresponds

to regular codes and the upper one - to irregular codes. Note that for all three values of K the bounds

are very close to each other. Finally, the dotted line correspond to the maximum theoretical throughput.

As we can see from the picture, in the region of small values of ε, the IR-HARQ-LDPC schemes have

η

ε

1

1

Fig. 5. Comparison of upper bounds on the throughput of 2 LDPC-based IR-Rep-HARQ schemes (two bold curves) and of LT-based
HARQ codes with K = 500; 5000; 50000 (three dashed curves).

better throughput than LT-HARQ ones. Moreover, the throughput of IR-HARQ-LDPC schemes can be

improved using repetition for ε > ε∗. In the region of very bad channels (ε ≈ 1) LT-based schemes offer

a better throughput that LDPC-based ones.

VI. DISCUSSION AND FUTURE WORK

In this paper, we considered IR-HARQ schemes based on finite-length punctured LDPC codes, while the

transmission was assumed to take place over the time-varying binary erasure channel, and investigated the

tradeoff between the throughput and delay of such schemes, and also the optimization of those parameters.

Our goal was achieved by using two approaches: 1) approximation of the block erasure performance of

finite-length punctured LDPC codes and its use in computing the throughput and the delay; 2) computation

of an upper/lower bound on the average throughput/delay. In the paper, we also proposed an optimization
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algorithm to improve the performances of an IR-HARQ protocol based on LDPC codes and defined

another transmission protocol, called Incremental Redundancy HARQ with Repetition (IR-Rep-HARQ),

which has a better throughput compared with the IR-HARQ scheme.

Three main conclusions can be made:

• We are able to define a cost optimization function which minimizes the delay and maximizes the

throughput at the same time; the optimum of this function (if exists) is the best tradeoff between the

throughput and the delay of the scheme. The proposed cost function can be optimized point-wise,

i.e. for a set of target channel erasure probabilities.

• From the point of view of performance optimization, there is a principal difference between using

regular an irregular LDPC codes in IR-HARQ schemes. The cost optimization function is monotone

for regular LDPC codes, and hence the puncturing degree distribution for each of transmissions is

trivial to calculate. For irregular LDPC codes this is not the case, and puncturing degree distributions

should be thoughtfully optimized, in order to not to loose in the protocol performances.

• A repetition of the IR-HARQ round in the case, when the coded bits cannot be decoded correctly,

improves the throughput and enlarges the region of working erasure probabilities of the protocol

beyond the iterative threshold ε∗ of the mother LDPC code. An IR-HARQ scheme with repetitions

based on punctured codes outperforms the HARQ scheme based on LT codes in terms of throughput

for quite a large region of channel erasure probabilities.

Also, the following remarks can be made:

• Higher protocol layers : Our approximation of PB can also be combined with [16], to obtain an

approximation of the failure probability of data packets at the application layer.

• Other types of channels : In principle, our results can be extended to other binary-input symmetric

memoryless channels. In this case the estimation of approximation parameters, but still feasible.

Otherwise they should be estimated numerically before the optimization part.

• Flexibility of the optimization algorithm : The optimization algorithm is quite general and can be

easily adapted to many various cases, i.e. when the packet size is various or when the feedback is

only sent from time to time and not obligatory after each transmission etc.

• Tightness of the approximation : Note that the average throughput and the average delay, obtained

by our approximation for given pm(x), 1 ≤ m ≤ M is tight, owing to the tightness of the PB’s
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approximation. Of course, this approximation is valid only for the so called waterfall region of

the performance curve. However, as all the practical HARQ schemes work at high target block

erasure probabilities, i.e. exactly on the waterfall region, the approximation is very well suitable for

retransmission protocols.

Finally, the following future work is of interest:

• Accurate channel state prediction : It would be of interest to consider different cases of the channel

state information (CSI) and to consider the IR-HARQ protocol performances in each of cases.

• Extension to other punctured codes : The optimization is not limited to LDPC codes. It can be

also extended to all code ensembles, for which we are able to write a finite-length approximation

(there exists, for instance, the analysis for turbo-like codes). The further comparison of different

code ensembles could give an interesting insight on the design of codes for particular retransmission

protocols.

• Finding the expressions of throughput and delay at higher network layers : Given work can serve as

a base to optimize network parameters at higher network layers, i.e. transport or application layer.

Therefore, one can develop further the existing approximations to find expressions for some important

network parameters.
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