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Abstract

This paper concerns the formation of a coincidence set épdsitive solution of
the boundary value problem:sApu = ut1f(a(x)—u) in Q with u = 0 ondQ, where
e is a positive parametefpu = div([VulP~2Vu), 1< g < p < oo, f(9) ~ |9/ Is(s >
0) for somed > 0 anda(x) is a positive smooth function satisfyingpa = 0 in Q
with infq |Val > 0. Itis proved in this paper that if @ 6 < 1 the coincidence set
O, = {xe Q:u,x) = a(X)} has a positive measure and converge® wwith order
O(¢YP) ase — 0. Moreover, it is also shown thatéf> 1, thenO, is empty for any
& > 0. The proofs rely on comparison theorems and an energy chébha@btaining
local comparison functions.

1 Introduction

Let Q be a bounded domain RN (N > 2) with smooth boundaryQ, and we consider
the boundary value problem of quasilinear elliptic equagiof monostable type:

—eApU = U9 f(a(x) — u) inQ,
u>0,uz0 inQ, (1.1)
u=0 onoQ,
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whereg is a positive parametes,u denotes th@-Laplacian divy ,u) with the p-gradient
Vou=|VUP2Vu, 1< g< p<oo,a:Q — Risapositive and smooth function arfids a
function satisfying the following conditions.

(F1) f e C(R) nCYR \ {0}) and f(0) = 0.

(F2) f is strictly increasing oOfR.

(F3) There exists > 0 such that lingo 7% = C for someC > 0.

SIH’]'S
By a solution of [1.1l) we mean a functiane Wé’p(Q) N L®(Q) satisfying [(1.11) (for
details, see Section 2). Applying the theorem of Diaz ar&d[&and the regularity result
of Lieberman [[14], we see that i < &, then [1.1) admits a unique positive solution
u, € C*(Q) for somea € (0,1); if £ > &, then [1.1) has no solution. Herg, = o if
p > gande, = 1/45y if p = g, whered;(, denotes the first eigenvalue of the definite
weight eigenvalue problem

—Apu = Af@X)IUP2u  inQ,
u=0 0onoQ,

and it can be characterized by

f [Vu(x)|P dx
/lf(a) = lipf Q .
=570 [ a9 dx
Q
We define thecoincidence sebf the positive solutiom, of (T.1) witha(x) as
O, = {xe Q:u,/(x) =a(x).

In casea(Xx) is constant, probleni (1.1) has been already studied byalesethors.
Leta(x) = 1 andp = g > 2. Then, Guedda and Véron [10] foF = 1 and Kamin and
Véron [12] forN > 2 established that there exists a non-empty coincidena@ s@r a
flat core because the graph of is flat onO,) for € small enough (wheg is a ball and
f(s) = s, Kichenassamy and Smoller [13] had obtained the positid@&raolution with
a flat core). They and Garcia-Melian and Sabina de[Lis [8y@d that if 0< 0 < p— 1,
then the flat core has a positive measure for small(0, f(a)/1¢) and it converges to
Q as distk,0,) ~ P (¢ — 0) for anyx € 9Q; while if 6 > p — 1, then the flat core
is empty. These earlier resulis [9,/ 10] 12| 13] are subsiinsharpened by Guo [11].
Moreover, even ifa(x) is constant on a plural subdomain Qf there exists a flat core
in each subdomain (see [16]). General references for @®nce set are given in the
monographs [3] of Diaz and [115] of Pucci and Serrin.

In this paper we shall investigate the case whe€s@ is variable. It is heuristic that
if the coincidence se®, has an interior point, thea(x) has to satisfyApa = 0 on its

2



neighborhood. Inversely, we shall assua(e) to bep-harmonic:Aya = 0inQ, and hence
a(x) satisfies the equation df (1.1). Then, our major finding & the p-harmonicity of
a(x) is also a sfiicient condition for an appearance of coincidence set.

Before stating the result, we give precise conditiona(t9:

(A1) infyq a(x) > 0,

(A2) a e C*(Q) for somea € (0,1) andApa = 0inQ, and

(A3) infyq [Va(x)| > 0.
We notice that by DiBenedettd![6] and Tolksdorf[19], (A2)iéavs from, e.g.,

(A2') there exists a domaifY’ > Q such thag € V\/li’f(Q’) andApa=0inQ'.

The following theorem suggests that with regard to the ddamce set of positive

solution, it is unnecessary to assuafg) to be constant as in the past studies.

Theorem 1.1. AssumdgAl), (A2) and(A3). Let0 < 6 < 1. Then, there exist & 0 and
g0 € (0, £5) such that for eacls € (0, o) the solution y of (I.1) satisfies

u.(x) = a(x) if dist(x,0Q) > Le"/P.

The corresponding theorem fpr= 2 has been already proved in the author’s paper
[17]. As mentioned above, the conditiond® < p—1 seems to be valid as a modification
to the case k p < oo, while the condition & 6 < 1 in the theorem is same as that in case
p = 2. However, this is natural because the principal part ohdqno of (1.1) is neither
degenerate nor singular @ whena(x) satisfies the non-degeneracy condition (A3).

The condition O< 6 < 1 in Theoreni 11 is optimal in the following sense.

Theorem 1.2. Assume &) to be same in Theorehl Letd > 1. Then, for every
e€(0,&), U, <ainQ, and hence, = 0.

In our approach, it is significant to study the translatiem\,(v — a) of the princi-
pal part—eApv. Putting®,(Vv,Va) = V(v - a) + Vpa and using (A2), we see that
®,(0,Va) = 0 and that the translation can be represented as the monopanator
vV > —edivdy(Vv, Va). The vector-valued functio®y(n, Va) has a diferent order at
n = 0 from whatd,(, 0) has if and only ifa(x) is non-degenerate. This is the reason why
the conditions ob in the theorems dlier from those in casa(x) is constant.

Theorem$1]1 arild 1.2 are proved in Section 4. In order to shmerEni 1.1, letting
the solutionu, be close taa(x) ase — 0 (the convergence will be shown in Section 2),
we comparey, with a local comparison function which attaiaéx). Such a comparison
function is obtained in Section 3 by means of the energy ntetleveloped by Diaz and
Véron [5] (see also Diaz [3], and Antontsev, Diaz and Stem{l]). In proving Theorem
1.2, we give a Harnack type inequality by Trudinder![20] forassociated dlierential
inequality. Finally, in Section 5, we apply our method to Kkmown case whera(x) is
constant and realize the necessity of modifying the cooritifto 0 < 0 < p — 1.
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The corresponding theorems fidr = 1 to Theorem$& 111 arid 1.2 have been already

obtained in the author’s papér [18].
Remarkl.1. If Q = RN, then the corresponding problem fo{1.1)

—eApu=u"tf(a(x) —u) inRN

is trivial. Indeed, sinca(x) is a positive ang-harmonic function iRV, it is constant by
Liouville’s theorem forp-Laplacian[15, Corollary 7.2.3] and any nonnegative sotubf
(@.1) must be the constant (see Du and Guo [7]).

Through the paper, we denote Gypositive constants independenteodnds, unless
otherwise noted.

2 Convergencetoa(x) ase —» 0

In this section, we show that the solution 6f (1.1) convergea(x) uniformly in any
compact set of2 ase — 0.

A functionu = u, € W2P(Q) N L*(Q) is called asolution of (L) if u > 0 a.e. inQ, u
does not vanish in a set of positive measure, and

stpu-Vgpdx:fuq‘lf(a(x)—u)godx
Q Q

forall ¢ € Wé’p(Q). A functionu=u, € Wg’p(Q) N L*(Q) is called asupersolutior{resp.
subsolutiofp of (L.1) ifu> 0 (resp.u < 0) a.e. orvQ and

stpu-chdxz (resp. <) fuq‘lf(a(x)—u)gadx
Q Q

forall ¢ € Wg’p(Q) satisfyingy > 0 a.e. inQ. If a functionu is not only a supersolution
but also a subsolution, themmust be a solution of (11.1).

We denote by, the first eigenvalue to the following eigenvalue problem bayd the
corresponding eigenfunction m with ||Z| «q) = SURq 1Z(X)| = 1:

—~Apz = 7Pz in Q,
z=0 onoQ.

It is well-known thatl; > 0, z € C*(Q) for somee € (0,1) andz > 0 in Q. Let
B(Xo,I) = (X € RN : [x = Xo| <}, Q. = {x € Q: dist(x, Q) > £} andd = inf,q a(x)/2 >
0.



Proposition 2.1. Assume &) to satisfy(Al) and(A2). For eaché € (0, 2d), there exist
K > 0ande, € (0, g,) such that ife € (0, £,) then the solution uof (1.1) satisfies

aX) —d < u,(x) <a(x) forall x e Qg .

Proof. Itis clear from (A2) thati = ais a supersolution of (11.1) for every> 0.

We shall construct a subsolution 6f {11.1). From the unifoomtinuity of a(x) in Q,
there exists > 0 such that for everyy € Q, a(x) > a(Xy) — /2 for all x € B(xo,r) N Q,
and hence for eacke B(Xy,r) N Q, a(X) —u > §/2 for all u € [0, a(xg) — 6]. Therefore,
fa(x) —u) > o = f(6/2) for all x € B(Xp, r) N Q andu € [0,a(Xy) — ¢]. LetK > 0 be a
constant satisfying(? > ylall ., /- and choose, € (0, ;) such thake¥P < r.

Take anye € (0, &,) andx € Q.1e. Changing scaling axx) = z((x — xo)/(Ke''P)),
we have

KP-

A .
—eApZ = LLgp-1 in B(xo, Ke/P),
z=0 onaB(xg, Ke'/P).

Then the function

u(x) = (alxo) —0)z(x),  x € B(xo, KeVP),
e X € Q\ B(xg, Ke'/P)

is a nonnegative subsolution ¢f (IL.1). Indea(¥,) > 2d > &, and for every € Wg’p(Q)
with ¢ >0

g e [T vedx- [ a0 - wey

< —sf (a(x0) — 0)P YAz dx— af Zlodx
B(x0.Ke1/P) - B(x0.Ke1/P) ~
A1(a(x) — 6)P
_ f ( 1( (XO) ) ZP-a _ O') Zq_lQD dx
B(x0.K£1/P) N -

Kp

Adllallpe;
| T2 -o| [ #pdxs<o
KP B(xo.Kel/P)

Sinceu < tin Q, there exists a solutioar of (1.1) withu < u* <Tin Q (e.g., Deuel
and Hessl[2]). As mentioned in Section 1, the solution[of)(islunique. Therefore,
u* = ug, and hencas < u, < Uin Q. In particular,a(X) — § < U.(X) < a(Xo) for all
Xo € Qk.p When O< ¢ < g,. O



Remark2.1. Even if (A2) is not assumed, then we can provejthat al < 6. Indeed, we
can construct a supersolution 0f (1.1) close(®) from above. Letp > 2 for simplicity,
and assuma to be an arbitrargmoothfunction satisfyinga + 6/2 < U < a+ §. Since

[
oAl T (a(X) = T) > —eA,li+ C(l - a(X)’ > —eA,li+ C (g)

for all x e Q@ andA,U is continuous ir, the last expression can be positive providesl
small enough. For the case<lp < 2, we refer to[[15].

3 Auxiliary problem near a(x)

In this section, we show that there exists a comparison imetith dead core, which
satisfies an equation having a subsolutighu, > 0.
We define the vector-valued functidn, : RN x RN — RN as

Dp(7, &) = In — €172 (n - €) + l€IP%¢.

In particular, we note thab,(Vu, Vv) = V,(u - V) + Vv for gradients.
The following lemma means that for eaght 0 the functiond,(n, &) is of order 1 at
n=0.

Lemma3.1. Forall i, £ e RN with | — ¢+ |¢] > 0

Dp(,£) -7 = min{p — 1, 2% PY(In — £ + |€)* 2%, (3.1)
[@p(7, €)l < max{p— 1, 227 PY(Ip — & + I£)° 2. (3.2)

Foralln, ', ¢ e RN with|n— &+ |7 =€ >0

(@p(,€) — @p(7,6)) - (1 — 1) = min{p — 1,22 PYnp — &l + Iy’ = EDP 2l — /P, (3.3)
|@p(1, &) — Do, &)l <maxp— 122 PY(Ip— &+ 7 — NP lp—7'l.  (3.4)

Proof. By the mean value theorem, we have
1
@atn. &) = (=D [ty 2a (3.5)

1
p(1.€)| = (p - L) fo tn — £P2dt. (3.6)

Sinceltn — & = [t(n — &) — (L - t)é] < [p— & + |£ for all t € [0, 1], equation[(3.5) yields
@) if1< p < 2, while (3.6) yields[(312) ip > 2.
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Puttingty = |€1/(In — &] + |€]) € (0, 1], we have
Ity — & > [tin — & = (1 = VIl = (In — & + €Dt - tol.

If p> 2 (resp. 1< p < 2), then for every, € (0, 1] we have thag@l It — tolP-2dt > (resp.

<) 2 [ 72dz= 22P/(p - 1), thus [35) (respl(3.6)) yieldS(B.1) (redp.13.2)).

Since®y(n. &) - Dp(7.€) = Oyl — 7. & - ), B3) and (3H) follow from((3]1) and
(3:2), respectively. O

Let A be a positive constant. Takg € Q, 6 € (0,1) ande € (0,1) such thaB =
B(xo, £/P) c Q. Consider the boundary value problem

{—s div ®p(Vw, Va) + AW’ w =0 in B, (3.7)

wW=4¢ onoB.

For Propositions 3]1 ard 3.2 below, we assume argyW*P(B) without (A1), (A2) and
(A3).

Proposition 3.1. Let g be a non-decreasing function, and suppose thataiW-P(B) N
L7 (B), whereo € [1, o], satisfy qu), g(v) € L (B), whereo* = L (0" =ifo=1
ando* = 1if o = o), and

—div®p(Vu, Va) + g(u) < —divdy(Vv, Va) + g(v) in B,
u<sv onodB.
Then, u< v a.e. in B.

Proof. Using u-v)* € Wé’p(B) N L7 (B) as a test function, we get

f(CDp(Vu, Va) — ®p(Vv,Va)) - (Vu- Vv)dx < - f(g(u) —g(vV)(u-v)dx< 0,
D D

whereD = {x € B : u(X) > v(x)}. On the other hand, the integrand of the left-hand
side is non-negative because [of {3.3). Thus, we concWude Vv a.e. inD, and hence
V(u-v)* = 0a.e. inB, which meansy-Vv)* = 0 a.e. inB. Thereforeu<va.e.inB. O

Proposition 3.2. For anye > 0, there exists a unique solution & W-P(B) n L*(B) of
(3.2). Moreover0 <w < § a.e. in B.

Proof. We set theC-energy functionall corresponding td (317) as
J(U) = %fqu—Vade_'_gfvpa.Vu dX+Af|U|1+€dX,
B B B
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which is defined in
K = {ue W-P(B) N L*(B) : u— 6 € WoP(B)).
Since
IVpa- Vu| < [ValPVu - Val + [ValP < %)Wu - Val? + C|Val®,
we have

J(u) > if|Vu—Va|pdx+Af|u|1+9dx—cef|Va|pdx (3.8)
2p Je B B

Then we see that is bounded from below and) = inf .k J(u) exists. It sdifices to show
that there existw/ € K such thati(w) = Jo.
Let {u,} be a minimizing sequence such thiate K andJ(u,) — Jo asn — . Then,

by (3.8) we obtain
f|Vun —ValPdx flun|l+9dx <C,
B B

so that{u, — ¢} and{u,} are bounded in the reflexive Banach spaﬁéé’(B) andL?(B),
respectively. Thus, we can choice a subsequence, whiclitebiu, again, andv € K
such thau, — wweakly inW%P(B) and weakly inL*?(B). Thus,

Iirrltzlf lun — allwar) = [IW — allweg), (3.9)
lim pra' Vu,dx = pra- Vwdx (3.10)
Nn—oco B B

Iirrltzlf UnllLregy > [[W[L1+o(g). (3.11)

Sinceu, — w strongly inLP(B) by the Poincaré inequality, it follows frorn_(3.9) that
”rnTLLDf IV(Un — @)llLee) > IV(W — 8)llLr).- (3.12)

Therefore, by[(3.10)[(3.11) and (3112), we conclude fgat liminf ., J(u,) > J(w) >
Jo, so thatJ(w) = Jo. The uniqueness and the boundedness of solutions follow fro
Proposition 3.1 withg(s) = |5’ tsando = 1+ 6. O

To show that the solutiow of (3.4) has a dead core for agy> 0, scaling is useful:
settingy = & Y/P(x — Xo), W(y) = W(y; &, %) = W(x + &"Py) andaly) = &(y; &, %) =
a(xo + £Py) in (3.7), we have

(3.13)

—div ®p(VW, V&) + AW =0 in B(O, 1),
W=2¢ ondB(0, 1).

We shall writeB, to represenB(0, p).



Lemma3.2. Let &x) satisfy(A2), and assum# to be the unique solution ¢8.13) Then
W € C1*(B,) for somex € (0, 1) and||V(W— d)|lL~e, < C, where C is independent af &
and .

Proof. Settingv(y) = W(y) — a(y), we have

-Av+A(V+8)7’=0 in By,
Vv=0+a onadB;.

Since|lv + 8l|~@,) < 6 < 1 by Propositioi 3]1 and + & |z, € C*(0B;) with || +
Alcre@py < 110+ Allcregy < 1+ &llcie @) (for the norm ofC**(4B,), see Gilbarg and
Trudinger [8, Section 6.2]), it follows from a regularitystdt of Lieberman([14] that
v e Ct(B,) and||v||C1_(,(B—l) < Cfor somea € (0,1) andC > 0 are independent &f 6 and
Xo. In particular,||VV||~@g,) < C. O

Proposition 3.3. Let ax) satisfy(A2) and(A3), and assume w to be the unique solution
of (34). If 0 < 6 < 1, then there exists M- 0 independent of, 6 and % such that
w(x) = 0 for all x € B(xo, (1 — M1+ ¥7gl/P) 'where

3 1

v = 6(0, )

N(gs-3)+1 \ N+2
1

1
T—2N(m-§)+2€(2,N+2).

In particular, W(xo) = O for arbitrary £ > 0 if §&% < M2,

Proof. It is suficient to prove the existence of dead core for the solutioBdf3). To do
this, we follow the energy method developed by Diaz ando¥gb] (see also Diaz [3],
and Antontsev, Diaz and ShmaréV [1]).

We define the dfusion and absorption energy functidgs(p) andEa(e) in (0, 1) as
follows:

Eo(p) = fB (V). VA(Y)) - Vi) dy.

0

EA(o) = f W) dy.

The total energy functioir (o) is defined as

Er(0) = Ep(p) + AEA(p).



The global total energ¥+(1) is finite. Indeed, (we writev, a instead ofw, &, respec-
tively), multiplying the equation of_ (3.13) by the nonndgatfunctions — w € Wé’p(Bl)
and integrating by parts iB;, we have

Er(1) < A6*|B,| < Cs*. (3.14)

Multiplying the equation of[(3.13) by and integrating by parts iB,, we have also
(now we shall writeS, to represendB,)

Er(o) = f Bo(VW(y). Va(y)) - NW(y) ds (3.15)

Sy

wheren = n(s) is the outward normal vector gte S,. By (3.15), Lemmab3]1 aid 3.2
with (A3)

ET(p):f |Dp(VW, Va)llwl ds
S,

1/2 1/2
s(f |(Dp(VW,Va)|2dS) (f |W|2ds)
Sy S

0

1/2
s( f (IVw — Va| + |[Va])?P=2)(d ,(Vw, Va)'Vw)ds) Wiz,
Sy

1/2
sC(f (Dp(VW,Va)-Vst) WllL2(s,)- (3.16)
S

0

On the other hand, by using spherical coordinaiges ) with centerx,, we have

Eo(p) = fop fMCDp(VW(rw),Va(rw)) - VW(rw) rN "t dw dr.

Hence Ep is almost everywhere flerentiable and

D _ ([ St o) S o
) fs LT ) TS (3.17)
Similarly,
dEa(o) _ f Wi ds 518
dp s,
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Moreover, since & 6 < 1, we have the following inequality (see Dietzal. [5,[3,1]):

Wiz, < C(IVWliz,y + o~ IWloge, ) WIS g .

whereC = C(N, §) and

CN@-§)+2a+6) (1 1 N
= 2(1+0) ‘N(1+9_§)+1E(12 1)C(1’°°)’

_ Na-9+1+0  N(5-3)+3 (1 N+1
_N(1—0)+2(1+9)_N(%__)+1 2’N+2

=

) c (0,2).

=
N

Thus, from[[3.1) and Lemnia3.2, we obt&p(p) > C||Vw||? so that

L2(B,)’

I, | < C(IIVWlLe,) + o~ W )||w||1ﬂ
L2(S, ) > L2B,) TP L¥+9(B,) L1+0(B,)

7 1p
=C (anan(Bp)nwnLM(B ) +p-‘*||w||L1+g(Bp))
< Cp™* (" En(p) Enlp) 5 + En(p) )
< Co (Er ()7 + EAQ)FT P Enp) 759 )
o 1, 18
<Cp ET(p)2 BT+6) | (319)

Here we have used thEk(1) < Co**? < C and 0< 6 < 1. Combining[(3.16)+£(3.18) and
(3.19), we obtain

1/2
e < (52 et
that is, dE
0> o iEr(e)
where
1 -1 1
2(1-
v =2 'B)(l+9 2) N(l_Jer_%)+1€O’N+2’
1 1
T—1+2(}’B ZN(W—E)-FZE(ZN-FZ)
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Integrating it on p, 1] and using[(3.14), we have
Er(p)” < Er(1) - C(1-p7) < Clp” — (1 - Ms™7))

for someM > 0, thusEr((1 - Ms&MY™) = 0, i.e.,vWi(y) = 0 for ally € B(0, (1 -
Ms+7)7) Scaling back tox, we conclude the assertion. O

4 Proofsof Theorems

Now we are in a position to prove Theoreims 1.1 1.2.

Proof of Theoreri I]1Fix § € (0,d) such thatMé®?” < 1, whereM andy are the
constants appearing in Proposition|3.3. Thanks tgtharmonicity ofa(x), the function
Vv = a - U, satisfies that-e div ®,(Vv, Va) = —(a(x) — V)41 f(v) in the distribution sense
in Q. Since

(a(x) — 991 (g) > d¥icd =: A1d forall xe Qandse [0, 5]

and by Proposition 211, max, ,,, V=(X) < ¢ for everye € (0, &.), we have

s1/p
— ediv@,(Vv,Va) + AV <0 in Q,up. (4.1)

Let &5 € (0,&,) be small such tha&E(Kﬂ)sé/p # (0. Take anye € (0,&) andxq €

Qk.1)eve. Lettingw be the solution ofl(317), we can see

{—sdiV(Dp(VW, va)+ AW =0 inB(x,£"P), 4.2)

wW=24 on dB(Xo, £Y/P).

SinceB(Xo, £¥/P) ¢ Qg andv < 6 = w on dB(xo, V/P), it follows from (4.1) and[(4.2)
thatv is a subsolution of[{412). Therefore, Propositionl 3.1 gives w in B(xg, £¥/P).
Propositior 3.3 implies that & v.(x) < W(X) = 0, and hencei(x,) = a(x) for all
Xo € Qk+1)vp. This completes the proof of Theorémll.1. m]

Proof of Theorerh 112Let u, be a solution of[(1]1). The function=a—-u, > 0, # 0,
satisfies
—ediv®,(Vv, Va) + AV > 0

for someA, > 0. Sinceu, € C1(Q) by the regularity result of Liebermahn [14], soisand
there existk > 0 such thaf|VVl| .« < k. We define

Mpk = sup (In - Va(X)| + [va(x)|)* 2,
[7l<k,xeQ

= -V va(x)))*?
Mo = Inf (= Va(x)l +Va())™,

12



which are both finite and positive for any > 1 because of (A3). Thery is also a
nonnegative bounded function satisfying

—£div®,(VV, Va) + AV v > 0,
where&)p(n, Va) is a vector measurable function as

Op(n, Va) if pl <k,

®,(n, Va) = .
o1, V@) {Mp,kn if ] > K,

which satisfies (fron(3]2) and(3.1) in Lemnal3.1)

1D (7, Va(x))| < Mpxmaxp — 1, 227P} Iz,
D ,(17, Va(x)) - 7 = My min{p — 1, 2% P} 2.

Moreover, if§ > 1, then there exist€ > 0 such that|sf’'g < C|g if |9 < [[VllLe(q)-
Thus, the weak Harnack inequality by Trudinger![20, Theofe#j (see also Pucci and
Serrin [15, Theorem 7.1.2]) follows: for am§(xo, 40) c Q andy € (0, 1) (¥ € (0, ) if

N = 2), there exist€ = C(N,y, Az/e, p, p, K, Mgk, Mpy) such that

N
P 7ML B2 < C xel?!(r>]<(1;2p) V(X). (4.3)
Suppose/(Xy) = 0 with Xy € Q. Then the seD = {x € Q : v(X) = 0}, which is closed
relatively toQ sincev is continuous, is nonempty. Singds continuous, ifx € O and
B(x, 49) c Q, then infy2,) vV = V(X) = 0. From [4.B8) we have th#i¥||.»(gx2,) = 0 so that
v =0inB(X 20).So0 is also open and singe is connected it must b® = Q, i.e.,v=0
in Q, which is a contradiction. Thereforejs strictly positive inQ, i.e.,u, <ain Q. O

5 Degenerate case

In this section, we consider the case wha(g is constant irf2. As introduced in Section
1, this case has been already treated by several papers [B1,1T2, 13]. Our approach
can be applied to the case.

SinceVa = 0 in this case, we not®,(Vw, Va) = V,w and Propositions 3.1, 3.2 and
Lemmd 3.2 are all satisfied. However, Proposition 3.3 hagtchanged as follows.

Proposition[3.3 . Let ax) be a constant if2, and assume w to be the unique solution
of (3.12). If 0 < 6 < p—1, then there exists M 0 independent of, 6 and » such that
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w(x) = 0 for all x € B(xo, (1 — M)V gl/P) 'where

T_Np(m—5)+p e (p,N+p9),

where p = prl In particular, W(xo) = 0 for arbitrary & > 0if 6% < ML,

Proof. It is suficient to prove the existence of dead core of solution of {3.\\& define
the difusion and absorption energy functidas(p) andEa(p) in (0, 1) as follows:

Eo(p) = f IVi(y)IP dy,
EA(p) = fB () dy.

The total energy functioir (o) is defined as

Et(o) = Ep(p) + AEa(p).

The global total energigr (1) is finite. Indeed, (we writev instead ofw), multiplying the
equation of [(3.113) by the nonnegative functibr w € Wg’p(Bl) and integrating by parts
in B;, we have

Er(1) < A6™Y|B,| < Co**. (5.1)

Multiplying the equation of[(3.13) bw and integrating by parts iB,, we have also
(now we shall writeS, to represendB,)

Er(o) = [ Vawy) - ds (5.2
wheren = n(s) is the outward normal vector gite S,. By (5.2)
Er(p) = f VoW ds < [[VWIFys ) IWlLos,)- (5.3)
S,

On the other hand, by using spherical coordinaiges ) with centerx,, we have

0
Ep(o) :fo le IVW(rw)|P rN-t dw dr.
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Hence Ep is almost everywhere flerentiable and

dEo(p) _ [ vt do = [ wweds (5.4)
do gN-1 S

/9

Similarly,

dEA(p) f | |l+9 dS (55)

Moreover, since & 6 < p—1, we have the following inequality (see Dietzal. [5,/3,/1]):

Miless,) < C (VW) + o~ [Wlsogs,)) [T
whereC = C(N, ) and

_N(p-1-6)+p(1+6) N 1
B p(L+ 6) B (_

1
1
Np-1-6)+1+0 N(Z-
1
1

D

—E)+1e(1,ﬂ+1)c(1,oo),
p P

)+i [1 N+%) o

p= B )41 (P N+p

N(P-1-0)+p1+6) N(

ol [Tl

Thus,

p 7
s,y < C (VW) + o~ Wil ) W Lo

1B
B - 1
=C (||Vw||Lp(B,>)||w||LL(Bp) +p “||w||L/£g(Bp,)

= Cp™ (" o) Ea(o) ™ + Enlp)7 )
<Cp™ (ET(p)%W% + EA(1)ﬁ—%EA(p)%+m1£T%)
1, 18
< Cp_“ET(p)Vm_ (56)

Here we have used th&iy(1) < Cé**? < Cand 0< 6 < p — 1. Combining [(5.B)£(515)
and [5.6), we obtain

_QBE (p)% i 1B

(p-1)/
Er(p) < C(M) e
dp

that is,

dE
Jp(p) > CpLEx (),
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where

1 1
. 1 1)\ T 1
r=w-p (i) Selews)

1 1
=1+ p*a,B:Np*(m—5)+p*e(p*,N+p*).

Integrating it on p, 1] and using[(5.]1), we have
Er(p)” < Er(1) - C(1-p") < C(o” — (1 = Ms:+))

for someM > 0, thusEr((1 - Ms®MY™) = 0, i.e.,Wi(y) = 0 for ally € B(0, (1 -
ML) Scaling back tox, we conclude the assertion. O

As in Section 4, we obtain the corresponding Theorlenis 5.6 &hoelow to Theorems
1.1 and LR, respectively, in the case whéx) is constant. For the proof of Theoréml5.2,
we have only to use the weak Harnack inequality directly-#a,v + A > 0 with
0 < 6 < p-1. We note again that these have been already obtainéd hy [12]

Theorem 5.1. Assume &) to be a positive constant. L8t< 6§ < p— 1. Then, there exist
L > Oandgg € (0, &5) such that for eacls € (0, go) the solution y of (1.1)satisfies

u.(x) = a(x) if dist(x,0Q) > Le'/P.

Theorem 5.2. Assume &) to be a positive constant. Lét> p — 1. Then, for every
e€(0,&), U, <ainQ, and hence, = 0.
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