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Abstract

This paper concerns the formation of a coincidence set for the positive solution of
the boundary value problem:−ε∆pu = uq−1 f (a(x)−u) in Ωwith u = 0 on∂Ω, where
ε is a positive parameter,∆pu = div(|∇u|p−2∇u), 1 < q ≤ p < ∞, f (s) ∼ |s|θ−1s (s→
0) for someθ > 0 anda(x) is a positive smooth function satisfying∆pa = 0 in Ω
with infΩ |∇a| > 0. It is proved in this paper that if 0< θ < 1 the coincidence set
Oε = {x ∈ Ω : uε(x) = a(x)} has a positive measure and converges toΩ with order
O(ε1/p) asε → 0. Moreover, it is also shown that ifθ ≥ 1, thenOε is empty for any
ε > 0. The proofs rely on comparison theorems and an energy method for obtaining
local comparison functions.

1 Introduction

Let Ω be a bounded domain inRN (N ≥ 2) with smooth boundary∂Ω, and we consider
the boundary value problem of quasilinear elliptic equations of monostable type:



























−ε∆pu = uq−1 f (a(x) − u) in Ω,

u ≥ 0, u . 0 inΩ,

u = 0 on∂Ω,

(1.1)
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whereε is a positive parameter,∆pu denotes thep-Laplacian div(∇pu) with thep-gradient
∇pu = |∇u|p−2∇u, 1< q ≤ p < ∞, a : Ω→ R is a positive and smooth function andf is a
function satisfying the following conditions.

(F1) f ∈ C(R) ∩C1(R \ {0}) and f (0) = 0.
(F2) f is strictly increasing onR.
(F3) There existsθ > 0 such that lims→0

f (s)
|s|θ−1s = C for someC > 0.

By a solution of (1.1) we mean a functionu ∈ W1,p
0 (Ω) ∩ L∞(Ω) satisfying (1.1) (for

details, see Section 2). Applying the theorem of Dı́az and Saá [4] and the regularity result
of Lieberman [14], we see that ifε < εa then (1.1) admits a unique positive solution
uε ∈ C1,α(Ω) for someα ∈ (0, 1); if ε ≥ εa then (1.1) has no solution. Here,εa = ∞ if
p > q andεa = 1/λ f (a) if p = q, whereλ f (a) denotes the first eigenvalue of the definite
weight eigenvalue problem















−∆pu = λ f (a(x))|u|p−2u in Ω,

u = 0 on∂Ω,

and it can be characterized by

λ f (a) = inf
u∈W1,p

0 (Ω), ,0

∫

Ω

|∇u(x)|p dx
∫

Ω

f (a(x))|u(x)|p dx
.

We define thecoincidence setof the positive solutionuε of (1.1) witha(x) as

Oε = {x ∈ Ω : uε(x) = a(x)}.

In casea(x) is constant, problem (1.1) has been already studied by several authors.
Let a(x) ≡ 1 andp = q > 2. Then, Guedda and Véron [10] forN = 1 and Kamin and
Véron [12] for N ≥ 2 established that there exists a non-empty coincidence setOε (or a
flat core, because the graph ofuε is flat onOε) for ε small enough (whenΩ is a ball and
f (s) = s, Kichenassamy and Smoller [13] had obtained the positive radial solution with
a flat core). They and Garcı́a-Melián and Sabina de Lis [9] proved that if 0< θ < p− 1,
then the flat core has a positive measure for smallε ∈ (0, f (a)/λ f (a)) and it converges to
Ω as dist(x,Oε) ∼ ε1/p (ε → 0) for any x ∈ ∂Ω; while if θ ≥ p − 1, then the flat core
is empty. These earlier results [9, 10, 12, 13] are substantially sharpened by Guo [11].
Moreover, even ifa(x) is constant on a plural subdomain ofΩ, there exists a flat core
in each subdomain (see [16]). General references for coincidence set are given in the
monographs [3] of Dı́az and [15] of Pucci and Serrin.

In this paper we shall investigate the case wherea(x) is variable. It is heuristic that
if the coincidence setOε has an interior point, thena(x) has to satisfy∆pa = 0 on its
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neighborhood. Inversely, we shall assumea(x) to bep-harmonic:∆pa = 0 inΩ, and hence
a(x) satisfies the equation of (1.1). Then, our major finding is that thep-harmonicity of
a(x) is also a sufficient condition for an appearance of coincidence set.

Before stating the result, we give precise conditions toa(x):
(A1) inf x∈Ω a(x) > 0,
(A2) a ∈ C1,α(Ω) for someα ∈ (0, 1) and∆pa = 0 inΩ, and
(A3) inf x∈Ω |∇a(x)| > 0.

We notice that by DiBenedetto [6] and Tolksdorf [19], (A2) follows from, e.g.,
(A2’) there exists a domainΩ′ ⊃ Ω such thata ∈W1,p

loc (Ω′) and∆pa = 0 inΩ′.
The following theorem suggests that with regard to the coincidence set of positive

solution, it is unnecessary to assumea(x) to be constant as in the past studies.

Theorem 1.1. Assume(A1), (A2) and (A3). Let 0 < θ < 1. Then, there exist L> 0 and
ε0 ∈ (0, εa) such that for eachε ∈ (0, ε0) the solution uε of (1.1)satisfies

uε(x) = a(x) if dist(x, ∂Ω) ≥ Lε1/p.

The corresponding theorem forp = 2 has been already proved in the author’s paper
[17]. As mentioned above, the condition 0< θ < p−1 seems to be valid as a modification
to the case 1< p < ∞, while the condition 0< θ < 1 in the theorem is same as that in case
p = 2. However, this is natural because the principal part of equation of (1.1) is neither
degenerate nor singular inOε whena(x) satisfies the non-degeneracy condition (A3).

The condition 0< θ < 1 in Theorem 1.1 is optimal in the following sense.

Theorem 1.2. Assume a(x) to be same in Theorem1.1. Let θ ≥ 1. Then, for every
ε ∈ (0, εa), uε < a inΩ, and henceOε = ∅.

In our approach, it is significant to study the translation−ε∆p(v − a) of the princi-
pal part−ε∆pv. PuttingΦp(∇v,∇a) = ∇p(v − a) + ∇pa and using (A2), we see that
Φp(0,∇a) = 0 and that the translation can be represented as the monotoneoperator
v 7→ −ε divΦp(∇v,∇a). The vector-valued functionΦp(η,∇a) has a different order at
η = 0 from whatΦp(η, 0) has if and only ifa(x) is non-degenerate. This is the reason why
the conditions ofθ in the theorems differ from those in casea(x) is constant.

Theorems 1.1 and 1.2 are proved in Section 4. In order to show Theorem 1.1, letting
the solutionuε be close toa(x) asε → 0 (the convergence will be shown in Section 2),
we compareuε with a local comparison function which attainsa(x). Such a comparison
function is obtained in Section 3 by means of the energy method developed by Dı́az and
Véron [5] (see also Dı́az [3], and Antontsev, Dı́az and Shmarev [1]). In proving Theorem
1.2, we give a Harnack type inequality by Trudinger [20] for an associated differential
inequality. Finally, in Section 5, we apply our method to theknown case wherea(x) is
constant and realize the necessity of modifying the condition of θ to 0< θ < p− 1.

3



The corresponding theorems forN = 1 to Theorems 1.1 and 1.2 have been already
obtained in the author’s paper [18].

Remark1.1. IfΩ = RN, then the corresponding problem to (1.1)

−ε∆pu = uq−1 f (a(x) − u) in RN

is trivial. Indeed, sincea(x) is a positive andp-harmonic function inRN, it is constant by
Liouville’s theorem forp-Laplacian [15, Corollary 7.2.3] and any nonnegative solution of
(1.1) must be the constant (see Du and Guo [7]).

Through the paper, we denote byC positive constants independent ofε andδ, unless
otherwise noted.

2 Convergence to a(x) as ε→ 0

In this section, we show that the solution of (1.1) convergesto a(x) uniformly in any
compact set ofΩ asε→ 0.

A functionu = uε ∈W1,p
0 (Ω) ∩ L∞(Ω) is called asolution of (1.1) if u ≥ 0 a.e. inΩ, u

does not vanish in a set of positive measure, and

ε

∫

Ω

∇pu · ∇ϕ dx=
∫

Ω

uq−1 f (a(x) − u)ϕ dx

for all ϕ ∈ W1,p
0 (Ω). A functionu = uε ∈W1,p

0 (Ω)∩ L∞(Ω) is called asupersolution(resp.
subsolution) of (1.1) if u ≥ 0 (resp.u ≤ 0) a.e. on∂Ω and

ε

∫

Ω

∇pu · ∇ϕ dx≥ (resp. ≤)
∫

Ω

uq−1 f (a(x) − u)ϕ dx

for all ϕ ∈ W1,p
0 (Ω) satisfyingϕ ≥ 0 a.e. inΩ. If a functionu is not only a supersolution

but also a subsolution, thenu must be a solution of (1.1).
We denote byλ1 the first eigenvalue to the following eigenvalue problem andby z the

corresponding eigenfunction toλ1 with ‖z‖L∞(Ω) = supx∈Ω |z(x)| = 1:















−∆pz= λ|z|p−2z in Ω,

z= 0 on∂Ω.

It is well-known thatλ1 > 0, z ∈ C1,α(Ω) for someα ∈ (0, 1) andz > 0 in Ω. Let
B(x0, r) = {x ∈ RN : |x− x0| < r}, Ωε = {x ∈ Ω : dist(x, ∂Ω) ≥ ε} andd = inf x∈Ω a(x)/2 >
0.
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Proposition 2.1. Assume a(x) to satisfy(A1) and (A2). For eachδ ∈ (0, 2d), there exist
K > 0 andε∗ ∈ (0, εa) such that ifε ∈ (0, ε∗) then the solution uε of (1.1)satisfies

a(x) − δ ≤ uε(x) ≤ a(x) for all x ∈ ΩKε1/p.

Proof. It is clear from (A2) thatu = a is a supersolution of (1.1) for everyε > 0.
We shall construct a subsolution of (1.1). From the uniform continuity of a(x) in Ω,

there existsr > 0 such that for everyx0 ∈ Ω, a(x) > a(x0) − δ/2 for all x ∈ B(x0, r) ∩ Ω,
and hence for eachx ∈ B(x0, r) ∩ Ω, a(x) − u > δ/2 for all u ∈ [0, a(x0) − δ]. Therefore,
f (a(x) − u) ≥ σ = f (δ/2) for all x ∈ B(x0, r) ∩ Ω andu ∈ [0, a(x0) − δ]. Let K > 0 be a
constant satisfyingKp > λ1‖a‖

p−q
L∞(Ω)/σ and chooseε∗ ∈ (0, εa) such thatKε1/p

∗ < r.
Take anyε ∈ (0, ε∗) andx0 ∈ ΩKε1/p. Changing scaling asz(x) = z((x − x0)/(Kε1/p)),

we have


















−ε∆pz=
λ1

Kp
zp−1 in B(x0,Kε1/p),

z= 0 on∂B(x0,Kε1/p).

Then the function

u(x) =















(a(x0) − δ)z(x), x ∈ B(x0,Kε1/p),

0, x ∈ Ω \ B(x0,Kε1/p)

is a nonnegative subsolution of (1.1). Indeed,a(x0) ≥ 2d > δ, and for everyϕ ∈ W1,p
0 (Ω)

with ϕ ≥ 0

1
(a(x0) − δ)q−1

(

ε

∫

Ω

∇pu · ∇ϕ dx−
∫

Ω

uq−1 f (a(x) − u)ϕ dx

)

≤ −ε

∫

B(x0,Kε1/p)
(a(x0) − δ)

p−q∆pzϕ dx− σ
∫

B(x0,Kε1/p)
zq−1ϕ dx

=

∫

B(x0,Kε1/p)

(

λ1(a(x0) − δ)p−q

Kp
zp−q − σ

)

zq−1ϕ dx

≤















λ1‖a‖
p−q
L∞(Ω)

Kp
− σ















∫

B(x0,Kε1/p)
zq−1ϕ dx≤ 0.

Sinceu < u in Ω, there exists a solutionu∗ of (1.1) withu ≤ u∗ ≤ u in Ω (e.g., Deuel
and Hess [2]). As mentioned in Section 1, the solution of (1.1) is unique. Therefore,
u∗ = uε, and henceu ≤ uε ≤ u in Ω. In particular,a(x0) − δ ≤ uε(x0) ≤ a(x0) for all
x0 ∈ ΩKε1/p when 0< ε < ε∗. �
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Remark2.1. Even if (A2) is not assumed, then we can prove that|uε − a| < δ. Indeed, we
can construct a supersolution of (1.1) close toa(x) from above. Letp ≥ 2 for simplicity,
and assumeu to be an arbitrarysmoothfunction satisfyinga+ δ/2 < u < a+ δ. Since

−ε∆pu− uq−1 f (a(x) − u) ≥ −ε∆pu+C(u− a(x))θ ≥ −ε∆pu+C
(

δ

2

)θ

for all x ∈ Ω and∆pu is continuous inΩ, the last expression can be positive providedε is
small enough. For the case 1< p < 2, we refer to [16].

3 Auxiliary problem near a(x)

In this section, we show that there exists a comparison function with dead core, which
satisfies an equation having a subsolutiona− uε ≥ 0.

We define the vector-valued functionΦp : RN × RN → RN as

Φp(η, ξ) = |η − ξ|
p−2(η − ξ) + |ξ|p−2ξ.

In particular, we note thatΦp(∇u,∇v) = ∇p(u− v) + ∇pv for gradients.
The following lemma means that for eachξ , 0 the functionΦp(η, ξ) is of order 1 at

η = 0.

Lemma 3.1. For all η, ξ ∈ RN with |η − ξ| + |ξ| > 0

Φp(η, ξ) · η ≥ min{p− 1, 22−p}(|η − ξ| + |ξ|)p−2|η|2, (3.1)

|Φp(η, ξ)| ≤ max{p− 1, 22−p}(|η − ξ| + |ξ|)p−2|η|. (3.2)

For all η, η′, ξ ∈ RN with |η − ξ| + |η′ − ξ| > 0

(Φp(η, ξ) −Φp(η
′, ξ)) · (η − η′) ≥ min{p− 1, 22−p}(|η − ξ| + |η′ − ξ|)p−2|η − η′|2, (3.3)

|Φp(η, ξ) −Φp(η
′, ξ)| ≤ max{p− 1, 22−p}(|η − ξ| + |η′ − ξ|)p−2|η − η′|. (3.4)

Proof. By the mean value theorem, we have

(Φp(η, ξ), η) = (p− 1)|η|2
∫ 1

0
|tη − ξ|p−2 dt, (3.5)

|Φp(η, ξ)| = (p− 1)|η|
∫ 1

0
|tη − ξ|p−2 dt. (3.6)

Since|tη − ξ| = |t(η − ξ) − (1− t)ξ| ≤ |η − ξ| + |ξ| for all t ∈ [0, 1], equation (3.5) yields
(3.1) if 1< p ≤ 2, while (3.6) yields (3.2) ifp ≥ 2.
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Puttingt0 = |ξ|/(|η − ξ| + |ξ|) ∈ (0, 1], we have

|tη − ξ| ≥ |t|η − ξ| − (1− t)|ξ|| = (|η − ξ| + |ξ|)|t − t0|.

If p > 2 (resp. 1< p < 2), then for everyt0 ∈ (0, 1] we have that
∫ 1

0
|t − t0|p−2 dt ≥ (resp.

≤) 2
∫ 1/2

0
zp−2 dz= 22−p/(p− 1), thus (3.5) (resp. (3.6)) yields (3.1) (resp. (3.2)).

SinceΦp(η, ξ) − Φp(η′, ξ) = Φp(η − η′, ξ − η′), (3.3) and (3.4) follow from (3.1) and
(3.2), respectively. �

Let Λ be a positive constant. Takex0 ∈ Ω, δ ∈ (0, 1) andε ∈ (0, 1) such thatB =
B(x0, ε

1/p) ⊂ Ω. Consider the boundary value problem














−ε divΦp(∇w,∇a) + Λ|w|θ−1w = 0 in B,

w = δ on∂B.
(3.7)

For Propositions 3.1 and 3.2 below, we assume onlya ∈ W1,p(B) without (A1), (A2) and
(A3).

Proposition 3.1. Let g be a non-decreasing function, and suppose that u, v ∈ W1,p(B) ∩
Lσ(B), whereσ ∈ [1,∞], satisfy g(u), g(v) ∈ Lσ

∗

(B), whereσ∗ = σ
σ−1 (σ∗ = ∞ if σ = 1

andσ∗ = 1 if σ = ∞), and














− divΦp(∇u,∇a) + g(u) ≤ − divΦp(∇v,∇a) + g(v) in B,

u ≤ v on∂B.

Then, u≤ v a.e. in B.

Proof. Using (u− v)+ ∈W1,p
0 (B) ∩ Lσ(B) as a test function, we get

∫

D
(Φp(∇u,∇a) − Φp(∇v,∇a)) · (∇u− ∇v) dx≤ −

∫

D
(g(u) − g(v))(u− v) dx≤ 0,

whereD = {x ∈ B : u(x) > v(x)}. On the other hand, the integrand of the left-hand
side is non-negative because of (3.3). Thus, we conclude∇u = ∇v a.e. inD, and hence
∇(u−v)+ = 0 a.e. inB, which means (u−v)+ = 0 a.e. inB. Therefore,u ≤ v a.e. inB. �

Proposition 3.2. For anyε > 0, there exists a unique solution w∈ W1,p(B) ∩ L∞(B) of
(3.7). Moreover,0 ≤ w ≤ δ a.e. in B.

Proof. We set theC1-energy functionalJ corresponding to (3.7) as

J(u) =
ε

p

∫

B
|∇u− ∇a|p dx+ ε

∫

B
∇pa · ∇u dx+ Λ

∫

B
|u|1+θ dx,
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which is defined in

K = {u ∈W1,p(B) ∩ L1+θ(B) : u− δ ∈W1,p
0 (B)}.

Since

|∇pa · ∇u| ≤ |∇a|p−1|∇u− ∇a| + |∇a|p ≤
1

2p
|∇u− ∇a|p +C|∇a|p,

we have

J(u) ≥
ε

2p

∫

B
|∇u− ∇a|p dx+ Λ

∫

B
|u|1+θ dx−Cε

∫

B
|∇a|p dx. (3.8)

Then we see thatJ is bounded from below andJ0 = infu∈K J(u) exists. It suffices to show
that there existsw ∈ K such thatJ(w) = J0.

Let {un} be a minimizing sequence such thatun ∈ K andJ(un)→ J0 asn→ ∞. Then,
by (3.8) we obtain

∫

B
|∇un − ∇a|p dx,

∫

B
|un|

1+θ dx ≤ C,

so that{un − δ} and{un} are bounded in the reflexive Banach spacesW1,p
0 (B) andL1+θ(B),

respectively. Thus, we can choice a subsequence, which is denotedun again, andw ∈ K
such thatun→ w weakly inW1,p(B) and weakly inL1+θ(B). Thus,

lim inf
n→∞

‖un − a‖W1,p(B) ≥ ‖w− a‖W1,p(B), (3.9)

lim
n→∞

∫

B
∇pa · ∇un dx=

∫

B
∇pa · ∇w dx, (3.10)

lim inf
n→∞

‖un‖L1+θ(B) ≥ ‖w‖L1+θ(B). (3.11)

Sinceun→ w strongly inLp(B) by the Poincaré inequality, it follows from (3.9) that

lim inf
n→∞

‖∇(un − a)‖Lp(B) ≥ ‖∇(w− a)‖Lp(B). (3.12)

Therefore, by (3.10), (3.11) and (3.12), we conclude thatJ0 = lim inf n→∞ J(un) ≥ J(w) ≥
J0, so thatJ(w) = J0. The uniqueness and the boundedness of solutions follow from
Proposition 3.1 withg(s) = |s|θ−1s andσ = 1+ θ. �

To show that the solutionw of (3.7) has a dead core for anyε > 0, scaling is useful:
settingy = ε−1/p(x − x0), w̃(y) = w̃(y; ε, x0) = w(x + ε1/py) and ã(y) = ã(y; ε, x0) =
a(x0 + ε

1/py) in (3.7), we have














− divΦp(∇w̃,∇ã) + Λw̃θ = 0 in B(0, 1),

w̃ = δ on∂B(0, 1).
(3.13)

We shall writeBρ to representB(0, ρ).
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Lemma 3.2. Let a(x) satisfy(A2), and assumẽw to be the unique solution of(3.13). Then
w̃ ∈ C1,α(B1) for someα ∈ (0, 1) and‖∇(w̃− ã)‖L∞(B1) ≤ C, where C is independent ofε, δ
and x0.

Proof. Settingv(y) = w̃(y) − ã(y), we have














−∆pv+ Λ(v+ ã)θ = 0 in B1,

v = δ + ã on∂B1.

Since‖v + ã‖L∞(B1) ≤ δ ≤ 1 by Proposition 3.1 andδ + ã |∂B1 ∈ C1,α(∂B1) with ‖δ +
ã‖C1,α(∂B1) ≤ ‖δ + ã‖C1,α(B1) ≤ 1 + ‖a‖C1,α(Ω) (for the norm ofC1,α(∂B1), see Gilbarg and
Trudinger [8, Section 6.2]), it follows from a regularity result of Lieberman [14] that
v ∈ C1,α(B1) and‖v‖C1,α(B1) ≤ C for someα ∈ (0, 1) andC > 0 are independent ofε, δ and
x0. In particular,‖∇v‖L∞(B1) ≤ C. �

Proposition 3.3. Let a(x) satisfy(A2) and(A3), and assume w to be the unique solution
of (3.7). If 0 < θ < 1, then there exists M> 0 independent ofε, δ and x0 such that
w(x) = 0 for all x ∈ B(x0, (1− Mδ(1+θ)γ)1/τε1/p), where

γ =

1
1+θ −

1
2

N
(

1
1+θ −

1
2

)

+ 1
∈

(

0,
1

N + 2

)

,

τ = 2N

(

1
1+ θ

−
1
2

)

+ 2 ∈ (2,N + 2) .

In particular, w(x0) = 0 for arbitrary ε > 0 if δ(1+θ)γ < M−1.

Proof. It is sufficient to prove the existence of dead core for the solution of (3.13). To do
this, we follow the energy method developed by Dı́az and Véron [5] (see also Dı́az [3],
and Antontsev, Dı́az and Shmarev [1]).

We define the diffusion and absorption energy functionsED(ρ) andEA(ρ) in (0, 1) as
follows:

ED(ρ) =
∫

Bρ

Φp(∇w̃(y),∇ã(y)) · ∇w̃(y) dy,

EA(ρ) =
∫

Bρ

|w̃(y)|1+θ dy.

The total energy functionET(ρ) is defined as

ET(ρ) = ED(ρ) + ΛEA(ρ).
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The global total energyET(1) is finite. Indeed, (we writew, a instead ofw̃, ã, respec-
tively), multiplying the equation of (3.13) by the nonnegative functionδ − w ∈ W1,p

0 (B1)
and integrating by parts inB1, we have

ET(1) ≤ Λδ1+θ|B1| ≤ Cδ1+θ. (3.14)

Multiplying the equation of (3.13) byw and integrating by parts inBρ, we have also
(now we shall writeSρ to represent∂Bρ)

ET(ρ) =
∫

Sρ

Φp(∇w(y),∇a(y)) · n w(y) ds, (3.15)

wheren = n(s) is the outward normal vector aty ∈ Sρ. By (3.15), Lemmas 3.1 and 3.2
with (A3)

ET(ρ) =
∫

Sρ

|Φp(∇w,∇a)||w| ds

≤

(∫

Sρ

|Φp(∇w,∇a)|2 ds

)1/2 (∫

Sρ

|w|2 ds

)1/2

≤

(∫

Sρ

(|∇w− ∇a| + |∇a|)2(p−2)(Φp(∇w,∇a) · ∇w) ds

)1/2

‖w‖L2(Sρ)

≤ C

(∫

Sρ

Φp(∇w,∇a) · ∇w ds

)1/2

‖w‖L2(Sρ). (3.16)

On the other hand, by using spherical coordinates (ω, r) with centerx0, we have

ED(ρ) =
∫ ρ

0

∫

SN−1
Φp(∇w(rω),∇a(rω)) · ∇w(rω) rN−1 dω dr.

Hence,ED is almost everywhere differentiable and

dED(ρ)
dρ

=

∫

SN−1
Φp(∇w(ρω),∇a(ρω)) · ∇w(ρω) ρN−1 dω

=

∫

Sρ

Φp(∇w,∇a) · ∇w ds. (3.17)

Similarly,

dEA(ρ)
dρ

=

∫

Sρ

|w|1+θ ds. (3.18)
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Moreover, since 0< θ < 1, we have the following inequality (see Dı́azet al. [5, 3, 1]):

‖w‖L2(Sρ) ≤ C
(

‖∇w‖L2(Bρ) + ρ
−α‖w‖L1+θ(Bρ)

)β
‖w‖1−β

L1+θ(Bρ)
,

whereC = C(N, θ) and

α =
N(1− θ) + 2(1+ θ)

2(1+ θ)
= N

(

1
1+ θ

−
1
2

)

+ 1 ∈
(

1,
N
2
+ 1

)

⊂ (1,∞),

β =
N(1− θ) + 1+ θ

N(1− θ) + 2(1+ θ)
=

N
(

1
1+θ −

1
2

)

+ 1
2

N
(

1
1+θ −

1
2

)

+ 1
∈

(

1
2
,
N + 1
N + 2

)

⊂ (0, 1).

Thus, from (3.1) and Lemma 3.2, we obtainED(ρ) ≥ C‖∇w‖2
L2(Bρ)

, so that

‖w‖1/β
L2(Sρ)

≤ C
(

‖∇w‖L2(Bρ) + ρ
−α‖w‖L1+θ(Bρ)

)

‖w‖
1−β
β

L1+θ(Bρ)

= C

(

‖∇w‖L2(Bρ)‖w‖
1−β
β

L1+θ(Bρ)
+ ρ−α‖w‖1/β

L1+θ(Bρ)

)

≤ Cρ−α
(

ραED(ρ)
1
2 EA(ρ)

1−β
β(1+θ) + EA(ρ)

1
β(1+θ)

)

≤ Cρ−α
(

ET(ρ)
1
2+

1−β
β(1+θ) + EA(1)

1
1+θ−

1
2 EA(ρ)

1
2+

1−β
β(1+θ)

)

≤ Cρ−αET(ρ)
1
2+

1−β
β(1+θ) . (3.19)

Here we have used thatEA(1) ≤ Cδ1+θ < C and 0< θ < 1. Combining (3.16)–(3.18) and
(3.19), we obtain

ET(ρ) ≤ C

(

dET(ρ)
dρ

)1/2

ρ−αβET(ρ)
β
2+

1−β
1+θ ,

that is,
dET(ρ)

dρ
≥ Cρτ−1ET(ρ)1−γ,

where

γ = 2(1− β)

(

1
1+ θ

−
1
2

)

=

1
1+θ −

1
2

N
(

1
1+θ −

1
2

)

+ 1
∈

(

0,
1

N + 2

)

,

τ = 1+ 2αβ = 2N

(

1
1+ θ

−
1
2

)

+ 2 ∈ (2,N + 2).
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Integrating it on [ρ, 1] and using (3.14), we have

ET(ρ)γ ≤ ET(1)γ −C(1− ρτ) ≤ C(ρτ − (1− Mδ(1+θ)γ))

for someM > 0, thusET((1 − Mδ(1+θ)γ)1/τ) = 0, i.e., w̃(y) = 0 for all y ∈ B(0, (1 −
Mδ(1+θ)γ)1/τ). Scaling back tox, we conclude the assertion. �

4 Proofs of Theorems

Now we are in a position to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1.Fix δ ∈ (0, d) such thatMδ(1+θ)γ < 1, whereM and γ are the
constants appearing in Proposition 3.3. Thanks to thep-harmonicity ofa(x), the function
v = a− uε satisfies that−ε divΦp(∇v,∇a) = −(a(x) − v)q−1 f (v) in the distribution sense
in Ω. Since

(a(x) − s)q−1 f (s) ≥ dq−1Csθ =: Λ1sθ for all x ∈ Ω ands ∈ [0, δ]

and by Proposition 2.1, maxx∈ΩKε1/p
vε(x) ≤ δ for everyε ∈ (0, ε∗), we have

− ε divΦp(∇v,∇a) + Λ1v
θ ≤ 0 inΩKε1/p. (4.1)

Let ε0 ∈ (0, ε∗) be small such thatΩ(K+1)ε1/p0
, ∅. Take anyε ∈ (0, ε0) and x0 ∈

Ω(K+1)ε1/p. Lettingw be the solution of (3.7), we can see














−ε divΦp(∇w,∇a) + Λ1wθ = 0 in B(x0, ε
1/p),

w = δ on∂B(x0, ε
1/p).

(4.2)

SinceB(x0, ε
1/p) ⊂ ΩKε1/p andv ≤ δ = w on ∂B(x0, ε

1/p), it follows from (4.1) and (4.2)
that v is a subsolution of (4.2). Therefore, Proposition 3.1 givesv ≤ w in B(x0, ε

1/p).
Proposition 3.3 implies that 0≤ vε(x0) ≤ w(x0) = 0, and henceu(x0) = a(x0) for all
x0 ∈ Ω(K+1)ε1/p. This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2.Let uε be a solution of (1.1). The functionv = a − uε ≥ 0, . 0,
satisfies

−ε divΦp(∇v,∇a) + Λ2v
θ ≥ 0

for someΛ2 > 0. Sinceuε ∈ C1(Ω) by the regularity result of Lieberman [14], so isv, and
there existsk > 0 such that‖∇v‖L∞(Ω) ≤ k. We define

Mp,k = sup
|η|≤k,x∈Ω

(|η − ∇a(x)| + |∇a(x)|)p−2,

mp,k = inf
|η|≤k,x∈Ω

(|η − ∇a(x)| + |∇a(x)|)p−2,
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which are both finite and positive for anyp > 1 because of (A3). Then,v is also a
nonnegative bounded function satisfying

−ε div Φ̃p(∇v,∇a) + Λ2|v|
θ−1v ≥ 0,

whereΦ̃p(η,∇a) is a vector measurable function as

Φ̃p(η,∇a) =















Φp(η,∇a) if |η| ≤ k,

Mp,kη if |η| > k,

which satisfies (from (3.2) and (3.1) in Lemma 3.1)

|Φ̃p(η,∇a(x))| ≤ Mp,k max{p− 1, 22−p} |η|,

Φ̃p(η,∇a(x)) · η ≥ mp,k min{p− 1, 22−p} |η|2.

Moreover, if θ ≥ 1, then there existsC > 0 such that||s|θ−1s| ≤ C|s| if |s| ≤ ‖v‖L∞(Ω).
Thus, the weak Harnack inequality by Trudinger [20, Theorem1.2] (see also Pucci and
Serrin [15, Theorem 7.1.2]) follows: for anyB(x0, 4ρ) ⊂ Ω andγ ∈ (0, N

N−2) (γ ∈ (0,∞) if
N = 2), there existsC = C(N, γ,Λ2/ε, ρ, p, k,Mp,k,mp,k) such that

ρ
−N
γ ‖v‖Lγ(B(x0,2ρ)) ≤ C inf

x∈B(x0,2ρ)
v(x). (4.3)

Supposev(x0) = 0 with x0 ∈ Ω. Then the setO = {x ∈ Ω : v(x) = 0}, which is closed
relatively toΩ sincev is continuous, is nonempty. Sincev is continuous, ifx ∈ O and
B(x, 4δ) ⊂ Ω, then infB(x,2ρ) v = v(x) = 0. From (4.3) we have that‖v‖Lγ(B(x,2ρ)) = 0 so that
v ≡ 0 in B(x, 2ρ).SoO is also open and sinceΩ is connected it must beO = Ω, i.e.,v ≡ 0
in Ω, which is a contradiction. Therefore,v is strictly positive inΩ, i.e.,uε < a in Ω. �

5 Degenerate case

In this section, we consider the case wherea(x) is constant inΩ. As introduced in Section
1, this case has been already treated by several papers [9, 10, 11, 12, 13]. Our approach
can be applied to the case.

Since∇a ≡ 0 in this case, we noteΦp(∇w,∇a) = ∇pw and Propositions 3.1, 3.2 and
Lemma 3.2 are all satisfied. However, Proposition 3.3 has to be changed as follows.

Proposition 3.3’ . Let a(x) be a constant inΩ, and assume w to be the unique solution
of (3.7). If 0 < θ < p − 1, then there exists M> 0 independent ofε, δ and x0 such that
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w(x) = 0 for all x ∈ B(x0, (1− Mδ(1+θ)γ)1/τε1/p), where

γ =

1
1+θ −

1
p

N
(

1
1+θ −

1
p

)

+ 1
∈

(

0,
1

N + p∗

)

,

τ = Np∗
(

1
1+ θ

−
1
p

)

+ p∗ ∈ (p∗,N + p∗) ,

where p∗ = p
p−1. In particular, w(x0) = 0 for arbitrary ε > 0 if δ(1+θ)γ < M−1.

Proof. It is sufficient to prove the existence of dead core of solution of (3.13). We define
the diffusion and absorption energy functionsED(ρ) andEA(ρ) in (0, 1) as follows:

ED(ρ) =
∫

Bρ

|∇w̃(y)|p dy,

EA(ρ) =
∫

Bρ

|w̃(y)|1+θ dy.

The total energy functionET(ρ) is defined as

ET(ρ) = ED(ρ) + ΛEA(ρ).

The global total energyET(1) is finite. Indeed, (we writew instead ofw̃), multiplying the
equation of (3.13) by the nonnegative functionδ − w ∈ W1,p

0 (B1) and integrating by parts
in B1, we have

ET(1) ≤ Λδ1+θ|B1| ≤ Cδ1+θ. (5.1)

Multiplying the equation of (3.13) byw and integrating by parts inBρ, we have also
(now we shall writeSρ to represent∂Bρ)

ET(ρ) =
∫

Sρ

∇pw(y) · n w(y) ds, (5.2)

wheren = n(s) is the outward normal vector aty ∈ Sρ. By (5.2)

ET(ρ) =
∫

Sρ

|∇pw||w| ds≤ ‖∇w‖p−1
Lp(Sρ)
‖w‖Lp(Sρ). (5.3)

On the other hand, by using spherical coordinates (ω, r) with centerx0, we have

ED(ρ) =
∫ ρ

0

∫

SN−1
|∇w(rω)|p rN−1 dω dr.
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Hence,ED is almost everywhere differentiable and

dED(ρ)
dρ

=

∫

SN−1
|∇w(rω)|pρN−1 dω =

∫

Sρ

|∇w|p ds. (5.4)

Similarly,

dEA(ρ)
dρ

=

∫

Sρ

|w|1+θ ds. (5.5)

Moreover, since 0< θ < p−1, we have the following inequality (see Dı́azet al. [5, 3, 1]):

‖w‖Lp(Sρ) ≤ C
(

‖∇w‖Lp(Bρ) + ρ
−α‖w‖L1+θ(Bρ)

)β
‖w‖1−β

L1+θ(Bρ)
,

whereC = C(N, θ) and

α =
N(p− 1− θ) + p(1+ θ)

p(1+ θ)
= N

(

1
1+ θ

−
1
p

)

+ 1 ∈

(

1,
N
p∗
+ 1

)

⊂ (1,∞),

β =
N(p− 1− θ) + 1+ θ

N(p− 1− θ) + p(1+ θ)
=

N
(

1
1+θ −

1
p

)

+ 1
p

N
(

1
1+θ −

1
p

)

+ 1
∈















1
p
,
N + 1

p−1

N + p∗















⊂ (0, 1).

Thus,

‖w‖1/βLp(Sρ)
≤ C

(

‖∇w‖Lp(Bρ) + ρ
−α‖w‖L1+θ(Bρ)

)

‖w‖
1−β
β

L1+θ(Bρ)

= C

(

‖∇w‖Lp(Bρ)‖w‖
1−β
β

L1+θ(Bρ)
+ ρ−α‖w‖1/β

L1+θ(Bρ)

)

= Cρ−α
(

ραED(ρ)
1
p EA(ρ)

1−β
β(1+θ) + EA(ρ)

1
β(1+θ)

)

≤ Cρ−α
(

ET(ρ)
1
p+

1−β
β(1+θ) + EA(1)

1
1+θ−

1
p EA(ρ)

1
p+

1−β
β(1+θ)

)

≤ Cρ−αET(ρ)
1
p+

1−β
β(1+θ) . (5.6)

Here we have used thatEA(1) ≤ Cδ1+θ < C and 0< θ < p − 1. Combining (5.3)–(5.5)
and (5.6), we obtain

ET(ρ) ≤ C

(

dET(ρ)
dρ

)(p−1)/p

ρ−αβET(ρ)
β

p+
1−β
1+θ ,

that is,
dET(ρ)

dρ
≥ Cρτ−1ET(ρ)1−γ,
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where

γ = p∗(1− β)

(

1
1+ θ

−
1
p

)

=

1
1+θ −

1
p

N
(

1
1+θ −

1
p

)

+ 1
∈

(

0,
1

N + p∗

)

,

τ = 1+ p∗αβ = Np∗
(

1
1+ θ

−
1
p

)

+ p∗ ∈ (p∗,N + p∗) .

Integrating it on [ρ, 1] and using (5.1), we have

ET(ρ)γ ≤ ET(1)γ −C(1− ρτ) ≤ C(ρτ − (1− Mδ(1+θ)γ))

for someM > 0, thusET((1 − Mδ(1+θ)γ)1/τ) = 0, i.e., w̃(y) = 0 for all y ∈ B(0, (1 −
Mδ(1+θ)γ)1/τ). Scaling back tox, we conclude the assertion. �

As in Section 4, we obtain the corresponding Theorems 5.1 and5.2 below to Theorems
1.1 and 1.2, respectively, in the case whena(x) is constant. For the proof of Theorem 5.2,
we have only to use the weak Harnack inequality directly to−ε∆pv + Λ2vθ ≥ 0 with
0 < θ < p− 1. We note again that these have been already obtained by [12].

Theorem 5.1. Assume a(x) to be a positive constant. Let0 < θ < p− 1. Then, there exist
L > 0 andε0 ∈ (0, εa) such that for eachε ∈ (0, ε0) the solution uε of (1.1)satisfies

uε(x) = a(x) if dist(x, ∂Ω) ≥ Lε1/p.

Theorem 5.2. Assume a(x) to be a positive constant. Letθ ≥ p − 1. Then, for every
ε ∈ (0, εa), uε < a inΩ, and henceOε = ∅.
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