arXiv:1009.3103v1 [math-ph] 16 Sep 2010

Wheeler-Feynman Equations for Rigid Charges
CLASSICAL ABSORBER ELECTRODYNAMICS PART I

G. BAUER, D.-A. DECKERT, AND D. URR

Asstract. This is the second part of our mathematical survey on thatens of motion of classicalbsorber
electrodynamicsHere we study the equations of Wheeler-Feynman (WF) eléygtramics, which describe the
interaction of finitely many charges by both the advancedratatded Liénard-Wiechert fields. These equations
are non-linear and involve retarded as well as advancedramgis and belong to the class of delay (or functional)
differential equations. Such delayed arguments do not perniieet @pplication of standard PDE techniques.
We introduce a general strategy to handle existence andiemégs questions for such functionafefiential
equations. We observe that any WF solution gives rise towtienlto the Maxwell-Lorentz equations without
self-interaction (ML-SI), which are a set of non-linear PD&ithout delay that have been studied in Part I.
In other words, WF solutions are special solutions amongad@llitions of the ML-SI equations. Hence, WF
solutions arise as solutions to the ML-SI equations for igéitial conditions. We employ this observation to
prove existence of strong solutions to the WF equations dte fiut arbitrarily large time intervals for any given
Newtonian Cauchy data (i.e. initial positions and momen&i@harges at one time instant). As a byproduct we
also prove existence and uniqueness of strong solutioet8y¥nge equations on the time half-line for a given
history of charge trajectories. The latter equations astljke the WF equations except that they involve only
interaction via the retarded Liénard-Wiechert fields, aely retarded arguments.
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1. INTRODUCTION

In this second part of this survey we study the Wheeler-Feam(F) electrodynamics [WF49] which
describes the classical, electrodynamic interactioN pbint-like charges. The idea for this kind of electro-
dynamics ranges back to [Gali45] and was then picked up bY)B;det22| Fok29]. Later on Wheeler and
Feynman used it to circumvent the self-energy problem (Udjence) of the Maxwell-Lorentz equations
of classical electrodynamics and with its help gave a déamaof the Lorentz-Dirac equations without the
need of mass renormalization to describe the radiatiorticeaof the charges [WFE45]; as briefly described
in Part I. Furthermore, Wheeler and Feynman also demoadtrat unlike orthodox classical electrodynam-
ics WF electrodynamics is capable of explaining the irrede dfect of radiation. In this work we study
the basic equations of WF electrodynamics and, as a byptoalso the Synge equatioris [Pal21, Syn40]
which are close relatives to the WF equations.

In WF electrodynamics the charges are representétpgrametrized world lines— Z'(r), 1<i <N,
with values in 3+ 1 dimensional Minkowski spackl := (R x R3, g) for which we use the metric tensor
g = diag(1 -1, -1, -1). These world lines k i < N obey the WF equations

W mz () =a Y 3 (FU@E) + FL () 2.0

ki

which describe their interaction via the advanced and dethliénard-Wiechert field5y ., Fx -, of the
kth charge, respectively, which are antisymmetric seconll tansor fields oM. The parameternsy # 0
denote the masses of the charges artie coupling constants (their charges). The overset daitdsra
differentiation with respect to the parametrizatioof the world line. The Liénard-Wiechert field% . are
functionals of the world line of thkth charge and are given explicitly by

2 (i=(¥)

uvo Vv o _ QVAH H =
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The world line parameters . : M — R are defined implicitly through
@) R(rk+() =X+ Ix = zu(T ()l and Z(1-(9) = X° = IIx = z(7c- ()

where we have used the notatign= (x°, x) for anx € M in order to distinguish the time componexit
from the spatial componentse R3. Furthermore| - || denotes the euclidean norm. Givenxaa M and a
time-like world line (i.e.z, 2, > 0) the solutions.(X), 7x-(X), are unique and given by the intersection
of the forward, backward, light-cone of space-time poirand the world-linez, respectively. Therefore,
for suficiently regular, time-like world lines the fields] (2) are Wwea&fined everywhere ol except on the
world line z, where they diverge, so that, as long as two trajectories d@nmoss, we can expect the WF
equations[{ll) to be well-defined. Furthermore, we infer thatacceleration on the left-hand side of the WF
equations depends throudh (3) on advanced as well as retdadke (with respect te) of all the other world
lines. This type of equations commonly goes by the name afyd@lr functional) diferential equations.

Note that the advance and retardation depends on the statetimin (sinceFy . on the right-hand side
of (@) is evaluated at;(r)) and is even unbounded, which does not permit the usual Riliemof local
solutions, and hence, makes it veryidiult to study existence and uniqueness of solutions. In faetWF
equations as well as other delayfdrential equations with advanced and retarded argumeptaapnly
very sparsely in the literature. [Drili7, DWLvG95] provideegt overviews to the topic of delayftérential
equations. The two basic but unsolved questions connexthd type of delay dierential equations studied
here are:
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(1) Do solutions exist?
E.g., do solutions exist for any given Newtonian Cauchy dia¢a positions and momenta of all
charges at one time instant)?

(2) How can we speak about solutions?
E.g., what kind of data of the solutions is necessary@rslficient to characterize them uniquely?

So far only partly answers have been given: While some sidadiaxplicit solutions to the WF equations
of motions were found [Sch63], general existence of sohstio these equations has only been settled in the
case of restricted motion of two point particles with equedrgie on a straight line in three dimensional space
[Bau97]. There itis shown that all solutions can be charasd by asymptotic positions and momenta. For
the Synge equations, existence in three dimensions hasshediad in [[Ang90]. In a recent work [LucD9]
the Fokker variational principle for two charges in thremdnsions is discussed mathematically, which
can be used to yield WF solutions on finite time intervals bgcdying starting and ending points of the
two world lines and giving in addition a part of the future bétfirst charge and a part of the past of the
other charge. For all cases uniqueness remains open. Omjgctares about uniqueness of WF solutions
can be found, e.g. [WF49, DWB5, And67, Syh76]. The two mainjectures are that the WF solutions
are uniquely characterized either by Newtonian Cauchy diagtrips of world lines such that every light-
cone of the ending points of one strip has intersections alitbther strips. For the one dimensional WF
equations in the case of two equal chargeigently far apart existence and uniqueness was shown for
Newtonian Cauchy data with relative initial velocities atjgero in [Dri79]. In [DeclD] a WF toy model
in three dimensions was given in which two equal chargesantenly by the advanced as well as delayed
Coulomb forces. For it existence and uniqueness of solsitiwhich are characterized by world line strips
as described above, can be shown. Further literature ist@peuial analytic solutions [St€92], numerical
approximation[[DW65], and a special case of existence aiglieness of solutions to the Synge equations
in one dimension[Dri69].

2. MaN ResuLrs

Itis convenientto write the WF equation$gltogether with[[Rz) for smeared out charges as a dynamical
system in non-relativistic notation and in a special caouathk frame. In order to avoid a highly technical
study to exclude the improbable (maybe even impossible&scakcrossing of world lines we employ, as in
Part | [BDD10], rigid charges instead of point-like chardeswhich the WF equations stay well-defined
even in the case of two crossing world lines. It should be wstded that the point-particle limit of the
WF equations for solutions with non-crossing world linesebao obstacles as the charges do not acquire
electrodynamic masses. We define the electric and magredtiofieach charge to g ; := (FO(t, -))1<i<a,

Bit 1= (F34(t, ), F1(t, ), F2(t, -)), respectively. In this notation the WF equations takeftinm

Oy = V(piy) = _ P

@) \/miz + pﬁt

opa=Y, [ Exotx- a0 (E[F00 + V@) A B ()

j#i
for 1 <i < N and theWF fieldsgiven by one half the sum of the advanced and retarded LdevAechert
fields (compare_{ib)):

ENF)_ 1 : =Voi(y — ais) — s (V(pi.s)oi(y — Qi.s))
©) (BK?F) =324 Jasf @y y’( T A 90y - ) )
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Here, K¢ (x) := a*(t,x) = “) are the advanced and retarded Green’s functions of the uiiéet oper-
ator. That the Liénard-Wiechert fieldshig? take the form[(b) will be shown in Sectién gl The partial
derivative with respect to timeis denoted by, the gradient by, the divergence by, and the curl by
VA. We shall use the same notation and terminology as for theSWiequations in Part [ [BDD10], i.e.
at timet theith charge for 1< i < N is situated at positiony;; in spaceR3, momentump;; € R® and
carries the classical mass € R \ {0}. The geometry of the rigid charge is given by the chargeibligion
oi € CX(R3,R) for 1 < i < N. Because at one place in this work we speak about the Syngti@osiwe
introduced the cd@cientse. which are used to switch from the WF equations wath= 1 = e_ (which
we shall always use if not otherwise noted) to the Synge @pmwithe, = 0,e. = 1. Forg; = 6® one

retrieves the corresponding equations for point chargestdr in the WF casé bi)-(2o).

Central Observation: Our study is based on the observation that there is an irgim@anection be-
tween WF and ML-SI dynamics. To see it, let us consider cha&@ectoriest — (Qit, Pit)i<ien that
constitute a solution to the WF equations, i.e. assume thlyl the Lorentz force law[(#g for the
WF fieldst - (E}{",B{")1<i<n given by [@) which are functionals of these charge trajectories. By
definition of the Liénard-Wiechert fields, the WF fields flillthe Maxwell equations. Hence, the map
t = (Qit, Pit> Eits Bit)1<i<n := (Qi.t» Pits E}f‘t’F, Bi‘f‘t’F)lﬁisN gives rise to a solution to the ML-SI equations (ML-
Sl stands for Maxwell-Lorentz without self-interactionhiwh have been studied in Parf[[BDD10], i.e. the
Maxwell equations plus the Maxwell constraints
5 0tEir =V A Bit — 4nv(pidoi(- — iy V- Eit = 4n0i(- - Qi)

( ) 8tBi,t = —V A Ei,t V . Bi,t = O

together with thd.orentzequations
Pit

I+ P

N
0P =Y, [ Ex00x- ) (Bl + v A B,

ki

0t = V(Piy) =
(7)

On the other hand, clearly not all solutions to the ML-SI dipres give rise to charge trajectories that
obey the WF equations. However, we know from Pait [ [BDD1@ttthe initial value problem of the
ML-SI equations is well-defined for initial valuep,(F) € Dy(A), i.e. in the admitted domain of ini-
tial conditions given by Definitioh B4z Hence, given Newtonian Cauchy dgia:= (q?, pio)lgsN and
sufficiently regular initial fieldsF := (Eio, B?)lsiSN, e.g. attimety € R, there exists a unique solution
t = (Qit, Pits Eit, Bit)1<isn =1 ML[p, FI(t, to) to the ML-SI equations; cf. Theorems Bz B. 4z and Defi-
nition[B.10m Hence, for fixed Newtonian Cauchy dat@ne only needs to find special initial fielffssuch
that (p, F) € Dw(A) in order to yield charge trajectories by the ML-SI time exan that also solve the WF
equations. Such special initial fields can be identified raéiuby the following condition:

®) F= (E}{‘{F, Bi\{\t/F)lsigN lt=to-

This condition states that the initial fields equal the WFdEeat initial timety. It ensures that the time-
evolved fieldst — (Eit, Biy)1<i<n Of the ML-SI solution equal the WF fields— (E}{‘{F, Bi‘{‘t’F)KigN for all
times because their fiérence is a solution to the free Maxwell equations which aseteof linear time
evolution equations. Having the equality for all timdg, {@ns into the WF equationEl#g, and hence,
the charge trajectories of the ML-SI solution solve the WEapns. We may therefore turn the question
around and ask: Are there initial conditions for the ML-Suatjons that fulfill [8) and thus give rise to
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WF solutions? Since the ML-SI equations are well under @dmie shall employ an iterative procedure on
ML-SI solutions the fix points of which will indeed be WF satuts.

For the further discussion we resort on the notation and itiefis of Part | [BDD10] as summarized in
the AppendixBmz The first result aims at understanding question (2): Asudised in Part [[BDD10], the
“worst” behaving WF trajectories — (di, pit)i<i<n We expect and which we want to also include in our
discussion are the Schild solutions [Sch63] (i.e. charlgasrevolve each other with circular orbits), and
those are once flerentiable, strictly time-like, and have uniformly bouddsccelerations and momenta.
The collection of such WF solutions shall be denoted by th&ge; cf. Definition[2.28m We say “worst”
since for such charge trajectories the acceleration degpeterm depending in the Liénard-Wiechert fields
does not decay fast enough for the Liénard-Wiechert fiedgetsquare integrable - the scattering solutions
on the straight line behave better [Bau97]. The missing ylecanodulated by the weight functiom. To
emphasize that the WF fieldg{(", BY") defined in[(bg) are functionals of a charge trajectdny> (g, pi.)

we employ the notatior®y™, BIYF) := 3 Y. My, m[(i pi)](t, £00), i.e. one half the sum of the retarded and
advanced Liénard-Wiechert fields; thMestands for Maxwell time evolution, cf_2.l@ Similarly, we use
the notations, = My [¢,](t, to) for the strong ML-SI time evolution of the initial daif € D, (A>) for the

set of sifficiently regular initial data; cf. Definition B.2@sand Definitioi B.4z3 We prove:

Theorem 2.1(Characterization of WF SolutionsYhere exists a v ‘W such that the following is true:
(i) Let(qi, pi)i<i<n be inTwe and define

1
(ENF.BYD =5 ) eMoml(@.p)lt. =) and B3 tes = (@i Pie BN Bl icicn

Then, for anyd € R it holds thaty, € Dy (A™) and t— ¢ is a strong solution to the ML-SI equations
with initial valuegy, att = to, i.e. ¢t = M [, ](t, to) for all t € R.
(i) Foreach b € R the following map is injective:

ity - Twr = Dw(A®), (G, P)azisn = (it Pitor Bt - BlE )1<ien
where, again, the WF fields are given (8", B/Y") := 3 3. My, m[(di. pi)](t, £eo) for all t € R.

This theorem guarantees that all considered WF solutioresrige to sfficient regular initial values for
the ML-SI equations, and that each WF solution is uniquebrabterized by their corresponding WF fields
at one time instant. With respect to question (2) it statasre can use special initial data for the ML-SI
initial value problem to speak about the WF solutions. Fameple, regularity of the WF solution can now
simply be inferred by studying the ML-SI equations; cf. TrerdB. b=z In order to prove the theorem above
a detailed study of the strong Maxwell solutions is requistich permits to show thag, € Dy(A*), and
which is presented in Sectibn Rl Since the charge trajectoriestof> ¢ are actually the WF trajectories
(using the discussed connection of the WF and ML-SI equsliae conclude the injectivity of the map
i, by the uniqueness assertion of the ML-SI equations. Thedbpmoof of the above theorem is given in
Sectio 2.Rm

This first result, however, does neither touch the questiobatyminimal data is necessary to speak about
WF solutions, nor the question of existence of WF solutidfst both one needs to study the range;pf
which turns out to be very flicult. Before we get to the existence of WF solutions let udarphat the
situation is better for the Synge equations on the time liradf-Given past charge trajectories on the half-line
(—o0, to] for anyty € R we can compute the retarded Liénard-Wiechert fields attjrard use them together
with the positions and momenta at tifgeas initial data for the ML-SI dynamics. This way we get existe
and uniqueness of solutions to the Synge equations on théire[t, o). The reason why this scenario
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behaves much better than the one in the case of the WF egsi@itrat the notion of local solutions from
PDE theory again makes sense as there is no interaction frefuture. The given past charge trajectories
on (-0, to] simply act as external fields. Hence, as a byproduct of theevdiysis one gets:

Theorem 2.2(Existence and Uniqueness of Synge Solutionst 7sy be defined agwr except that its
elements fulfill the Synge equations instead of the WF empatiFurthermore, for any time intervald R
let 7+ (1) be the collection of all families of onceffiirentiable and strictly time-like charge trajectories.
(i) Theoreni Z.Hm also holds for the case of the Synge equations, i.e. for thizelofe = 0,e- = 1 and
Twe replaced by7sy.
(i) For any ty € R and any family of charge trajectoridg|", p~) € T+ ((—, tg]) that fulfills the Synge
equations at timeptthere exist a unique extensifa*, p*) € 7+ ([to, o)) such that the concatenation

(@, p7)(D) fort<to
(@, p")(®) for t > to
is a once dfferentiable orR and solves the Synge equations for t.

9) (@.p)(®) = {

Clearly, in the case of the Synge equations one only needgrpgxtory strips such that all backward
light-cones of the charges at timighave intersection points with all other trajectory striperder to main-
tain unigueness. If we ask for solutions to the Synge equatim wholeR we again face the problem that
the notion of local solutions makes no sense as the delaybsunded. A reasonable way around this is to
give initial conditions foity — o as in [Bau9¥]. It seems that this way one should even be abf@iotain
uniqueness.

For the WF equations question (1), i.e. getting an existeeselt, turns out to be much morefttult.
Having the above characterization of WF solutiofig= by the mapi;, in mind, we ask the following: for
any T > 0 and for any given but strictly time-likeshape of charge trajectoriesith uniformly bounded
acceleration and momenta in the futufe §o) and in the past{co, T], as well as given Newtonian Cauchy
datap = (g p)icicn € RN at time zero, do WF solutions or-T, T] exist? With “shape of charge
trajectories” we mean a prescription to smoothly (or evéiietgntiably) continue the WF solution oAT, T]
to wholeR. A simple example of such a prescription is the straightfinen the positions of each charge at
time +T to +oco with constant velocity equal the one of the respective orima +T. The shape of future
and past charge trajectories is encoded in form of theirrackéand retarded Liénard-Wiechert fiekjs
andX_, respectively, which depend on the WF solution eifi [T] in order to be able to connect smoothly.
We shaII refer to these fields as boundary fields and express s functions of the initial valueg,(F) of
the ML-SI equations that corresponds to the WF solution-on T], i.e. (p, F) — X&.;[p, F].

In view of the preliminary discussion of this section thektésto find ML-SI solutionst — (it Pits
Ei+, Bit)i<ien = ML[p, F](t, 0) whose initial field$= fulfill the discussed conditiof k8) adapted to the given
boundary fields<?, ;:

(10) (Eit. Bidh-o = 5 Z Mg m [ X7, (@, pi)](0, +T)

where the notatioh — (E;, By) = My, m[F, (d, p)](t, to) denotes the Maxwell solution subject to the charge
trajectoryt — (g, pr) having initial value Eit, Bit)l-t, = F at timeto; cf. Definition[2.16m and Theorem
2. 14m Note that fortg — oo the Maxwell time evolution forgets its initial valuéé as we show in Theorem
[218m, so that in the limit we havé,, m[(qi, pi)](t, £0) = liMg,— .00 Mg.m [Xi, (ai, Pi)](t, to). Hence in the
limit T — oo the condition[(ID) turns into the discussed conditidi)8

Using the discussed connection of between the WF and ML-G4t&ns, the question of existence of
WEF solutions on{T, T] can be rephrased in the question of existence of specigllifields for the ML-SI
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initial value problem. It seems natural to construct sudaifields by iteration of the maSTp:

INPUT: F = (E?, BY)1<i<n for any fields such thata F) € Dy(A%).

(i) Compute the ML-SI solution{T, T] 3t  (Qit, Pit. Eit, Bit)1<i<n := ML[p, F](t, 0).
(i) Compute the advanced and retarded fields

(E| t> B' t) - 2 Z MQl [XI +T> (qi’ pl)](t’ iT)

given by the Maxwell time-evolved boundary fields, ; subject to the just computed charge trajecto-
riest — (Qit, pig) for1<i <N

OUTPUT: SP*[F] := (Eit, Bigisienlico.

Clearly any fixed pointt}{", B{F)1<i<n of this map fulfills the equationEig) together with

(11) EBIN =3 Z Mg m X7 (G POI(L £T), for 1<i < N

which turn into [(5@), and thug — (qiy, pi.t)1<i<n iNto @ WF solutions with Newtonian Cauchy daga&ither

for T — oo, or if by chance the boundary field§',; are already the correct WF fields. For finifethe
WEF equations are only satisfied for on time mtervaT[T] where the future and past ends of these strips
interact with the prescribes future and past charge ti@jest corresponding to the boundary fiekis .,
respectively. We shall prove:

Theorem 2.3(Existence of WF Solution for Finite Times) et Newtonian Cauchy data ¢ # be given.
For the maps $X’ for finite T > 0 as defined in Definitiop 2.4@sthe following is true:

(i) For any boundary fields Xe Az and T syficiently small, $* has a unique fixed point.
ii) For any boundary fields X € A3 and finite T> 0, the map X" has a fixed point.
W

where the classes of boundary field$, and?lbv'p are given in Definitio 2.3&a which both include the
case of the discussed example of the straight lines as sholwenimd2.48z In fact, these classes have
been chosen general enough to also include advanced adedtaiénard-Wiechert fields corresponding
to any strictly time-like future and past charge trajeasrshapes with uniformly bound acceleration and
momenta which at least connect smoothly to the positiordtajyt — q;; of the respective charges; thanks
to to the introduction of the weight as explained in Part [ [BDD10]. The strategy behind the piisof
(i) an application of Banach’s fixed point Theorem for smati@ésT and (ii) an application of Schauder’s
fixed point Theorem [Eva98, Chapter 9, Theorem 3, p.502] fidirate times T. The basic ingredient in
the proof is that the range @‘?’Xt on the Hilbert spac&,, := @iN:l L2 & L2 (cf. Definition[B.3@3) can be
bounded by a uniform constant depending onlyToand p as shown in Lemma 2. 4& By the Banach-
Alaoglu Theorem this already gives weak compactness. Eurtbre, the maximal support in space-time of
the fields produced by the charge trajectories-ef,[T'] is compact by the finiteness of the speed of light.
Within this set of space-time we have good control over tHddias well as their spacial derivative so that
the weak compactness already implies strong compactness.ti¢ fields behave on the complementary
set of space-time depends on the regularity of the boundeldsfonly which are therefore assumed to be
as good as needed (while not ruling out reasonable casahélature and past straight lines). We shall in
Sectior 2Bz show thatS?*" restricted to the convex hull of its range is a well-defined eantinues self-
map, which by Schauder’s Theorem guarantees the existéacixed pointF and therewith the existence
of a WF solution on{T, T] for given Newtonian Cauchy dataand given boundary fields*.
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Recall that the Synge solutions on the time half-lihgp] for times suficiently close toty give only
rise to interactions with the given past trajectories em[tp]. In a sense for such small times one solves
an external field problem only. Not until larger times theenatction becomes truly retarded. In the worst
case, if a charge approaches the speed of light too fastlid even happen that the time coordinate of the
intersection of its backward light-cone with another cleatigajectory is bounded. That would mean this
charge will never interact with the part of the other chargagctory beyond that maximal time. If this
maximal time is already smaller equalve would again only solve an external field problem and wouwld n
see any truly retarded interaction. Such a scenario is asemo special that one would generally not expect
it (especially since we have existence and uniqueness &thge solutions for as large times bigger than
as we want). For the WF equations, however, we want to be navefud and study these situations in order
to appreciate Theoreim 2.3. For the WF solutions we give thpeslof the charge trajectories fordp, —T]
as well asT, ]. If the WF solution on T, T] does anything crazy like described above we might end up
solving only an external field problem as the charge trajgetaon T, T] only “see” the given past and
future shapes of charge trajectories. The following resialkes sure that at least for some solutions this is
not the case since on an interval], L] with 0 < L < T they interact exclusively with the charge trajectories
on [-T, T] and not with the given boundary fields. We prove:

Theorem 2.4. Choose ab, T > 0 and Coulomb boundary fields®X= C as defined in Definition 2.421
Let further R> 0 be the smallest radius such thetppoi € Br(0). Then, the velocities of all charges of any
ML — S solution with any initial data Newtonian Cauchy data p amy initial fields F such that

_ , XE
Ipll < &, lloill.z + W Y2gill.- < b, F € RangeS?

have an upper boun«f}’b with ||v$’b|| < 1. For Newtonian Cauchy data (qi°, p?)lsigN = p one defines the
maximal distance between the initial positions of the cBargima){p) := Maxi j<n IIQ? - q?ll. Hence, we
can arrange Newtonian Cauchy data p and a maximal chargausaRi such that

L e VT — AGmax— 2R _
| 1420 ’

is positive. Any fixed pointfof S$,><t gives rise to ML-SI solutions that do not only solve the WFa¢igas
(4n)-(1Im) with boundary fields X but also the WF equationsl@-(Gbm) without boundary fields.

For the assumed Coulomb boundary fields (for tiftjes T the charges are at rest) this result is shown by
direct computation using harmonic analysis and a very rd@eiginwall estimate from the ML-SI dynamics.
Its conditions are therefore quite restrictive but merebkhhical. Any uniform velocity estimate makes this
result redundant as théncan just be chosen arbitrarily large to ensure positivity.ofor two charge of
equal sign and restricted to a straight line such an estimma#en for point-like charges in [BauB7]. We
expect such a bound also without the restriction to a sttdilgh However, without such a uniform velocity
bound this result already ensures that by Thedrekm8 really see true advanced and retarded interaction
between the charges of the WF solutions at least for someehoif Newtonian Cauchy data and charge
densities.

2.1. Strong Solutions to the Maxwell Equations. In this section we give the explicit representation for-
mulas for strong solutions— (E;, B;) to the Maxwell equations given a charge trajectory or ceangrrent
density which will be frequently used in both of the followisections.

Definition 2.5 (Charge Trajectories)We shall call any map
(@.p) € C' (R, R®x R?), t — (01, pr)
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a charge trajectory wherg; denotes the position amg the momentum of the charge with mass:d. We
collect all time-like trajectories in the set

7= {(@.p) e R xR

VPOl < Lforallt e R},

and all strictly time-like trajectories in the set

7‘v1:={(q,|0)€7’v1

IVmax < 1 such thatsup|v(py)ll < vmax}
teR

wherev(p) = \/m’;_ We shall also use the notatidn := xi’il‘T#} for the N-fold Cartesian product where
+

2’
#is a placeholder forv or v. Furthermore, two charge trajectories are equal if and oifilsheir positions
and momenta are equal for all times.

Definition 2.6 (Charge-Current DensitiesWWe shall call any pair of maps : R x R® = R, (t,X) - pt(X)
andj : R x R® — R3, (t,x) — ji(X) a charge-current density whenever:
(i) Forall x € R%: p()(x) € CY(R,R) andj)(x) € C1(R,R3).
(i) Forallt € R: py, dyor € C*(R3,R) andjy, dyj € C*(R3, R3).
(i) Forall (t,x) € R x R3: dyor(X) + V - j¢(X) = 0 which we call continuity equation.
We denote the set of such pafsj) by D.

We shall also need the following connection between chagjgedtories and charge-current densities:

Definition 2.7 (Induced Charge-Current Densitiegjor o € C(R3,R) and(q, p) € 7+ we call(p,}) € D
defined by

— P sx-q)
M+ p?

for all (t,x) € R x R3 thep induced charge-current density (f, p) with mass m.

pt(X) == o(X — qr) and jt(x) =

The Maxwell equations including the Maxwell constraints dagiven charge-current density, () € D
read:

o e
The class of fieldsH;, B;) we are interested in is:
Definition 2.8 (Space of the Fields)F* := C*(R3, R%) @ C*(R3, R3).
The class of solutions to these Maxwell equations we wartuidyss characterized by:
Definition 2.9 (Maxwell Solutions) Let € R and F° € #1. Then any mapping ER — F1,t — F; =

(Et, By) that solves[(T]2) for initial value i, = FO is called a solution to the Maxwell equations with t
initial value F°.

The explicit representation formulas are constructed thighhelp of:

Definition 2.10(Green’s Functions of the d’AlembertWe set
o(IIXIl £ t)

K0 = =i
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wheres denotes the one-dimensional Dirac delta distribution. thermore, for every £ C°(R%) we define

0 for £t>0
KE+FO) =1t f do(y)F(y) =t Joco do(y)5Y  otherwise
9By (X)
In the next lemma we collect useful properties of these Gsdanctions.

Lemma 2.11(Green’s Functions Propertiesyhe distributions K introduced in Definitio 2.1 have the
following properties:
(i) Forany f e C*(R%) the mappindt, x) — [Kif * f](x) is in C®((R \ {0}) x R%), oK « f = 0fort # 0
and for any ne N
. KExfY (0
(13) Jm. (afnﬂKti . f) = ($Anf)'
(i) Forany f e C*(R%) and K = ¥, #K{ the mappingR \ {0}) xR > (t,x) — [K{ * f](x) is continuously
extendable to a €(R x R3) function. FurthermoreK; = f = Ofor all t € R.
(iii) Let R®x R > (x,t) — f;(x) be a map that is for each fixede R® an once continuously fierentiable

function and for each fixedd R infinitely often djferentiable then the following estimates hold for an
R> |t|:

=2
I[K; = fJ()I < R sup [Ife(Y)ll and I[Ke * &I < sup (Ilft(y)ll+§||Af(y)Il)
yedBRr(X) yedBRr(X)

Furthermore, for all ne N it is true that

lim K * ft =0 and lim 0Ky * ft = fo.
t—=0 t—0

Proof. A straightforward computation yields

(14) K« f =7t ]C do(y)f(--y)
ﬁth(O)
t2
(15) K= f =7 J[ do(y) f(-—y)$§ J[dSyAf(-—y)
dBx(0) B+(0)
(16) OKE* f = KE «af = aKE = .

@ Therefore, the first and second derivatives exist witkpeet tot, while the second derivative can be
written as a spacial derivative dn By induction one easily computes all combinationg ahdt derivatives
and finds that the mapping &) - [K; « f(x) is inC* ((® \ {0}) x R?). With (T4), (1), [I6) and induction
in N together with Lebesgue’siiierentiation theorem one finds {13)] (ii) With (i) we need towhhat for
any f € C*(R3) the limits of K, * f anda;K; = f from the right and from the left exist and agree at 0.
The former case is clear because the limit is zero. Regatietatter we observe

lim 0Ky * f=lim 6tK{ «f=f==Ilim 6th+ * f = lim 0Ky * f.
t—0+ t—0+ t—0- t—0-
lim_oOK; = f = 0 is a special case of the above] (iii) The estimates are theeitiate consequence bf{14)

and [I%). The limits can be computed by
lim [|[K, = 10| < lim [|[Ke = (f = )]0 + lim [|[Ke = ol
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where the second term is zero By (i). For everg R3, f,(x) is continuous irt, therefore choosingsmall
enough andR > |t| we obtain

lim ||[Ke = (fe = 0)](9)|| < Rlim sup Ifi(y) - fo(y)ll = O
t—0 t—0 yeBs(X)

Similarly, we find
lim (9K 71(x) = fo()]| < lim [|[aeK; = (f = 1)) + lim [|[8:K: + fo](X) — o)

while, again, the second term is zero Byrfi. The same continuity argument as above gives
R?
i 160« = 9100] < lim sup (110) = GO+ 120 - & i) = O
ye 5(X)

which concludes the proof. O

REMARK 2.12. In the future we will always denote this continuous extembipthe same symbol Kit is
often called thepropagatoof the homogeneous wave equation.

A simply consequence of this lemmais:

Corollary 2.13 (Kirchoft’s formula). A solution t— A of the homogeneous wave equatiofy, = O for
initial value Ali—o = A° andoiAdi—o = A°, for A%, A0 € C™(R3), is given by
(17) A = 0Ky # A% + Ky A°

The next result gives explicit representation formulashef Maxwell equationd (38). These formulas
can be constructed by the following line of thought: In thetidibution sense every solution to the Maxwell

equations[(129) is also a solution to
E; —Vpt — Oijt
o5 = ("o
for initial values

(18) (Ei, Bt)lt:to = (E% B?) as well as H(Ey, Bt)|t:t0 = (V A B® - 4nj,,, -V A E?).

Using the abbreviatiok{ = (Ef, Bf), using # as placeholder for future superscripts, and vhiehhtelp of
the Green’s functions from Definitidn ZHfwe can easily guess the general form of any solution to these
equations which is given by:

Vptors = Osltors
19 Fhom ds 0 . 0
( ) f K to-s ( A/ AJtors )

where any homogeneous solutiBfi°™ fulfills oF°™ = 0. Considering the forward as well as backward
time evolution we regard two flerent kinds of initial value problems:

(i) Initial fields F° are given at some timig € R U {—oo} and propagated to a time> to.

(ii) Initial fields F° are given at some timig € R U {+co} and propagated to a tinte< to.
The kind of initial value problem posed will then determigf®™ and the corresponding Green’s function
K. For (i) we shall use&k; and for (i) K{* which are uniquely determined K = §(t)6° and K =
0 for +t > 0. Without a proof we note at least for time-like charge ttjyeies andr(t — to) > 0

0 . 0 .
+ —Vptors — 04t +s) f + —Vpigrs — 04t +S)
O ds Kt ors o) = dsoKi 0T =0
j;oo K_to_s * ( VA Jto+s +o00 s VA Jtots
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by LemmdZ.Ilm Terms of this kind will simply be added to the homogeneoust&m while here we
denote this sum by the same symB@§P™ This way we arrive at two solution formulas. One being siléa
for our forwards initial value problem, i.¢—ty > 0O,

t—to

-V — g
_ Ehom - Ptors ~ Odltoss
Fi= FMOM 4 4 A ds Ktos*( V Ajtors )

and the other suitable for the backwards initial value peohli.e.t — ty < 0,

—th +s 6sjt +s
F:Fh°m+4fods+ ors T Tsllotrs)
t t T tto Kt"3>k( V AJtg+s

As a last step one needs to identify the homogeneous sodutiiich satisfy the given initial conditions
(@8 m). With Corollary{Z.18z1we have given the explicit representation formula:
0 VA
Fyom = (_Vt/\ Py ) Kt % F°.

Therefore, using the definition df; = >, FK{" and a substitution in the integration variable, we finally
arrive at the expression fore R:

_ 6t V/\ 0 —47TJ to t —Vps - asj s
Ft_(—V/\ at)Kt_to*F +Kt—to*( 0 + 4n 5 ds K_s* V/\js .

Theorem 2.14(Maxwell Solutions) Let(o,]) € D be a given charge-current density.
(i) Given (E® B®) € #1 fulfilling the Maxwell constraint§ - E® = 4rp, andV - By, = 0, then for any
to € R the mapping t> F; = (E;, Bt) with

E)._(d VA E° —4nis, t -V =05\ (ps
(Bt) T (—V/\ O ) Keto * (BO) + Kiego * ( o |7 4n N ds K 0 Valljs
forallt € Ris 7! valued, infinitely often gerentiable and a solution to the Maxwell equatidnsh(g 2vith

to initial value F°.
(ii) Furthermore, if for fixed 4, t* € R andx* € R? it holds that

(20) Kito ¥ 0, = 0 and K-t #jt,b, =0

for all t € By(t*) andx € Bi(x*), then statement (i) restricted to sufthx) is also true for initial fields
(E%,BY = 0.

Proof. The regularity for the first two terms is given by Lemma 2h1 The third term is well-defined by
Definition[2.6m Lemmd 2. 1lm states that its integrand is infinitely ofterflérentiable irt andx. As the
integral goes over a compact set it inherits the regulardgnfthe integrand. In the following we treat both
cases (i) and (ii) together. We shall frequently commutdiapdifferential operators with integrals which
is justified because the integrals go over compact sets anidtibgrand is continuouslyfiierentiable. It is
convenient to make partial integrations in the third terst fio yield:

—4nis, t =V =05\ (ps) _ ! -V -0 Ps
Kt—to*( 0 )+4ﬂft0dSK_s* o vallj. = 4 tods 0 Un Kes * ik

The spatial partial integrations hold by Definitibn 248 0The partial integration irs holds as, according
to Lemm& 2. Tlm, the boundary terms giverfKi_s * j |}, = —4nKi, * ji,- Next we verify the Maxwell
constraints. At first for the electric field:

t
V-E = 6tKH0 *V - EO + 47Tf ds [_AKt—S*pS_ OKi_s* V JS] .
o
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Applying the continuity equation, df_ 246 in the last term we get
.= 0Ky, * V-E° + 4n f ds [-aKis * ps + OiKi_s * dgps]
0
After a partial integration in the last term we find
oo = 0Kty # V- E® + 4 [0sKi_s 5|y, + 4 ftt dsoKis * ps.
0

Lemmd Z. Tlmidentifies the middle termadsK_s * ps]iﬁo = 4npy — 4ndiKi—y, * pr, @and states that the last
term is zero. Therefore,
L= 6tKH0 *V - EO - 471'(3th40 * Pty + 47T’Ot.

In the case (i) we hav® - E® = 4ng,, and the first two terms cancel each other. In the case (iipthes
terms are identically zero because[of2)) Hence, we get for both cas®¥s E; = 4np;. Second, for the
magnetic field we immediately g&t- B; = d:Ki_, * V - Bo = 0 because in the case ¥)- Bo = 0 and in the
case (ii)Bo = 0. Therefore, the Maxwell constraints are fulfilled in bottses. Next we verify the rest of
the Maxwell equations:

__ o O VANE) A+VAVAY) 0 K. % EO
T\ \-va 0)\By) 0 A+VA(VAY) (B0
t t
-V -6 Ps 0 VA(VAY) Ps
+4ﬂ6tjt; dS( 0 VA)KtS*(jS)—47TftO dS(O AVA Ki_g * i

where we have used Equatiénkd from Lemmd 2. THmin the first term, which together witki - B = 0
further reduces to

=
[2] = VK, *(V oE )

The time derivative in the second term gives
t
_ -V -6 Ps| _ -V -6 Ps
—4ﬂ6tj: dS( 0 V/\) Kts*(js)— 471( 0 V/\) Kts*(js)
0 s—t
t 2
AR 0s
+ 47rj:0 ds ( 0 ﬁtV/\) Ki_s * (Js)

where Lemm& 2 Jim states that the first term on the right-hand side equéis(Ja). Therefore, withV A
(VA)=V(V-()) - A weyield

V-EY (-4 t o (-§V —oO-V(V-
:VKt—to*( O )+( Ojt)+4ﬂjt;ds( Ot 0( ))Kt_s*(ﬁ):)

According to Lemma& 2 Zim, the term involving then is zero. Inserting the continuity equation for the
current, i.e. V - j; = —0ipoy, together with another partial integration in the last tethe electric (first)
component of this vector equals

R —471’jt + (VKt—to * V- EO +4rn [Kt—s * V:OS]s;t )

s=tp
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Again, by Lemma Z. Timthe braket yields
Kt—to %V - EO - 47th—t0 * tho

In the case (ilV - E® = 4np,, so that both terms cancel while in case (ii) both terms aretidally zero by
E® = 0 and [ZBm). Hence,
_ —47Tjt
-(5")

and, thust — (E;, B;) solves the Maxwell equatioris (#f. The initial values can be computed with Lemma
2.13}m

E; T Ot VA EO _ EOC

L ~mlen 5 ()=o)

REMARK 2.15. Clearly one needs less regularity of the initial values id@rto get a strong solution.
However, we will only need initial values #it. The explicit formula of the solutions (after the additibna
partial integration as noted in the beginning of the proofisnalready found ir{KSOC][(A.24),(A.25)ﬂ}
where it was derived with the help of the Fourier transform.

(]

Theoreni 2. I4m gives rise to the following definition:

Definition 2.16 (Maxwell Time Evolution) Let (o, ) be theo € C(R3, R) induced charge-current density
of a given a charge trajectorfg, p) € 7.2 with mass m# 0, cf. Definitiol2Z¥s Then denote the solution
t > F; of the Maxwell equations given by Theorem Bzi4orresponding tqp, j) and g initial values
FO = (Eo, Bo) € 771 by

t Myl (A, Pt to) 1= Fe.

The second result of this section puts the well-known LiénAliechert field formulas of time-like charge
trajectories on mathematical rigorous grounds.

Definition 2.17 (Lienard-Wiechert Fields)Let(q, p) € 72 be a strictly time-like charge trajectory arfg., j)
theo € CX(R3, R) induced charge-current density for some mass 0) cf. Definition§ ZEmandZ.Fa Then
we define

! -V -9
tro Monl 2= [ asiioe (5 (1)
which we call the advanced and retarded Liénard-Wiecheld$i of the charge trajectorfg, p).

That this definition makes sense for charge trajectoriegliras the Maxwell time evolution forgets its
asymptoticr ! initial data is part of the content of the next theorem:

Theorem 2.18(Liénard-Wiechert Fields)Let(q, p) € 7% be a strictly time-like charge trajectory arfg, j)
theo € CY(R3, R) induced charge-current density for some mass: 1, cf. Definitiond ZJm and[Z.Fm
Furthermore, let B = (E° B e ¥ be fields which fulfill the Maxwell constrain®- E® = 4xp;, and
V-By, = 0aswell as

3
(21) IECQ) -+ IBCOAN + 111 (118 E°G0I + 1185 B°GI) = 5 Q. ()

n X|[—00
= I

IThere seems to be a misprint in equation [KISO0][(A.24)]. ideer, (A.20) from which it is derived is correct.
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for somee > 0. Then for allte R
Mg,m[(q’ p)](t’ iOO) = pW_Iimto—&oo Mg,m[Fo’ (q’ p)](t’ to)

(22) t —V =35\ (ps 3 EfVE(--2)
is in 7 for

We o oy o (n+£Vv)(1-Vv3 naf(inzv)aal |
23) e -2 e En v
(24) BIWE(x — 2) := F[N A Ey(x - 2)]*
and

g =Qqe vE = v(pg:) at = v*

#) nt =L e —telx-z-gfl

In this contexpw-lim denotes the point-wise limit iR3.
For the proof we need the following lemma:

Lemma 2.19. Given a strictly time-like charge trajectofy, p) € 7 and a function f orR® with suppf ¢
Br(0) for some R> 0 andx* € R3 there exists a Fax> 1 S0 that

K # f(- —Qur) =0
for all x € By(x*) and|r| > Tmax

Proof. Since

Kew £ =) =1 f doly) £y - o)
9By (%)
this expression is zero #By;(X) N Br(dizr) = 0. On the one hand, for € Bi1(x*), y € dBy(X) gives
(26) X =yl > [IX* = yll =[x =x*|| < |r] = L.

In the following we considejr| > 1 such that the right-hand side above is positive. On ther dtaed, if
Y € Br(qtsr), we have

X = VIl < IX" = Oterll + 1+ [[0ter = VIl S IIX* = Qarll + 1+ R<IXT = 0l + 1+ Vmadr | + R

The last estimate is due to the strictly time-like naturehef tharge trajectory; cf. Definitidn 2% Com-
bining this estimate witH{26) we géBy,(X) N Br(Gt«r) = @ whenever

X* = +2+R
X — }:Tmax.

Ir| > max{l,
1 — Vmax

Proof of Theorerh 2,382 Fix t € R andx € R3. By Theoreni 2. 14 for everyty, t € R

& VA E° ~4nj
Me.nlF, (@ P)I(t, to) :=(_V‘A at)Kr—ro*(Bo)%—ro*( 6%)

t -V =35\ (ps) _.
+47rjt;dsKs*(o VAS)(jS):'+@+
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is in 1. At first we show that foty — +co the termﬂ and@ vanish with the help of{{24m), which
ensures that there is a constant C, < oo such that fof|x|| large enough

3
{||E°(x)|| + B2+ I1xIl Y (116x EGl + 1195 B°(x)||)] IIXII° < C..

i=1

By Definition[2.108mand for large enougty we get:

VA EO 1+e
IV A Kety + EQ|| < 1t = tol JC do®) [ (Y3+||E||Y||
0Bpt/(X) ” ”
G . Cit-to R

< |t —tol f do(y)

B O e I G bl A

where the constai@, < o is given by [2km). By Equation[[1hkm) we have
[[[8eKeto * EA(X)]| < f dor(y) IIESW)Il + It - tol f dor(y) Ily - VE°(x ~ [t ~ toly)Il
0Bjt—t(X) 0B4(0)
Let againty be suficiently large. The first term on the right-hand side equals

IESDIVE G R
ylle = tol = IXIDE oo

f do)

9Bj—tg1(X)
while the second term is smaller or equals

3 L 110% EO(x = [t = toly)Il [IX — [t — tolyl[**€
[IX — |t — toly||*+

t—to f dor(y)
8B1(0)
C.t —to R
= (It =tol = [IXI[) Lt tooeo

Next we show that in the limify — +oo the tern@ also vanishes. Agy(p) is a time-like charge trajectory
we can apply Lemma 2. i@ for r =t — to which yields

Kt j1o] (XN = 0

for large enouglity|. Therefore, we can conclude that t i$zero forty large enough. The same holds
with E° replaced by, and therefore we find

im [7]- ar [ ds ks« (5 o) (7)) 9 = (Mant(@. P 200) 00

to—+o0

I e M T ==l E

ot
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Let us first compute the electric fields
-Vp(X - Y — Q= Vespy - VOX =Y — Qxpyi) Vie
EX(x) = f dgy[ (X =Y = Geapy) , Vel (X =Y = Qtafyr) Vel

Iyl Iyl
(X =Y = Gtagy) el
lIyll
In order to simplify this expression we make a transformmagbthe integration variable:
(28) y = 2(y) =X =Y = Qeapy)

Here, we use thaty( p) € 72 is a strictly time-like charge trajectory. We observe #{3tis a difeomorphism
because, first, it is bijective since for sypivill < Vmax < 1 the equatioy(z) = X — z — Gy has a unique
solutiony(z) for all z € R3 which is given by{g*} = ;>0 (0Br(X — 2) N {q=r}), i.€. the intersection of the
charge trajectory and the forward, respectively backwayiat cone ofx—z. And secondz(-) is continuously
differentiable with @y,zj(y))1<i.j<3 = —6ij = vj,ti”y”ﬁ such that it has a non-zero determinant which equals
(=1 = Vigpy - ﬁ), again because syp |IVill < Vmax < 1, and therefore the inverse of) is also continuously
differentiable. In order to make the notation more readable ak sbe the abbreviations (#f5). We then

get

e (s ~Vp(2) +VE - Vp(2) VE - p(2) &t
E‘(X)‘fdz ||x—z—qi||(1+ni )
3

— 3 Vie V©
(29) = fd Z,O(Z)[ ||X 7 — qi”(l +nt- Vi) Z ||X 7 qi”(li n* 'Vi)

k=1

aj:
T x—z-gfll(L £ n*vE) |

after a partial integration. Note that for this we only neddast everywhere dlierentiability. Doing the
same for the magnetic field yields

(30) 80 = [ 200

After a tedious but not really interesting computation(€mmputatiol A.llz) one finds that Equation
(Z2:m) holds. Since we can represent the Maxwell solution by a@loion with ag € CZ(R3, R) function
it is immediate thaF; € 7. This concludes the proof. o

Vi
-V A
K- z-g=l(Lxn* -v*)}

REMARK 2.20. Condition [2}m) guarantees that in the limipt— +co the initial value P are forgotten

by the time evolution of the Maxwell equations. Note thatiteoto compute the Liénard-Wiechert fields the
strictly time-like nature of the charge trajectory isfgcient for the limit to existsst— +oo0. This condition
could be softened into an integrability condition for moengralp andj, e.g. one must only demand that
the right-hand side of (23 is finite. However, the Lienard-Wiechert fields for tintelcharge trajectories
would then in general not be given lhy k29 since [28) does not have to be bijective anymore. This fact i
indicated by the blow up of the factafs+ n - v)=3 in Equation [28m) for v — 1.

Theorem 2.21(Liénard-Wiechert Fields Solve the Maxwell Equatiank}t (g, p) € 72 be a strictly time-
like charge trajectory andp, j) thep € CZ(R3,R) induced charge-current density for some mass rf,
cf. Definitiond 2. ks and[ZF@ Then the Liénard-Wiechert fields,M(d, p)](t, +o0) are a solution to the
Maxwell equationd (1) including the Maxwell constraints for alld R.
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Proof. (p,j) is thep € C(R%, R) induced charge-current density of the strictly time-ldtearge trajectory
(9,p) € T72. Hence, for any € R

pt=o(-—a) and jt = v(po(- — au).

Therefore, LemmBA 2.18g, for the choicer = t — s, states that for alt* € R andx* € R? there exists a
constant I« Tpax < oo such that: For alt € By(t*) andx € By(x*)

Kis * (f:)] (X) = 0if |9 > T := Tmax+ [t'] + 1.

This allows for anyt € B1(t*) andx € By(x*) to rewrite Equation (2m) into

(31) (Manla I 20) 09 = (5E09) = 4 [ s a1 %)) 0
(32) - 4n ft tT ds [Kts " (‘OV ;‘15) (pr)] ().

So, fortg = +T, the right-hand side of(31) equals

—47j ! ;)
Ktto*( th°)+4n fto ds[Kts*( 0 VAS)(JPSS)] (x)

which by Theorenl 2.34x(ii) solves the Maxwell Equation including the Maxwell carants[12m for all
t € By(t*) andx € By(x*). Sincet* € R andx* € R® are arbitrary, the Maxwell Equation including the
Maxwell constraints are fulfilled for atle R andx € R® which concludes the proof. O

From their explicit expressions we immediately get a sinlygend on the Liénard-Wiechert fields:

Corollary 2.22 (Liénard-Wiechert estimate)_et (q, p) € 72 be a strictly time-like charge trajectory and
(0.]) thep € C¥(R3,R) induced charge-current density for some mass 0, cf. Definitiond 2.ks and
[Z 4= Furthermore, assume there exists apa< oo such thasupg [10:v(Py)ll < amax We then get a simple
estimate for the Liénard-Wiechert fields for ale R3, t € R and multi-indexy € N°:

1 + Amax )
1+[x=q>  1+x—qll

C,@
IDYEF (X)Il + ID*BE(X)I| < (
) < T

for

(S:‘i) = Mé’,m[(qv p)](t’ ioo)’

a family of finite constant&C,),» and \nay as defined in Definition 2.6

Proof. From Theorerh 2.382we know that for this sub-light charge trajectory the Ligh&Viechert fields
take the form

* LW+
@9) (5:00) = [ zetx-2) gl

As the integrand is infinitely often fierentiable irx and has compact support, the derivatives for any multi-
indexa € N° are given by

DF{(x) = fd3z D'oi(Xx - 2) (Sig)

First, we take a look af (289 and [Z4m) for givenx € R? andt € R. As we have a strictly time-like charge
trajectory @, p) € 72, IIX — z — g*|| is the smallest if we assume the worst case, i.e. that fromttiom the
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rigid charge moves into the future (respectively into thstpaith the speed of light towards the point z.
Therefore|lx —z — g*|| < %Hx —z- g/l and, hence,

1 Amax *
(34) IBEY=(x - 2)Il + IEFV* (x - 2)|| < +
CU A IR < G ik z— T k- z-ad
because syg, |Ivill < Vmax < 1. The rest is straightforward computation (see Computdii@hmm). O

2.2. Unigue Characterization by ML-SI Cauchy Data. The goal of this section is to prove Theoremh2.1
which states that a class of solutions to the WF equationdeamiquely characterized by ML-SI Cauchy
data, i.e. positions, momenta and fields at one time instésing the results of Sectign 2@we can give a
sensible definition of what we mean by solutions to the WF gqoa [4@) and [B@). We restrict the class
of possible WF solutions to:

Definition 2.23 (Class of WF solutions)Let 7wr denote the set of strictly time-like charge trajectories
(qi, Pi)a<i<n € T with masses m¢ 0, 1 <i < N and with the properties:
(i) There exists an gax < oo such thatsup [10:v(pi)ll < amax i-€. the accelerations of the charges are
bounded.
(i) for all times te R solve the WF equationsi{g and [3r).

REMARK 2.24. (i) Note that this definition is sensible because With pi)i<i<n € 7+, equations[{ksg) for
1 <i < N can by Definitiof 2.Zfmbe rewritten as:

1
(BB = 5 2, Moum[(@i. POI(t, £00).

Theorenh Z. 18 guarantees that the right-hand side is well-defined. Furtiare, charge trajectories iff >
are once continuously flerentiable so that the left-hand side loféflis also well-defined. The bound on the
acceleration will give us a bound on the WF fields in a suitatdlem; see Lemnia 2. Rfs.

(ii) Furthermore, it is highly expected th&twr is non-empty for two reasons: 1. In the point particle
case there are explicit solutions to the WF equations knownthe Schild solutionfSch63]and the solu-
tions of Bauer’s existence theordBau97] which yield strictly time-like charge trajectories witlolonded
accelerations. 2. Physically, one would expect that in garecattering solutions have accelerations that
decay at t— +oo.

For the proof of Theoren Z:we need the following two lemmas. First, we give an exampesfitable
weightw in W<,

Lemma 2.25(Explicit Expression for the Weighw). For x — w(x) := (1 - ||x|[?)~! it holds we “W>; cf.
Equation [62=z3).

Proof. As computed in Part [[BDD10W is in ‘W. Thus, it is left to show that thia is also in'W for any
k € N. To see this let us consider

0= D (Wx)(1 + [II))

a1,a2,a3
= > (il) (‘;2)(‘;3)afl“—klagz—kzagmw(x)afagza?(1+||x||2)
ke koKe=0 1 2 3

3
= (D"W(X)) (1 + IXII?) + ) i (8" w(x)) 2x; + Z %ai (0 = 1) (8" 2w(x)) 2
i=1

3
i=1
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wherea = (a1, a2, @3) € N® is a multi-index. This leads to the recursive estimate
3 3
ID W(X)| < W(X) [Z 205 [0 W) 1] + ) enen — 1) |0 2w(x)|
i=1 i=1

in the sense that terms involvid for negativel equal zero. Hence, the left-hand side can be bounded by
lower derivatives, and therefore, by induction over thetivintlex a, we get constant€® < o such that
[D*W(X)| < C*w(x). Furthermore, from the computation

D*w(x) = D (V) V() =
Z (Clzll ) (kz) (ks) 0735077 () 5 0 wX)

Ki.k2,ks=0
and withl, ;== {ke N® |0 < k < aj,i = 1,2,3}\ {(0,0,0), o} we get the recursive formula

o o) < 3o o+ o 3 (i (elie)
xogteagieanto )| [okalsals Ywa) |

where we have used the above established estijDét(x)| < C*w(x). Again, the left-hand side can be
bounded by lower derivatives, and therefore, by inductieer the multi-indexy, we yield finite constants
C. such that als¢D* vw| < C,w. Thereforew € ‘WX for anyk € N and, thusy € ‘W®. O

Second, we show that this weightlecays quickly enough such that all Lienard-Wiechert §ieifstrictly
time-like charge trajectories i} with bounded accelerations lie By, (A%).

Lemma 2.26 (Regularity of the Liénard-Wiechert Fields)et (i, pi)i<i<n € 7< with masses m# O,
1 <i < N, and assume there exists apaa< oo such thasup [|0:v(Pi)ll < amax Define t— (Ejy, Biy) =
Mo,.m [(dli» Pi)](t, £00). Then there exists a w W such that for ang;, pi € R3, 1 <i < N, itis true that

(qi, pi, Ei,t, Bi,t)lsisN € DW(AOC), forallt e R.
Proof. The charge trajectories are i and therefore strictly time-like. Furthermore, they haeeimded

accelerations. Therefore, by Corollary 2:22for 1 < i < N and each multi-index € N® there exists a
constantC, < oo such that

. C, ( 1 8max )
DYES ()|l + IDB; (X))l < + .
ID7EL L+ ID78, G (1-Vma® \1+ X =qell> 1+ ]x — qll
Hence, fow(x) = 1+H><H2 we get
[|A (@i Pis Efe BED |, sZZ(nq.mnp.uH f d®x w(x) (IID"Ef, ()| + DB, (I ))
i=1 |a|<n
which is finite, so that for ant/e R we havep; € Dy (A®). O

We finally come to the proof of Theordm 2ml

Proof of Theorerh 2kl (Characterization of WF Solutions)i) First, as the charge trajectories fulfill the
WF equations[{4g), they also fulfill the Lorentz force lawk@. Second, by Theorem 2t the fields
(E%, B solve the Maxwell equations including the Maxwell consttsy both given in the set of equations
G@). Thereforet — ¢ is a solution to the ML-SI equations, i.e. the coupled setcpfations[(¥a) plus
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(6m). By Lemmd2.2b for any, we yield ¢y, € Dy (A™) so that the existence assertion of Theokentid.6
states that there is a solutibr»> ¢; of the ML-SI equations witlp;, = ¢, while the uniqueness assertion of
that theorem states thatgf, = ¢, for anyty € R, we havey; = ¢; for all t € R. Therefore, we conclude
@t = ¢t = Mifgg](t to) forall t e R.

(ii) Let (0, pi)a<i<n, (@i Pi)acisn € Twr andty € R. Definegr = (s, Pis EYY". B/ N1cicn and @ =
@i,t,ﬁi,t,EﬂF,ng)lﬁisN forallt € R as in (i). By Lemmd 2. 26uthere is av € ‘W such thatp,, ¢, €
Dw(A%®) and therefore the range if is a subset oD, (A*). From (i) we know in addition that for atle R,
@t = Mi[g](t, to) andgr = ML [gg](t, to). Assume @i, pi)i<i<n # (i, Pi)1si<n, i.€. there exist € R such that
we have iy, Pi)i<isn # (Gt Pi)i<i<n. FOr sucht we have theM[¢y](t to) = ¢t # @ = ML[@](, to).
The uniqueness assertion of Theofenbi then statesy, # ¢i,. By constructionpy, = i, (0, pi)i<i<n and
@1, = ity (i Pi)1<i<n- Hencely, : Twre — Dw(A™) is injective. O

REMARK 2.27. Note that the weight function w could be chosen to decayrftisie the choice in Lemma
[2.25m This freedom allows to generalize Theotem2also for possible WF solutions whose acceleration
is not bounded but may grow with-t +co. This is due to the fact that growth of the accelerat&im
equations[(2Rm) can be suppressed by the weight w. However, by the conslitibfheorenh Bl the
weight w must be at least it’* one can only allow the accelerati@to grow slower than exponentially.

As byproduct we can use the same technique to provide glofteace and uniqueness to the Synge
equations:

Proof of Theorerh 2k (Existence and Uniqueness of Synge Solutiofis)s proven in exact the same way
ad2.3m(i) as the proof holds for any linear combination of Lieénakiiechert fields.

(ii) Define the fields 3/, BYY)1<i<n := Mg m (a7, P})](to, —o0) by Theoreni 2. By (i) these fields
fulfill

¢° = (i Pigy> Bl Bigasisn € Du(A”).

Define @, p; Eit, Bit)i<isn = M, [«°](t, to) for t > to; see Definitio B.I@m= Concatenate the past and
future pieces of the charge trajectories accordinglig) (or (i) one needs to check,(p) € C* which is
guaranteed by Theordm Bdzand the fact that the Synge equations hold at timEor (ii) let us consider the
difference betweerE(y, Bi)i<isn and €7, B3 <isn = My m (a7, P)](to, —o0) for t > to. By Theorem
[B.6mand Theorerh Z. 2w this difference solves the homogeneous Maxwell equationsa, for initial
value 0. Hence, this flerence is zero for all time> tg from what we infer that

op= Y, [ dxax- 6 (Bt + v(a A Butw)
j#i
= 37 [ ot (R0 + Vi@t 4 B )
j#i
for t > tp which concludes the proof as the uniqueness follows by thguemess of the ML-SI equations;

see Theorem Blga O

2.3. Existence of WF Solutions on Finite Time Intervals. We shall now come to the question of existence
of WF solutions. We shall formalize the mé#xi and prove the existence of a fixed point. The proof will
rely on the explicit expressions of the Maxwell fields of MLs®lutions given in Theorem B in terms
of the Kirchdt’s formulas given in Sectioh 2 Therefore, we inserted a small intermediate paragraph
before the main proof which will provide all necessary fotasu

Once and for all we fix the parameters:
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Definition 2.28 (Global Definition ofw, ¢;, m ande;). To the very end of this chapter we fix the charge
distributionsg; € CZ(R3,R) such thatsuppoi ¢ Br(0) c R® for one finite R> 0 and the masses;n 0,
1 <i < N. Furthermore, we choose a weightaw’> for which Theoreri ZbE holds.

The Maxwell Fields of the Maxwell-Lorentz Dynamics. Thigdrmediate section is supposed to bring
quickly together the solution theories of the ML-SI equasipcf. Theoreni Bigm on D,,(A) and the
Maxwell equations (Sectidn 2@ on 7. In particular, it will provide explicit formulas for the Mavell
solutions expressed by\)ix andJ on a suitable domain. We recall the Newtonian phase spae&®,
the space of weighted square integrable fistgsthe phase spacH,, = P & F of the Maxwell-Lorentz
equations, cf. Definition Blgg the definition of the operatagk on Dy (A) ¢ H,, cf. Definition[B.4m3 as
well as the one of the operatdron H,,, cf. Definition[B3m@ In order not to blow up the notation we use
the following:

Notation 2.29(Projector®, Q, F). For anyy = (q;, pi, Ei, Bi)1<i<n € Hw We define the projectog P, F by
Q¢ = (0, 0,0, 0)1<i<n, Py = (0,p;, 0, 0)<i<n, Fo = (0,0, Ei, Bi)1<isn-
Wherever formal type errors do not lead to ambiguities weetones forget about or add the zero compo-
nents and write, e.g.,
(di, Pi)1sisn = (Q+ Py or (9, Pi, 0, 0)a<i<n = (Q + P)(Gi, Pi)a<i<n-
As we now treal fields simultaneously, we need to extefid, cf. Definition[Z.8m, according to:
Definition 2.30(Space oN Smooth Fields) ¥ := GBiN:l C™(R3,R3) @ C*(R3,R3).

Furthermore, we recall th& is the generator of & contractive group\):cz on Dy (A) which was the
content of Definitioi B.Bz3 and its preceding lemma. Since we shall mainly work in fieldcgs, we need
the projections of the operatofsW; andJ onto field space&:

Definition 2.31 (Projection ofA, W, J to Field Spacef,). Forallt € R andy € H,, we define
A := FAF, W; := FWF and J:=FJ(p).

The natural domain of, W, is given by Q(A) := FDy(A) c Fw. We shall also need JJA") := FD,(A")

Fw for every ne N U {oo}. Clearly, the operatoA on D,(A) is also closed and inherits also the resolvent
properties from A on [YA). Furthermore, this implie$Q + P)W; = idp andFW; = W; so that(W,)cr iS
also ay contractive group on the smaller spacg ). Finally, note also that by the definition of J we have
J(p) = I((Q + P)y) for all ¢ € H,, i.e.J does not depend on the field componéigts

The following corollary translates the explicit Kircidormulas for free Maxwell solutions computed in
Sectiof 2. l@into the language of the group)r. We have used Kirch®s formulas for initial fields in
F while the group \W)«r Operates o, (A). Therefore, by uniqueness, we expect to be able to express
free Maxwell solution generated by the group by Kirfiteformulas as long as the initial conditions come
from 7 N Dy(A).

Corollary 2.32 (Kirchoff’s formulas in terms of\\4)icz). Let we ‘W, F € Dy (A") N F for some ne N,
and

(Eit, Bit)1<ien := WiF, forallt e R.

Eil_( & VA Eo) [ VY- Eio
(gi,t) - (—V/\ Ot ) K (Bi,o) - fo ds Kes+ (VV . Bi,o)'

Then
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fulfill Ej; = Ei,t andB;; = AB’i,t forallt e Randl<i < Ninthe L2 sense. Furthermore, for alld R it holds
also that(Ei , Bit)1<i<n € Dw(A") N F.

Proof. By the group propertied/;F € D,,(A") and by Definitiorl 2.34zzand B.4m=3
OWF = AW{F = (0,0,V A Bit, =V A Ej)1<i<n.
Since Ei,Bio) € ¥, a straight-forward computation together with the projsmfK; from LemmdZ. THm

yields (o2 )Y

t VV-Eio| , (2 +VA(VA) 0 Eio
=—6tftod8 KS*(VV.Bi,o)+( 0 (3t2+V/\(V/\~))Kt*(Bi,O)

ApplyingV A (VA ) =V(V-) — A and Lemma 2. Timagain gives

E.
(82 — A)K; (Btg) =0

t s—t
VV - Eio) _ VV-Eio)| VV-Eio
O J; ds Ks (VV.BLO) = Kes s (VV : Biyo) ot [Kts* (VV : Bi,o)]

s—0
_ VV-Eio
= Ky = (VV . Bi,o).

and

Hence, we g: 0 and, therefore, foF; := (Eiy, Bit)i<i<n it iS true thatd;F; = AF; in the strong sense.
By the group propertie®/; andA commute orDy,(A) which implies

Ot (W_tFy) = —~AW_(F + WAF; = 0.
ThereforeF; = W;Fo = W;Fo = xt as by definitionFy = F = Fo. This means in particular th&;; = E;,
andB;; = Bj; forallt e R and 1< i < N in theL2 sense. Furthermore, &se D,,(A") N ¥, Lemmd 2 THm

states~that?t € ¥, and by the group properties o).z We also havd~; € D,(A") for all t € R. Hence,
Fi = Ft € DW(A") nF for all t € R which concludes the proof. O

A ready application of this corollary is the following lemmaich allows to express the smooth inhomo-
geneous Maxwell solutions of Section Rain terms of (V)er.

Lemma 2.33(The Maxwell Solutions in Terms ofW;)irg andJ). Let tty € R be given times, F=
(Fi)1<i<n € Dw(A") N F for some ne N be given initial fields andg;, pi) € 7 time-like charge trajec-
tories forl < i < N. If in addition the initial fields = (E;, B;) fulfill the Maxwell constraints

V. Ei = 47T,Qi(- - qi,to) and A\ Bi =0
for1<i <N, thenforallte R

t
Ft = Witox + f dsWi_sJ(¢s) € Dw(A") = (Mg,.m[Fi, (@i, P)I(t, t0))1<i<n-
to

in the L2 sense wheres := (Q + P)(0i.s, Pi.s)1<i<n fOr s € R. Furthermore, k € Dy (A") N F for all t € R.
Proof. This can be computed by applying Corollary 282wice and using one partial integration. O
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WF Solutions for Prescribed Newtonian Cauchy Data. Theegjyawill be to use Banach’s and Schauder’s
fixed point theorem to prove the existence of a fixed poirsaf The following normed spaces will prove
to be suitable for this problem:

Definition 2.34 (Hilbert Spaces for the Fixed Point Theorenffpr n € N let 7 be the linear space of
functions Fe D,,(A") with

1
n 2
IFllrae) = (§ ||AkF||¢W] :
k=0

with B = R2 in which case we simply writ- |lzn instead ofl| - |lznw). For other Bc R3 we shall use this
notation to split up integration domains. We shall use thigation also forfy, = 7.

Lemma 2.35. For n € N, 7 is a Hilbert space.

Proof. This is an immediate consequence of Theorem 2.11 of Part DIBI) which relies on the fact that
A'is closed orD,(A) and vwd®x is absolute continuous with respect to the Lebesgue measure O

Next we specify the class of boundary field§'(;)1<i<n Which we want to allow.

Definition 2.36(The Class of Boundary Fielda",, A", andﬂb\,ip). For weight we ‘W and ne N let A}, be
the set of maps

X : R x Dy(A) - Du(A®) N F, (T, o) = Xr[e]

which have the following properties for allp®P and T € R:

(i) There is a function € € Bounds such that for allp € Dy(A) with (Q+P)p = p it is true that
IXrlelllrg < CO(TLIIpI).
(i) The map F— X7[p, F]l as#} — 7. is continuous.
(i) For (Eir,Bit)isisn = Xr[] and(i, pir)isisn := (Q + P)ML[¢](T, 0)one hasv-Eit = 4noi(-— Qi)
andV-Bjt =0.
Let the subsefl, c A7, comprise such maps X that fulfill:

(iv) For balls B, := B.(0) c R3 with radiust > 0 around the origin and any bounded set 1D, (A) it
holds thatim . sup:-cy IXr[ P, F]||‘FW”(B$) =0.

Furthermore, let the subsé"(\',‘vip c AL, comprise such maps X that fulfill:

(v) There is a function Ce Bounds such that for allp, ¢ € Dy (A) with (Q + P)o = p = (Q + P)g it is true
that|[Xr[¢] — Xr[@]llgz < TICTI iz, @llz,) lle — @lln,-

REMARK 2.37. The boundary fields needed are now encodedqXia;)i<i<n := X ;[¢] for two elements
X* € Ay, and somep € Dy(A). The dependence of:Xon ag € DW(’A) instead of the charge trajectories
(@i.pi), 1 <i < N, in7! makes sense ascarries the whole information about the charge trajecterizy

t — (Q + P)M_[¢](t,0) which are the charge trajectories of the ML-SI solutions.wisshall discuss after
showing that these classes are not empty, one can imagimeetements to be the Liénard-Wiechert fields
of any charge trajectories if: which continue the ML-SI charge trajectories on either tineetinterval
(—oo0,—T] or [T, o) for the given Te R. Finally, the reason why we define three clasggs ﬁ\’,‘v and.A-P

is to distinguish clearly the properties needed, first, téirdewhat we mean by a bWF solution, second, to
show existence of bWF solutions, and third, to show unigggenéthe bWF solution for small enough T.
Note also thatAl+! c AN as well asAlL ¢ AT, forn e N,
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Having this we can formalize what we mean by a WF solution feery Newtonian Cauchy data and
boundary fields.

Definition 2.38. [bWF Solutions for Newtonian Cauchy Data and Boundary Kgldet T > 0, p € #
and two boundary fields Xe AL be given. We defirrEﬁ‘X’ to be the set of time-like charge trajectories
in (qi, pi)i<isn € 7+ which solve the WF equations in the formbd4(IT1m) for Newtonian Cauchy data

P = (it Git)1<i<nl=0- We shall call every elementﬁtf’xi a bWF solution for initial value p and boundary
fields X attime T.

REMARK 2.39. By Definition 2.3bz4(iv) the boundary fields fulfill the Maxwell constraints ahé+T.
This is important as our formulas for the Maxwell solutiorisSectior Z.lig are only valid if the Maxwell
constraints are fulfilled. Though this requirement coulddiesened by refining the formulas for the Maxwell
fields it is natural to stick with it because the fields of tru€& Wblution fulfills the Maxwell equations
including the constraints, and the final goal is to find salos for T — oo.

Now we can define a convenient fixed point map whose fixed paetshe bWF solutions.

Definition 2.40 (The Fixed Point Maf5y). For finite time T > 0, Newtonian Cauchy data g ¥ and
boundary fields X € AL, we define

SPX: Dy(A) - Du(A), F - SPF]
for

t
o [wﬂx;[p, Fl+ [ dsw.otedlp.F)

+

SPIF] =

wheregg[p, F] := M_[p, F](s 0) for s € R is the ML-SI solution, cf. Definition B.l@, for initial value
(p, F) € Du(A).

We got to make sure that the fixed point map is well-defined hatits possible fixed points have the
desired properties, i.e. their corresponding chargedrajes are irV}P’X’.

Theorem 2.41(The MapSt and its Fixed Points)For finite time T > 0, Newtonian Cauchy data p #
and boundary fields Xe AL the following is true:

(i) The map $’Xi introduced in Definition 2.40 is well-defined.

(i) For F € Dw(A), setting(X‘,1)1<i<n = Xi1[p, F] and denoting the ML-SI charge trajectories

t = (Gt dinisisn = (Q+P)ML[p, F](t,0)
by (ai, pi)1<i<n it holds that
* 1 + 00
SPTF = 5 2 (MamDiar- @pOIO.T)) € DA™ 7

I<i<

(i) For any F = SPX[F] it is true that and that the corresponding charge trajectsri
(ai» Pi)1<i<n as defined in (ii) are im >,

Proof. (i) Let F € Dy(A), then (o, F) € Dw(A) and, hence, by the MLSI existence and uniqueness Theorem
B.6Gmat — ¢ := M_[¢](t,0) is a once continuously fierentiable ma@® — Dy (A) c H,. By properties of

J stated in Lemma 2.23 of Part[[ [BDD10] we know th&t) : H,, — Dw(A®) c H, is locally Lipschitz
continuous for ank € N. By projecting onto field spacg,, cf. DefinitionZ.3kzz we yield that also
AKJ : Hy — Dw(A®) c Fw is locally Lipschitz continuous. Hence, by the group proiesrof W)z we
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know thats — W_gAKJ(¢s) for anyk € N is continuous. Therefore, we may apply CorollarylAmdvhich
states that

0 0
A f dsW_sJ(ps) = f dsW_sA*)(gs)
+T +T

while the integral on the right-hand side exists becausetbgrand is continuous and the integral goes over
a compact set. As this holds for akye N, LOT dsW_sJ(ps) € Dy(A®). Furthermore, by Definitioh 2.362
the termXi;[p, F]is in Dy(A*) and therefor&V.r Xi;[p, F] € Dw(A™) by the group properties. Hence, the
mapS? is well-defined as a map,(A) — Dy(A®).

(ii) For F € Dw(A) let (i, pi)i<i<n denote the charge trajectories— (Qit, Pit)i<ien = (Q + P)gr of
t = ¢ = M[p,F](t,0). Since p,F) € Dw(A), we know again by Theoref Bifi that these charge
trajectories are once continuouslyfdrentiable a® — Dy(A) c H,,. As the absolute value of the velocity

is given by|v(pidll = \/‘% < 1, we conclude thatc, pi)i<i<n @are once continuously filerentiable

and time-like and therefore 'r}Tv cf. Definition[2.5m Furthermore, the boundary fieldg,[p, F] are in
Dw(A®) N ¥ and obey the Maxwell constraints by the definition#f. So we can apply Lemnia 2138
which states forX, )i<i<n := X3 [p, F] that

t
(35) (Mg, m [Xi, (g, pil(t, iT))lsigN = Wzt Xi[p, F] + I—T dsWi_sJ(gs) € Dw(A) N F.

Fort = 0 this proves claim (ii).

(i) Finally, assume there is af € ¥, such that~ = S$’Xi[F]. By (ii) this impliesF € Dy(A®) N F.
Let (qi, pi)1<i<n @andt — ¢¢ be as defined in the proof of (ii) which now is infinitely ofteiffdrentiable as
R — H, since p, F) € Dy(A®). We shall show that the following integral equality holds

t 1 t
0 =0+ [ ds@emIe) 3 Y [ Wer0 G p F) + [ dsWard(en)

+

for all t € R; keep in mind that — ¢; depends also ormp(F). Then diferentiation with respect to timte
of the phase space components@f, (i, Eit, Bit)i<i<n := ¢ yieldsdi(Q + P)¢r = (Q + P)J(¢r) which by
definition of J yields

Oy = V(piyt) = S

2
- Nl

0P =Y, [ xoi6x- ) (B9 + V(0 A Bat).

j#i

Furthermore, the field components fulfill

1 t
Ri=F3 3 Wer0 Xl + [ dsWrdted)

1 t
=5 Z [Wtﬂxji:T[p, F]+ j:T dSWtsJ(‘Ps)]
" +
where we only used the definition of the projectors, cf. D&bniZ.3}= Hence, by[(3b) we know

(38) (B = 3 3" Mam[Fi 0PI 4T).
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Finally, we have

(39) (G- Pi)asizn_g = P = (@ P)asizn-

Equations[(3ix), (38=) and [39) are exactly the WF equatiohkgldand [11m) for Newtonian Cauchy data
p and boundary fieldX*. Hence, since in (ii) we proved thaii(pi)i<i<n are in7-, we conclude that they

are also i7>*", cf. Definition2.38zz
Now it is only left to prove that the integral equatiénk@® holds. By Definitiod B.1Rzs ¢ fulfills

t
o= W(p.F) + [ ds Wesd(e
0
for all t € R. Inserting the fixed point equatidh = S’T”Xi[F], ie.

t
F = Werr X2[p, F] + f dsWe_sJ(¢),
+T

we find
1 1 0 t
o= (p.0)+ zgvvmo, Xzr[p.F) + Egvvt f s Wo(0,3(p9)) + fo ds W-sJ(ps).

Using the continuity of the integrands we may apply Lenima#i.tb commute\; with the integral. This
together with] = (Q + P)J + FJ and that Q + P)W; = idp yields the desired resuli (&) for all t € R which
concludes the proof. O

In the next Lemma we discuss a simple elen@rt Ay, and thereby show that the classes of boundary
fields A7, and.AL° are not empty.

Definition 2.42 (Coulomb Boundary Field)For n € N define C: R x H, — Dw(A"), (T, ) — Cr[¢] to be
Crlel = (EF( - air), 0)

where(qi 1)1<i<n := QM_[¢](T, 0) and the Coulomb field

(ES.0) i= Myt = (0. 0)](0, o) = ( [ 2o - Z)#,O)-

Note that the last equality holds by Theofem 2.8

Lemma 2.43(The Class of Boundary Fields is Non-Emptyjor any n € N and any we ‘W the set
CeAN AP,

Proof. We need to show the properties given in Definifion Bz36Fix T > 0 andp € #. Recall the definition
of Cr as introduced in Definition 2.42. Lete Dy (A) andF = Fy for (Q + P)¢ = p. Furthermore, we define
(9iT)1<i<n = QML [¢](T,0). SinceEC is a Lienard-Wiechert field of the charge trajectony (git,0) in
72, we can apply Corollary 2.2@ato yield the following estimate for any multi-indexe N° andx € R®

N Cs(“)
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which allows to define the finite consta@g® := ID“Ecll.z- Using the properties of the weighte ‘W we
find

n n N n N
ICrlelB, < D IACTEly, < Y > IVAECC —ainll < ) > > ID"ER)l;
k=0

k=0 i=1 k=0 |a|<k i=1

n n
SZZZ 1+CWHQ|T” |DOIEC”L2 SZ
k=0

k=0 |a|<k i=1

N
Z 1+CW||Q|T” C(")<oo
i=1

<

This impliesCy € Dy(A*) N F and thaC : R x Dy(A) —» Dw(A®) N F is well-defined.
Note that the right-hand side depends onlyljanr|| which is bounded byipl| + [T since the maximal
velocity is below one. Hence, property (i) holds for

n N
COTLIP = Y. D" > 1+ Cu (lpll +TH)F C.

k=0 |a|<k i=1

Instead of showing property (ii), we prove the stronger prop(v). For this lefp € Dy(A) such that
(Q+P)p = (Q+P)p, (Gi1)1<i<n = QML[@](T, 0). Starting with

D (E( - air) - B ~@im)

ICrle] ~ Crl@lrg < Z >

i=1 |a|<1

we compute

D* (ES(- - qir) - ES(- -G

”f da (@7 —qiy) - VDQE|CT( - QT + AT - qlt))

< fo a1 (G~ o) - VDES( ~ Gy + A@ir - qi,o)llL%

where in the last step we have used Minkowski's inequaliber€fore, for alle| < 1 we get

2,

lal<1

<|lgi.T ~ Gi7lles SUp Z IDPES( + (i = Gir))|; -

0<a<1 B=2

D (E( - air) - B¢ - Tim)

The estimatd (4@7) and the properties af € W yield

Pw
IDPEC( = Tir + A@ir — G5 < (1+ Cwd [Gir + 2@ - Gi)]}ws) * [IDPEC
< (1+ Co(llgillgs + [[Gillzs + 2T 2 C,®

Furthermore, since the maximal velocity is smaller than pneperty (v) holds for

Pw
CuIT1, gl IB4,) = N " (1 + Culligllzs + 1Q@llzs + 2T) 2 CE.
1812

(iii) holds by Theorenh 2. T4z
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(iv) Let B,(0) c R® be a ball of radius > 0 around the origin. For arfy € D,,(A) we define ¢ 1)1<i<n =
QML[¢](T,0) and yield

N
ICTTP. Flibraeso) < Y, ) ID"ESC = i)z ey

i=1 Jaj<n

N
<> @+ Cullai 7l * (Lo S [FY

i=1 |al<n

Note again that the maximal velocity is smaller than one so|fd) + < IIq?II + T. Hence, forr > ||q?|| +T
definer(r) := v - [|q%| + T such that it holds

N
sup IC7P. il < ) D) (L+ Cullai Tl ? [[D°E 2 g, ) — O

0
FeDy(A e i) 1500

To summarize we have shown that for alle N the mapC as introduced in Definitioh 2427 is an
element ofAl, N AP which is a subset of},. m

REMARK 2.44. Inview of [1}r) the boundary fields are a guess of how the charge trajecst(xqfé Pi)1<i<N
continue on the interval§-c0, —T] and[T, o). Instead of the Coulomb fields of a charge at rest we could
have also taken the Liénard-Wiechert fields of a chargestitmry which starts at + and has constant
momentunp; 1t for (g1, piT)i<isn = (Q+P)M[¢](T, 0) with only minor modification (the result would
be a Lorentz boosted Coulomb field). Such boundary fieldsdnalgb be inﬂ',‘v'p as for (pi1)i<i<n =
PM_[¢](T, 0) we have

T . .
Py — Bl < f dslpis—Pdl <T sup pis—Pidl
0 s€[0,T]

while the supremum exists because the charge trajectorgesraooth thanks te, ¢ € Dy(A). Only if one
wanted to continue the charge trajectori(ex?o, Pi)1<i<n iN (IIbm) more smoothly, for example also continu-
ously in the acceleration, the resulting boundary fields Moot lie in :?lbv'p anymore but rather irﬁ\}v since

in general diferent initial value for the ML-SI equations yieldf#irent accelerations at time zero.

We come to the proof of the existence theorem of WF solutionéirite times, i.e. Theorem 248 The
strategy for the proof is to use Banach’s and Schauder’s fiaat theorem. Before we give a proof of
Theoreni 2@awe collect the needed estimates and properti&?f)(ft in the following three lemmas.

Lemma 2.45(Estimates or¥;)). For n € Ny the following is true:
(i) Forallt € R and Fe Dy(A") it holds that|W;Fllzp < e||F|lzp.
(i) Forall ¢ € H, there is a constant & e Bounds such that
3@)llrp < SO (lQgllx,)-
(iii) Forall ¢, % € Hy there is a G™ e Bounds such that
13(e) = 3@l < Ca Ul 1@, )l = Bl

Proof. (i) As shown in Part I[[BDD10]A on Dy,(A) generates &-contractive groupM)icr; cf. Definition
B.8= Hence A andW; commute for any € R which implies for allF € D,,(A") that

n n n
IWEFIIZ, = D" IAWFIZ, = " IWARFIZ, < @ 3 IAYFIZ, = &"|IFIly.
k=0 k=0 k=0
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For (ii) let (i, pi, Ei, Bi)1<i<n = ¢ € Hyw. Using then the definitions df cf. Definition2.3tzzand B.bza
we find

Nl < > IVAVE)ei(: = @)z,
k=0

By applying the triangular inequality one finds a cons@yte.q.C, = 46, for which
VA V(i (- = @)z, < (C)" D VPP ai(- = allz, < (Co)" ) D ai(- = ol
lal<n ll<n
whereas in the last step we used the fact that the maximatityele smaller than one. Using the properties
of the weight functiorw € ‘W, cf. Definition[B. @3 we conclude
ID%i(- - Al < (1+ Cullcil)) * 1Dl
Collecting these estimates we yield that claim (ii) holds fo

N
C.O(agll,) = (C)" (L1 +Callail) ¥ D D%l
i=1

|l<n

Claim (iii) is shown by repetitively applying estimate ofiinena 2.23(i) of Part I[[BDD10] on the right-
hand side of

M) = I@llrz < D NATI) = I@N b,
k=0

which yields a constar@," := Y1 C,o®(ll¢lln,. [[@llz,) WhereC,, € Bounds can be taken from Lemma
2.23(i) of Part I [BDD10]. This concludes the proof. O

Lemma 2.46(Properties oBTp’Xi). LetT>0, pe P and X € A}, forn e N. Then it holds:
(i) There is a function G € Bounds such that for all Fe 7.} we have

ISR [p. Flllyg < Cu® (T, l1pID.-
(i) F > SP*[F]asFl — #1 is continuous.

If X* € AP itis also true that:
(iii) There is a function G, € Bounds such that for all EF e Fi we have

ISP [F] - SP[Flllzs < TCu(T, 1Pl IF Il I )IF = Flis,.

Proof. Fix T > 0, p € P, X* € A}, for n € N. Before we prove the claims we preliminarily recall the
relevant estimates of the ML-SI dynamics. Throughout theopand for for anyF, F e Fu we define
Dw(A") 5 ¢ = (p,F) andDyw(A") 5> ¢ = (p,F) and furthermore the ML-SI solutions := M_[¢](t, 0)
andg; ;= M_[¢](t, 0) for anyt € R. Recall the estimaté (6F) from the ML+SI existence and uniqueness
Theoreni B.Bawhich gives the followingl' dependent upper bounds on these ML-SI solutions:

(41) sup et = @tllw, < CoolT, llpllna,» 191124, — Pl »
te[-T.T]
(42) sup ligtlle, < Coo(T, llpllz,» Ol and sup [l@tlle, < Cool T, llllzs, > Ol -
te[-T,T] te[-T,T]
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To prove claim (i) we estimate

ISP [F Il <

_.[0]+[10]

7

1 +
5 2, WerXir[p. Fl
+

1 0
> Z f_r dsW_sJ(¢s)
T J=

cf. Definitionﬂ@[zawheres.‘r"xi was defined. By the estimate given in Lenmima R=$ and the property
given in Definitiod 2.3kz4(i) of the boundary fields we find

1 + +
< 5 D IWsr Xz [p.Flllry < €TIXE[p. Flilr < €TC.O(T, gll,).

—+
7

Furthermore, using in addition the estimates given in Lei@d&zHi-ii) we get a bound for the next term
by

<TeT sup [9(es)llrp < TET sup C,(IQgsls,) < TETC,(Ipll +T)
se[-T,T] se[-T,T]

whereas the last step is implied by the fact that the maxiralgloity is below one. These estimates prove
claim (i) for

CuV(T. lIgllzg) = € (CLT. lipl) + TC,(lIpll + T)).
Next we prove claim (ii). Therefore, we regard
ISFIF] = SP [Fllly < @TIXE[e] = X [@lllyy + T sup IN(es) 3@l
sel-T,

where we have already applied Lemima 2. Next we use Lemmia 2. 4&(iii) on and yield
<T€™ sup CO sl [Fellre,)lies = Pslls,
se[-T,T]
Finally, by the ML-SI estimate$ (4dn) and [42mg) we yield

(43) [12] < TCW(T, lIpll, IFllsg, IFllzp)lle — Slige,
for

Cus(T, 11pll, IF g, IF llg) :=eVTc8<”>(czo(T, llgll74,» O)llgllz4,» CoolT, O, ||¢1|ﬂw)||¢||ﬂw)x
X Coo(T, Il [ @ll4,)-

ForF — F in 7! these estimates impi$?™ [F] — SP*'[F]in #} since herdly — Gllx, = IF - Flig,
which proves claim (ii).
(iii) Let now X* € ALP. Term then behaves by Definitidn 288 as

< TCOTL el 1274, e = Sl
Together with the estimate_(43) this proves claim (ii) for
CV(T. 1Pl IIF iy, IFll7,) = COATI, Nl @94, + Cua(T. 1P IF llrg, I llp)
since in our casty — @ll, = IIF — Fllz,. O

Before we proof the main theorem of this section we need aléasina which gives a criterion for
precompactness of sequence&in

Lemma 2.47(Criterion for Precompactness)et (Fn)nan be a sequence ing(R3, R3) such that
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(i) The sequenclp)ney is uniformly bounded i, .
(||) “mr—»oo SupEN ”Fn”L\%/(B‘T:(O)) = O
Then the sequeng€n)nay iS precompact, i.e. it contains a convergent subsequence.

Proof. (see AppendiX Am) The idea for the proof is based dn [Lie01, Chapter 8, Prodoftedorem 8.6,
p.208]. m]

REMARK 2.48. Of course one only needs to control solely the gradient, ewéhe Laplace turns out to
be more convenient for the later application of the lemma.

Now we can prove the first main theorem of this section.

Proof of Theoreri 218 (Existence of WF Solution for Finite Timedjix p € #.
(i) Let X* € ALP c AL, then Lemm&aZ.46x(i) states

ISP [p, Flllg < Cu@(T, lIpll) =: .

Hence, the map‘;?xi restricted to the balB,(0) c # with radiusr around the origin is a nonlinear self-
mapping. LemmB&Z.361iii) states for allT > 0 andF, F € B,(0) c Dy(A) that

ISP IF] = SPX[Flls < TCu(T, 1Pl IF I, IF7 )IIF = Flig,

< TCu(T, IIpll, T, NIIF = Fllz,.
where we have also used tl@t € Bounds is a continuous and strictly increasing function of its angunts.
Hence, forT suficiently small we hav@ C(T,||pll,r,r) < 1 such thaS.‘;‘Xi is a contraction o8, (0) ¢ F.1.
By Banach's fixed point theore®?”" has a unique fixed point iB;(0) ¢ 72
(ii) Given a finiteT > 0, p € P andX* € A3, LemmdZ.4lizH(i) states for alF € F.

(44) IS2* [p. Fllly < IS8 [p. Flllys < CLO(T,lIpl) =: 1.

Let K be the closed convex hull dfl := (SP°[F] | F € 71} c B/(0) c F. By Lemma Z.Alz(ii) we

know that the ma|$Tp’Xt : K — K is continuous as a mafiy — 7. If M is compact, it implies tha is
compact, and hence, Schauder’s fixed point Theorem enfigesistence of a fixed point.

It is left to show thatM is compact. Therefore, leG)may be a sequence ikl. We need to show that it
contains ar¥,;; convergent subsequence. To show this we intend to use LéndibaR By definition there

is a sequence(y)meay in Br(0) ¢ 7k such thaGy, := STp’Xt[Fm], m e N. We define fome M
E™ BM)1on = SP[Ful.
Recall the definition of the norm of ), cf. Definition[2.34mza, for some Ej, Bi)i<i<n = F € £y andn e N

n n N
(45) IFIZ, = > IAFIZ, = 7" (IVAEIR, + IVABIIZ ).
k=0

k=0 i=1
Therefore, sincé on Dy (A) is closed, Gm)mar has anft convergent subsequence if and only if all the se-
quences (?/\)"Ei(m))meN, ((V/\)kBi(m))meN fork = 0,1 and 1<i < nhave a common convergent subsequence

inL2.
To show this we first provide the bounds needed for Lemnma.2id)? Estimate[44) implies that
3 N
(46) (IVAEMIZ, +IVABMIE, ) = GmlZ; < r?

k=0 i=1
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for all m € N. Furthermore, by Lemn{a 2.4(i) the fields €™, B™),i<y are a solution to the Maxwell
equations at time zero and hence, by Thedremhgz1dlfill the Maxwell constraints for(ﬁ?, p?)lsiSN =p
which read

V-EM = 470,(- - q°) and v-B™ =0
Also by Theoremi 2.4, G, is in  so that for everk € Ny
(VAY2E™ = 4n60V0i(- — o°) — A(VAE™ and GA)2BM = —A(VA)B™
wheredyo is the Kronecker delta which is zero except kot 0. Estimate[(4s) implies for allm € N that

N
2 (IaTAEPIE, + (T B )
0 i=1
1

N N
<2 > (IVA2EMIZ, +1IVA2BMIZ, ) +2 ) 14nVa (- - )iz
i=1

MH

=~
Il

k=0 i=1
N

<2248 (1+Culla?]) ™ Va2,
i=1
where we made use of the properties of the weight ‘W. Note that the right-hand does not depend
onm. Therefore, all the sequenced ()*E™ )merr, (AYAE™)mers, (VA)B™)mert, (A(VAYB™ )mery for
k=0,1and 1< i < N are uniformly bounded ih2,.
Second, we need to show that all the sequendS){E™)merr, (VA)B™)me for k = 0,1 and 1<
i < N decay uniformly at infinity to meet condition (ii) of LemrhadZhzi Define EI(T)Ti, B.(T)Ti)kism =
Xir[p, Fm] for m € N and denote théth charge trajectory — (ql('t"),pl(T)) = (Q+P)M_[p, Fnl(t,0) by

(q(m), pi(m)), 1<i < N. Using Lemma&aZ.4iAii) and afterwards LemniaZ lighwe can write the fields as

(m)
(Efm) 2 ZMgml(E.+T, B, @, PO, +T)

& VA EM: —4gj ™
= ZZ[( ' t)Kth"‘(B(r’n) +Kt¢T*( TgH'T)

i,£T
-V -0s\(p
van [ asienr (3 (0], 331+ 30+ [
wherep(m) =oi(- - qfrt”)) andj;y m . v(p(m))pi,t forallt e R.

We shall show that there IS‘Ié. > 0 such that for alm € N the termand are point-wise zero
on B%.(0) c R3. Recalling the computation rules fi from Lemmd 2. Tz we calculate

Kt | DIX) s < 4T f doy) oi(y — 4.
Br(x)

The right-hand side is zero for atl € R® such thatdBr(x) N suppoi(- — g.7) = 0. Because the charge
distributions have compact support there R a 0 such that supg < Br(0) for all 1 <i < N. Now for any
1<i<Nandme N we have

suppoi(- - o) € Br(@")) € Brir ()
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since the supremum of the velocities of the chargg g4 me ||v(pi(T)|| is smaller or equal one. Hence,
9Br(x) N Brer(a) = 0 for all x € BE(0) with 7 > ||pl| + R+ 2T.

Considerinwe have
(m)
-V -0 )
4nf ds [K_S*( 0 VAS) (Pgh%)] x)
+T JLS

where we used the abbreviation

0
(47) <d4n f ds's f dor(y) IG(Y — G0 lsses
+T

9Bg(x)

R3GR2

(m)
_ [~V —ds\[p

Ji,s

and the computation rules f&& given in Lemma 2. Idm As suppG < suppoi € Bgr(0), the right-hand side
of (@1) is zero for alk € R such that

L) [9Bs() N Br(@TD)] = 0.
se[-T,T]

Now the left-hand side is subset equal

Use 71198909 [ | User-711BR(AD) c Br(X) N Br.r(q?)

which is equal the empty set for adle BS(0) with 7 > ||pl| + R+ 2T.

Hence, setting™* := ||p|| + R+ 2T we conclude that for alt > 7* the termand and all their
derivatives are zero oBS(0) c R3. That means in order to show that all the sequenc%s)(Ei(m))mN,
(VA)BM™)me fork = 0,1 and 1< i < N decay uniformly at spatial infinity, it sfices to show

n N
(48) lim, §S£Z (I ) ™ llzeon + 107D g @zcon) = O
k=0 i=1

for

(m) (m),=
egmy 8 VA E
) =31 (5 %o+

LT

t=0

for 1 <i < N. LetF € C*(R3,R®) andr > 0. By computation rules fo; given in Lemma 2. Tk we then
yield

IV A Ker s Flig e, o) = IKet * VA Fllzee o) < ||T J(: do(y) VAF(-Y)
9B1(0) L3(BE 1 (0))
<T JC do(y) IVAFC=Wlzee o) <T sup IIVAFC =Yl o)
o8 (0) yedBr(0)
g

Pu Pu
<T ?éJF(JO)(l +Callyl) Z IV ARG = lizee o) < T(Q+CuT) 2 IV A Fllz ey
yeobr
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We also estimate using the computation rulesKpgiven in Lemma 2. Jiimthe term

T2
IokKeerlo Fllges oy = | £ do) FC-y)+ 5 f dy aFC-y)
9Br(0) Br(0) L2(BE,+(0))

T2
< JC do(y) IF(- = Yllzee,, o) + 3 desy lAF( = Ylizee., o)
4B7(0) Br(0)
Pu T? Pu
< (1+CuT) 2 [IFllzeeo) + —(1 +CuwT) 2 |IaFlz B0y

SubstitutingF with (VA)E{:* and W A)*B%* fork = 0, 1and 1< i < N in the two estimates above yields

N

M=

(II(V/\)ke.(m)IILgv(ng(o» + “(V/\)kbi(m)||L§V(B§+T(O)))

=
I

0 i=1

<(@+CuT)2 (Il(V/\)kE.(n;)T llz ey + I(VA) B.(T)T ll2 B0+

(49)
T2
+— (Il(V/\)kAE(m)Ti|||_2(B°(0)) + “(V/\)kABi(Z)-i'i”Lﬁ,(BS(O))) +

+T (||(VA)k*1E.<”;)T lzesoy + IOVAY B 12 e cop) )

Now X* lie in A3 ¢ AZ which means that the fields™;* andB{T:* for 1 < i < N fulfill the Maxwell
constraints so that

VA AE R iz sy = IOVAY2E S iz esop + 4l (VAY Vi — Al escop
and

ICVAYAB T Nz sy = IOVA) 2B L ms0)-
Applying Definition[2.36z(iv) yields

im 5u " > [(TAVESE, g + ITAVBEHIE, ) < 1 suplls [P, Pl = 0

TH‘X’meNJ — &

becausé&n, € B/(0) ¢ F2 for all m e N, which implies[48z) by the above estimates. By the above estimate
(49) we conclude that equatidn (48 holds which we proved to be ficient to show the uniform decay at
spatial infinity of all the sequencesI)*E™ )mexr, (VA)B™)men for k = 0,1 and 1< i < N.

Let us summarize using the abbreviatid®" := (VA)E™ andB™ := (vA)B™ for k = 0,1,
1 <i < Nandm e N: First, we have shown that the sequend&&"{)mer, B™)merr, (AE™)mens
and (B™) e are all uniformly bounded 2. Second, we have shown that the sequenES¥Y)me,
(B™) merr, (AE™) et decay uniformly at spatial infinity.

Having this we can now successively apply LenimaR# yield the commor¥,} convergent subse-
quence: Fix 1< i < N. Let (Ei(mo’O))leN be theL.2 convergent subsequence &T”)me and Ei(ml’l))|eN the

L2 convergent subsequence Ei(rf‘o’l))|eN. In the same way we proceed with the other indices iL< N
and the magnetic fields, every time choosing a further sulesez of the previous one. Let us denote the
final subsequence byn()jey € N. Then we have constructed sequen€agXen as well as AGn, )ien Which
are convergent iffy,. However,A on Dy(A) is closed so that this implies convergence@f,)icy in Fn.
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As (Gm)mey Was arbitrary, we conclude that every sequenchlihas anf,; convergent subsequence and
thereforeM is compact which had to be shown. O

Having established the existence of a fixed péirfor all timesT > 0, Newtonian Cauchy data € #
and boundary fieldsX*,;)i<isn = X* € A3, Theoreni Z.4yiii) states that the charge trajectories>

(dits Pit)1<i<n = (Q+ P)M_[p, F]1(t,0) are inTTp’xi, i.e. they are time-like charge trajectories that solve the
WF equations{g)-(ITm) for all timest € R. It remains to show Theorelm 2gwhich ensures that we see
true advanced and delayed interactions between the charges

Definition 2.49 (Partial WF solutions) For Newtonian Cauchy data p # we definefv';,,: to be the set of
time-like charge trajectories ifQi, pi)1<i<n € 7+ Which solve the WF equations in the folmh@4(1 o) for
time te [-L, L] and initial conditions(q;, pi.t)1<i<nli=o = p. We shall call every element 'ﬁ&,F a partial
WEF solution for initial value p.

In order to see that a bWF solutiog; {pi)1<i<n € TTp’Xi is also a partial WF solution we have to regard
the diference

Mo.m [XEers (@i POICE £T) = My, m [(0li, pi)](L, +00)

0 VA —4nv(pi.T)oi(- — Ui+
— (_Vt/\ at ) Kt$T % Xij,:iT + Kt$T " ( (pl,_T)OQI( ql, T))

T -V —0s oi(- —Qis)
o j;oo ds Ko ( 0 V/\) (V(pi,s)Qi (- Qi,s))'

where we used Definition 2.lifi with Theorem Z. T4 as well as Definitiol 2.3#a Whenever the
difference is zero everywhere within the tubes around the positof thej # i charge trajectories for
t € [-L, L], the charge trajectories|i, pi)1<i<n are in‘T\k,F. This is certainly not true for all boundary fields

X* e A3. However, it is the case for the advanced, respectivelydet Liénard-Wiechert fields of any
charge trajectories which continug (pi)i<i<n 0N the time interval T, o), respectively {co, —T], and we
shall show this in the particular case of the Coulomb bounfialdsC, cf. Definition[2.42zz

In fact, for the Coulomb boundary fieldd € A3 N AP we find that the dference discussed above

is for “+” zero everywhere on the backward light-cone of the spaeepwint (T, gir) as well as for =
everywhere on the forward light-cone &fT, g;. -71).

(50)

Lemma 2.50(Shadows of the Boundary Fields and WF fieldspt q,v € R3, o € CZ(R3, R) such that
suppo € Bg(0) for some finite R> 0. Furthermore, lIeE€ be the Coulomb field of a charge at rest at the

origin
z
EC:=fd32 -7 —
ol =2

Thenfor T> R

(51) (_@A Vﬁ:\) Ker s (EC(-O - q)) Koo # (—4m/%(. - q)) -0
and
. Lo e (T o) 0=

forte (-T + R T - R) andx € Byiz1-r(0).
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Proof. Lett € [-T + R T — R]. With regard to the second term we compute

-4y [Keer * o — @)] (9| = 4l |t % T) f do(y) ox — y - q)
0Byt+(0)

< 4nliviiit = TIsuplol f do(y) Leqp(Y)
OByz(Q)

where we used Definitidn Z.i@for Kizt. Now X € Byz1,-r(q) impliesdBy1(q) N Br(x) = @ and hence that
the term above is zero.

With regard to the first term we note that the only non-zerdrioution is 9Kzt * EiC sinceV A E€ = 0.
We shall need the computation rules #r as given in Lemma 2. }dg and in particular equation (i)
which in our case reads

63 [k EC-a]0= f do0)Ex-y-a+eFT f dob) Ex-y-a

aBn;T‘(O) aBIliT\(O)
- 2
69 = f wex-y-0+ 5 £ ¢yaecn-y =18+ [17)
By1/(0) Brem (0)

Using Lebesgue’s theorem we start with

|t=T|
=E°(x—q)+f dsasfda(w ES(x—y — )
0

9Bs(0)

c [t+T]| r 3 c
=E(x—q)+£ dréfdyAE x-y-q).

B/ (0)

Furthermore, we know that & (VA)?E¢ = V(V - EC) — AE® andV - E® = 4m0. So we continue the
computation with

[t+T| r
[16]= Ec(x—q)+f0 dr §fd3y4nV9(X—y—Q)

B:(0)

=T
—E-a)- [ arg [ dow) Yotx-y-a)

9B;(0)

where we have useld (53) to evaluate the derivative and irtiaddised Stoke’s Theorem. Note that the
minus sign in the last line is due to the fact thatcts onx and noty. Inserting the definition of the
Coulomb fieldE€ we finally get

y

16]= [ dyox-y-q) ..
B f ek -y -ds

Bfml 0)
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This integral is zero if, for exampleBlctﬂ‘(q) N Br(X) = 0 and this is the case for € Bi1-r(Q). SO it

remains to show thEIso vanishes. Therefore, usin§® = 47V as before, we get
__ Y x—v-—
- [ ant) Fpetx-y-o.

9By=1/(0)

This expression is zero, for example, whBy-1(q) N Br(X) = 0 which is true forx € By1,-r(q). Hence,
we have shown that fdre (-T + R, T — R) andx € Byz1/(q) the term[(Blim) is zero.

Looking at the support of the integrand and the integratiomain in term[[(GRz) we find that for all
te (-T +R T —R)itis zero for allx € R® such that

(55) | (@Bi-5(3) N Br(as)) = 0.

[>T
Hence, foit € (-T + R, T — R) andx € By1/(q) the term[[5Rz) is also zero which concludes the proofa

REMARK 2.51. This lemma directly applies to theftirence[(5hz) we were discussing before. By looking
at the explicit formulas for the Maxwell solutions given imebreni 2.14m we recognize that this glerence
term is in some sense the free time evolution of the initidgieThis time evolution makes sure that the
initial fields coming from a charge at rest have to make waytiermew fields generated by the current of the
charge during the time intervgkT, T]. This will certainly hold for all boundary fields which areériard-
Wiechert fields of given charge trajectories on the intes\ako, T] and[T, o) not only for the case of a
charge at rest.

Now that we know a big region where thefdrence[(5hz) is zero we have to make sure that the charge
trajectories spend the time intervall], L] there. For this we need a uniform momentum estimate:

Lemma 2.52(Uniform Velocity Bound) For finite T > 0 and r > 0 there is a continuous and strictly
increasingmap® : R* — [0,1), T — v%b such that

sup{Iv(Pioles
for (pig)1<i<n := PM_[p, F](t,0)for all t € R.

te[-T.T]lpll < aF € RangeSPC, lloillz + Iw™gill» < b, 1<i < N} < V2P

Proof. Recall the estimaté (642 from the ML+SI existence and uniqueness Theoltemb@.&hich gives
the following T dependent upper bounds on these ML-SI solutions fap alD,,(A):

(56) sup IMLLI(E O, < C (T lloilliz W™ 2gilliz, 1 < i < N) gy,
te[-T,
Note further that by LemmB 24 sinceC e AL, there is aC,» € Bounds such that fieldsF e
RangeSP® € Dy(A%) fulfil
IFllg, < Cu®(T, lIpll) < CLA(T, a).

Therefore, setting := a + C,,()(T, a) we estimate the maximal momentum of the charges by

sup{uv(pi,t)nRs te[-T,TLIpl < a F € RangeSP®, llaillz + Iw ™ 20illz < b, 1< < N}

< sup{uv(pi,t)uRs te[-T,T] ¢ € Du(A), llgllg, < C llaillz + W 20illz < b 1<i < N}

< Cy(T,b,b,)c=: p?:b < o0.
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Now, sinceC,, as well asC,,Y) are inBounds the mapT pf}’b asR* — R is continuous and strictly
increasing. We conclude that claim is fulfilled for the cteic

ab
Pr

P+ (p39)2

andm = min<j<n [mi. O

=

With this we can formulate our last result, i.e. Theofem®@.4

Proof of Theorerh 2l Let F be a fixed pointF = STp’C[F] which exists by Theoreln 28 Define the
charge trajectoriesy(, pi)1<i<n bY t = (Qis, Pit)i<i<n := (Q + P)M_[p, F](t, 0). By the fixed point properties
of F we know that these trajectories areTrTP’C and therefore solve the WF equatiohsg411m) for
Newtonian Cauchy datp and boundary field€. In order to show that the charge trajectorigs (i) 1<i<n
are also iriTVbF for the givenL we need to show that theftBrence[(5ikzd)

Mg, m [XiEer» (@ I £T) = My, m[(ai, pi)](t, £00)

0 VA . —4nv(p;, i(-—q,
= (_Vt/\ at ) KtIT * xfiT + KtIT * ( (pl iTéQI( o iT))

o fo: ds s (_oV ;is) (V(pi().gi_(-qiszm,s))'

is zero for timeg € [-L, L] at least for all pointx in a tube around the position of thet i charge trajecto-
ries. Lemma& 2. 83@m states that this expression is zero fortadl [-T + R, T — Rl andx € Byiz1-r(i +T). SO

it is sufficient to show that the charge trajectories spend the tineeviak[-L, L] in this particular spacetime
region. Clearly, the positioq? at time zero is iBr_gr(q; »7). Hence, we need to compute the earliest exit
time L of this spacetime region of a charge trajectpiip the worst case. The exit timeis the time when
the jth charge trajectory leaves the regiBps1-r(Qi +7). By Lemma2.5Rzs the charges can in the worst
case move apart from each other with velowﬁyl? during the time interval{T, T]. Putting the origin aq?

we can compute the exit timeby

V2T = 100 - o)l + 2R+ V2L — (T - L)

1-V2°)T— AGmax—2R

This givesL := ¢ T > 0 aslong a®gmax< (1 - v?b)T wich is the case. O
T

APPENDIX A. MissING PRoOFs AND COMPUTATIONS

Computation A.1. Here we compute theitrentiation which was not performed in Theofem Rz &Equa-
tion (29m). At first we compute the derivative éfdefined in[(Zhm). Recall that all entities with a super-
script+ depend ont. Forany k= 1,2, 3

0t = 205X — 2—q*||.

Now

—

Xj — Zj C]j

dullk—z— gl =
2 = Ix=z=qel

(=0kj — 62@}:) =-n - n}: aquj'i

where(dij)1<i,j<3 is the Kronecker delta, i.e. the identity on the spac&¥Yf matrices, and we have used
Einstein’s summation convention (we sum over double isllic®n the other hand, g* = v* d,t*, such
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that we can plug all of these equations together and find

e , 1 N
= * and in return B = K .
l1+n=.vs IXx=z-q* lIx-2z-q*|P(1£n*-v*)
With these formulas at hand it is straightforward to comphterest. Let us drop the superscripin order
to make the following formulas more readable. We find

1 AV +N-VVe—VZNETn-vng n-an

“len-v IXx—z-qll(L+n-v)3 +(1in-v)3'

Let us denote the three integrands on the right-hand sidejofEon [29m) by, and. Plugging
in the above equations we find

-_ n +iv+n-vv—v2n$n-vn+ n-an
S lx—z-dlP@xn-v)2 " fx-z-qlP(dxn-v)®  x-z-gl(Ll£n-v)*
E_ -n-vv . FV2v+(n-v)?v
Clx—z-glP(L£n-v)?  [x-z-qg(l£n-v)

+ -n-an-vv + xn-avn-va
IXx=z-qll(1+n-v)® [x-z-qll(1+n-v)?

and

—a
20| = .
IXx-z-qll(1+n-v)

These three terms add up to the right-hand sidé_dif23Furthermore, let us denote the integrand of the
right-hand side of Equation (3@) by, then

-_ -NAV +vzn/\v¢n-vnAv
Cx—z-glR(1£n-v)2 " |x—z-qlA(1£n-v)3
-n-anAv +nAa

Tk z—al@En-v? " Ix-z- L= n- V)2
which after appropriate insertion of factors of the form n = 0 gives the right-hand side df (R#).

Computation A.2. We only consider the case fore C7°. Substitution 0p by Do € C* for any multi-index
a € N3 yields the desired estimates for the general case for whiththe constants {change according
to Equation[(5B). It sflices to show that for & 2 there exist positive constants,® < co such that

(2 C.™
57 ' f dz 9 < .
®7) [X=2z—=qel"l — 14X — gl

Sinceo € CT(R3, R) there exists a R oo such thasuppe < Bgr(0). So for some > 0 we have

@ j‘s 1|
d =22 23
‘j‘ IX—2z—-qqP TV [22]+[23]

BE(0)NBR(X-) Be(0)NBr(x-01)
which involved a substitution in the integration variaké@d we have used the notatiof(8) := R*\ B.(0).

< suplo(y)| f d®y

B yeR3

For x € B, (qr) the ter is zero and
su 4R
(58) < Rers lo(y)] 3 _. Cis

(x=adl =R™  (Ix-qdl - R"
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On the other hand fox € Br.(q:) ande < R we find

C €
< E—,lfand < 47rf0 drrz" =: C,".

Plugging these estimates in the left-hand sidé dfd$ e find
' f o) | {C— +Cu™  for X € Bree(Q)

IXx-z-all = | getigs  Otherwise
Clearly one finds an appropriate constant@® < co such that
[ 0@ | _ G
X =z—=0ael"l — 1+I[X—qell"
This together with[[34m) gives G := 2(C.,"2 + C,,(™D).
Corollary A.3. LetA andJ be the operators defined in Definitibn 2,84 i.e. the projection of A and J

to field space. Furthermore, for some>n1 let t — AXF; be a continuous map. — Dy(A™K) c 7, for
0 <k<n. Thenitis also true that:

t t t t
0 0 0 0

forallt,r e R.
Proof. By Definition[B.4= we haveA = (0, A) on Dy(A) so thatWw; = (idp, W;) on Dy(A) for all t € R.
Apply LemmdA.4 and — (0, F;) and project to field spacg, to yield the claim. O

Lemma A.4. Let A be the operator defined in Definitidns 8=+ Furthermore, for some & 1 let t — Al
be a continuous maR — Dy,(A") c H,, for 0 < k < n. Then it s true that:

t t t t
Akfds<p5=fdsﬁl<<ps and Wfd3¢s=fdsW¢s
0 0 0 0

forallt,r e R.

Proof. First, we show the equality on the left-hand side of the claBimce the integrands are continuous,
we can define the integrals @8, limits N — oo of the Riemann sums for dlle R

N
t
k _ E Ak i
ON = N = ‘70%]

for k < n. By Lemma 2.20 of Part [[BDD10] the operatéris closed orDy,(A) so thatAX is closed on
Dw(AY). Since ¢ )neaw converge to, sayr® in H, we geto® € D,,(A¥) andA*o® = o% which is exactly the
equality on the left-hand side of the claim.

Second, we show the equality on the right-hand side. Thexgefior anyr, t € R we get

t t t
_rdeWgosz—AW_rfdSthS+W_rdeAthS=O
0 0 0

by the equality on the left-hand side of the claim. Hence,

t t t t
W_rf dS WQDS: f dS(,Ds or er dStpS = f dS W‘ps.
0 0 0 0

This proves the right-hand side of the claim and concludeptbof. O



Wheeler-Feynman Equations for Rigid Charges 42

Proof of Lemm&2.4#1 Since by (i) the sequenc&)ney is uniformly bounded in the Hilbert spade;

the Banach-Alaoglu Theorem states that it has a weakly egamésubsequence i, which we denote by
(Gn)nen- Let the convergence point be denotedfbyg Hj. We have to show that under the assumptions
this subsequence is also strongly convergemfinThe idea is the following: Far away from the origin (ii)
makes sure that the formation of spikes is suppressed whd#aiions can be controlled by the Laplace
which behave nicely by (i). So let> 0 and divide the integration domain fer- 0

lIF - Gn|||_5v <|IF- Gn|||_§v(|3,(o)) +IF - Gn|||_§V(B$(o))-
Now by assumption (ii) we know for large enough it holds for afi € N that
IF = GnllLz g0y < €

By Lemma 2.12 of Part [[BDD10] the norm drf,(B.(0)) is equivalent to the one dr?(B.(0)) so that it
sufices to show that there is &he N such that

(59) IF = Gnllze, o)) < €

for all n > N. Before we do this let us introduce a tool to control possdseillations. We define for any
H e L} the heat kernel

1 lIx - yII?
eH)(X) = h * G := fds ex(— H(y).
EH0) = e G = o | oy exp| == |HO)
Denoting the Fourier transformatieand using Plancherel’s Theorem we find

13- @YHIE = IL-TOFIZ, = [ K IFGOIR (2~ expeic)’

(60) _ .
<[t/ IKHIZ, = 1t 1aHIE,

Hence, we expand by triangle inequality
IF = Gallze, () < 11— €)Gnllize, o) + (1 — €)FllLz@.0) + I(1 — €)(F = Gn)ll2e, (o)

We start with the first term. Using the estimdtel(60) for sreatbught > 0 yields
€
< Vt1aGhllLz.0) < 3

becauseAGn)nay is uniformly bounded irL2, by (i). The same procedure for the second term yield
. . €
< Vt1aGnllz@ o) < VI |Imlﬂf 1AGhll 2B, ) < 3

where we use the lower semi-continuity of the norm and aghirBy weak convergence ib2, we get the
pointwise convergence for atle R3 that

18,009 [¢(F - Gn)| (%)
Furthermore, by Schwarz's inequality we get the estimate
18,009 [¢Gn] (%)

Again the right-hand side is uniformly bounded by (i). Henlog dominated convergence*{Gp)nen cON-
verges inL?(B,(0)) toe*'F. Therefore, for aN € N large enough we have

=I(1 - e)(F - Gn)llLz(e.(0) <

— 0.
R3 n—oo

s S 1, 0)lIhtllL2(8, ) IGnllL2(, (0))-

wlm
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The estimate for the three terms prove cldiml (59). Thus, welode that G)ney is a strongly convergent
subsequence oF)ney in L2, o

AprpPENDIX B. SuMMARY OF PArT |
We briefly summarize the results from Part [ [BDID10] on the BLequations (61)-(Za):
Definition B.1. Let
(61) W= {we C (RS R\ {0}) | ACy € R*, Py € N 1 W(X +y) < (1+ CuliXI)w(y))

be the class of weight functions. For anyevW andQ c R® we define the space of weighted square
integrable function§2 — R3 by

L2(Q,R) := {F Q> RS fd3x WX)IIF(X)|1? < oo}.

For global regularity arguments we need more conditionsteweight functions which for& N gives rise
to the definitions:

(62) W= {weW|IC, eR": D" Vil < C, VW, o] < k]
and
W = {we W |we W for any ke N}.
REMARK B.2. As computed in Part[BDD10], ‘W > w(x) := (1 + ||x]?)~%.
The space of initial values is then given by:

Definition B.3 (Phase Space for the ML Equations of MotiohYye define the Newtonian phase sp&ce-
RSN, the field space

Fuw = L2(R3,R®) @ L2(R3,R®)
and the phase space for the ML equation of motion
Hy =P Fu.
Any elemenp € H,, consists of the componenis= (g, pi, Ei, Bi)i<i<n, i-€. positiong);, momentg; and
electric and magnetic fields;, B; for each of thel < i < N charges.

Wherever not noted otherwise, any spatial derivative willthe rest of this section be understood in the
distribution sense, and the Latin indide§, ... shall run over the charge labels.1N. We shall also need
the weighted Sobolev space§""(R3, R3) := {F € L2(R3,R%) | VAF € LZ(R3, R%)} andHK(R3,R3) = {F e
L2(R3,R3) | D?F € L2(R3,R3) V || < k} for anyk € N. Furthermore, we define the following operators:
Definition B.4 (Operator A) LetA and A be given by the expressions

A =(0.0.A(E.BY),__ = (0.0.-VAE.LV AB))
for a ¢ = (qi, pi, Ei, Bi)1<i<n. The natural domain is given by

1<i<N’

N
Du(A) := P R0 R% @ HIM (B3, R) @ HE(R®,R®) € H.
i=1
Furthermore, for any re N U {co} we define

Dw(A") = {p € Dy(A) | A9 € Dy(A) fork=0,...,n-1}.
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Definition B.5 (Operator J) Together withv(p;) := \/p‘;_mz we define 3 H,, — Dy(A™®) by the expression
o+

N
) = [v(pi), e f d® 0i(x — i) (Ej (x) + v(pi) A Bj(¥), —4nv(pi)ai(- — Gi), 0
=1 1<i<N
foray = (q;, pi. Ei, Bi)1<i<n € Hu.

Note thatJ is well-defined becausg € C2(R3,R). With these definitions the Lorentz force laibdy,
the Maxwell equation$ t6), neglecting the Maxwell constraints, can be collectedhanform

(63) @t = Apt + ()
The two main theorems are:

Theorem B.6(Global Existence and Unigueness for the ML Equatiohg} the spacé,, and the operators
A Dw(A) = Hy, J : Hy — Dw(A®) be the ones introduced in Definitions Be8B.4m and[B.5. Let the
weight function we ‘W and let ne N andg® = (q°, p, E?, BY)1<i<n € Dw(A") be given. Then the following
holds:

(i) (global existenceThere exists an n times continuouslyfelientiable mapping
@0 * R - Hy, t - ¢t = (dit, Pit Eit, Bit)i<isn

such thatg—t’,got € Dy(A™ ) forallt € R and0 < j < n, which solves the ML equatioris[63) for initial
valuegli-o = ¢°.

(ii) (uniguenessYhe solutiony is unique in the sense that if for any interval c R there is any once
continuously dferentiable functiorpy : A — D,,(A) which solves the equatioh (63) @nand there is
somet € A such thafp: = ¢ theng; = ¢ holds for all te A. In particular, for any T> 0 such that
[-T,T] € A there exist G, C,, € Bounds such that

(64) sup llgtllz, < Cus (T llaillz- W 20illz, 1 < i < N) NPl -
te[-T,T]
and
(65) sup llgt = ll, < CanlT gl [Pl o~ Folby
te[-T,

(iii) (constraints)f the solution t— ¢t = (qi, Pit, Eit, Bit)1<i<n 0beys the Maxwell constraints
(66) V- Ei,t = 471'Q( - qi’t), V- Bi,t =0
for one t=t* € R, then they are obeyed for all times R.

Theorem B.7 (Regularity of the ML Solutions) Assume the same conditions as in Thedrerh B.6 hold. In
addition, let we ‘W?2. Lettrs ¢ = (Qit, Pit» Eit» Bit)1<i<n be the solution to the Maxwell equatidng 63 for
initial value ¢li—o = ¢° € Dy(A"). Now let n= 2m for some n& N, then for all1 <i < N:
(i) It holds for any te R thatE;, Biy € H.".
(i) The electromagnetic fields viewed as mdps: (t,x) — Ej«(x) andB; : (t,xX) — Bji(x) are in
L2.(R* R3) and have a representative ¢~2(R*, R®) in their equivalence class, respectively.
(iii)y Forw e WX fork > 2 and every &€ R we have alsd;y, B € HY, and C< oo such that:

(67)  sup)_ ID"Eix()ll < ClEly and sup > ID“Bi (Il < ClIBi g,

3 3
XeR3 |4 1<k XeR? |41<k

As shown in Part I[[BDD10]A on Dy, (A) generates @-contractive group\)icr:
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Definition B.8 (Free Maxwell Time Evolution) We denote by\W,):r they-contractive group orH,, gen-
erated by A on R(A).

REMARK B.9. They-contractive group(W)iez comes with a standard bouriiill¢(zy < €™ which we
shall use often.

The above existence and uniqueness result induces:

Definition B.10 (ML Time Evolution). We define the non-linear operator

t
M : R? X Dy(A) — Dw(A), (t.to. ¢°) = ML(t to)[¢°] = ¢t = Whogt® + f Wi-sJ(¢s)
to
which encodes the time evolution of the charges as well asdleetromagnetic fields from time to time t.

REMARK B.11. Fortimesb,t;,t € R and¢® € Dy (A) it holds

ML(t t0)[¢°] = ML(t, tr) ML (t, to) [ |
by uniqueness.
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