
ar
X

iv
:1

00
9.

31
03

v1
  [

m
at

h-
ph

]  
16

 S
ep

 2
01

0

Wheeler-Feynman Equations for Rigid Charges
CLASSICAL ABSORBER ELECTRODYNAMICS PART II

G. BAUER, D.-A. DECKERT, AND D. D̈URR

Abstract. This is the second part of our mathematical survey on the equations of motion of classicalabsorber
electrodynamics. Here we study the equations of Wheeler-Feynman (WF) electrodynamics, which describe the
interaction of finitely many charges by both the advanced andretarded Liénard-Wiechert fields. These equations
are non-linear and involve retarded as well as advanced arguments and belong to the class of delay (or functional)
differential equations. Such delayed arguments do not permit a direct application of standard PDE techniques.
We introduce a general strategy to handle existence and uniqueness questions for such functional differential
equations. We observe that any WF solution gives rise to a solution to the Maxwell-Lorentz equations without
self-interaction (ML-SI), which are a set of non-linear PDEs without delay that have been studied in Part I.
In other words, WF solutions are special solutions among allsolutions of the ML-SI equations. Hence, WF
solutions arise as solutions to the ML-SI equations for special initial conditions. We employ this observation to
prove existence of strong solutions to the WF equations on finite but arbitrarily large time intervals for any given
Newtonian Cauchy data (i.e. initial positions and momenta of all charges at one time instant). As a byproduct we
also prove existence and uniqueness of strong solutions to the Synge equations on the time half-line for a given
history of charge trajectories. The latter equations are just like the WF equations except that they involve only
interaction via the retarded Liénard-Wiechert fields, i.e. only retarded arguments.
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1. Introduction

In this second part of this survey we study the Wheeler-Feynman (WF) electrodynamics [WF49] which
describes the classical, electrodynamic interaction ofN point-like charges. The idea for this kind of electro-
dynamics ranges back to [Gau45] and was then picked up by [Sch03, Tet22, Fok29]. Later on Wheeler and
Feynman used it to circumvent the self-energy problem (UV divergence) of the Maxwell-Lorentz equations
of classical electrodynamics and with its help gave a derivation of the Lorentz-Dirac equations without the
need of mass renormalization to describe the radiation reaction of the charges [WF45]; as briefly described
in Part I. Furthermore, Wheeler and Feynman also demonstrate that unlike orthodox classical electrodynam-
ics WF electrodynamics is capable of explaining the irreversible effect of radiation. In this work we study
the basic equations of WF electrodynamics and, as a byproduct, also the Synge equations [Pau21, Syn40]
which are close relatives to the WF equations.

In WF electrodynamics the charges are represented byR-parametrized world linesτ 7→ zµi (τ), 1 ≤ i ≤ N,
with values in 3+ 1 dimensional Minkowski spaceM := (R × R3, g) for which we use the metric tensor
g = diag(1,−1,−1,−1). These world lines 1≤ i ≤ N obey the WF equations

mi z̈
µ

i (τ) = ei

∑

k,i

1
2

(
Fµνk,+(zi(τ)) + Fµνk,−(zi(τ))

)
żi,ν(τ)(1)

which describe their interaction via the advanced and retarded Liénard-Wiechert fieldsFk,+, Fk,−, of the
kth charge, respectively, which are antisymmetric second rank tensor fields onM. The parametersmi , 0
denote the masses of the charges andei the coupling constants (their charges). The overset dot denotes a
differentiation with respect to the parametrizationτ of the world line. The Liénard-Wiechert fieldsFk,± are
functionals of the world line of thekth charge and are given explicitly by

Fµνk,± = ∂
µAνk,± − ∂νA

µ

k,± and Aµk,±(x) = ek
żµk(τk,±(x))

(x− zk(τk,±(x)))ν żνk(τi,±(x))
.(2)

The world line parametersτk,± : M→ R are defined implicitly through

z0
k(τk,+(x)) = x0

+ ‖x − zk(τk,+(x))‖ and z0
k(τk,−(x)) = x0 − ‖x − zk(τk,−(x))‖(3)

where we have used the notationx = (x0, x) for an x ∈ M in order to distinguish the time componentx0

from the spatial componentsx ∈ R3. Furthermore,‖ · ‖ denotes the euclidean norm. Given anx ∈ M and a
time-like world line (i.e. żk,µż

µ

k > 0) the solutionsτk,+(x), τk,−(x), are unique and given by the intersection
of the forward, backward, light-cone of space-time pointx and the world-linezk, respectively. Therefore,
for sufficiently regular, time-like world lines the fields (2) are well-defined everywhere onM except on the
world line zk where they diverge, so that, as long as two trajectories do not cross, we can expect the WF
equations (1) to be well-defined. Furthermore, we infer thatthe acceleration on the left-hand side of the WF
equations depends through (3) on advanced as well as retarded data (with respect toτ) of all the other world
lines. This type of equations commonly goes by the name of delay (or functional) differential equations.

Note that the advance and retardation depends on the state ofmotion (sinceFk,± on the right-hand side
of (1) is evaluated atzi(τ)) and is even unbounded, which does not permit the usual PDE notion of local
solutions, and hence, makes it very difficult to study existence and uniqueness of solutions. In fact, the WF
equations as well as other delay differential equations with advanced and retarded arguments appear only
very sparsely in the literature. [Dri77, DWLvG95] provide great overviews to the topic of delay differential
equations. The two basic but unsolved questions connected to the type of delay differential equations studied
here are:
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(1) Do solutions exist?
E.g., do solutions exist for any given Newtonian Cauchy data(i.e. positions and momenta of all
charges at one time instant)?

(2) How can we speak about solutions?
E.g., what kind of data of the solutions is necessary and/or sufficient to characterize them uniquely?

So far only partly answers have been given: While some special but explicit solutions to the WF equations
of motions were found [Sch63], general existence of solutions to these equations has only been settled in the
case of restricted motion of two point particles with equal charge on a straight line in three dimensional space
[Bau97]. There it is shown that all solutions can be characterized by asymptotic positions and momenta. For
the Synge equations, existence in three dimensions has beenstudied in [Ang90]. In a recent work [Luc09]
the Fokker variational principle for two charges in three dimensions is discussed mathematically, which
can be used to yield WF solutions on finite time intervals by specifying starting and ending points of the
two world lines and giving in addition a part of the future of the first charge and a part of the past of the
other charge. For all cases uniqueness remains open. Only conjectures about uniqueness of WF solutions
can be found, e.g. [WF49, DW65, And67, Syn76]. The two main conjectures are that the WF solutions
are uniquely characterized either by Newtonian Cauchy dataor strips of world lines such that every light-
cone of the ending points of one strip has intersections withall other strips. For the one dimensional WF
equations in the case of two equal charges sufficiently far apart existence and uniqueness was shown for
Newtonian Cauchy data with relative initial velocities equal zero in [Dri79]. In [Dec10] a WF toy model
in three dimensions was given in which two equal charges interact only by the advanced as well as delayed
Coulomb forces. For it existence and uniqueness of solutions, which are characterized by world line strips
as described above, can be shown. Further literature is about special analytic solutions [Ste92], numerical
approximation [DW65], and a special case of existence and uniqueness of solutions to the Synge equations
in one dimension[Dri69].

2. Main Results

It is convenient to write the WF equations (1p.2) together with (2p.2) for smeared out charges as a dynamical
system in non-relativistic notation and in a special coordinate frame. In order to avoid a highly technical
study to exclude the improbable (maybe even impossible) cases of crossing of world lines we employ, as in
Part I [BDD10], rigid charges instead of point-like chargesfor which the WF equations stay well-defined
even in the case of two crossing world lines. It should be understood that the point-particle limit of the
WF equations for solutions with non-crossing world lines bare no obstacles as the charges do not acquire
electrodynamic masses. We define the electric and magnetic field of each charge to beEi,t := (F i0(t, ·))1≤i≤3,
Bi,t := (F32

i (t, ·), F13
i (t, ·), F21

i (t, ·)), respectively. In this notation the WF equations take theform

∂tqi,t = v(pi,t) :=
pi,t√

m2
i + p2

i,t

∂tpi,t =

∑

j,i

∫
d3x ̺i(x − qi,t)

(
EWF

j,t (x) + v(qi,t) ∧ BWF
j,t (x)

)(4)

for 1 ≤ i ≤ N and theWF fieldsgiven by one half the sum of the advanced and retarded Liénard-Wiechert
fields (compare (1p.2)):

(
EWF

i,t
BWF

i,t

)
=

1
2

∑

±
4πe±

∫
ds

∫
d3y K±t−s(x − y)

(
−∇̺i(y − qi,s) − ∂s

(
v(pi,s)̺i(y − qi,s)

)

∇ ∧ (
v(pi,s)̺i(y − qi,s)

)
)
.(5)
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Here,K±t (x) := △±(t, x) = δ(‖x‖±t)
4π‖x‖ are the advanced and retarded Green’s functions of the d’Alembert oper-

ator. That the Liénard-Wiechert fields (2p.2) take the form (5) will be shown in Section 2.1p.8. The partial
derivative with respect to timet is denoted by∂t, the gradient by∇, the divergence by∇·, and the curl by
∇∧. We shall use the same notation and terminology as for the ML-SI equations in Part I [BDD10], i.e.
at time t the ith charge for 1≤ i ≤ N is situated at positionqi,t in spaceR3, momentumpi,t ∈ R3 and
carries the classical massmi ∈ R \ {0}. The geometry of the rigid charge is given by the charge distribution
̺i ∈ C∞c (R3,R) for 1 ≤ i ≤ N. Because at one place in this work we speak about the Synge equations we
introduced the coefficientse± which are used to switch from the WF equations withe+ = 1 = e− (which
we shall always use if not otherwise noted) to the Synge equations withe+ = 0, e− = 1. For̺i = δ

(3) one
retrieves the corresponding equations for point charges, i.e. for in the WF case (1p.2)-(2p.2).

Central Observation: Our study is based on the observation that there is an intimate connection be-
tween WF and ML-SI dynamics. To see it, let us consider chargetrajectoriest 7→ (qi,t, pi,t)1≤i≤N that
constitute a solution to the WF equations, i.e. assume they fulfill the Lorentz force law (4p.3) for the
WF fields t 7→ (EWF

i,t ,B
WF
i,t )1≤i≤N given by (5p.3) which are functionals of these charge trajectories. By

definition of the Liénard-Wiechert fields, the WF fields fulfill the Maxwell equations. Hence, the map
t 7→ (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N := (qi,t, pi,t,EWF

i,t ,B
WF
i,t )1≤i≤N gives rise to a solution to the ML-SI equations (ML-

SI stands for Maxwell-Lorentz without self-interaction) which have been studied in Part I [BDD10], i.e. the
Maxwell equations plus the Maxwell constraints

∂tEi,t = ∇ ∧ Bi,t − 4πv(pi,t)̺i(· − qi,t)

∂tBi,t = −∇ ∧ Ei,t

∇ · Ei,t = 4π̺i(· − qt,i)

∇ · Bi,t = 0.
(6)

together with theLorentzequations

∂tqi,t = v(pi,t) :=
pi,t√

m2
i + p2

i,t

∂tpi,t =

N∑

k,i

∫
d3x ̺i(x − qi,t)

[
Ek,t(x) + vi,t ∧ Bk,t(x)

]
.

(7)

On the other hand, clearly not all solutions to the ML-SI equations give rise to charge trajectories that
obey the WF equations. However, we know from Part I [BDD10] that the initial value problem of the
ML-SI equations is well-defined for initial values (p, F) ∈ Dw(A), i.e. in the admitted domain of ini-
tial conditions given by Definition B.4p.43. Hence, given Newtonian Cauchy datap := (q0

i , p
0
i )1≤i≤N and

sufficiently regular initial fieldsF := (E0
i ,B

0
i )1≤i≤N, e.g. at timet0 ∈ R, there exists a unique solution

t 7→ (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N =: ML[p, F](t, t0) to the ML-SI equations; cf. Theorems B.6p.44, B.7p.44 and Defi-
nition B.10p.45. Hence, for fixed Newtonian Cauchy datap one only needs to find special initial fieldsF such
that (p, F) ∈ Dw(A) in order to yield charge trajectories by the ML-SI time evolution that also solve the WF
equations. Such special initial fields can be identified naturally by the following condition:

F = (EWF
i,t ,B

WF
i,t )1≤i≤N |t=t0.(8)

This condition states that the initial fields equal the WF fields at initial timet0. It ensures that the time-
evolved fieldst 7→ (Ei,t,Bi,t)1≤i≤N of the ML-SI solution equal the WF fieldst 7→ (EWF

i,t ,B
WF
i,t )1≤i≤N for all

times because their difference is a solution to the free Maxwell equations which are aset of linear time
evolution equations. Having the equality for all times, (7)turns into the WF equations (4p.3), and hence,
the charge trajectories of the ML-SI solution solve the WF equations. We may therefore turn the question
around and ask: Are there initial conditions for the ML-SI equations that fulfill (8) and thus give rise to
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WF solutions? Since the ML-SI equations are well under control we shall employ an iterative procedure on
ML-SI solutions the fix points of which will indeed be WF solutions.

For the further discussion we resort on the notation and definitions of Part I [BDD10] as summarized in
the Appendix Bp.43. The first result aims at understanding question (2): As discussed in Part I [BDD10], the
“worst” behaving WF trajectoriest 7→ (qi,t, pi,t)1≤i≤N we expect and which we want to also include in our
discussion are the Schild solutions [Sch63] (i.e. charges that revolve each other with circular orbits), and
those are once differentiable, strictly time-like, and have uniformly bounded accelerations and momenta.
The collection of such WF solutions shall be denoted by the set TWF; cf. Definition 2.23p.19. We say “worst”
since for such charge trajectories the acceleration dependent term depending in the Liénard-Wiechert fields
does not decay fast enough for the Liénard-Wiechert fields to be square integrable - the scattering solutions
on the straight line behave better [Bau97]. The missing decay is modulated by the weight functionw. To
emphasize that the WF fields (EWF

i,t , B
WF
i,t ) defined in (5p.3) are functionals of a charge trajectoryt 7→ (qi,t, pi,t)

we employ the notation (EWF
i,t ,B

WF
i,t ) := 1

2

∑
± M̺i ,mi [(qi , pi)](t,±∞), i.e. one half the sum of the retarded and

advanced Liénard-Wiechert fields; theM stands for Maxwell time evolution, cf. 2.17p.14. Similarly, we use
the notationϕt = ML[ϕt0](t, t0) for the strong ML-SI time evolution of the initial dataϕ0 ∈ Dw(A∞) for the
set of sufficiently regular initial data; cf. Definition B.10p.45 and Definition B.4p.43. We prove:

Theorem 2.1(Characterization of WF Solutions). There exists a w∈ W∞ such that the following is true:

(i) Let (qi , pi)1≤i≤N be inTWF and define

(EWF
i,t ,B

WF
i,t ) :=

1
2

∑

±
e±M̺i ,mi [(qi , pi)](t,±∞) and R ∋ t 7→ ϕt := (qi,t, pi,t,EWF

i,t ,B
WF
i,t )1≤i≤N

Then, for any t0 ∈ R it holds thatϕt0 ∈ Dw(A∞) and t 7→ ϕt is a strong solution to the ML-SI equations
with initial valueϕt0 at t = t0, i.e.ϕt = ML[ϕt0](t, t0) for all t ∈ R.

(ii) For each t0 ∈ R the following map is injective:

it0 : TWF → Dw(A∞), (qi , pi)1≤i≤N 7→ (qi,t0, pi,t0,E
WF
i,t0
,BWF

i,t0
)1≤i≤N

where, again, the WF fields are given by(EWF
i,t ,B

WF
i,t ) := 1

2

∑
± M̺i ,mi [(qi, pi)](t,±∞) for all t ∈ R.

This theorem guarantees that all considered WF solutions give rise to sufficient regular initial values for
the ML-SI equations, and that each WF solution is uniquely characterized by their corresponding WF fields
at one time instant. With respect to question (2) it states that we can use special initial data for the ML-SI
initial value problem to speak about the WF solutions. For example, regularity of the WF solution can now
simply be inferred by studying the ML-SI equations; cf. Theorem B.7p.44. In order to prove the theorem above
a detailed study of the strong Maxwell solutions is requiredwhich permits to show thatϕt0 ∈ Dw(A∞), and
which is presented in Section 2.1p.8. Since the charge trajectories oft 7→ ϕt are actually the WF trajectories
(using the discussed connection of the WF and ML-SI equations) we conclude the injectivity of the map
it0 by the uniqueness assertion of the ML-SI equations. The formal proof of the above theorem is given in
Section 2.2p.19.

This first result, however, does neither touch the question what minimal data is necessary to speak about
WF solutions, nor the question of existence of WF solutions.For both one needs to study the range ofit0
which turns out to be very difficult. Before we get to the existence of WF solutions let us explain that the
situation is better for the Synge equations on the time half-line. Given past charge trajectories on the half-line
(−∞, t0] for any t0 ∈ R we can compute the retarded Liénard-Wiechert fields at timet0 and use them together
with the positions and momenta at timet0 as initial data for the ML-SI dynamics. This way we get existence
and uniqueness of solutions to the Synge equations on the half-line [t0,∞). The reason why this scenario
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behaves much better than the one in the case of the WF equations is that the notion of local solutions from
PDE theory again makes sense as there is no interaction from the future. The given past charge trajectories
on (−∞, t0] simply act as external fields. Hence, as a byproduct of the WFanalysis one gets:

Theorem 2.2(Existence and Uniqueness of Synge Solutions). Let TSY be defined asTWF except that its
elements fulfill the Synge equations instead of the WF equations. Furthermore, for any time interval I⊂ R
letT▽(I ) be the collection of all families of once differentiable and strictly time-like charge trajectories.

(i) Theorem 2.1p.5 also holds for the case of the Synge equations, i.e. for the choice of e+ = 0, e− = 1 and
TWF replaced byTSY.

(ii) For any t0 ∈ R and any family of charge trajectories(q−, p−) ∈ T▽((−∞, t0]) that fulfills the Synge
equations at time t0 there exist a unique extension(q+, p+) ∈ T▽([t0,∞)) such that the concatenation

(q, p)(t) =


(q−, p−)(t) for t ≤ t0
(q+, p+)(t) for t > t0

(9)

is a once differentiable onR and solves the Synge equations for t≥ t0.

Clearly, in the case of the Synge equations one only needs past trajectory strips such that all backward
light-cones of the charges at timet0 have intersection points with all other trajectory strips in order to main-
tain uniqueness. If we ask for solutions to the Synge equations on wholeR we again face the problem that
the notion of local solutions makes no sense as the delay is unbounded. A reasonable way around this is to
give initial conditions fort0 → ∞ as in [Bau97]. It seems that this way one should even be able tomaintain
uniqueness.

For the WF equations question (1), i.e. getting an existenceresult, turns out to be much more difficult.
Having the above characterization of WF solutionsTWF by the mapit0 in mind, we ask the following: for
any T > 0 and for any given but strictly time-likeshape of charge trajectorieswith uniformly bounded
acceleration and momenta in the future [T,∞) and in the past (−∞,T], as well as given Newtonian Cauchy
data p = (q0

i , p
0
i )1≤i≤N ∈ R6N at time zero, do WF solutions on [−T,T] exist? With “shape of charge

trajectories” we mean a prescription to smoothly (or even differentiably) continue the WF solution on [−T,T]
to wholeR. A simple example of such a prescription is the straight linefrom the positions of each charge at
time±T to ±∞ with constant velocity equal the one of the respective one a time±T. The shape of future
and past charge trajectories is encoded in form of their advanced and retarded Liénard-Wiechert fieldsX+i,T
andX−i,−T , respectively, which depend on the WF solution on [−T,T] in order to be able to connect smoothly.
We shall refer to these fields as boundary fields and express them as functions of the initial values (p, F) of
the ML-SI equations that corresponds to the WF solution on [−T,T], i.e. (p, F) 7→ X±i,±T [p, F].

In view of the preliminary discussion of this section the task is to find ML-SI solutionst 7→ (qi,t, pi,t,

Ei,t,Bi,t)1≤i≤N = ML[p, F](t, 0) whose initial fieldsF fulfill the discussed condition (8p.4) adapted to the given
boundary fieldsX±i,±T :

(Ei,t,Bi,t)|t=0 =
1
2

∑

±
M̺i ,mi [X

±
i,±T , (qi, pi)](0,±T)(10)

where the notationt 7→ (Et,Bt) = M̺i ,mi [F, (q, p)](t, t0) denotes the Maxwell solution subject to the charge
trajectoryt 7→ (qt, pt) having initial value (Ei,t,Bi,t)|t=t0 = F at timet0; cf. Definition 2.16p.14 and Theorem
2.14p.12. Note that fort0 → ∞ the Maxwell time evolution forgets its initial valuesXi as we show in Theorem
2.18p.14, so that in the limit we haveM̺i ,mi [(qi , pi)](t,±∞) = lim t0→±∞ M̺i ,mi [Xi, (qi , pi)](t, t0). Hence in the
limit T → ∞ the condition (10) turns into the discussed condition (8p.4).

Using the discussed connection of between the WF and ML-SI equations, the question of existence of
WF solutions on [−T,T] can be rephrased in the question of existence of special initial fields for the ML-SI
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initial value problem. It seems natural to construct such initial fields by iteration of the mapSp
T :

INPUT: F = (E0
i ,B

0
i )1≤i≤N for any fields such that (p, F) ∈ Dw(A∞).

(i) Compute the ML-SI solution [−T,T] ∋ t 7→ (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N := ML[p, F](t, 0).
(ii) Compute the advanced and retarded fields

(Ẽi,t, B̃i,t) =
1
2

∑

±
M̺i ,mi [X

±
i,±T , (qi , pi)](t,±T)

given by the Maxwell time-evolved boundary fieldsX±i,±T subject to the just computed charge trajecto-
riest 7→ (qi,t, pi,t) for 1 ≤ i ≤ N

OUTPUT: Sp,X±

T [F] := (Ẽi,t, B̃i,t)1≤i≤N |t=0.

Clearly any fixed point (EWF
i,t ,B

WF
i,t )1≤i≤N of this map fulfills the equations (4p.3) together with

(EWF
i,t ,B

WF
i,t ) =

1
2

∑

±
M̺i ,mi [X

±
i,±T , (qi , pi)](t,±T), for 1 ≤ i ≤ N(11)

which turn into (5p.3), and thust 7→ (qi,t, pi,t)1≤i≤N into a WF solutions with Newtonian Cauchy datap either
for T → ∞, or if by chance the boundary fieldsX±i,±T are already the correct WF fields. For finiteT the
WF equations are only satisfied for on time interval [−T,T] where the future and past ends of these strips
interact with the prescribes future and past charge trajectories corresponding to the boundary fieldsX±i,±T ,
respectively. We shall prove:

Theorem 2.3(Existence of WF Solution for Finite Times). Let Newtonian Cauchy data p∈ P be given.
For the maps Sp,X

±

T for finite T > 0 as defined in Definition 2.40p.25 the following is true:

(i) For any boundary fields X± ∈ ALip
w and T sufficiently small, Sp,X±

T has a unique fixed point.

(ii) For any boundary fields X± ∈ A3
w and finite T> 0, the map Sp,X

±

T has a fixed point.

where the classes of boundary fieldsA3
w andALip

w are given in Definition 2.36p.24 which both include the
case of the discussed example of the straight lines as shown in Lemma 2.43p.27. In fact, these classes have
been chosen general enough to also include advanced or retarded Liénard-Wiechert fields corresponding
to any strictly time-like future and past charge trajectories shapes with uniformly bound acceleration and
momenta which at least connect smoothly to the position trajectoryt 7→ qi,t of the respective charges; thanks
to to the introduction of the weightw as explained in Part I [BDD10]. The strategy behind the proofis
(i) an application of Banach’s fixed point Theorem for small timesT and (ii) an application of Schauder’s
fixed point Theorem [Eva98, Chapter 9, Theorem 3, p.502] for all finite times T. The basic ingredient in
the proof is that the range ofSp,X±

T on the Hilbert spaceFw :=
⊕N

i=1 L2
w ⊕ L2

w (cf. Definition B.3p.43) can be
bounded by a uniform constant depending only onT and p as shown in Lemma 2.46p.30. By the Banach-
Alaoglu Theorem this already gives weak compactness. Furthermore, the maximal support in space-time of
the fields produced by the charge trajectories on [−T,T] is compact by the finiteness of the speed of light.
Within this set of space-time we have good control over the fields as well as their spacial derivative so that
the weak compactness already implies strong compactness. How the fields behave on the complementary
set of space-time depends on the regularity of the boundary fields only which are therefore assumed to be
as good as needed (while not ruling out reasonable cases likethe future and past straight lines). We shall in
Section 2.3p.21 show thatSp,X±

T restricted to the convex hull of its range is a well-defined and continues self-
map, which by Schauder’s Theorem guarantees the existence of a fixed pointF and therewith the existence
of a WF solution on [−T,T] for given Newtonian Cauchy datap and given boundary fieldsX±.
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Recall that the Synge solutions on the time half-line [t0,∞] for times sufficiently close tot0 give only
rise to interactions with the given past trajectories on [−∞, t0]. In a sense for such small times one solves
an external field problem only. Not until larger times the interaction becomes truly retarded. In the worst
case, if a charge approaches the speed of light too fast it could even happen that the time coordinate of the
intersection of its backward light-cone with another charge trajectory is bounded. That would mean this
charge will never interact with the part of the other chargestrajectory beyond that maximal time. If this
maximal time is already smaller equalt0 we would again only solve an external field problem and would not
see any truly retarded interaction. Such a scenario is of course so special that one would generally not expect
it (especially since we have existence and uniqueness of theSynge solutions for as large times bigger thant0
as we want). For the WF equations, however, we want to be more careful and study these situations in order
to appreciate Theorem 2.3. For the WF solutions we give the shape of the charge trajectories for [−∞,−T]
as well as [T,∞]. If the WF solution on [−T,T] does anything crazy like described above we might end up
solving only an external field problem as the charge trajectories on [−T,T] only “see” the given past and
future shapes of charge trajectories. The following resultmakes sure that at least for some solutions this is
not the case since on an interval [−L, L] with 0 < L ≤ T they interact exclusively with the charge trajectories
on [−T,T] and not with the given boundary fields. We prove:

Theorem 2.4. Choose a, b,T > 0 and Coulomb boundary fields X± = C as defined in Definition 2.42p.27.
Let further R> 0 be the smallest radius such thatsupp̺ i ⊆ BR(0). Then, the velocities of all charges of any
ML − S I solution with any initial data Newtonian Cauchy data p andany initial fields F such that

‖p‖ ≤ a, ‖̺i‖L2
w
+ ‖w−1/2̺i‖L2 ≤ b, F ∈ RangeSp,X±

T

have an upper boundva,b
T with ‖va,b

T ‖ < 1. For Newtonian Cauchy data p= (q0
i , p

0
i )1≤i≤N = p one defines the

maximal distance between the initial positions of the charges△qmax(p) := max1≤i, j≤N ‖q0
i − q0

j ‖. Hence, we
can arrange Newtonian Cauchy data p and a maximal charge radius R such that

L := max


(1− va,b

T )T − △qmax− 2R

1+ va,b
T

,T



is positive. Any fixed point F∗ of Sp,X±

T gives rise to ML-SI solutions that do not only solve the WF equations
(4p.3)-(11p.7) with boundary fields X± but also the WF equations (4p.3)-(5p.3) without boundary fields.

For the assumed Coulomb boundary fields (for times|t| > T the charges are at rest) this result is shown by
direct computation using harmonic analysis and a very roughGrönwall estimate from the ML-SI dynamics.
Its conditions are therefore quite restrictive but merely technical. Any uniform velocity estimate makes this
result redundant as thenT can just be chosen arbitrarily large to ensure positivity ofL. For two charge of
equal sign and restricted to a straight line such an estimateis given for point-like charges in [Bau97]. We
expect such a bound also without the restriction to a straight line. However, without such a uniform velocity
bound this result already ensures that by Theorem 2.3p.7 we really see true advanced and retarded interaction
between the charges of the WF solutions at least for some choices of Newtonian Cauchy data and charge
densities.

2.1. Strong Solutions to the Maxwell Equations. In this section we give the explicit representation for-
mulas for strong solutionst 7→ (Et,Bt) to the Maxwell equations given a charge trajectory or charge-current
density which will be frequently used in both of the following sections.

Definition 2.5 (Charge Trajectories). We shall call any map

(q, p) ∈ C1(R,R3 × R3), t 7→ (qt, pt)
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a charge trajectory whereqt denotes the position andpt the momentum of the charge with mass m, 0. We
collect all time-like trajectories in the set

T 1
∨ :=

{
(q, p) ∈ C1(R,R3 × R3)

∣∣∣∣∣ ‖v(pt)‖ < 1 for all t ∈ R
}
,

and all strictly time-like trajectories in the set

T 1
▽

:=
{
(q, p) ∈ T 1

∨

∣∣∣∣∣ ∃vmax< 1 such thatsup
t∈R
‖v(pt)‖ ≤ vmax

}

wherev(p) := p√
m2+p2

. We shall also use the notationT# := ×N
i=1T 1

# for the N-fold Cartesian product where

# is a placeholder for∨ or ▽. Furthermore, two charge trajectories are equal if and onlyif their positions
and momenta are equal for all times.

Definition 2.6 (Charge-Current Densities). We shall call any pair of mapsρ : R × R3 → R, (t, x) 7→ ρt(x)
andj : R × R3 → R3, (t, x) 7→ j t(x) a charge-current density whenever:

(i) For all x ∈ R3: ρ(·)(x) ∈ C1(R,R) and j (·)(x) ∈ C1(R,R3).
(ii) For all t ∈ R: ρt, ∂tρt ∈ C∞(R3,R) andj t, ∂tj t ∈ C∞(R3,R3).
(iii) For all (t, x) ∈ R × R3: ∂tρt(x) + ∇ · j t(x) = 0 which we call continuity equation.

We denote the set of such pairs(ρ, j ) byD.

We shall also need the following connection between charge trajectories and charge-current densities:

Definition 2.7 (Induced Charge-Current Densities). For ̺ ∈ C∞c (R3,R) and (q, p) ∈ T 1
∨ we call (ρ, j ) ∈ D

defined by

ρt(x) := ̺(x − qt) and j t(x) :=
pt√

m2 + p2
t

̺(x − qt)

for all (t, x) ∈ R × R3 the̺ induced charge-current density of(q, p) with mass m.

The Maxwell equations including the Maxwell constraints for a given charge-current density (ρ, j ) ∈ D
read:

Ėt = ∇ ∧ Bt − 4πj t

Ḃt = −∇ ∧ Et.

∇ · Et = 4πρt

∇ · Bt = 0.
(12)

The class of fields (Et,Bt) we are interested in is:

Definition 2.8 (Space of the Fields). F 1 := C∞(R3,R3) ⊕ C∞(R3,R3).

The class of solutions to these Maxwell equations we want to study is characterized by:

Definition 2.9 (Maxwell Solutions). Let t0 ∈ R and F0 ∈ F 1. Then any mapping F: R → F 1, t 7→ Ft :=
(Et,Bt) that solves (12) for initial value Ft|t=t0 = F0 is called a solution to the Maxwell equations with t0

initial value F0.

The explicit representation formulas are constructed withthe help of:

Definition 2.10(Green’s Functions of the d’Alembert). We set

K±t (x) :=
δ(‖x‖ ± t)

4π‖x‖
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whereδ denotes the one-dimensional Dirac delta distribution. Furthermore, for every f∈ C∞(R3) we define

K±t ∗ F(x) =



0 for ± t > 0

t
>
∂B|t|(x)

dσ(y)F(y) := t
∫
∂B|t|(x)

dσ(y) F(y)
4πt2 otherwise

In the next lemma we collect useful properties of these Green’s functions.

Lemma 2.11(Green’s Functions Properties). The distributions K±t introduced in Definition 2.10p.9 have the
following properties:

(i) For any f ∈ C∞(R3) the mapping(t, x) 7→ [K±t ∗ f ](x) is in C∞((R \ {0}) × R3), �K±t ∗ f = 0 for t , 0
and for any n∈ N

lim
t→0∓

(
∂2n

t K±t ∗ f
∂2n+1

t K±t ∗ f

)
=

(
0
∓△n f

)
.(13)

(ii) For any f ∈ C∞(R3) and Kt =
∑
± ∓K±t the mapping(R \ {0})×R ∋ (t, x) 7→ [K±t ∗ f ](x) is continuously

extendable to a C∞(R × R3) function. Furthermore,�Kt ∗ f = 0 for all t ∈ R.
(iii) Let R3 × R ∋ (x, t) 7→ ft(x) be a map that is for each fixedx ∈ R3 an once continuously differentiable

function and for each fixed t∈ R infinitely often differentiable then the following estimates hold for an
R≥ |t|:

‖[Kt ∗ ft](x)‖ ≤ R sup
y∈∂BR(x)

‖ ft(y)‖ and ‖[Kt ∗ ft](x)‖ ≤ sup
y∈∂BR(x)

(
‖ ft(y)‖ + R2

3
‖△ f (y)‖

)

Furthermore, for all n∈ N it is true that

lim
t→0

Kt ∗ ft = 0 and lim
t→0
∂tKt ∗ ft = f0.

Proof. A straightforward computation yields

K±t ∗ f = ∓t
?

∂B∓t(0)

dσ(y) f (· − y)(14)

∂tK
±
t ∗ f = ∓

?

∂B∓t(0)

dσ(y) f (· − y) ∓ t2

3

?

B∓t(0)

d3y △ f (· − y)(15)

∂2
t K±t ∗ f = K±t ∗ △ f = △K±t ∗ f .(16)

(i) Therefore, the first and second derivatives exist with respect tot, while the second derivative can be
written as a spacial derivative onf . By induction one easily computes all combinations ofx andt derivatives
and finds that the mapping (t, x) 7→ [K±t ∗ f ](x) is inC∞

(
(R \ {0}) × R3

)
. With (14), (15), (16) and induction

in N together with Lebesgue’s differentiation theorem one finds (13). (ii) With (i) we need to show that for
any f ∈ C∞(R3) the limits ofKt ∗ f and∂tKt ∗ f from the right and from the left exist and agree att = 0.
The former case is clear because the limit is zero. Regardingthe latter we observe

lim
t→0+
∂tKt ∗ f = lim

t→0+
∂tK

−
t ∗ f = f = − lim

t→0−
∂tK

+

t ∗ f = lim
t→0−
∂tKt ∗ f .

lim t→0�Kt ∗ f = 0 is a special case of the above. (iii) The estimates are the immediate consequence of (14)
and (15). The limits can be computed by

lim
t→0

∥∥∥[Kt ∗ ft](x)
∥∥∥ ≤ lim

t→0

∥∥∥[Kt ∗ ( ft − f0)](x)
∥∥∥+ lim

t→0

∥∥∥[Kt ∗ f0](x)
∥∥∥
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where the second term is zero by (i). For everyx ∈ R3, ft(x) is continuous int, therefore choosingt small
enough andR> |t| we obtain

lim
t→0

∥∥∥[Kt ∗ ( ft − f0)](x)
∥∥∥ ≤ Rlim

t→0
sup

y∈Bδ(x)
‖ ft(y) − f0(y)‖ = 0.

Similarly, we find

lim
t→0

∥∥∥[∂tKt ∗ ft](x) − f0(x)
∥∥∥ ≤ lim

t→0

∥∥∥[∂tKt ∗ ( ft − f0)](x)
∥∥∥+ lim

t→0

∥∥∥[∂tKt ∗ f0](x) − f0(x)
∥∥∥

while, again, the second term is zero by (ip.10). The same continuity argument as above gives

lim
t→0

∥∥∥[∂tKt ∗ ( ft − f0)](x)
∥∥∥ ≤ lim

t→0
sup

y∈Bδ(x)

(
‖ ft(y) − f0(y)‖ + R2

3
‖△ ft(y) − △ f0(y)‖

)
= 0

which concludes the proof. �

REMARK 2.12. In the future we will always denote this continuous extension by the same symbol Kt. It is
often called thepropagatorof the homogeneous wave equation.

A simply consequence of this lemma is:

Corollary 2.13 (Kirchoff’s formula). A solution t 7→ At of the homogeneous wave equation�At = 0 for
initial value At|t=0 = A0 and∂tAt|t=0 = A0, for A0, Ȧ0 ∈ C∞(R3), is given by

At = ∂tKt ∗ A0
+ Kt ∗ Ȧ0(17)

The next result gives explicit representation formulas of the Maxwell equations (12p.9). These formulas
can be constructed by the following line of thought: In the distribution sense every solution to the Maxwell
equations (12p.9) is also a solution to

�

(
Et

Bt

)
= 4π

(
−∇ρt − ∂tj t

∇ ∧ j t

)

for initial values

(Et,Bt)
∣∣∣
t=t0
= (E0,B0) as well as ∂t(Et,Bt)

∣∣∣
t=t0
= (∇ ∧ B0 − 4πj t0,−∇ ∧ E0).(18)

Using the abbreviationF#
t = (E#

t ,B
#
t ), using # as placeholder for future superscripts, and with the help of

the Green’s functions from Definition 2.10p.9 we can easily guess the general form of any solution to these
equations which is given by:

Ft = Fhom
t +

∫ ∞

−∞
ds K±t−t0−s ∗

(
−∇ρt0+s − ∂sj t0+s

∇ ∧ j t0+s

)
(19)

where any homogeneous solutionFhom
t fulfills �Fhom

t = 0. Considering the forward as well as backward
time evolution we regard two different kinds of initial value problems:

(i) Initial fields F0 are given at some timet0 ∈ R ∪ {−∞} and propagated to a timet > t0.
(ii) Initial fields F0 are given at some timet0 ∈ R ∪ {+∞} and propagated to a timet < t0.

The kind of initial value problem posed will then determineFhom
t and the corresponding Green’s function

K±t . For (i) we shall useK−t and for (ii) K+t which are uniquely determined by�K±t = δ(t)δ
3 andK±t =

0 for ± t > 0. Without a proof we note at least for time-like charge trajectories and∓(t − t0) > 0

�

∫ 0

±∞
ds K±t−t0−s ∗

(
−∇ρt0+s − ∂sj t0+s

∇ ∧ j t0+s

)
=

∫ 0

±∞
ds�K±t−t0−s ∗

(
−∇ρt0+s − ∂sj t0+s

∇ ∧ j t0+s

)
= 0
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by Lemma 2.11p.10. Terms of this kind will simply be added to the homogeneous solution while here we
denote this sum by the same symbolFhom

t . This way we arrive at two solution formulas. One being suitable
for our forwards initial value problem, i.e.t − t0 > 0,

Ft = Fhom
t + 4π

∫ t−t0

0
ds K−t−t0−s ∗

(
−∇ρt0+s − ∂sj t0+s

∇ ∧ j t0+s

)
,

and the other suitable for the backwards initial value problem, i.e.t − t0 < 0,

Ft = Fhom
t + 4π

∫ 0

t−t0

ds K+t−t0−s ∗
(
−∇ρt0+s − ∂sj t0+s

∇ ∧ j t0+s

)
.

As a last step one needs to identify the homogeneous solutions which satisfy the given initial conditions
(18p.11). With Corollary 2.13p.11 we have given the explicit representation formula:

Fhom
t :=

(
∂t ∇∧
−∇∧ ∂t

)
Kt−t0 ∗ F0.

Therefore, using the definition ofKt =
∑
± ∓K±t and a substitution in the integration variable, we finally

arrive at the expression fort ∈ R:

Ft =

(
∂t ∇∧
−∇∧ ∂t

)
Kt−t0 ∗ F0

+ Kt−t0 ∗
(
−4πj t0

0

)
+ 4π

∫ t

t0

ds Kt−s ∗
(
−∇ρs − ∂sj s

∇ ∧ j s

)
.

Theorem 2.14(Maxwell Solutions). Let (ρ, j ) ∈ D be a given charge-current density.
(i) Given (E0,B0) ∈ F 1 fulfilling the Maxwell constraints∇ · E0

= 4πρt0 and∇ · Bt0 = 0, then for any
t0 ∈ R the mapping t7→ Ft = (Et,Bt) with

(
Et

Bt

)
:=

(
∂t ∇∧
−∇∧ ∂t

)
Kt−t0 ∗

(
E0

B0

)
+ Kt−t0 ∗

(
−4πj t0

0

)
+ 4π

∫ t

t0

ds Kt−s ∗
(
−∇ −∂s

0 ∇∧

) (
ρs

j s

)

for all t ∈ R is F 1 valued, infinitely often differentiable and a solution to the Maxwell equations (12p.9) with
t0 initial value F0.

(ii) Furthermore, if for fixed t0, t∗ ∈ R andx∗ ∈ R3 it holds that

Kt−t0 ∗ ̺t0 = 0 and Kt−t0 ∗ j t0 = 0(20)

for all t ∈ B1(t∗) and x ∈ B1(x∗), then statement (i) restricted to such(t, x) is also true for initial fields
(E0,B0) = 0.

Proof. The regularity for the first two terms is given by Lemma 2.11p.10. The third term is well-defined by
Definition 2.6p.9. Lemma 2.11p.10 states that its integrand is infinitely often differentiable int andx. As the
integral goes over a compact set it inherits the regularity from the integrand. In the following we treat both
cases (i) and (ii) together. We shall frequently commute spatial differential operators with integrals which
is justified because the integrals go over compact sets and the integrand is continuously differentiable. It is
convenient to make partial integrations in the third term first to yield:

Kt−t0 ∗
(
−4πj t0

0

)
+ 4π

∫ t

t0

ds Kt−s ∗
(
−∇ −∂s

0 ∇∧

) (
ρs

j s

)
= 4π

∫ t

t0

ds

(
−∇ −∂t

0 ∇∧

)
Kt−s ∗

(
ρs

j s

)
.

The spatial partial integrations hold by Definition 2.10p.9. The partial integration ins holds as, according
to Lemma 2.11p.10, the boundary terms give 4π[Kt−s ∗ j s]s=t

s=t0 = −4πKt−t0 ∗ j t0. Next we verify the Maxwell
constraints. At first for the electric field:

∇ · Et = ∂tKt−t0 ∗ ∇ · E0
+ 4π

∫ t

t0

ds
[−△Kt−s ∗ ρs − ∂tKt−s ∗ ∇ · j s

]
.
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Applying the continuity equation, cf. 2.6p.9, in the last term we get

. . . = ∂tKt−t0 ∗ ∇ · E0
+ 4π

∫ t

t0

ds
[−△Kt−s ∗ ρs + ∂tKt−s ∗ ∂sρs

]

After a partial integration in the last term we find

. . . = ∂tKt−t0 ∗ ∇ · E0
+ 4π

[
∂sKt−s ∗ ρs

]s=t
s=t0 + 4π

∫ t

t0

ds�Kt−s ∗ ρs.

Lemma 2.11p.10 identifies the middle term 4π
[
∂sKt−s ∗ ρs

]s=t
s=t0 = 4πρt − 4π∂tKt−t0 ∗ ρt0 and states that the last

term is zero. Therefore,

. . . = ∂tKt−t0 ∗ ∇ · E0 − 4π∂tKt−t0 ∗ ρt0 + 4πρt.

In the case (i) we have∇ · E0
= 4π̺t0 and the first two terms cancel each other. In the case (ii) these two

terms are identically zero because of (20p.12). Hence, we get for both cases∇ · Et = 4πρt. Second, for the
magnetic field we immediately get∇ · Bt = ∂tKt−t0 ∗ ∇ · B0 = 0 because in the case (i)∇ · B0 = 0 and in the
case (ii)B0 = 0. Therefore, the Maxwell constraints are fulfilled in both cases. Next we verify the rest of
the Maxwell equations:

1 :=

(
∂t −

(
0 ∇∧
−∇∧ 0

)) (
Et

Bt

)
=

(
△ + ∇ ∧ (∇ ∧ ·) 0

0 △ + ∇ ∧ (∇ ∧ ·)

)
Kt−t0 ∗

(
E0

B0

)

+ 4π∂t

∫ t

t0

ds

(
−∇ −∂t

0 ∇∧

)
Kt−s ∗

(
ρs

j s

)
− 4π

∫ t

t0

ds

(
0 ∇ ∧ (∇ ∧ ·)
0 ∂t∇∧

)
Kt−s ∗

(
ρs

j s

)

=: 2 + 3 + 4

where we have used Equation (16p.10) from Lemma 2.11p.10 in the first term, which together with∇ · B0
= 0

further reduces to

2 = ∇Kt−t0 ∗
(
∇ · E0

0

)
.

The time derivative in the second term gives

3 = 4π∂t

∫ t

t0

ds

(
−∇ −∂t

0 ∇∧

)
Kt−s ∗

(
ρs

j s

)
= 4π

(
−∇ −∂t

0 ∇∧

)
Kt−s ∗

(
ρs

j s

)∣∣∣∣∣∣
s→t

+ 4π
∫ t

t0

ds

(
−∂t∇ −∂2

t
0 ∂t∇∧

)
Kt−s ∗

(
ρs

j s

)

where Lemma 2.11p.10 states that the first term on the right-hand side equals−4π

(
j t

0

)
. Therefore, with∇ ∧

(∇ ∧ ·) = ∇(∇ · (·)) − △ we yield

1 = ∇Kt−t0 ∗
(
∇ · E0

0

)
+

(
−4πj t

0

)
+ 4π

∫ t

t0

ds

(
−∂t∇ −� − ∇(∇·)

0 0

)
Kt−s ∗

(
ρs

j s

)
.

According to Lemma 2.11p.10, the term involving the� is zero. Inserting the continuity equation for the
current, i.e. ∇ · j t = −∂tρt, together with another partial integration in the last term, the electric (first)
component of this vector equals

. . . = −4πj t +
(
∇Kt−t0 ∗ ∇ · E0

+ 4π
[
Kt−s ∗ ∇ρs

]s=t
s=t0

)
.
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Again, by Lemma 2.11p.10 the braket yields

Kt−t0 ∗ ∇ · E0 − 4πKt−t0 ∗ ∇ρt0

In the case (i)∇ · E0
= 4πρt0 so that both terms cancel while in case (ii) both terms are identically zero by

E0
= 0 and (20p.12). Hence,

1 =

(
−4πj t

0

)
,

and, thus,t → (Et,Bt) solves the Maxwell equations (12p.9). The initial values can be computed with Lemma
2.11p.10 (

Et

Bt

) ∣∣∣∣∣
t=t0
= lim

t→t0

(
∂t ∇∧
−∇∧ ∂t

)
Kt−t0 ∗

(
E0

B0

)
=

(
E0

B0

)
.

�

REMARK 2.15. Clearly one needs less regularity of the initial values in order to get a strong solution.
However, we will only need initial values inF 1. The explicit formula of the solutions (after the additional
partial integration as noted in the beginning of the proof) was already found in[KS00][(A.24),(A.25)]1

where it was derived with the help of the Fourier transform.

Theorem 2.14p.12 gives rise to the following definition:

Definition 2.16 (Maxwell Time Evolution). Let (ρ, j ) be the̺ ∈ C∞c (R3,R) induced charge-current density
of a given a charge trajectory(q, p) ∈ T 1

∨ with mass m, 0, cf. Definition 2.7p.9. Then denote the solution
t 7→ Ft of the Maxwell equations given by Theorem 2.14p.12 corresponding to(ρ, j ) and t0 initial values
F0
= (E0,B0) ∈ F 1 by

t 7→ M̺,m[F0, (q, p)](t, t0) := Ft.

The second result of this section puts the well-known Liénard-Wiechert field formulas of time-like charge
trajectories on mathematical rigorous grounds.

Definition 2.17(Liénard-Wiechert Fields). Let (q, p) ∈ T 1
▽

be a strictly time-like charge trajectory and(ρ, j )
the̺ ∈ C∞c (R3,R) induced charge-current density for some mass m, 0, cf. Definitions 2.5p.8 and 2.7p.9. Then
we define

t 7→ M̺,m[(q, p)](t,±∞) := 4π
∫ t

±∞
ds Kt−s ∗

(
−∇ −∂s

0 ∇∧

) (
ρs

j s

)

which we call the advanced and retarded Liénard-Wiechert fields of the charge trajectory(q, p).

That this definition makes sense for charge trajectories inT 1
▽

as the Maxwell time evolution forgets its
asymptoticF 1 initial data is part of the content of the next theorem:

Theorem 2.18(Liénard-Wiechert Fields). Let (q, p) ∈ T 1
▽

be a strictly time-like charge trajectory and(ρ, j )
the ̺ ∈ C∞c (R3,R) induced charge-current density for some mass m, 0, cf. Definitions 2.5p.8 and 2.7p.9.
Furthermore, let F0 = (E0,B0) ∈ F 1 be fields which fulfill the Maxwell constraints∇ · E0

= 4πρt0 and
∇ · Bt0 = 0 as well as

‖E0(x)‖ + ‖B0(x)‖ + ‖x‖
3∑

i=1

(
‖∂xi E

0(x)‖ + ‖∂xi B
0(x)‖

)
= O
‖x‖→∞

(‖x‖−ǫ)(21)

1There seems to be a misprint in equation [KS00][(A.24)]. However, (A.20) from which it is derived is correct.
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for someǫ > 0. Then for all t∈ R
M̺,m[(q, p)](t,±∞) = pw-limt0→±∞ M̺,m[F0, (q, p)](t, t0)

= 4π
∫ t

±∞
ds

[
Kt−s ∗

(
−∇ −∂s

0 ∇∧

) (
ρs

j s

)]
=

∫
d3z ̺(z)

(
ELW±

t (· − z)
BLW±

t (· − z)

)(22)

is inF 1 for

ELW±
t (x − z) :=

[
(n ± v)(1− v2)

‖x − z− q‖2(1± n · v)3
+

n ∧ [(n ± v) ∧ a]
‖x − z− q‖(1± n · v)3

]±
(23)

BLW±
t (x − z) := ∓[n ∧ Et(x − z)]±(24)

and

q± := qt± v± := v(pt±) a± := v̇±

n± := x−z−q±

‖x−z−q±‖ t± = t ± ‖x − z− q±‖.(25)

In this contextpw-lim denotes the point-wise limit inR3.

For the proof we need the following lemma:

Lemma 2.19. Given a strictly time-like charge trajectory(q, p) ∈ T 1
▽

and a function f onR3 with suppf ⊆
BR(0) for some R> 0 andx∗ ∈ R3 there exists a Tmax> 1 so that

Kr ∗ f (· − qt±r ) = 0

for all x ∈ B1(x∗) and |r | > Tmax.

Proof. Since

Kr ∗ f (· − qt±r ) = r
?

∂B|r |(x)

dσ(y) f (y − qt±r )

this expression is zero if∂B|r |(x) ∩ BR(qt±r ) = ∅. On the one hand, forx ∈ B1(x∗), y ∈ ∂B|r |(x) gives

‖x − y‖ ≥ ‖x∗ − y‖ − ‖x − x∗‖ < |r | − 1.(26)

In the following we consider|r | > 1 such that the right-hand side above is positive. On the other hand, if
y ∈ BR(qt±r ), we have

‖x − y‖ ≤ ‖x∗ − qt±r‖ + 1+ ‖qt±r − y‖ ≤ ‖x∗ − qt±r‖ + 1+ R≤ ‖x∗ − qt‖ + 1+ vmax|r | + R.

The last estimate is due to the strictly time-like nature of the charge trajectory; cf. Definition 2.5p.8. Com-
bining this estimate with (26) we get∂B|r |(x) ∩ BR(qt±r ) = ∅ whenever

|r | > max

{
1,
‖x∗ − qt‖ + 2+ R

1− vmax

}
=: Tmax.

�

Proof of Theorem 2.18p.14. Fix t ∈ R andx ∈ R3. By Theorem 2.14p.12 for everyt0, t ∈ R

M̺,m[F0, (q, p)](t, t0) :=

(
∂t ∇∧
−∇∧ ∂t

)
Kt−t0 ∗

(
E0

B0

)
+ Kt−t0 ∗

(
−4πj t0

0

)

+ 4π
∫ t

t0

ds Kt−s ∗
(
−∇ −∂s

0 ∇∧

) (
ρs

j s

)
=: 5 + 6 + 7



Wheeler-Feynman Equations for Rigid Charges 16

is in F 1. At first we show that fort0 → ±∞ the terms 5 and 6 vanish with the help of (21p.14), which
ensures that there is a constant 1≤ C1 < ∞ such that for‖x‖ large enough

‖E
0(x)‖ + ‖B0(x)‖ + ‖x‖

3∑

i=1

(
‖∂xi E

0(x)‖ + ‖∂xi B
0(x)‖

)
 ‖x‖

ǫ ≤ C1.

By Definition 2.10p.9 and for large enought0 we get:

∥∥∥[∇ ∧ Kt−t0 ∗ E0](x)
∥∥∥ ≤ |t − t0|

?

∂B|t−t0|(x)

dσ(y)

∥∥∥∇ ∧ E0(y)
∥∥∥
∥∥∥y

∥∥∥1+ǫ

∥∥∥y
∥∥∥1+ǫ

≤ |t − t0|
?

∂B1(0)

dσ(y)
C1∥∥∥x − |t − t0|y

∥∥∥−(1+ǫ)
≤ C1|t − t0|

(|t − t0| − ‖x‖)1+ǫ

R−−−−−→
t0→±∞

0

where the constantC1 < ∞ is given by (21p.14). By Equation (15p.10) we have

∥∥∥[∂tKt−t0 ∗ E0](x)
∥∥∥ ≤

?

∂B|t−t0|(x)

dσ(y) ‖E0(y)‖ + |t − t0|
?

∂B1(0)

dσ(y) ‖y · ∇E0(x − |t − t0|y)‖.

Let againt0 be sufficiently large. The first term on the right-hand side equals
?

∂B|t−t0|(x)

dσ(y)
‖E0(y)‖ ‖y‖ǫ
‖y‖ǫ ≤ C1

(|t − t0| − ‖x‖)ǫ
R−−−−−→

t0→±∞
0,

while the second term is smaller or equals

|t − t0|
?

∂B1(0)

dσ(y)

∑3
i=1 ‖∂xi E

0(x − |t − t0|y)‖ ‖x − |t − t0|y‖1+ǫ

‖x − |t − t0|y‖1+ǫ

≤ C1|t − t0|
(|t − t0| − ‖x‖)1+ǫ

R−−−−−→
t0→±∞

0.

Next we show that in the limitt0 → ±∞ the term 6 also vanishes. As (q, p) is a time-like charge trajectory
we can apply Lemma 2.19p.15 for r = t − t0 which yields

‖[Kt−t0 ∗ j t0](x)‖ = 0

for large enough|t0|. Therefore, we can conclude that term 6is zero fort0 large enough. The same holds
with E0 replaced byB0, and therefore we find

lim
t0→±∞

7 = 4π
∫ t

±∞
ds

[
Kt−s ∗

(
−∇ −∂s

0 ∇∧

) (
ρs

j s

)]
(x) =

(
M̺,m[(q, p)](t,±∞)

)
(x)

= 4π
∫ ∞

0
dr

[
Kr ∗

(
−∇ −∂t

0 ∇∧

) (
ρt±r

j t±r

)]
(x) =

∫
d3y

(
−∇ −∂t

0 ∇∧

)
ρ(x − y − qt±‖y‖)

‖y‖

(
1

vt±r

)

=:

(
E±t (x)
B±t (x)

)
.

(27)
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Let us first compute the electric fields

E±t (x) =
∫

d3y

[−∇ρ(x − y − qt±‖y‖)

‖y‖ +
vt±‖y‖ · ∇ρ(x − y − qt±‖y‖) vt±‖y‖

‖y‖

−
ρ(x − y − qt±‖y‖) at±‖y‖

‖y‖

]
.

In order to simplify this expression we make a transformation of the integration variable:

y→ z(y) := x − y − qt±‖y‖(28)

Here, we use that (q, p) ∈ T 1
▽

is a strictly time-like charge trajectory. We observe thatz(·) is a diffeomorphism
because, first, it is bijective since for supt∈R ‖vt‖ ≤ vmax< 1 the equationy(z) = x − z− qt±‖y(z)‖ has a unique
solutiony(z) for all z ∈ R3 which is given by{q±} = ⋃

r≥0 (∂Br(x − z) ∩ {qt±r }), i.e. the intersection of the
charge trajectory and the forward, respectively backward,light cone ofx−z. And second,z(·) is continuously
differentiable with (∂yi z j(y))1≤i, j≤3 = −δi j ± v j,t±‖y‖

yi

‖y‖ such that it has a non-zero determinant which equals

(−1± vt±‖y‖ · y
‖y‖ ), again because supt∈R ‖vt‖ ≤ vmax< 1, and therefore the inverse ofz(·) is also continuously

differentiable. In order to make the notation more readable we shall use the abbreviations (25p.15). We then
get

E±t (x) =
∫

d3z
−∇ρ(z) + v± · ∇ρ(z) v± − ρ(z) a±

‖x − z− q±‖(1± n± · v±)

=

∫
d3z ρ(z)

[
∇z

1
‖x − z− q±‖(1± n± · v±) −

3∑

k=1

∂zk

v±k v±

‖x − z− q±‖(1± n± · v±)

− a±

‖x − z− q±‖(1± n± · v±)

]
.

(29)

after a partial integration. Note that for this we only need almost everywhere differentiability. Doing the
same for the magnetic field yields

B±t (x) =
∫

d3z ρ(z)

[
−∇ ∧ v±

‖x − z− q±‖(1± n± · v±)

]
(30)

After a tedious but not really interesting computation(seeComputation A.1p.39) one finds that Equation
(22p.15) holds. Since we can represent the Maxwell solution by a convolution with a̺ ∈ C∞c (R3,R) function
it is immediate thatF±t ∈ F 1. This concludes the proof. �

REMARK 2.20. Condition (21p.14) guarantees that in the limit t0 → ±∞ the initial value F0 are forgotten
by the time evolution of the Maxwell equations. Note that in order to compute the Liénard-Wiechert fields the
strictly time-like nature of the charge trajectory is sufficient for the limit to exists t0 → ±∞. This condition
could be softened into an integrability condition for more generalρ and j , e.g. one must only demand that
the right-hand side of (27p.16) is finite. However, the Liénard-Wiechert fields for time-like charge trajectories
would then in general not be given by (22p.15) since (28) does not have to be bijective anymore. This fact is
indicated by the blow up of the factors(1± n · v)−3 in Equation (23p.15) for v→ 1.

Theorem 2.21(Liénard-Wiechert Fields Solve the Maxwell Equations). Let (q, p) ∈ T 1
▽

be a strictly time-
like charge trajectory and(ρ, j ) the̺ ∈ C∞c (R3,R) induced charge-current density for some mass m, 0,
cf. Definitions 2.5p.8 and 2.7p.9. Then the Liénard-Wiechert fields M̺,m[(q, p)](t,±∞) are a solution to the
Maxwell equations (12p.9) including the Maxwell constraints for all t∈ R.
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Proof. (ρ, j ) is the̺ ∈ C∞c (R3,R) induced charge-current density of the strictly time-likecharge trajectory
(q, p) ∈ T 1

▽
. Hence, for anyt ∈ R

ρt = ̺(· − qt) and j t = v(pt)̺(· − qt).

Therefore, Lemma 2.19p.15, for the choicer = t − s, states that for allt∗ ∈ R andx∗ ∈ R3 there exists a
constant 1< Tmax< ∞ such that: For allt ∈ B1(t∗) andx ∈ B1(x∗)[

Kt−s ∗
(
ρs

j s

)]
(x) = 0 if |s| > T := Tmax+ |t∗| + 1.

This allows for anyt ∈ B1(t∗) andx ∈ B1(x∗) to rewrite Equation (27p.16) into
(
M̺,m[(q, p)](t,±∞)

)
(x) =

(
E±t (x)
B±t (x)

)
= 4π

∫ t

±∞
ds

[
Kt−s ∗

(
−∇ −∂s

0 ∇∧

) (
ρs

j s

)]
(x)(31)

= 4π
∫ t

±T
ds

[
Kt−s ∗

(
−∇ −∂s

0 ∇∧

) (
ρs

j s

)]
(x).(32)

So, fort0 = ±T, the right-hand side of (31) equals

Kt−t0 ∗
(
−4πj t0

0

)
+ 4π

∫ t

t0

ds

[
Kt−s ∗

(
−∇ −∂s

0 ∇∧

) (
ρs

j s

)]
(x)

which by Theorem 2.14p.12(ii) solves the Maxwell Equation including the Maxwell constraints 12p.9 for all
t ∈ B1(t∗) andx ∈ B1(x∗). Sincet∗ ∈ R andx∗ ∈ R3 are arbitrary, the Maxwell Equation including the
Maxwell constraints are fulfilled for allt ∈ R andx ∈ R3 which concludes the proof. �

From their explicit expressions we immediately get a simplebound on the Liénard-Wiechert fields:

Corollary 2.22 (Liénard-Wiechert estimate). Let (q, p) ∈ T 1
▽

be a strictly time-like charge trajectory and
(ρ, j ) the ̺ ∈ C∞c (R3,R) induced charge-current density for some mass m, 0, cf. Definitions 2.5p.8 and
2.7p.9. Furthermore, assume there exists an amax< ∞ such thatsupt∈R ‖∂tv(pt)‖ ≤ amax, we then get a simple
estimate for the Liénard-Wiechert fields for allx ∈ R3, t ∈ R and multi-indexα ∈ N3:

‖DαE±t (x)‖ + ‖DαB±t (x)‖ ≤ C2
(α)

(1− vmax)3

(
1

1+ ‖x − qt‖2
+

amax

1+ ‖x − qt‖

)

for
(
E±i
B±i

)
:= M̺,m[(q, p)](t,±∞),

a family of finite constants(C2
(α))α∈N3 and vmax as defined in Definition 2.5p.8.

Proof. From Theorem 2.18p.14 we know that for this sub-light charge trajectory the Liénard-Wiechert fields
take the form (

E±i (x)
B±i (x)

)
=

∫
d3z ̺(x − z)

(
ELW±

i (z)
BLW±

i (z)

)
.(33)

As the integrand is infinitely often differentiable inx and has compact support, the derivatives for any multi-
indexα ∈ N3 are given by

DαF±t (x) =
∫

d3z Dα̺i(x − z)

(
E±i (z)
B±i (z)

)
.

First, we take a look at (23p.15) and (24p.15) for givenx ∈ R3 andt ∈ R. As we have a strictly time-like charge
trajectory (q, p) ∈ T 1

▽
, ‖x − z− q±‖ is the smallest if we assume the worst case, i.e. that from time t on the
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rigid charge moves into the future (respectively into the past) with the speed of light towards the pointx− z.
Therefore,‖x − z− q±‖ ≤ 1

2‖x − z− qt‖ and, hence,

‖BLW±
t (x − z)‖ + ‖ELW±

t (x − z)‖ ≤ 2
(1− vmax)3

[
1

‖x − z− qt‖2
+

amax

‖x − z− qt‖

]±
(34)

because supt∈R ‖vt‖ ≤ vmax< 1. The rest is straightforward computation (see Computation A.2p.40). �

2.2. Unique Characterization by ML-SI Cauchy Data. The goal of this section is to prove Theorem 2.1p.5

which states that a class of solutions to the WF equations canbe uniquely characterized by ML-SI Cauchy
data, i.e. positions, momenta and fields at one time instant.Using the results of Section 2.1p.8 we can give a
sensible definition of what we mean by solutions to the WF equations (4p.3) and (5p.3). We restrict the class
of possible WF solutions to:

Definition 2.23 (Class of WF solutions). Let TWF denote the set of strictly time-like charge trajectories
(qi , pi)1≤i≤N ∈ T▽ with masses mi , 0, 1 ≤ i ≤ N and with the properties:

(i) There exists an amax < ∞ such thatsupt∈R ‖∂tv(pi,t)‖ ≤ amax, i.e. the accelerations of the charges are
bounded.

(ii) for all times t ∈ R solve the WF equations (4p.3) and (5p.3).

REMARK 2.24. (i) Note that this definition is sensible because with(qi , pi)1≤i≤N ∈ T▽, equations (5p.3) for
1 ≤ i ≤ N can by Definition 2.17p.14 be rewritten as:

(EWF
i,t ,B

WF
i,t ) =

1
2

∑

±
M̺i ,mi [(qi , pi)](t,±∞).

Theorem 2.18p.14 guarantees that the right-hand side is well-defined. Furthermore, charge trajectories inT 1
▽

are once continuously differentiable so that the left-hand side of (4p.3) is also well-defined. The bound on the
acceleration will give us a bound on the WF fields in a suitablenorm; see Lemma 2.26p.20.

(ii) Furthermore, it is highly expected thatTWF is non-empty for two reasons: 1. In the point particle
case there are explicit solutions to the WF equations known,i.e. the Schild solutions[Sch63]and the solu-
tions of Bauer’s existence theorem[Bau97], which yield strictly time-like charge trajectories with bounded
accelerations. 2. Physically, one would expect that in general scattering solutions have accelerations that
decay at t→ ±∞.

For the proof of Theorem 2.1p.5 we need the following two lemmas. First, we give an example ofa suitable
weightw inW∞.

Lemma 2.25(Explicit Expression for the Weightw). For x 7→ w(x) := (1− ‖x‖2)−1 it holds w∈ W∞; cf.
Equation (62p.43).

Proof. As computed in Part I [BDD10]w is inW. Thus, it is left to show that thisw is also inWk for any
k ∈ N. To see this let us consider

0 = Dα
(
w(x)(1+ ‖x‖2)

)

=

α1,α2,α3∑

k1,k2,k3=0

(
α1

k1

) (
α2

k2

) (
α3

k3

)
∂
α1−k1

1 ∂
α2−k2

2 ∂
α3−k3

3 w(x)∂k1

1 ∂
k2

2 ∂
k3

3 (1+ ‖x‖2)

= (Dαw(x)) (1+ ‖x‖2) +
3∑

i=1

αi

(
∂
αi−1
i w(x)

)
2xi +

3∑

i=1

1
2
αi(αi − 1)

(
∂
αi−2
i w(x)

)
2
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whereα = (α1, α2, α3) ∈ N3 is a multi-index. This leads to the recursive estimate

|Dαw(x)| ≤ w(x)


3∑

i=1

2αi

∣∣∣∂αi−1
i w(x)

∣∣∣ |xi | +
3∑

i=1

αi(αi − 1)
∣∣∣∂αi−2

i w(x)
∣∣∣


in the sense that terms involving∂l for negativel equal zero. Hence, the left-hand side can be bounded by
lower derivatives, and therefore, by induction over the multi-indexα, we get constantsCα < ∞ such that
|Dαw(x)| ≤ Cαw(x). Furthermore, from the computation

Dαw(x) = Dα
(√

w(x)
√

w(x)
)
=

α1,α2,α3∑

k1,k2,k3=0

(
α1

k1

) (
α2

k2

) (
α3

k3

)
∂
α1−k1
1 ∂

α2−k2
2 ∂

α3−k3
3

√
w(x)∂k1

1 ∂
k2
2 ∂

k3
3

√
w(x)

and withIα := {k ∈ N3 | 0 ≤ ki ≤ αi , i = 1, 2, 3} \ {(0, 0, 0), α} we get the recursive formula
∣∣∣∣Dα

√
w(x)

∣∣∣∣ ≤
1
2

[
Cα

√
w(x) +

1
√

w(x)

∑

(k1,k2,k3)∈Iα

(
α1

k1

) (
α2

k2

) (
α3

k3

)
×

×
∣∣∣∣∂α1−k1

1 ∂
α2−k2
2 ∂

α3−k3

3

√
w(x)

∣∣∣∣
∣∣∣∣∂k1

1 ∂
k2
2 ∂

k3

3

√
w(x)

∣∣∣∣
]
.

where we have used the above established estimate|Dαw(x)| ≤ Cαw(x). Again, the left-hand side can be
bounded by lower derivatives, and therefore, by induction over the multi-indexα, we yield finite constants
Cα such that also|Dα

√
w| ≤ Cαw. Therefore,w ∈ Wk for anyk ∈ N and, thus,w ∈ W∞. �

Second, we show that this weightw decays quickly enough such that all Liénard-Wiechert fields of strictly
time-like charge trajectories inT 1

▽
with bounded accelerations lie inDw(A∞).

Lemma 2.26 (Regularity of the Liénard-Wiechert Fields). Let (qi , pi)1≤i≤N ∈ T 1
▽

with masses mi , 0,
1 ≤ i ≤ N, and assume there exists an amax< ∞ such thatsupt∈R ‖∂tv(pi,t)‖ ≤ amax. Define t7→ (Ei,t,Bi,t) :=
M̺i ,mi [(qi , pi)](t,±∞). Then there exists a w∈ W∞ such that for anyqi , pi ∈ R3, 1 ≤ i ≤ N, it is true that

(qi , pi ,Ei,t,Bi,t)1≤i≤N ∈ Dw(A∞), for all t ∈ R.

Proof. The charge trajectories are inT 1
▽

and therefore strictly time-like. Furthermore, they have bounded
accelerations. Therefore, by Corollary 2.22p.18, for 1 ≤ i ≤ N and each multi-indexα ∈ N3 there exists a
constantC2

(α) < ∞ such that

‖DαE±i,t(x)‖ + ‖DαB±i,t(x)‖ ≤ C2

(1− vmax)3

(
1

1+ ‖x − qt‖2
+

amax

1+ ‖x − qt‖

)
.

Hence, forw(x) = 1
1+‖x‖2 we get

∥∥∥An(qi,t, pi,t,E±i,t,B
±
i,t)

∥∥∥Hw
≤

N∑

i=1

∑

|α|≤n

(
‖qi,t‖ + ‖pi,t‖ +

∫
d3x w(x)

(
‖DαE±i,t(x)‖2 + ‖DαB±i,t(x)‖2

))

which is finite, so that for anyt ∈ R we haveϕt ∈ Dw(A∞). �

We finally come to the proof of Theorem 2.1p.5.

Proof of Theorem 2.1p.5 (Characterization of WF Solutions).(i) First, as the charge trajectories fulfill the
WF equations (4p.3), they also fulfill the Lorentz force law (7p.4). Second, by Theorem 2.21p.17 the fields
(E±i,t,B

±
i,t) solve the Maxwell equations including the Maxwell constraints, both given in the set of equations

(6p.4). Therefore,t 7→ ϕt is a solution to the ML-SI equations, i.e. the coupled set of equations (7p.4) plus
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(6p.4). By Lemma 2.26 for anyt0 we yieldϕt0 ∈ Dw(A∞) so that the existence assertion of Theorem B.6p.44

states that there is a solutiont 7→ ϕ̃t of the ML-SI equations withϕt0 = ϕ̃t0 while the uniqueness assertion of
that theorem states that ifϕt0 = ϕ̃t0 for any t0 ∈ R, we haveϕt = ϕ̃t for all t ∈ R. Therefore, we conclude
ϕt = ϕ̃t = ML[ϕt0](t, t0) for all t ∈ R.

(ii) Let (qi , pi)1≤i≤N, (̃qi , p̃i)1≤i≤N ∈ TWF and t0 ∈ R. Defineϕt := (qi,t, pi,t,EWF
i,t ,B

WF
i,t )1≤i≤N and ϕ̃t :=

(̃qi,t, p̃i,t, ẼWF
i,t , B̃

WF
i,t )1≤i≤N for all t ∈ R as in (i). By Lemma 2.26p.20 there is aw ∈ W∞ such thatϕt0 , ϕ̃t0 ∈

Dw(A∞) and therefore the range ofit0 is a subset ofDw(A∞). From (i) we know in addition that for allt ∈ R,
ϕt = ML[ϕt0](t, t0) andϕ̃t = ML[ϕ̃t0](t, t0). Assume (qi , pi)1≤i≤N , (̃qi , p̃i)1≤i≤N, i.e. there existt ∈ R such that
we have (qi,t, pi,t)1≤i≤N , (̃qi,t, p̃i,t)1≤i≤N. For sucht we have thenML[ϕt0](t, t0) = ϕt , ϕ̃t = ML[ϕ̃t0](t, t0).
The uniqueness assertion of Theorem B.6p.44 then statesϕt0 , ϕt0. By constructionϕt0 = it0((qi , pi)1≤i≤N and
ϕ̃t0 = it0 (̃qi , p̃i)1≤i≤N. Henceit0 : TWF → Dw(A∞) is injective. �

REMARK 2.27. Note that the weight function w could be chosen to decay faster than the choice in Lemma
2.25p.19. This freedom allows to generalize Theorem 2.1p.5 also for possible WF solutions whose acceleration
is not bounded but may grow with t→ ±∞. This is due to the fact that growth of the accelerationa in
equations (22p.15) can be suppressed by the weight w. However, by the conditions of Theorem B.6p.44 the
weight w must be at least inW1 one can only allow the accelerationa to grow slower than exponentially.

As byproduct we can use the same technique to provide global existence and uniqueness to the Synge
equations:

Proof of Theorem 2.2p.6 (Existence and Uniqueness of Synge Solutions).(i) is proven in exact the same way
as 2.1p.5(i) as the proof holds for any linear combination of Liénard-Wiechert fields.

(ii) Define the fields (ESY
i,t0
,BSY

i,t0
)1≤i≤N := M̺i ,mi [(q

−
i , p

−
i )](t0,−∞) by Theorem 2.18p.14. By (i) these fields

fulfill

ϕ0 := (q−i,t0, p
−
i,t0,E

SY
i,t0
,BSY

i,t0
)1≤i≤N ∈ Dw(A∞).

Define (q+i,t, p
+

i,t,Ei,t,Bi,t)1≤i≤N := ML[ϕ0](t, t0) for t ≥ t0; see Definition B.10p.45. Concatenate the past and
future pieces of the charge trajectories according to (9p.6). For (i) one needs to check (q, p) ∈ C1 which is
guaranteed by Theorem B.6p.44and the fact that the Synge equations hold at timet0. For (ii) let us consider the
difference between (Ei,t,Bi,t)1≤i≤N and (ESY

i,t ,B
SY
i,t )1≤i≤N := M̺i ,mi [(q

−
i , p

−
i )](t0,−∞) for t ≥ t0. By Theorem

B.6p.44 and Theorem 2.21p.17 this difference solves the homogeneous Maxwell equations fort ≥ t0 for initial
value 0. Hence, this difference is zero for all timet ≥ t0 from what we infer that

∂tp+i,t =
∑

j,i

∫
d3x ̺i(x − q+i,t)

(
E j,t(x) + v(q+i,t) ∧ B j,t(x)

)

=

∑

j,i

∫
d3x ̺i(x − q+i,t)

(
ESY

j,t (x) + v(q+i,t) ∧ BSY
j,t (x)

)

for t ≥ t0 which concludes the proof as the uniqueness follows by the uniqueness of the ML-SI equations;
see Theorem B.6p.44. �

2.3. Existence of WF Solutions on Finite Time Intervals.We shall now come to the question of existence
of WF solutions. We shall formalize the mapSp,X±

T and prove the existence of a fixed point. The proof will
rely on the explicit expressions of the Maxwell fields of ML-SI solutions given in Theorem B.6p.44 in terms
of the Kirchoff’s formulas given in Section 2.1p.8. Therefore, we inserted a small intermediate paragraph
before the main proof which will provide all necessary formulas.

Once and for all we fix the parameters:
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Definition 2.28 (Global Definition ofw, ̺i , mi andei j ). To the very end of this chapter we fix the charge
distributions̺i ∈ C∞c (R3,R) such thatsupp̺ i ⊂ BR(0) ⊂ R3 for one finite R> 0 and the masses mi , 0,
1 ≤ i ≤ N. Furthermore, we choose a weight w∈ W∞ for which Theorem 2.1p.5 holds.

The Maxwell Fields of the Maxwell-Lorentz Dynamics. This intermediate section is supposed to bring
quickly together the solution theories of the ML-SI equations, cf. Theorem B.6p.44, on Dw(A) and the
Maxwell equations (Section 2.1p.8) on F 1. In particular, it will provide explicit formulas for the Maxwell
solutions expressed by (Wt)t∈R andJ on a suitable domain. We recall the Newtonian phase spaceP = R6N,
the space of weighted square integrable fieldsFw, the phase spaceHw = P ⊕ Fw of the Maxwell-Lorentz
equations, cf. Definition B.3p.43, the definition of the operatorA on Dw(A) ⊂ Hw, cf. Definition B.4p.43, as
well as the one of the operatorJ onHw, cf. Definition B.5p.44. In order not to blow up the notation we use
the following:

Notation 2.29(ProjectorsP, Q, F). For anyϕ = (qi , pi ,Ei ,Bi)1≤i≤N ∈ Hw we define the projectorsQ, P, F by

Qϕ = (qi , 0, 0, 0)1≤i≤N, Pϕ = (0, pi, 0, 0)1≤i≤N, Fϕ = (0, 0,Ei,Bi)1≤i≤N.

Wherever formal type errors do not lead to ambiguities we sometimes forget about or add the zero compo-
nents and write, e.g.,

(qi , pi)1≤i≤N = (Q + P)ϕ or (qi , pi , 0, 0)1≤i≤N = (Q + P)(qi , pi)1≤i≤N.

As we now treatN fields simultaneously, we need to extendF 1, cf. Definition 2.8p.9, according to:

Definition 2.30(Space ofN Smooth Fields). F :=
⊕N

i=1C∞(R3,R3) ⊕ C∞(R3,R3).

Furthermore, we recall thatA is the generator of aγ contractive group (Wt)t∈R on Dw(A) which was the
content of Definition B.8p.45 and its preceding lemma. Since we shall mainly work in field spaces, we need
the projections of the operatorsA,Wt andJ onto field spaceFw:

Definition 2.31(Projection ofA,Wt, J to Field SpaceFw). For all t ∈ R andϕ ∈ Hw we define

A := FAF, Wt := FWtF and J := FJ(ϕ).

The natural domain ofA,Wt is given by Dw(A) := FDw(A) ⊂ Fw. We shall also need Dw(An) := FDw(An) ⊂
Fw for every n∈ N ∪ {∞}. Clearly, the operatorA on Dw(A) is also closed and inherits also the resolvent
properties from A on Dw(A). Furthermore, this implies(Q + P)Wt = idP andFWt = Wt so that(Wt)t∈R is
also aγ contractive group on the smaller space Dw(A). Finally, note also that by the definition of J we have
J(ϕ) = J((Q + P)ϕ) for all ϕ ∈ Hw, i.e. J does not depend on the field componentsFϕ.

The following corollary translates the explicit Kirchoff formulas for free Maxwell solutions computed in
Section 2.1p.8 into the language of the group (Wt)t∈R. We have used Kirchoff’s formulas for initial fields in
F while the group (Wt)t∈R operates onDw(A). Therefore, by uniqueness, we expect to be able to express
free Maxwell solution generated by the group by Kirchoff’s formulas as long as the initial conditions come
fromF ∩ Dw(A).

Corollary 2.32 (Kirchoff’s formulas in terms of (Wt)t∈R). Let w ∈ W1, F ∈ Dw(An) ∩ F for some n∈ N,
and

(Ei,t,Bi,t)1≤i≤N := WtF, for all t ∈ R.
Then (

Ẽi,t

B̃i,t

)
=

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗

(
Ei,0

Bi,0

)
−

∫ t

0
ds Kt−s ∗

(
∇∇ · Ei,0

∇∇ · Bi,0

)
.
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fulfill Ei,t = Ẽi,t andBi,t = B̃i,t for all t ∈ R and1 ≤ i ≤ N in the L2
w sense. Furthermore, for all t∈ R it holds

also that(Ei,t,Bi,t)1≤i≤N ∈ Dw(An) ∩ F .

Proof. By the group propertiesWtF ∈ Dw(An) and by Definition 2.31p.22 and B.4p.43

∂tWtF = AWtF = (0, 0,∇∧ Bi,t,−∇ ∧ Ei,t)1≤i≤N.

Since (Ei,0,Bi,0) ∈ F , a straight-forward computation together with the properties ofKt from Lemma 2.11p.10

yields

8 =

(
∂t −

(
0 ∇∧
−∇∧ 0

)) (
Ei,t

Bi,t

)

= −∂t

∫ t

t0

ds Kt−s ∗
(
∇∇ · Ei,0

∇∇ · Bi,0

)
+

(
∂2

t + ∇ ∧ (∇ ∧ ·) 0
0 ∂2

t + ∇ ∧ (∇ ∧ ·)

)
Kt ∗

(
Ei,0

Bi,0

)

Applying∇ ∧ (∇ ∧ ·) = ∇(∇·) − △ and Lemma 2.11p.10 again gives

(∂2
t − △)Kt ∗

(
Ei,0

Bi,0

)
= 0

and

∂t

∫ t

0
ds Kt−s ∗

(
∇∇ · Ei,0

∇∇ · Bi,0

)
= Kt−s ∗

(
∇∇ · Ei,0

∇∇ · Bi,0

) ∣∣∣∣∣
s→t
−

[
Kt−s ∗

(
∇∇ · Ei,0

∇∇ · Bi,0

)]s→t

s→0

= Kt ∗
(
∇∇ · Ei,0

∇∇ · Bi,0

)
.

Hence, we get 8= 0 and, therefore, for̃Ft := (Ẽi,t, B̃i,t)1≤i≤N it is true that∂tF̃t = AF̃t in the strong sense.
By the group propertiesWt andA commute onDw(A) which implies

∂t

(
W−t F̃t

)
= −AW−tF̃t +W−tAF̃t = 0.

Therefore,̃Ft = WtF̃0 = WtF0 = χt as by definitionF0 = F = F̃0. This means in particular thatEi,t = Ẽi,t

andBi,t = B̃i,t for all t ∈ R and 1≤ i ≤ N in theL2
w sense. Furthermore, asF ∈ Dw(An) ∩ F , Lemma 2.11p.10

states that̃Ft ∈ F , and by the group properties of (Wt)t∈R we also haveFt ∈ Dw(An) for all t ∈ R. Hence,
Ft = F̃t ∈ Dw(An) ∩ F for all t ∈ R which concludes the proof. �

A ready application of this corollary is the following lemmawhich allows to express the smooth inhomo-
geneous Maxwell solutions of Section 2.1p.8 in terms of (Wt)t∈R.

Lemma 2.33 (The Maxwell Solutions in Terms of (Wt)t∈R and J). Let t, t0 ∈ R be given times, F=
(Fi)1≤i≤N ∈ Dw(An) ∩ F for some n∈ N be given initial fields and(qi , pi) ∈ T 1

∨ time-like charge trajec-
tories for1 ≤ i ≤ N. If in addition the initial fields Fi = (Ei ,Bi) fulfill the Maxwell constraints

∇ · Ei = 4π̺i(· − qi,t0) and ∇ · Bi = 0

for 1 ≤ i ≤ N, then for all t∈ R

Ft := Wt−t0χ +

∫ t

t0

dsWt−sJ(ϕs) ∈ Dw(An) =
(
M̺i ,mi [Fi , (qi , pi)](t, t0)

)
1≤i≤N.

in the L2
w sense whereϕs := (Q + P)(qi,s, pi,s)1≤i≤N for s ∈ R. Furthermore, Ft ∈ Dw(An) ∩ F for all t ∈ R.

Proof. This can be computed by applying Corollary 2.32p.22 twice and using one partial integration. �
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WF Solutions for Prescribed Newtonian Cauchy Data. The strategy will be to use Banach’s and Schauder’s
fixed point theorem to prove the existence of a fixed point ofST . The following normed spaces will prove
to be suitable for this problem:

Definition 2.34 (Hilbert Spaces for the Fixed Point Theorem). For n ∈ N let F n
w be the linear space of

functions F∈ Dw(An) with

‖F‖F n
w(B) :=


n∑

k=0

‖AkF‖Fw



1
2

.

with B = R3 in which case we simply write‖ · ‖F n
w

instead of‖ · ‖F n
w (R). For other B⊂ R3 we shall use this

notation to split up integration domains. We shall use this notation also forFw = F 0
w.

Lemma 2.35. For n ∈ N, F n
w is a Hilbert space.

Proof. This is an immediate consequence of Theorem 2.11 of Part I [BDD10] which relies on the fact that
A is closed onDw(A) and

√
wd3x is absolute continuous with respect to the Lebesgue measure. �

Next we specify the class of boundary fields (X±i,±T)1≤i≤N which we want to allow.

Definition 2.36(The Class of Boundary FieldsAn
w, Ãn

w andALip
w ). For weight w∈ W and n∈ N letAn

w be
the set of maps

X : R × Dw(A)→ Dw(A∞) ∩ F , (T, ϕ) 7→ XT [ϕ]

which have the following properties for all p∈ P and T ∈ R:

(i) There is a function C3 ∈ Bounds such that for allϕ ∈ Dw(A) with (Q + P)ϕ = p it is true that
‖XT [ϕ]‖F n

w
≤ C3

(n)(|T |, ‖p‖).
(ii) The map F 7→ XT [p, F] asF 1

w → F 1
w is continuous.

(iii) For (Ei,T ,Bi,T)1≤i≤N := XT [ϕ] and(qi,T , pi,T)1≤i≤N := (Q + P)ML[ϕ](T, 0)one has∇·Ei,T = 4π̺i(·−qi,T)
and∇ · Bi,T = 0.

Let the subset̃An
w ⊂ An

w comprise such maps X that fulfill:

(iv) For balls Bτ := Bτ(0) ⊂ R3 with radiusτ > 0 around the origin and any bounded set M⊂ Dw(A) it
holds thatlimτ→∞ supF∈M ‖XT [p, F]‖F n

w(Bc
τ) = 0.

Furthermore, let the subsetALip
w ⊂ A1

w comprise such maps X that fulfill:

(v) There is a function C4 ∈ Bounds such that for allϕ, ϕ̃ ∈ Dw(A) with (Q + P)ϕ = p = (Q + P)ϕ̃ it is true
that ‖XT [ϕ] − XT [ϕ̃]‖F 1

w
≤ |T |C4(|T |, ‖ϕ‖Hw, ‖ϕ̃‖Hw) ‖ϕ − ϕ̃‖Hw.

REMARK 2.37. The boundary fields needed are now encoded via(X±i,±T)1≤i≤N := X±±T [ϕ] for two elements
X± ∈ An

w and someϕ ∈ Dw(A). The dependence of X±±T on aϕ ∈ Dw(A) instead of the charge trajectories
(qi , pi), 1 ≤ i ≤ N, in T 1

▽
makes sense asϕ carries the whole information about the charge trajectories by

t 7→ (Q + P)ML[ϕ](t, 0) which are the charge trajectories of the ML-SI solutions. Aswe shall discuss after
showing that these classes are not empty, one can imagine their elements to be the Liénard-Wiechert fields
of any charge trajectories inT 1

▽
which continue the ML-SI charge trajectories on either the time interval

(−∞,−T] or [T,∞) for the given T∈ R. Finally, the reason why we define three classesAn
w, Ãn

w andALip

is to distinguish clearly the properties needed, first, to define what we mean by a bWF solution, second, to
show existence of bWF solutions, and third, to show uniqueness of the bWF solution for small enough T.
Note also thatAn+1

w ⊂ An
w as well asÃn+1

w ⊂ Ãn
w for n ∈ N.
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Having this we can formalize what we mean by a WF solution for given Newtonian Cauchy data and
boundary fields.

Definition 2.38. [bWF Solutions for Newtonian Cauchy Data and Boundary Fields] Let T > 0, p ∈ P
and two boundary fields X± ∈ A1

w be given. We defineT p,X±

T to be the set of time-like charge trajectories
in (qi , pi)1≤i≤N ∈ T∨ which solve the WF equations in the form (4p.3)-(11p.7) for Newtonian Cauchy data
p = (qi,t, qi,t)1≤i≤N |t=0. We shall call every element ofT p,X±

T a bWF solution for initial value p and boundary
fields X± at time T.

REMARK 2.39. By Definition 2.36p.24(iv) the boundary fields fulfill the Maxwell constraints at time±T.
This is important as our formulas for the Maxwell solutions of Section 2.1p.8 are only valid if the Maxwell
constraints are fulfilled. Though this requirement could beloosened by refining the formulas for the Maxwell
fields it is natural to stick with it because the fields of true WF solution fulfills the Maxwell equations
including the constraints, and the final goal is to find solutions for T→ ∞.

Now we can define a convenient fixed point map whose fixed pointsare the bWF solutions.

Definition 2.40 (The Fixed Point MapST). For finite time T > 0, Newtonian Cauchy data p∈ P and
boundary fields X± ∈ A1

w, we define

Sp,X±

T : Dw(A)→ Dw(A∞), F 7→ Sp,X±

T [F]

for

Sp,X±

T [F] :=
1
2

∑

±

[
W∓TX±±T [p, F] +

∫ t

±T
dsW−sJ(ϕs[p, F])

]

whereϕs[p, F] := ML[p, F](s, 0) for s ∈ R is the ML-SI solution, cf. Definition B.10p.45, for initial value
(p, F) ∈ Dw(A).

We got to make sure that the fixed point map is well-defined and that its possible fixed points have the
desired properties, i.e. their corresponding charge trajectories are inT p,X±

T .

Theorem 2.41(The MapST and its Fixed Points). For finite time T> 0, Newtonian Cauchy data p∈ P
and boundary fields X± ∈ A1

w the following is true:
(i) The map Sp,X±

T introduced in Definition 2.40 is well-defined.
(ii) For F ∈ Dw(A), setting(X±i,±T)1≤i≤N := X±±T [p, F] and denoting the ML-SI charge trajectories

t 7→ (qi,t, qi,t)1≤i≤N := (Q + P)ML[p, F](t, 0)

by (qi , pi)1≤i≤N it holds that

Sp,X±

T [F] =
1
2

∑

±

(
M̺i ,mi [X

±
i,±T , (qi, pi)](0,±T)

)

1≤i≤N
∈ Dw(A∞) ∩ F .

(iii) For any F = Sp,X±

T [F] it is true that and that the corresponding charge trajectories

(qi , pi)1≤i≤N as defined in (ii) are inT p,X±

T .

Proof. (i) Let F ∈ Dw(A), then (p, F) ∈ Dw(A) and, hence, by the ML±SI existence and uniqueness Theorem
B.6p.44 t 7→ ϕt := ML[ϕ](t, 0) is a once continuously differentiable mapR → Dw(A) ⊂ Hw. By properties of
J stated in Lemma 2.23 of Part I [BDD10] we know thatAkJ : Hw → Dw(A∞) ⊂ Hw is locally Lipschitz
continuous for anyk ∈ N. By projecting onto field spaceFw, cf. Definition2.31p.22, we yield that also
AkJ : Hw → Dw(A∞) ⊂ Fw is locally Lipschitz continuous. Hence, by the group properties of (Wt)t∈R we
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know thats 7→ W−sAkJ(ϕs) for anyk ∈ N is continuous. Therefore, we may apply Corollary A.3p.41 which
states that

Ak
∫ 0

±T
dsW−sJ(ϕs) =

∫ 0

±T
dsW−sA

kJ(ϕs)

while the integral on the right-hand side exists because theintegrand is continuous and the integral goes over

a compact set. As this holds for anyk ∈ N,
∫ 0

±T
ds W−sJ(ϕs) ∈ Dw(A∞). Furthermore, by Definition 2.36p.24

the termX±±T [p, F] is in Dw(A∞) and thereforeW∓T X±±T [p, F] ∈ Dw(A∞) by the group properties. Hence, the

mapSφ,χ
±

T is well-defined as a mapDw(A)→ Dw(A∞).
(ii) For F ∈ Dw(A) let (qi , pi)1≤i≤N denote the charge trajectoriest 7→ (qi,t, pi,t)1≤i≤N = (Q + P)ϕt of

t 7→ ϕt := ML[p, F](t, 0). Since (p, F) ∈ Dw(A), we know again by Theorem B.6p.44 that these charge
trajectories are once continuously differentiable asR → Dw(A) ⊂ Hw. As the absolute value of the velocity
is given by‖v(pi,t)‖ = ‖pi,t‖√

m2
i +p2

i,t

< 1, we conclude that (qi , pi)1≤i≤N are once continuously differentiable

and time-like and therefore inT∨, cf. Definition 2.5p.8. Furthermore, the boundary fieldsX±±T [p, F] are in
Dw(A∞) ∩ F and obey the Maxwell constraints by the definition ofAn

w. So we can apply Lemma 2.33p.23

which states for (X±i,±T)1≤i≤N := X±±T [p, F] that

(
M̺i ,mi [Xi , (qi, pi ](t,±T)

)
1≤i≤N = Wt∓T X±± [p, F] +

∫ t

±T
dsWt−sJ(ϕs) ∈ Dw(A) ∩ F .(35)

For t = 0 this proves claim (ii).
(iii) Finally, assume there is anF ∈ Fw such thatF = Sp,X±

T [F]. By (ii) this implies F ∈ Dw(A∞) ∩ F .
Let (qi , pi)1≤i≤N andt 7→ ϕt be as defined in the proof of (ii) which now is infinitely often differentiable as
R→ Hw since (p, F) ∈ Dw(A∞). We shall show that the following integral equality holds

ϕt = (p, 0)+
∫ t

0
ds (Q + P)J(ϕs) +

1
2

∑

±

[
Wt∓T (0,X±±T[p, F]) +

∫ t

±T
ds Wt−sFJ(ϕs)

]
(36)

for all t ∈ R; keep in mind thatt 7→ ϕt depends also on (p, F). Then differentiation with respect to timet
of the phase space components of (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N := ϕt yields∂t(Q + P)ϕt = (Q + P)J(ϕt) which by
definition ofJ yields

∂tqi,t = v(pi,t) :=
pi,t√

m2
i + p2

i,t

∂tpi,t =

∑

j,i

∫
d3x ̺i(x − qi,t)

(
E j,t(x) + v(qi,t) ∧ B j,t(x)

)
.

(37)

Furthermore, the field components fulfill

Fϕt = F
1
2

∑

±

[
Wt∓T (0,X±±T[ϕ]) +

∫ t

±T
ds Wt−sFJ(ϕs)

]

=
1
2

∑

±

[
Wt∓T X±±T [p, F] +

∫ t

±T
dsWt−sJ(ϕs)

]

where we only used the definition of the projectors, cf. Definition 2.31p.22. Hence, by (35) we know

(Ei,t,Bi,t) =
1
2

∑

±
M̺i ,mi [Fi , (qi , pi ](t,±T).(38)
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Finally, we have

(qi,t, pi,t)1≤i≤N

∣∣∣
t=0
= p = (q0

i , p
0
i )1≤i≤N.(39)

Equations (37p.26), (38p.26) and (39) are exactly the WF equations (4p.3) and (11p.7) for Newtonian Cauchy data
p and boundary fieldsX±. Hence, since in (ii) we proved that (qi , pi)1≤i≤N are inT∨, we conclude that they
are also inT p,X±

T , cf. Definition 2.38p.25.
Now it is only left to prove that the integral equation (36p.26) holds. By Definition B.10p.45, ϕt fulfills

ϕt =Wt(p, F) +
∫ t

0
ds Wt−sJ(ϕs)

for all t ∈ R. Inserting the fixed point equationF = Sp,X±

T [F], i.e.

F =Wt∓T X±± [p, F] +
∫ t

±T
dsWt−sJ(ϕs),

we find

ϕt = (p, 0)+
1
2

∑

±
Wt∓T

(
0,X±±T[p, F]

)
+

1
2

∑

±
Wt

∫ 0

±T
ds W−s

(
0, J(ϕs)

)
+

∫ t

0
ds Wt−sJ(ϕs).

Using the continuity of the integrands we may apply Lemma A.4p.41 to commuteWt with the integral. This
together withJ = (Q + P)J+ FJ and that (Q + P)Wt = idP yields the desired result (36p.26) for all t ∈ R which
concludes the proof. �

In the next Lemma we discuss a simple elementC ∈ An
w and thereby show that the classes of boundary

fieldsÃn
w andALip

w are not empty.

Definition 2.42(Coulomb Boundary Field). For n ∈ N define C: R ×Hn
w→ Dw(An), (T, ϕ) 7→ CT [ϕ] to be

CT [ϕ] :=
(
EC

i (· − qi,T), 0
)
1≤i≤N

where(qi,T)1≤i≤N := QML[ϕ](T, 0) and the Coulomb field

(EC
i , 0) := M̺i ,mi [t 7→ (0, 0)](0,−∞) =

(∫
d3z ̺i(· − z)

z
‖z‖3 , 0

)
.

Note that the last equality holds by Theorem 2.18p.14.

Lemma 2.43 (The Class of Boundary Fields is Non-Empty). For any n ∈ N and any w∈ W the set
C ∈ An

w ∩A
Lip
w .

Proof. We need to show the properties given in Definition 2.36p.24. Fix T > 0 andp ∈ P. Recall the definition
of CT as introduced in Definition 2.42. Letϕ ∈ Dw(A) andF = Fϕ for (Q + P)ϕ = p. Furthermore, we define
(qi,T)1≤i≤N := QML[ϕ](T, 0). SinceEC is a Liénard-Wiechert field of the charge trajectoryt 7→ (qi,T , 0) in
T 1
▽
, we can apply Corollary 2.22p.18 to yield the following estimate for any multi-indexα ∈ N3 andx ∈ R3

∥∥∥DαEC(x)
∥∥∥
R3 ≤

C5
(α)

1+ ‖x‖2 .(40)
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which allows to define the finite constantsC6
(α) := ‖DαEC‖L2

w
. Using the properties of the weightw ∈ W we

find

‖CT [ϕ]‖2F n
w
≤

n∑

k=0

‖AkCT [ϕ]‖Fw ≤
n∑

k=0

N∑

i=1

∥∥∥(∇∧)kEC
i (· − qi,T )

∥∥∥
L2

w
≤

n∑

k=0

∑

|α|≤k

N∑

i=1

∥∥∥DαEC
i

∥∥∥
L2

w

≤
n∑

k=0

∑

|α|≤k

N∑

i=1

(
1+Cw

∥∥∥qi,T

∥∥∥
) Pw

2
∥∥∥DαEC

i

∥∥∥
L2

w
≤

n∑

k=0

∑

|α|≤k

N∑

i=1

(
1+Cw

∥∥∥qi,T

∥∥∥
) Pw

2 C6
(α) < ∞.

This impliesCT ∈ Dw(A∞) ∩ F and thatC : R × Dw(A)→ Dw(A∞) ∩ F is well-defined.
Note that the right-hand side depends only on

∥∥∥qi,T

∥∥∥ which is bounded by‖p‖ + |T | since the maximal
velocity is below one. Hence, property (i) holds for

C3
(n)(|T |, ‖p‖) :=

n∑

k=0

∑

|α|≤k

N∑

i=1

(1+Cw (‖p‖ + |T |))
Pw
2 C6

(α).

Instead of showing property (ii), we prove the stronger property (v). For this let̃ϕ ∈ Dw(A) such that
(Q + P)ϕ = (Q + P)ϕ̃, (̃qi,T)1≤i≤N := QML[ϕ̃](T, 0). Starting with

‖CT [ϕ] −CT [ϕ̃]‖F 1
w
≤

N∑

i=1

∑

|α|≤1

∥∥∥∥Dα
(
EC(· − qi,T ) − EC(· − q̃i,T)

)∥∥∥∥
L2

w

we compute

∥∥∥∥Dα
(
EC(· − qi,T) − EC(· − q̃i,T)

)∥∥∥∥
L2

w

=

∥∥∥∥∥∥

∫ 1

0
dλ (̃qi,T − qi,t) · ∇DαEC

i,T(· − q̃i,T + λ(̃qi,T − qi,t))

∥∥∥∥∥∥
L2

w

≤
∫ 1

0
dλ

∥∥∥(qi,t − q̃i,T) · ∇DαEC(· − q̃i,T + λ(̃qi,T − qi,t))
∥∥∥

L2
w

where in the last step we have used Minkowski’s inequality. Therefore, for all|α| ≤ 1 we get
∑

|α|≤1

∥∥∥∥Dα
(
EC(· − qi,T) − EC(· − q̃i,T)

)∥∥∥∥
L2

w

≤ ‖qi,T − q̃i,T‖R3 sup
0≤λ≤1

∑

|β|≤2

∥∥∥DβEC(· + λ(qi,T − q̃i,T))
∥∥∥

L2
w
.

The estimate (40p.27) and the properties ofw ∈ W yield

∥∥∥DβEC(· − q̃i,T + λ(̃qi,T − qi,t))
∥∥∥

L2
w
≤

(
1+Cwλ

∥∥∥q̃i,T + λ(̃qi,T − qi,t)
∥∥∥
R3

) Pw
2

∥∥∥DβEC
∥∥∥

L2
w

≤ (1+Cw(‖qi‖R3 + ‖q̃i‖R3 + 2|T |)
Pw
2 C6

(β)

Furthermore, since the maximal velocity is smaller than one, property (v) holds for

C4(|T |, ‖ϕ‖Hw, ‖ϕ̃‖Hw) := N
∑

|β|≤2

(1+Cw(‖Qϕ‖R3 + ‖Qϕ̃‖R3 + 2|T |)
Pw
2 C6

(β).

(iii) holds by Theorem 2.14p.12.
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(iv) Let Bτ(0) ⊂ R3 be a ball of radiusτ > 0 around the origin. For anyF ∈ Dw(A) we define (qi,T)1≤i≤N :=
QML[ϕ](T, 0) and yield

‖CT [p, F]‖F n
w(Bc

τ(0) ≤
N∑

i=1

∑

|α|≤n

∥∥∥DαEC(· − qi,T)
∥∥∥

L2
w(Bc

τ(0))

≤
N∑

i=1

∑

|α|≤n

(
1+Cw‖qi,T‖

) Pw
2

∥∥∥DαEC
∥∥∥

L2
w(Bc

τ(qi,T ))
.

Note again that the maximal velocity is smaller than one so that ‖qi,T ≤ ‖q0
i ‖ + T. Hence, forτ > ‖q0

i ‖ + T
definer(τ) := τ − ‖q0

i ‖ + T such that it holds

sup
F∈Dw(A)

‖CT [p, F]‖F n
w(Bc

τ(0) ≤
N∑

i=1

∑

|α|≤n

(
1+Cw‖qi,T‖

) Pw
2

∥∥∥DαEC
∥∥∥

L2
w(Bc

r(τ)(0))
−−−−→
τ→∞

0

To summarize we have shown that for alln ∈ N the mapC as introduced in Definition 2.42p.27 is an
element ofÃn

w ∩ALip which is a subset ofAn
w. �

REMARK 2.44. In view of (11p.7) the boundary fields are a guess of how the charge trajectories(q0
i , pi)1≤i≤N

continue on the intervals(−∞,−T] and [T,∞). Instead of the Coulomb fields of a charge at rest we could
have also taken the Liénard-Wiechert fields of a charge trajectory which starts atqi,T and has constant
momentumpi,T for (qi,T , pi,T)1≤i≤N := (Q + P)ML[ϕ](T, 0) with only minor modification (the result would
be a Lorentz boosted Coulomb field). Such boundary fields would also be inALip

w as for (pi,T)1≤i≤N :=
PML[ϕ̃](T, 0) we have

‖pi,T − p̃i,T‖ ≤
∫ T

0
ds‖ṗi,s − ˙̃pi,s‖ ≤ T sup

s∈[0,T]
‖ṗi,s − ˙̃pi,s‖

while the supremum exists because the charge trajectories are smooth thanks toϕ, ϕ̃ ∈ Dw(A). Only if one
wanted to continue the charge trajectories(q0

i , pi)1≤i≤N in (11p.7) more smoothly, for example also continu-

ously in the acceleration, the resulting boundary fields would not lie inALip
w anymore but rather inÃ1

w since
in general different initial value for the ML-SI equations yield different accelerations at time zero.

We come to the proof of the existence theorem of WF solutions for finite times, i.e. Theorem 2.3p.7. The
strategy for the proof is to use Banach’s and Schauder’s fixedpoint theorem. Before we give a proof of
Theorem 2.3p.7 we collect the needed estimates and properties ofSp,X±

T in the following three lemmas.

Lemma 2.45(Estimates onF n
w). For n ∈ N0 the following is true:

(i) For all t ∈ R and F ∈ Dw(An) it holds that‖WtF‖F n
w
≤ eγ|t|‖F‖F n

w
.

(ii) For all ϕ ∈ Hw there is a constant C7(n) ∈ Bounds such that

‖J(ϕ)‖F n
w
≤ C7

(n)(‖Qϕ‖Hw).

(iii) For all ϕ, ϕ̃ ∈ Hw there is a C8
(n) ∈ Bounds such that

‖J(ϕ) − J(ϕ̃)‖F n
w
≤ C8

(n)(‖ϕ‖Hw, ‖ϕ̃‖Hw)‖ϕ − ϕ̃‖Hw.

Proof. (i) As shown in Part I [BDD10],A on Dw(A) generates aγ-contractive group (Wt)t∈R; cf. Definition
B.8p.45. Hence,A andWt commute for anyt ∈ R which implies for allF ∈ Dw(An) that

‖WtF‖2F n
w
=

n∑

k=0

‖AkWtF‖2Fw
=

n∑

k=0

‖WtA
kF‖2Fw

≤ eγ|t|
n∑

k=0

‖AkF‖2Fw
= eγ|t|‖F‖F n

w
.
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For (ii) let (qi , pi ,Ei ,Bi)1≤i≤N = ϕ ∈ Hw. Using then the definitions ofJ, cf. Definition 2.31p.22 and B.5p.44,
we find

‖J(ϕ)‖F n
w
≤

n∑

k=0

‖(∇∧)kv(pi)̺i(· − qi)‖L2
w
.

By applying the triangular inequality one finds a constantC9, e.g.C9 = 4
√

6, for which

‖(∇∧)kv(pi)̺i(· − qi)‖L2
w
≤ (C9)n

∑

|α|≤n

‖v(pi)Dα̺i(· − qi)‖L2
w
≤ (C9)n

∑

|α|≤n

‖Dα̺i(· − qi)‖L2
w

whereas in the last step we used the fact that the maximal velocity is smaller than one. Using the properties
of the weight functionw ∈ W, cf. Definition B.1p.43, we conclude

‖Dα̺i(· − qi)‖L2
w
≤ (1+Cw‖qi‖)

Pw
2 ‖Dα̺i‖L2

w
.

Collecting these estimates we yield that claim (ii) holds for

C7
(n)(‖Qϕ‖Hw) := (C9)n

N∑

i=1

(1+Cw‖qi‖)
Pw
2

∑

|α|≤n

‖Dα̺i‖.

Claim (iii) is shown by repetitively applying estimate of Lemma 2.23(i) of Part I [BDD10] on the right-
hand side of

‖J(ϕ) − J(ϕ̃)‖F n
w
≤

n∑

k=0

‖Ak[J(ϕ) − J(ϕ̃)]‖Hw

which yields a constantC8
(n) :=

∑n
k=0 C10

(k)(‖ϕ‖Hw, ‖ϕ̃‖Hw) whereC10 ∈ Bounds can be taken from Lemma
2.23(i) of Part I [BDD10]. This concludes the proof. �

Lemma 2.46(Properties ofSp,X±

T ). Let T > 0, p ∈ P and X± ∈ An
w for n ∈ N. Then it holds:

(i) There is a function C11 ∈ Bounds such that for all F∈ F 1
w we have

‖Sp,X±

T [p, F]‖F n
w
≤ C11

(n)(T, ‖p‖).

(ii) F 7→ Sp,X±

T [F] asF 1
w → F 1

w is continuous.

If X± ∈ ALip
w , it is also true that:

(iii) There is a function C12 ∈ Bounds such that for all F, F̃ ∈ F 1
w we have

‖Sp,X±

T [F] − Sp,X±

T [F̃]‖F 1
w
≤ TC12(T, ‖p‖, ‖F‖Fw, ‖F̃‖Fw)‖F − F̃‖Fw.

Proof. Fix T > 0, p ∈ P, X± ∈ An
w for n ∈ N. Before we prove the claims we preliminarily recall the

relevant estimates of the ML-SI dynamics. Throughout the proof and for for anyF, F̃ ∈ F n
w we define

Dw(An) ∋ ϕ = (p, F) and Dw(An) ∋ ϕ̃ = (p, F̃) and furthermore the ML-SI solutionsϕt := ML[ϕ](t, 0)
andϕ̃t := ML[ϕ̃](t, 0) for anyt ∈ R. Recall the estimate (65p.44) from the ML±SI existence and uniqueness
Theorem B.6p.44 which gives the followingT dependent upper bounds on these ML-SI solutions:

sup
t∈[−T,T]

‖ϕt − ϕ̃t‖Hw ≤ C20(T, ‖ϕ‖Hw, ‖ϕ̃‖Hw)‖ϕ − ϕ̃‖Hw,(41)

sup
t∈[−T,T]

‖ϕt‖Hw ≤ C20(T, ‖ϕ‖Hw, 0)‖ϕ‖Hw and sup
t∈[−T,T]

‖ϕ̃t‖Hw ≤ C20(T, ‖ϕ̃‖Hw, 0)‖ϕ̃‖Hw.(42)
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To prove claim (i) we estimate

‖Sp,X±

T [F]‖F n
w
≤

∥∥∥∥∥∥∥
1
2

∑

±
W∓T X±±T [p, F]

∥∥∥∥∥∥∥F n
w

+

∥∥∥∥∥∥∥
1
2

∑

±

∫ 0

±T
dsW−sJ(ϕs)

∥∥∥∥∥∥∥F n
w

=: 9 + 10 ,

cf. Definition 2.40p.25 whereSp,X±

T was defined. By the estimate given in Lemma 2.45p.29(i) and the property
given in Definition 2.36p.24(i) of the boundary fields we find

9 ≤ 1
2

∑

±
‖W∓T X±±T [p, F]‖F n

w
≤ eγT‖X±±T [p, F]‖F n

w
≤ eγTC3

(n)(T, ‖φ‖Hw).

Furthermore, using in addition the estimates given in Lemma2.45p.29(i-ii) we get a bound for the next term
by

10 ≤ TeγT sup
s∈[−T,T]

‖J(ϕs)‖F n
w
≤ TeγT sup

s∈[−T,T]
C7(‖Qϕs‖Hw) ≤ TeγTC7(‖p‖ + T)

whereas the last step is implied by the fact that the maximal velocity is below one. These estimates prove
claim (i) for

C11
(n)(T, ‖φ‖Hn

w
) := eγT

(
C3

(n)(T, ‖p‖) + TC7(‖p‖ + T)
)
.

Next we prove claim (ii). Therefore, we regard

‖Sp,X±

T [F] − Sp,X±

T [F̃]‖F n
w
≤ eγT‖X±±T [ϕ] − X±±T [ϕ̃]‖F n

w
+ TeγT sup

s∈[−T,T]
‖J(ϕs) − J(ϕ̃s)‖F n

w

=: 11 + 12

where we have already applied Lemma 2.45p.29(i). Next we use Lemma 2.45p.29(iii) on 12 and yield

12 ≤ TeγT sup
s∈[−T,T]

C8
(n)(‖ϕs‖Hw, ‖ϕ̃s‖Hw)‖ϕs − ϕ̃s‖Hw

Finally, by the ML-SI estimates (41p.30) and (42p.30) we yield

12 ≤ TC13(T, ‖p‖, ‖F‖F n
w
, ‖F̃‖F n

w
)‖ϕ − ϕ̃‖Hw(43)

for

C13(T, ‖p‖, ‖F‖F n
w
, ‖F̃‖F n

w
) :=eγTC8

(n)
(
C20(T, ‖ϕ‖Hw, 0)‖ϕ‖Hw,C20(T, 0, ‖ϕ̃‖Hw)‖ϕ‖Hw

)
×

×C20(T, ‖ϕ‖Hw, ‖ϕ̃‖Hw).

For F̃ → F in F 1
w these estimates implySp,X±

T [F̃] → Sp,X±

T [F] in F 1
w since here‖ϕ − ϕ̃‖Hw = ‖F − F̃‖Fw

which proves claim (ii).
(iii) Let now X± ∈ ALip

w . Term 11 then behaves by Definition 2.36p.24 as

11 ≤ TC4
(n)(|T |, ‖ϕ‖Hw, ‖ϕ̃‖Hw) ‖ϕ − ϕ̃‖Hw

Together with the estimate (43) this proves claim (ii) for

C12
(n)(T, ‖p‖, ‖F‖Fw, ‖F̃‖Fw) := C4

(n)(|T |, ‖ϕ‖Hw, ‖ϕ̃‖Hw) +C13(T, ‖p‖, ‖F‖F n
w
, ‖F̃‖F n

w
)

since in our case‖ϕ − ϕ̃‖Hw = ‖F − F̃‖Fw. �

Before we proof the main theorem of this section we need a lastlemma which gives a criterion for
precompactness of sequences inL2

w.

Lemma 2.47(Criterion for Precompactness). Let (Fn)n∈N be a sequence in L2
w(R3,R3) such that



Wheeler-Feynman Equations for Rigid Charges 32

(i) The sequence(Fn)n∈N is uniformly bounded inH△w .
(ii) limτ→∞ supn∈N ‖Fn‖L2

w(Bc
τ(0)) = 0.

Then the sequence(Fn)n∈N is precompact, i.e. it contains a convergent subsequence.

Proof. (see Appendix Ap.42) The idea for the proof is based on [Lie01, Chapter 8, Proof ofTheorem 8.6,
p.208]. �

REMARK 2.48. Of course one only needs to control solely the gradient, however, the Laplace turns out to
be more convenient for the later application of the lemma.

Now we can prove the first main theorem of this section.

Proof of Theorem 2.3p.7 (Existence of WF Solution for Finite Times).Fix p ∈ P.
(i) Let X± ∈ ALip

w ⊂ A1
w, then Lemma 2.46p.30(i) states

‖Sp,X±

T [p, F]‖F 1
w
≤ C11

(1)(T, ‖p‖) =: r.

Hence, the mapSp,X±

T restricted to the ballBr(0) ⊂ F 1
w with radiusr around the origin is a nonlinear self-

mapping. Lemma 2.46p.30(iii) states for allT > 0 andF, F̃ ∈ Br(0) ⊂ Dw(A) that

‖Sp,X±

T [F] − Sp,X±

T [F̃]‖F 1
w
≤ TC12(T, ‖p‖, ‖F‖Fw, ‖F̃‖Fw)‖F − F̃‖Fw

≤ TC12(T, ‖p‖, r, r)‖F − F̃‖Fw.

where we have also used thatC12 ∈ Bounds is a continuous and strictly increasing function of its arguments.
Hence, forT sufficiently small we haveTC12(T, ‖p‖, r, r) < 1 such thatSp,X±

T is a contraction onBr(0) ⊂ F 1
w.

By Banach’s fixed point theoremSp,X±

T has a unique fixed point inBr(0) ⊂ F 1
w.

(ii) Given a finiteT > 0, p ∈ P andX± ∈ Ã3
w Lemma 2.41p.25(i) states for allF ∈ F 1

w

‖Sp,X±

T [p, F]‖F 1
w
≤ ‖Sp,X±

T [p, F]‖F 3
w
≤ C11

(3)(T, ‖p‖) =: r.(44)

Let K be the closed convex hull ofM := {Sp,X±

T [F] | F ∈ F 1
w} ⊂ Br(0) ⊂ F 1

w. By Lemma 2.41p.25(ii) we

know that the mapSp,X±

T : K → K is continuous as a mapF 1
w → F 1

w. If M is compact, it implies thatK is
compact, and hence, Schauder’s fixed point Theorem ensures the existence of a fixed point.

It is left to show thatM is compact. Therefore, let (Gm)m∈N be a sequence inM. We need to show that it
contains anF 1

w convergent subsequence. To show this we intend to use Lemma 2.47p.31. By definition there
is a sequence (Fm)m∈N in Br(0) ⊂ F 1

w such thatGm := Sp,X±

T [Fm], m ∈ N. We define form ∈ M

(E(m)
i ,B

(m)
i )1≤i≤N := Sp,X±

T [Fm].

Recall the definition of the norm ofF n
w, cf. Definition 2.34p.24, for some (Ei ,Bi)1≤i≤N = F ∈ F n

w andn ∈ N

‖F‖2F n
w
=

n∑

k=0

‖AkF‖2Fw
=

n∑

k=0

N∑

i=1

(
‖(∇∧)kEi‖2L2

w
+ ‖(∇∧)kBi‖2L2

w

)
.(45)

Therefore, sinceA on Dw(A) is closed, (Gm)m∈N has anF 1
w convergent subsequence if and only if all the se-

quences ((∇∧)kE(m)
i )m∈N, ((∇∧)kB(m)

i )m∈N for k = 0, 1 and 1≤ i ≤ n have a common convergent subsequence
in L2

w.
To show this we first provide the bounds needed for Lemma 2.47p.31(i). Estimate (44) implies that

3∑

k=0

N∑

i=1

(
‖(∇∧)kE(m)

i ‖
2
L2

w
+ ‖(∇∧)kB(m)

i ‖
2
L2

w

)
= ‖Gm‖2F 3

w
≤ r2(46)
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for all m ∈ N. Furthermore, by Lemma 2.41p.25(ii) the fields (E(m)
i ,B

(m)
i )1≤i≤N are a solution to the Maxwell

equations at time zero and hence, by Theorem 2.14p.12 fulfill the Maxwell constraints for (q0
i , p

0
i )1≤i≤N := p

which read

∇ · E(m)
= 4π̺i(· − q0

i ) and ∇ · B(m)
i = 0.

Also by Theorem 2.14p.12, Gm is inF so that for everyk ∈ N0

(∇∧)k+2E(m)
i = 4πδk0∇̺i(· − q0

i ) − △(∇∧)kE(m)
i and (∇∧)k+2B(m)

i = −△(∇∧)kB(m)
i

whereδk0 is the Kronecker delta which is zero except fork = 0. Estimate (46p.32) implies for allm ∈ N that

1∑

k=0

N∑

i=1

(
‖△(∇∧)kE(m)

i ‖
2
L2

w
+ ‖△(∇∧)kB(m)

i ‖
2
L2

w

)

≤ 2
1∑

k=0

N∑

i=1

(
‖(∇∧)k+2E(m)

i ‖
2
L2

w
+ ‖(∇∧)k+2B(m)

i ‖
2
L2

w

)
+ 2

N∑

i=1

‖4π∇̺i(· − q0
i )‖L2

w

≤ 2r2
+ 8π

N∑

i=1

(
1+Cw

∥∥∥q0
i

∥∥∥
)Pw ‖∇̺i‖2L2

w

where we made use of the properties of the weightw ∈ W. Note that the right-hand does not depend
on m. Therefore, all the sequences ((∇∧)kE(m)

i )m∈N, (△(∇∧)kE(m)
i )m∈N, ((∇∧)kB(m)

i )m∈N, (△(∇∧)kB(m)
i )m∈N for

k = 0, 1 and 1≤ i ≤ N are uniformly bounded inL2
w.

Second, we need to show that all the sequences ((∇∧)kE(m)
i )m∈N, ((∇∧)kB(m)

i )m∈N for k = 0, 1 and 1≤
i ≤ N decay uniformly at infinity to meet condition (ii) of Lemma 2.47p.31. Define (E(m),±

i,±T ,B
(m),±
i,±T )1≤i≤N :=

X±±T [p, Fm] for m ∈ N and denote theith charge trajectoryt 7→ (q(m)
i,t , p

(m)
i,t ) := (Q + P)ML[p, Fm](t, 0) by

(q(m)
i , p

(m)
i ), 1 ≤ i ≤ N. Using Lemma 2.41p.25(ii) and afterwards Lemma 2.14p.12 we can write the fields as

(
E(m)

i

B(m)
i

)
=

1
2

∑

±
M̺,mi [(E

±
i,±T ,E

±
i,±T), (q(m)

i , p
(m)
i )](0,±T)

=
1
2

∑

±

[ (
∂t ∇∧
−∇∧ ∂t

)
Kt∓T ∗


E(m),±

i,±T

B(m),±
i,±T

 + Kt∓T ∗
(
−4πj (m)

i,±T
0

)

+ 4π
∫ t

±T
ds Kt−s ∗

(
−∇ −∂s

0 ∇∧

) 
ρ

(m)
i,s

j (m)
i,s


]

t=0
=: 13 + 14 + 15

whereρ(m)
i,t := ̺i(· − q(m)

i,t ) andj (m)
i,t := v(p(m)

i,t )ρi,t for all t ∈ R.

We shall show that there is aτ∗ > 0 such that for allm ∈ N the terms 14and 15 are point-wise zero
on Bc

τ∗(0) ⊂ R3. Recalling the computation rules forKt from Lemma 2.11p.10 we calculate

‖4π[K∓T ∗ j (m)
±T ](x)‖R3 ≤ 4πT

?

BT(x)

dσ(y) ̺i(y − q(m)
±T ).

The right-hand side is zero for allx ∈ R3 such that∂BT(x) ∩ supp̺ i(· − q±T) = ∅. Because the charge
distributions have compact support there is aR> 0 such that supp̺i ⊆ BR(0) for all 1≤ i ≤ N. Now for any
1 ≤ i ≤ N andm ∈ N we have

supp̺ i(· − q(m)
i,±T) ⊆ BR(q(m)

i,±T) ⊆ BR+T(q0
i )
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since the supremum of the velocities of the charge supt∈[−T,T],m∈N ‖v(p(m)
i,t ‖ is smaller or equal one. Hence,

∂BT(x) ∩ BR+T(q0
i ) = ∅ for all x ∈ Bc

τ(0) with τ > ‖p‖ + R+ 2T.

Considering 15we have

∥∥∥∥∥∥4π
∫ 0

±T
ds

K−s ∗
(
−∇ −∂s

0 ∇∧

) 
ρ

(m)
i,s

j (m)
i,s


 (x)

∥∥∥∥∥∥
R3⊕R2

≤ 4π
∫ 0

±T
ds s

?

∂B|s|(x)

dσ(y) ‖G(y − q(m)
s )‖R3⊕R3(47)

where we used the abbreviation

G :=

(
−∇ −∂s

0 ∇∧

) 
ρ

(m)
i,s

j (m)
i,s



and the computation rules forKt given in Lemma 2.11p.10. As suppG ⊆ supp̺ i ⊆ BR(0), the right-hand side
of (47) is zero for allx ∈ R such that

⋃

s∈[−T,T]

[
∂B|s|(x) ∩ BR(q(m)

i,s )
]
= ∅.

Now the left-hand side is subset equal

∪s∈[−T,T]∂B|s|(x)
⋂
∪s∈[−T,T] BR(q(m)

i,s ) ⊆ BT(x) ∩ BR+T(q0
i )

which is equal the empty set for allx ∈ Bc
τ(0) with τ > ‖p‖ + R+ 2T.

Hence, settingτ∗ := ‖p‖ + R+ 2T we conclude that for allτ > τ∗ the terms 14and 15 and all their

derivatives are zero onBc
τ(0) ⊂ R3. That means in order to show that all the sequences ((∇∧)kE(m)

i )m∈N,
((∇∧)kB(m)

i )m∈N for k = 0, 1 and 1≤ i ≤ N decay uniformly at spatial infinity, it suffices to show

lim
τ→∞

sup
m∈N

n∑

k=0

N∑

i=1

(
‖(∇∧)ke(m)

i ‖L2
w(Bc

τ(0)) + ‖(∇∧)kb(m)
i ‖L2

w(Bc
τ(0))

)
= 0.(48)

for
(
e(m)

i

b(m)
i

)
:= 13 =

(
∂t ∇∧
−∇∧ ∂t

)
Kt∓T ∗


E(m),±

i,±T

B(m),±
i,±T


∣∣∣∣∣
t=0

for 1 ≤ i ≤ N. Let F ∈ C∞(R3,R3) andτ > 0. By computation rules forKt given in Lemma 2.11p.10 we then
yield

‖∇ ∧ K∓T ∗ F‖L2
w(Bc

τ+T (0)) = ‖K∓T ∗ ∇ ∧ F‖L2
w(Bc

τ+T(0)) ≤

∥∥∥∥∥∥∥∥∥
T
?

∂BT(0)

dσ(y) ∇ ∧ F(· − y)

∥∥∥∥∥∥∥∥∥
L2

w(Bc
τ+T(0))

≤ T
?

∂BT(0)

dσ(y) ‖∇ ∧ F(· − y)‖L2
w(Bc

τ+T(0)) ≤ T sup
y∈∂BT(0)

‖∇ ∧ F(· − y)‖L2
w(Bc

τ+T (0))

≤ T sup
y∈∂BT(0)

(1+Cw‖y‖)
Pw
2 ‖∇ ∧ F(· − y)‖L2

w(Bc
τ+T (0)) ≤ T(1+CwT)

Pw
2 ‖∇ ∧ F‖L2

w(Bc
τ(0)).
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We also estimate using the computation rules forKt given in Lemma 2.11p.10 the term

‖∂tKt∓T |t=0 ∗ F‖L2
w(Bc

τ+T(0)) =

∥∥∥∥∥∥∥∥∥

?

∂BT(0)

dσ(y) F(· − y) +
T2

3

?

BT(0)

d3y △F(· − y)

∥∥∥∥∥∥∥∥∥
L2

w(Bc
τ+T(0))

≤
?

∂BT(0)

dσ(y) ‖F(· − y)‖L2
w(Bc

τ+T (0)) +
T2

3

?

BT(0)

d3y ‖△F(· − y)‖L2
w(Bc

τ+T (0))

≤ (1+CwT)
Pw
2 ‖F‖L2

w(Bc
τ(0)) +

T2

3
(1+CwT)

Pw
2 ‖△F‖L2

w(Bc
τ(0)).

SubstitutingF with (∇∧)kE(m),±
i,±T and (∇∧)kB(m),±

i,±T for k = 0, 1 and 1≤ i ≤ N in the two estimates above yields

n∑

k=0

N∑

i=1

(
‖(∇∧)ke(m)

i ‖L2
w(Bc

τ+T(0)) + ‖(∇∧)kb(m)
i ‖L2

w(Bc
τ+T(0))

)

≤ (1+CwT)
Pw
2

(
‖(∇∧)kE(m),±

i,±T ‖L2
w(Bc

τ(0)) + ‖(∇∧)kB(m),±
i,±T ‖L2

w(Bc
τ(0))+

+
T2

3

(
‖(∇∧)k△E(m),±

i,±T ‖L2
w(Bc

τ(0)) + ‖(∇∧)k△B(m),±
i,±T ‖L2

w(Bc
τ(0))

)
+

+ T
(
‖(∇∧)k+1E(m),±

i,±T ‖L2
w(Bc

τ(0)) + ‖(∇∧)k+1B(m),±
i,±T ‖L2

w(Bc
τ(0))

) )
.

(49)

Now X± lie in Ã3
w ⊂ A3

w which means that the fieldsE(m),±
i,±T andB(m),±

i,±T for 1 ≤ i ≤ N fulfill the Maxwell
constraints so that

‖(∇∧)k△E(m),±
i,±T ‖L2

w(Bc
τ(0)) = ‖(∇∧)k+2E(m),±

i,±T ‖L2
w(Bc

τ(0)) + 4π‖(∇∧)k∇̺i(· − q(m)
i,±T‖L2

w(Bc
τ(0))

and

‖(∇∧)k△B(m),±
i,±T ‖L2

w(Bc
τ(0)) = ‖(∇∧)k+2B(m),±

i,±T ‖L2
w(Bc

τ(0)).

Applying Definition 2.36p.24(iv) yields

lim
τ→∞

sup
m∈N

3∑

j=0

N∑

i=1

∥∥∥∥(∇∧) jE(m),±
i,±T ‖

2
L2

w(Bc
τ(0)) + ‖(∇∧) jB(m),±

i,±T ‖
2
L2

w(Bc
τ(0))

)
≤ lim
τ→∞

sup
m∈N
‖χ±±T [p, Fm]‖2Hn

w
= 0

becauseFm ∈ Br(0) ⊂ F 1
w for all m ∈ N, which implies (48p.34) by the above estimates. By the above estimate

(49) we conclude that equation (48p.34) holds which we proved to be sufficient to show the uniform decay at
spatial infinity of all the sequences ((∇∧)kE(m)

i )m∈N, ((∇∧)kB(m)
i )m∈N for k = 0, 1 and 1≤ i ≤ N.

Let us summarize using the abbreviationsE(m,k)
i := (∇∧)kE(m)

i and B(m,k)
i := (∇∧)kB(m)

i for k = 0, 1,
1 ≤ i ≤ N and m ∈ N: First, we have shown that the sequences (E(m,k)

i )m∈N, (B(m,k)
i )m∈N, (△E(m,k)

i )m∈N
and (△B(m,k)

i )m∈N are all uniformly bounded inL2
w. Second, we have shown that the sequences (E(m,k)

i )m∈N,
(B(m,k)

i )m∈N, (△E(m,k)
i )m∈N decay uniformly at spatial infinity.

Having this we can now successively apply Lemma 2.47p.31 to yield the commonF 1
w convergent subse-

quence: Fix 1≤ i ≤ N. Let (E
(m0

l ,0)
i )l∈N be theL2

w convergent subsequence of (E(m,0)
i )m∈N and (E

(m1
l ,1)

i )l∈N the

L2
w convergent subsequence of (E

(m0
l ,1)

i )l∈N. In the same way we proceed with the other indices 1≤ i ≤ N
and the magnetic fields, every time choosing a further subsequence of the previous one. Let us denote the
final subsequence by (ml)l∈N ⊂ N. Then we have constructed sequences (Gml )l∈N as well as (AGml )l∈N which
are convergent inFw. However,A on Dw(A) is closed so that this implies convergence of (Gml )l∈N in F 1

w.
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As (Gm)m∈N was arbitrary, we conclude that every sequence inM has anF 1
w convergent subsequence and

thereforeM is compact which had to be shown. �

Having established the existence of a fixed pointF for all timesT > 0, Newtonian Cauchy datap ∈ P
and boundary fields (X±i,±T)1≤i≤N = X± ∈ Ã3

w, Theorem 2.41p.25(iii) states that the charge trajectoriest 7→
(qi,t, pi,t)1≤i≤N := (Q + P)ML[p, F](t, 0) are inT p,X±

T , i.e. they are time-like charge trajectories that solve the
WF equations (4p.3)-(11p.7) for all timest ∈ R. It remains to show Theorem 2.4p.8 which ensures that we see
true advanced and delayed interactions between the charges.

Definition 2.49 (Partial WF solutions). For Newtonian Cauchy data p∈ P we defineT L
WF to be the set of

time-like charge trajectories in(qi , pi)1≤i≤N ∈ T∨ which solve the WF equations in the form (4p.3)-(11p.7) for
time t ∈ [−L, L] and initial conditions(qi,t, pi,t)1≤i≤N|t=0 = p. We shall call every element ofT L

WF a partial
WF solution for initial value p.

In order to see that a bWF solution (qi , pi)1≤i≤N ∈ T p,X±

T is also a partial WF solution we have to regard
the difference

M̺i ,mi [X
±
i,±T , (qi, pi)](t,±T) − M̺i ,mi [(qi , pi)](t,±∞)

=

(
∂t ∇∧
−∇∧ ∂t

)
Kt∓T ∗ X±i,±T + Kt∓T ∗

(
−4πv(pi,±T)̺i(· − qi,±T)

0

)

− 4π
∫ ±T

±∞
ds Kt−s ∗

(
−∇ −∂s

0 ∇∧

) (
̺i(· − qi,s)

v(pi,s)̺i(· − qi,s)

)
.

(50)

where we used Definition 2.16p.14 with Theorem 2.14p.12 as well as Definition 2.17p.14. Whenever the
difference is zero everywhere within the tubes around the positions of the j , i charge trajectories for
t ∈ [−L, L], the charge trajectories (qi , pi)1≤i≤N are inT L

WF. This is certainly not true for all boundary fields
X± ∈ Ã3

w. However, it is the case for the advanced, respectively retarded, Liénard-Wiechert fields of any
charge trajectories which continue (qi , pi)1≤i≤N on the time interval [T,∞), respectively (−∞,−T], and we
shall show this in the particular case of the Coulomb boundary fieldsC, cf. Definition 2.42p.27.

In fact, for the Coulomb boundary fieldsC ∈ Ã3
w ∩ A

Lip
w we find that the difference discussed above

is for “+” zero everywhere on the backward light-cone of the spacetime point (T, qi,T) as well as for “−”
everywhere on the forward light-cone of (−T, qi,−T).

Lemma 2.50(Shadows of the Boundary Fields and WF fields). Let q, v ∈ R3, ̺ ∈ C∞c (R3,R) such that
supp̺ ⊆ BR(0) for some finite R> 0. Furthermore, letEC be the Coulomb field of a charge at rest at the
origin

EC :=
∫

d3z ̺(· − z)
z
‖z‖3

Then for T> R
[(
∂t ∇∧
−∇∧ ∂t

)
Kt∓T ∗

(
EC(· − q)

0

)
+ Kt∓T ∗

(
−4πv̺(· − q)

0

)]
(x) = 0(51)

and
∫ ±T

±∞
ds Kt−s ∗

(
−∇ −∂s

0 ∇∧

) (
̺i(· − qi,s)

v(pi,s)̺i(· − qi,s)

)
(x) = 0(52)

for t ∈ (−T + R,T − R) andx ∈ B|t∓T |−R(q).
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Proof. Let t ∈ [−T + R,T − R]. With regard to the second term we compute

∥∥∥−4πv
[
Kt∓T ∗ ̺(· − q)

]
(x)

∥∥∥ = 4π‖v‖

∣∣∣∣∣∣∣∣∣
(t ∓ T)

?

∂B|t∓t|(0)

dσ(y) ̺(x − y − q)

∣∣∣∣∣∣∣∣∣

≤ 4π‖v‖|t ∓ T | sup|̺|
?

∂B|t∓t|(q)

dσ(y) 1BR(x)(y)

where we used Definition 2.10p.9 for Kt∓T . Now x ∈ B|t∓T |−R(q) implies∂B|t∓T |(q)∩BR(x) = ∅ and hence that
the term above is zero.

With regard to the first term we note that the only non-zero contribution is∂tKt∓T ∗EC
i since∇∧EC

= 0.
We shall need the computation rules forKt as given in Lemma 2.11p.10 and in particular equation (15p.10)
which in our case reads

[
∂tKt∓T ∗ EC(· − q)

]
(x) =

?

∂B|t∓T |(0)

dσ(y) EC(x − y − q) + (t ∓ T)∂t

?

∂B|t∓T |(0)

dσ(y) EC(x − y − q)(53)

=

?

∂B|t∓T |(0)

dσ(y) EC(x − y − q) +
(t ∓ T)2

3

?

B|t∓T |(0)

d3y △EC(x − y) =: 16 + 17 .(54)

Using Lebesgue’s theorem we start with

16 = EC(x − q) +
∫ |t∓T |

0
ds∂s

?

∂Bs(0)

dσ(y) EC(x − y − q)

= EC(x − q) +
∫ |t∓T |

0
dr

r
3

?

Br (0)

d3y △EC(x − y − q).

Furthermore, we know that 0= (∇∧)2EC
= ∇(∇ · EC) − △EC and∇ · EC

= 4π̺. So we continue the
computation with

16 = EC(x − q) +
∫ |t∓T |

0
dr

r
3

?

Br (0)

d3y 4π∇̺(x − y − q)

= EC(x − q) −
∫ |t∓T |

0
dr

1
r2

∫

∂Br (0)

dσ(y)
y
r
̺(x − y − q)

where we have used (53) to evaluate the derivative and in addition used Stoke’s Theorem. Note that the
minus sign in the last line is due to the fact that∇ acts onx and noty. Inserting the definition of the
Coulomb fieldEC we finally get

16 =
∫

Bc
|t∓T |(0)

d3y ̺(x − y − q)
y
‖y‖3 .
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This integral is zero if, for example,Bc
|t∓T |(q) ∩ BR(x) = ∅ and this is the case forx ∈ B|t∓T |−R(q). So it

remains to show that 17also vanishes. Therefore, using△EC
= 4π∇̺ as before, we get

17 = −
∫

∂B|t∓T |(0)

dσ(y)
y

(t ∓ T)2
̺(x − y − q).

This expression is zero, for example, when∂B|t∓T |(q) ∩ BR(x) = ∅ which is true forx ∈ B|t∓T |−R(q). Hence,
we have shown that fort ∈ (−T + R,T − R) andx ∈ B|t∓T |(q) the term (51p.36) is zero.

Looking at the support of the integrand and the integration domain in term (52p.36) we find that for all
t ∈ (−T + R,T − R) it is zero for allx ∈ R3 such that

⋃

|s|>T

(
∂B|t−s|(x) ∩ BR(qs)

)
= ∅.(55)

Hence, fort ∈ (−T +R,T −R) andx ∈ B|t∓T |(q) the term (52p.36) is also zero which concludes the proof.�

REMARK 2.51. This lemma directly applies to the difference (50p.36) we were discussing before. By looking
at the explicit formulas for the Maxwell solutions given in Theorem 2.14p.12 we recognize that this difference
term is in some sense the free time evolution of the initial fields. This time evolution makes sure that the
initial fields coming from a charge at rest have to make way forthe new fields generated by the current of the
charge during the time interval[−T,T]. This will certainly hold for all boundary fields which are Liénard-
Wiechert fields of given charge trajectories on the intervals (−∞,T] and [T,∞) not only for the case of a
charge at rest.

Now that we know a big region where the difference (50p.36) is zero we have to make sure that the charge
trajectories spend the time interval [−L, L] there. For this we need a uniform momentum estimate:

Lemma 2.52(Uniform Velocity Bound). For finite T > 0 and r > 0 there is a continuous and strictly
increasing map va,b : R+ → [0, 1), T 7→ va,b

T such that

sup
{
‖v(pi,t)‖R3

∣∣∣∣∣ t ∈ [−T,T], ‖p‖ ≤ a, F ∈ RangeSp,C
T , ‖̺i‖L2

w
+ ‖w−1/2̺i‖L2 ≤ b, 1 ≤ i ≤ N

}
≤ va,b

T .

for (pi,t)1≤i≤N := PML[p, F](t, 0) for all t ∈ R.

Proof. Recall the estimate (64p.44) from the ML±SI existence and uniqueness Theorem B.6p.44 which gives
the followingT dependent upper bounds on these ML-SI solutions for allϕ ∈ Dw(A):

sup
t∈[−T,T]

‖ML[ϕ](t, 0)‖Hw ≤ C19

(
T, ‖̺i‖L2

w
, ‖w−1/2̺i‖L2 , 1 ≤ i ≤ N

)
‖ϕ‖Hw .(56)

Note further that by Lemma 2.46p.30 sinceC ∈ A1
w, there is aC11

(1) ∈ Bounds such that fieldsF ∈
RangeSp,C

T ∈ Dw(A∞) fulfill

‖F‖Fw ≤ C11
(1)(T, ‖p‖) ≤ C11

(1)(T, a).

Therefore, settingc := a+C11
(1)(T, a) we estimate the maximal momentum of the charges by

sup
{
‖v(pi,t)‖R3

∣∣∣∣∣ t ∈ [−T,T], ‖p‖ ≤ a, F ∈ RangeSp,C
T , ‖̺i‖L2

w
+ ‖w−1/2̺i‖L2 ≤ b, 1 ≤ i ≤ N

}

≤ sup
{
‖v(pi,t)‖R3

∣∣∣∣∣ t ∈ [−T,T], ϕ ∈ Dw(A), ‖ϕ‖Hw ≤ c, ‖̺i‖L2
w
+ ‖w−1/2̺i‖L2 ≤ b, 1 ≤ i ≤ N

}

≤ C19 (T, b, b, )c =: pa,b
T < ∞.
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Now, sinceC20 as well asC11
(1) are inBounds the mapT 7→ pa,b

T asR+ → R+ is continuous and strictly
increasing. We conclude that claim is fulfilled for the choice

va,b
T :=

pa,b
T√

m2 + (pa,b
T )2

andm := min1≤i≤N |mi |. �

With this we can formulate our last result, i.e. Theorem 2.4p.8.

Proof of Theorem 2.4p.8. Let F be a fixed pointF = Sp,C
T [F] which exists by Theorem 2.3p.7. Define the

charge trajectories (qi , pi)1≤i≤N by t 7→ (qi,t, pi,t)1≤i≤N := (Q + P)ML[p, F](t, 0). By the fixed point properties
of F we know that these trajectories are inT p,C

T and therefore solve the WF equations (4p.3)-(11p.7) for
Newtonian Cauchy datap and boundary fieldsC. In order to show that the charge trajectories (qi , pi)1≤i≤N

are also inT L
WF for the givenL we need to show that the difference (50p.36)

M̺i ,mi [X
±
i,±T , (qi, pi)](t,±T) − M̺i ,mi [(qi , pi)](t,±∞)

=

(
∂t ∇∧
−∇∧ ∂t

)
Kt∓T ∗ X±i,±T + Kt∓T ∗

(
−4πv(pi,±T)̺i(· − qi,±T)

0

)

− 4π
∫ ±T

±∞
ds Kt−s ∗

(
−∇ −∂s

0 ∇∧

) (
̺i(· − qi,s)

v(pi,s)̺i(· − qi,s)

)
.

is zero for timest ∈ [−L, L] at least for all pointsx in a tube around the position of thej , i charge trajecto-
ries. Lemma 2.50p.36 states that this expression is zero for allt ∈ [−T + R,T − R] andx ∈ B|t∓T |−R(qi,±T). So
it is sufficient to show that the charge trajectories spend the time interval [−L, L] in this particular spacetime
region. Clearly, the positionq0

i at time zero is inBT−R(qi,±T). Hence, we need to compute the earliest exit
time L of this spacetime region of a charge trajectoryj in the worst case. The exit timeL is the time when
the jth charge trajectory leaves the regionB|L∓T |−R(qi,±T). By Lemma 2.52p.38 the charges can in the worst
case move apart from each other with velocityva,b

T during the time interval [−T,T]. Putting the origin atq0
i

we can compute the exit timeL by

−va,b
T T = ‖q0

j − q0
i ‖ + 2R+ va,b

T L − (T − L)

This givesL :=
(1−va,b

T )T−△qmax−2R

1+va,b
T

> 0 as long as△qmax< (1− va,b
T )T wich is the case. �

Appendix A. M issing Proofs and Computations

Computation A.1. Here we compute the differentiation which was not performed in Theorem 2.18p.14, Equa-
tion (29p.17). At first we compute the derivative of t± defined in (25p.15). Recall that all entities with a super-
script± depend on t±. For any k= 1, 2, 3

∂zkt
±
= ±∂zk‖x − z− q±‖.

Now

∂zk‖x − z− q±‖ =
x j − zj − q±j
‖x − z− q±‖ (−δk j − ∂zkq

±
j ) = −n±k − n±j ∂zkq

±
j

where(δi j )1≤i, j≤3 is the Kronecker delta, i.e. the identity on the space ofR
3x3 matrices, and we have used

Einstein’s summation convention (we sum over double indices). On the other hand∂zkq
±
= v± ∂zkt

±, such
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that we can plug all of these equations together and find

∂zkt
±
=

∓n±k
1± n± · v± and in return ∂zk

1
‖x − z− q±‖ =

n±k
‖x − z− q±‖2(1± n± · v±) .

With these formulas at hand it is straightforward to computethe rest. Let us drop the superscript± in order
to make the following formulas more readable. We find

∂zk

1
1± n · v =

±vk + n · v vk − v2 nk ∓ n · v nk

‖x − z− q‖(1± n · v)3
+

n · a nk

(1± n · v)3
.

Let us denote the three integrands on the right-hand side of Equation (29p.17) by 18, 19 and 20. Plugging
in the above equations we find

18 =
n

‖x − z− q‖2(1± n · v)2
+
±v + n · v v − v2 n ∓ n · v n
‖x − z− q‖2(1± n · v)3

+
n · a n

‖x − z− q‖(1± n · v)3
,

19 =
−n · v v

‖x − z− q‖2(1± n · v)2
+

∓v2 v ± (n · v)2 v
‖x − z− q‖2(1± n · v)3

+
−n · a n · v v

‖x − z− q‖(1± n · v)3
+

±n · a v± n · v a
‖x − z− q‖(1± n · v)2

and

20 =
−a

‖x − z− q‖(1± n · v)
.

These three terms add up to the right-hand side of (23p.15). Furthermore, let us denote the integrand of the
right-hand side of Equation (30p.17) by 21, then

21 =
−n ∧ v

‖x − z− q‖2(1± n · v)2
+

v2 n ∧ v ± n · v n ∧ v
‖x − z− q‖2(1± n · v)3

+
−n · a n∧ v

‖x − z− q‖(1± n · v)3
+

±n ∧ a
‖x − z− q‖(1± n · v)2

which after appropriate insertion of factors of the formn ∧ n = 0 gives the right-hand side of (24p.15).

Computation A.2. We only consider the case for̺ ∈ C∞c . Substitution of̺ by Dα̺ ∈ C∞c for any multi-index
α ∈ N3 yields the desired estimates for the general case for which only the constants C5 change according
to Equation (58). It suffices to show that for n≤ 2 there exist positive constants C14

(n) < ∞ such that
∣∣∣∣∣
∫

d3z
̺(z)

‖x − z− qt‖n
∣∣∣∣∣ ≤

C14
(n)

1+ ‖x − qt‖n
.(57)

Since̺ ∈ C∞c (R3,R) there exists a R< ∞ such thatsupp̺ ⊆ BR(0). So for someǫ > 0 we have

∣∣∣∣∣
∫

d3z
̺(z)

‖x − z− qt‖n
∣∣∣∣∣ ≤ sup

y∈R3

|̺(y)|



∫
d3y

Bc
ǫ (0)∩BR(x−qt)

1
‖y‖n +

∫
d3y

Bǫ (0)∩BR(x−qt )

1
‖y‖n

 =: 22 + 23

which involved a substitution in the integration variable,and we have used the notation Bc
ǫ(0) := R3 \ Bǫ(0).

For x ∈ Bc
R+ǫ(qt) the term 23 is zero and

22 ≤
supy∈R3 |̺(y)| 4

3πR
3

(‖x − qt‖ − R)n
=:

C15

(‖x − qt‖ − R)n
.(58)



Wheeler-Feynman Equations for Rigid Charges 41

On the other hand forx ∈ BR+ǫ(qt) andǫ < R we find

22 ≤ C15

ǫn
and 23 ≤ 4π

∫ ǫ

0
dr r2−n

=: C16
(n).

Plugging these estimates in the left-hand side of (57p.40) we find
∣∣∣∣∣
∫

d3z
̺(z)

‖x − z− qt‖n
∣∣∣∣∣ ≤


C15
ǫn
+C17

(n) for x ∈ BR+ǫ(qt)
C15

(‖x−qt‖−R)n otherwise.

Clearly one finds an appropriate constant C18
(n) < ∞ such that

∣∣∣∣∣
∫

d3z
̺(z)

‖x − z− qt‖n
∣∣∣∣∣ ≤

C18
(n)

1+ ‖x − qt‖n
.

This together with (34p.19) gives C5 := 2(C18
(n=2)
+C18

(n=1)).

Corollary A.3. Let A and J be the operators defined in Definition 2.31p.22, i.e. the projection of A and J
to field space. Furthermore, for some n≥ 1 let t 7→ AkFt be a continuous mapR → Dw(An−k) ⊂ Fw for
0 ≤ k ≤ n. Then it is also true that:

Ak
∫ t

0
ds Fs =

∫ t

0
dsAkFs and Wr

∫ t

0
ds Fs =

∫ t

0
dsWr Fs

for all t, r ∈ R.

Proof. By Definition B.4p.43 we haveA = (0,A) on Dw(A) so thatWt = (idP,Wt) on Dw(A) for all t ∈ R.
Apply Lemma A.4 andt 7→ (0, Ft) and project to field spaceFw to yield the claim. �

Lemma A.4. Let A be the operator defined in Definitions B.4p.43. Furthermore, for some n≥ 1 let t 7→ Akϕt

be a continuous mapR→ Dw(An−k) ⊂ Hw for 0 ≤ k ≤ n. Then it is true that:

Ak
∫ t

0
dsϕs =

∫ t

0
ds Akϕs and Wr

∫ t

0
dsϕs =

∫ t

0
ds Wrϕs

for all t, r ∈ R.

Proof. First, we show the equality on the left-hand side of the claim. Since the integrands are continuous,
we can define the integrals asHw limits N → ∞ of the Riemann sums for allt ∈ R

σk
N =

t
N

N∑

j=1

Akϕ t
N j

for k ≤ n. By Lemma 2.20 of Part I [BDD10] the operatorA is closed onDw(A) so thatAk is closed on
Dw(Ak). Since (σk

N)N∈N converge to, say,σk inHw, we getσ0 ∈ Dw(Ak) andAkσ0
= σk which is exactly the

equality on the left-hand side of the claim.
Second, we show the equality on the right-hand side. Therefore, for anyr, t ∈ R we get

d
dr

W−r

∫ t

0
ds Wrϕs = −AW−r

∫ t

0
ds Wrϕs +W−r

∫ t

0
ds AWrϕs = 0

by the equality on the left-hand side of the claim. Hence,

W−r

∫ t

0
ds Wrϕs =

∫ t

0
dsϕs or Wr

∫ t

0
dsϕs =

∫ t

0
ds Wrϕs.

This proves the right-hand side of the claim and concludes the proof. �
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Proof of Lemma 2.47p.31. Since by (i) the sequence (Fn)n∈N is uniformly bounded in the Hilbert spaceH△w
the Banach-Alaoglu Theorem states that it has a weakly convergent subsequence inH△w which we denote by
(Gn)n∈N. Let the convergence point be denoted byF ∈ H△w. We have to show that under the assumptions
this subsequence is also strongly convergent inL2

w. The idea is the following: Far away from the origin (ii)
makes sure that the formation of spikes is suppressed while oscillations can be controlled by the Laplace
which behave nicely by (i). So letǫ > 0 and divide the integration domain forτ > 0

‖F −Gn‖L2
w
≤ ‖F −Gn‖L2

w(Bτ(0)) + ‖F −Gn‖L2
w(Bc

τ(0)).

Now by assumption (ii) we know forτ large enough it holds for alln ∈ N that

‖F −Gn‖L2
w(Bc

τ(0)) < ǫ.

By Lemma 2.12 of Part I [BDD10] the norm onL2
w(Bτ(0)) is equivalent to the one onL2(Bτ(0)) so that it

suffices to show that there is anN ∈ N such that

‖F −Gn‖L2(Bτ(0)) < ǫ(59)

for all n > N. Before we do this let us introduce a tool to control possibleoscillations. We define for any
H ∈ L1

loc the heat kernel

(e△tH)(x) = ht ∗G :=
1

(4πt)
3
2

∫
d3y exp

(
−‖x − y‖2

4t

)
H(y).

Denoting the Fourier transformation̂· and using Plancherel’s Theorem we find

‖(1− e△t)H‖2L2 = ‖(1− ĥt)Ĥ‖2L2
w
=

∫
d3k ‖Ĥ(k)‖2

(
1− exp(−k2t)

)2

≤ |t| ‖k2Ĥ‖2
L2

w
= |t| ‖△Ĥ‖2

L2
w
.

(60)

Hence, we expand by triangle inequality

‖F −Gn‖L2(Bτ(0)) ≤ ‖(1− e△t)Gn‖L2(Bτ(0)) + ‖(1− e△t)F‖L2(Bτ(0)) + ‖(1− e△t)(F −Gn)‖L2(Bτ(0))

=: 24 + 25 + 26 .

We start with the first term. Using the estimate (60) for smallenought > 0 yields

24 ≤
√

t ‖△Gn‖L2(Bτ(0)) <
ǫ

3
because (△Gn)n∈N is uniformly bounded inL2

w by (i). The same procedure for the second term yield

24 ≤
√

t ‖△Gn‖L2(Bτ(0)) ≤
√

t lim inf
n→∞

‖△Gn‖L2(Bτ(0)) <
ǫ

3
where we use the lower semi-continuity of the norm and again (i). By weak convergence inL2

w we get the
pointwise convergence for allx ∈ R3 that∥∥∥∥1Bτ(0)(x)

[
e△t(F −Gn)

]
(x)

∥∥∥∥
R3
−−−−→
n→∞

0.

Furthermore, by Schwarz’s inequality we get the estimate∥∥∥∥1Bτ(0)(x)
[
e△tGn

]
(x)

∥∥∥∥
R3
≤ 1Bτ(0)‖ht‖L2(Bτ(0))‖Gn‖L2(Bτ(0)).

Again the right-hand side is uniformly bounded by (i). Hence, by dominated convergence (e△tGn)n∈N con-
verges inL2(Bτ(0)) toe△tF. Therefore, for anN ∈ N large enough we have

27 = ‖(1− e△t)(F −Gn)‖L2(Bτ(0)) ≤
ǫ

3
.
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The estimate for the three terms prove claim (59). Thus, we conclude that (Gn)n∈N is a strongly convergent
subsequence of (Fn)n∈N in L2

w. �

Appendix B. Summary of Part I

We briefly summarize the results from Part I [BDD10] on the ML-SI equations (6p.4)-(7p.4):

Definition B.1. Let

W :=
{
w ∈ C∞(R3,R+ \ {0})

∣∣∣ ∃ Cw ∈ R+,Pw ∈ N : w(x + y) ≤ (1+Cw‖x‖)Pww(y)
}

(61)

be the class of weight functions. For any w∈ W andΩ ⊆ R3 we define the space of weighted square
integrable functionsΩ→ R3 by

L2
w(Ω,R) :=

{
F : Ω→ R3

∣∣∣∣∣
∫

d3x w(x)‖F(x)‖2 < ∞
}
.

For global regularity arguments we need more conditions on the weight functions which for k∈ N gives rise
to the definitions:

Wk :=
{
w ∈ W

∣∣∣ ∃ Cα ∈ R+ : |Dα
√

w| ≤ Cα
√

w, |α| ≤ k
}

(62)

and

W∞ := {w ∈ W | w ∈ Wk for any k∈ N}.

REMARK B.2. As computed in Part I[BDD10],W ∋ w(x) := (1+ ‖x‖2)−1.

The space of initial values is then given by:

Definition B.3 (Phase Space for the ML Equations of Motion). We define the Newtonian phase spaceP :=
R

6N, the field space

Fw := L2
w(R3,R3) ⊕ L2

w(R3,R3)

and the phase space for the ML equation of motion

Hw := P ⊕ Fw.

Any elementϕ ∈ Hw consists of the componentsϕ = (qi , pi ,Ei ,Bi)1≤i≤N, i.e. positionsqi , momentapi and
electric and magnetic fieldsEi ,Bi for each of the1 ≤ i ≤ N charges.

Wherever not noted otherwise, any spatial derivative will for the rest of this section be understood in the
distribution sense, and the Latin indicesi, j, . . . shall run over the charge labels 1. . .N. We shall also need
the weighted Sobolev spacesHcurl

w (R3,R3) := {F ∈ L2
w(R3,R3) | ∇∧F ∈ L2

w(R3,R3)} andHk
w(R3,R3) := {F ∈

L2
w(R3,R3) | DαF ∈ L2

w(R3,R3) ∀ |α| ≤ k} for anyk ∈ N. Furthermore, we define the following operators:

Definition B.4 (Operator A). LetA and A be given by the expressions

Aϕ =
(
0, 0, A(Ei,Bi)

)
1≤i≤N

:=
(
0, 0,−∇∧ Ei ,∇ ∧ Bi)

)
1≤i≤N

.

for a ϕ = (qi , pi ,Ei ,Bi)1≤i≤N. The natural domain is given by

Dw(A) :=
N⊕

i=1

R
3 ⊕ R3 ⊕ Hcurl

w (R3,R3) ⊕ Hcurl
w (R3,R3) ⊂ Hw.

Furthermore, for any n∈ N ∪ {∞} we define

Dw(An) :=
{
ϕ ∈ Dw(A)

∣∣∣ Akϕ ∈ Dw(A) for k = 0, . . . , n− 1
}
.
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Definition B.5 (Operator J). Together withv(pi) := pi√
p2

i +m2
we define J: Hw→ Dw(A∞) by the expression

J(ϕ) =

v(pi),
N∑

j=1

ei j

∫
d3x ̺i(x − qi)

(
E j(x) + v(pi) ∧ B j(x)

)
,−4πv(pi)̺i(· − qi), 0


1≤i≤N

for a ϕ = (qi , pi ,Ei ,Bi)1≤i≤N ∈ Hw.

Note thatJ is well-defined because̺i ∈ C∞c (R3,R). With these definitions the Lorentz force law (7p.4),
the Maxwell equations (6p.4), neglecting the Maxwell constraints, can be collected in the form

ϕ̇t = Aϕt + J(ϕt)(63)

The two main theorems are:

Theorem B.6(Global Existence and Uniqueness for the ML Equations). Let the spaceHw and the operators
A : Dw(A) → Hw, J : Hw → Dw(A∞) be the ones introduced in Definitions B.3p.43, B.4p.43 and B.5. Let the
weight function w∈ W1 and let n∈ N andϕ0

= (q0
i , p

0
i ,E

0
i ,B

0
i )1≤i≤N ∈ Dw(An) be given. Then the following

holds:

(i) (global existence)There exists an n times continuously differentiable mapping

ϕ(·) : R→ Hw, t 7→ ϕt = (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N

such thatd j

dt j ϕt ∈ Dw(An− j) for all t ∈ R and0 ≤ j ≤ n, which solves the ML equations (63) for initial
valueϕt |t=0 = ϕ

0.
(ii) (uniqueness)The solutionϕ is unique in the sense that if for any intervalΛ ⊂ R there is any once

continuously differentiable functioñϕ : Λ → Dw(A) which solves the equation (63) onΛ and there is
some t∗ ∈ Λ such that̃ϕt∗ = ϕt∗ thenϕt = ϕ̃t holds for all t∈ Λ. In particular, for any T≥ 0 such that
[−T,T] ⊆ Λ there exist C19,C20 ∈ Bounds such that

sup
t∈[−T,T]

‖ϕt‖Hw ≤ C19

(
T, ‖̺i‖L2

w
, ‖w−1/2̺i‖L2 , 1 ≤ i ≤ N

)
‖ϕ0‖Hw.(64)

and

sup
t∈[−T,T]

‖ϕt − ϕ̃t‖Hw ≤ C20(T, ‖ϕt0‖Hw, ‖ϕ̃t0‖Hw)‖ϕt0 − ϕ̃t0‖Hw.(65)

(iii) (constraints)If the solution t7→ ϕt = (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N obeys the Maxwell constraints

∇ · Ei,t = 4π̺(· − qi,t), ∇ · Bi,t = 0(66)

for one t= t∗ ∈ R, then they are obeyed for all times t∈ R.

Theorem B.7 (Regularity of the ML Solutions). Assume the same conditions as in Theorem B.6 hold. In
addition, let w∈ W2. Let t 7→ ϕt = (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N be the solution to the Maxwell equations 63 for
initial valueϕt|t=0 = ϕ

0 ∈ Dw(An). Now let n= 2m for some m∈ N, then for all1 ≤ i ≤ N:

(i) It holds for any t∈ R thatEi,t,Bi,t ∈ H△
m

w .
(ii) The electromagnetic fields viewed as mapsEi : (t, x) 7→ Ei,t(x) and Bi : (t, x) 7→ Bi,t(x) are in

L2
loc(R

4,R3) and have a representative inCn−2(R4,R3) in their equivalence class, respectively.
(iii) For w ∈ Wk for k ≥ 2 and every t∈ R we have alsoEi,t,Bi,t ∈ Hn

w and C< ∞ such that:

sup
x∈R3

∑

|α|≤k

‖DαEi,t(x)‖ ≤ C‖Ei,t‖Hk
w

and sup
x∈R3

∑

|α|≤k

‖DαBi,t(x)‖ ≤ C‖Bi,t‖Hk
w
.(67)

As shown in Part I [BDD10],A on Dw(A) generates aγ-contractive group (Wt)t∈R:
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Definition B.8 (Free Maxwell Time Evolution). We denote by(Wt)t∈R theγ-contractive group onHw gen-
erated by A on Dw(A).

REMARK B.9. Theγ-contractive group(Wt)t∈R comes with a standard bound‖Wt‖L(L2
w) ≤ eγ|t| which we

shall use often.

The above existence and uniqueness result induces:

Definition B.10 (ML Time Evolution). We define the non-linear operator

ML : R2 × Dw(A)→ Dw(A), (t, t0, ϕ0)→ ML(t, t0)[ϕ0] = ϕt =Wt−t0ϕ
0
+

∫ t

t0

Wt−sJ(ϕs)

which encodes the time evolution of the charges as well as their electromagnetic fields from time t0 to time t.

REMARK B.11. For times t0, t1, t ∈ R andϕ0 ∈ Dw(A) it holds

ML(t, t0)[ϕ0] = ML(t, t1)
[
ML(t1, t0)[ϕ0]

]

by uniqueness.
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