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TWO MATHEMATICALLY EQUIVALENT VERSIONS OF

MAXWELL’S EQUATIONS

TEPPER L. GILL AND WOODFORD W. ZACHARY

Abstract. This paper is a review of the canonical proper-time approach to

relativistic mechanics and classical electrodynamics. The purpose is to provide

a physically complete classical background for a new approach to relativistic

quantum theory. Here, we first show that there are two versions of Maxwell’s

equations. The new version fixes the clock of the field source for all inertial

observers. However now, the (natural definition of the effective) speed of light

is no longer an invariant for all observers, but depends on the motion of the

source. This approach allows us to account for radiation reaction without the

Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any

assumptions about the structure of the source. The theory provides a new

invariance group which, in general, is a nonlinear and nonlocal representation

of the Lorentz group. This approach also provides a natural (and unique)

definition of simultaneity for all observers.

The corresponding particle theory is independent of particle number, nonin-

variant under time reversal (arrow of time), compatible with quantum mechan-

ics and has a corresponding positive definite canonical Hamiltonian associated

with the clock of the source.

We also provide a brief review of our work on the foundational aspects of the

corresponding relativistic quantum theory. Here, we show that the standard

square-root and the Dirac equations are actually two distinct spin- 1
2
particle

equations.
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Introduction

Einstein begins his 1905 [1], paper with the statement: “It is known that Maxwell’s

electrodynamics as usually understood at the present time - - when applied to mov-

ing bodies, leads to asymmetries which do not appear to be inherent in the phenom-

ena.” After quoting a few examples and the unsuccessful attempts of experimenters

to discover the light medium (ether), he concludes that mechanics as well as elec-

trodynamics possess no properties corresponding to absolute rest. Thus, the laws

of electrodynamics and optics will be valid for all frames in which the equations of

mechanics holds. He then suggests that we raise his conjecture to the status of a

postulate called the “principle of relativity”. He then adds one other postulate to

provide what is now known as the basic postulates of the special theory of relativity.

As noted by Bridgman [2], the special theory allows us to by-pass but not answer

the fundamental question of “the nature of the physical mechanism by which objects

are lighted”. From an operational point of view, we must ask is it physically possible

to consider light as a “thing” that travels? Bridgman [2] observed that:

we can give no operational meaning to the idea that light exists

at each point between source and sink. The idea of light as a

thing traveling is pure invention based on sense perceptions and

the mechanical world view.

Remark 1. Today, the generally accepted interpretation is that electromagnetic

waves are formed when an electric field, E, couples with a magnetic field, B. (The

electric and magnetic fields of an electromagnetic wave are perpendicular to each

other and to the direction of the wave.) The basic assumption is that these two

fields move in the vacuum and no ether is required (see Purcell [3]).
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However, we must be careful that we don’t use the description of what these waves

are composed of (i.e., solutions of the wave equation) as an interpretation of how

they travel.

As noted in Miller [4], Einstein chose to consider light as a thing traveling for

convenience. This allowed him to use the standard notion of velocity for measure-

ment purposes. However, in the special theory, light is not a material particle nor

is it a wave since, if it’s a particle, its velocity cannot be independent of the source

motion and, if it’s a wave, it must travel in a medium (the ether), which is known

to not have any effect on light! (Since the advent of quantum theory, many have

assumed that the question is resolved by wave-particle duality, but this is far from

true.)

It should not go unnoticed that, in a paper published almost at the same time,

Einstein [5] used the concept of light as a “localized energy packet” to explain the

photoelectric effect. In fact, Planck [6] wrote: “According to the latest statements

by Einstein, it would be necessary to assume that free radiation in vacuum, and

hence light waves themselves, has an atomistic constitution, and thus to abandon

Maxwell’s equations.” We should not be amazed at Planck’s statement since, at

the time, the question of the need for Maxwell’s equations at all was still an open

subject.

In 1867, Ludvig Lorenz [7] introduced retarded vector and scalar potentials. It

was shown that these led to the same results obtained by Maxwell via the intro-

duction of the displacement current into Ampère’s law. Indeed, it has been known

since then that all the results of the Maxwell theory can be obtained directly from

the potentials, without ever introducing fields (i.e., action-at-a-distance). It has
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recently been shown by Hamdan, Hariri and López-Bonilla [8] that one can derive

Maxwell’s equations directly from the Lorentz force.

There were many who took L. Lorenz’s position, but the major protagonist in

this debate was Walther Ritz [9]. Ritz, like Einstein, accepted H. A. Lorentz’s

theory of the electron but rejected the ether. He further noted that, from a strictly

logical point of view, Maxwell’s electric and magnetic fields, which appear to play

such an important role, can be entirely eliminated from the theory. He argued

that, in reality, Maxwell’s theory deals only with certain relations between space

and time. In his view, we could simply return to the elementary actions (retarded

potentials). He further pointed out that the field equations have an infinite num-

ber of solutions that are incompatible with experiment and, in order to eliminate

these extraneous solutions, it is necessary to adopt the retarded potentials anyway.

This introduces an additional assumption which is not needed if we start with the

retarded potentials in the first place.

Einstein did not completely accept, but was swayed by Ritz’s position. Indeed,

in his 1909 paper [10], Einstein stated:

According to the usual theory, an oscillating ion generates a diver-

gent spherical wave. The reverse process does not exist as a ele-

mentary process. The convergent wave is indeed mathematically

possible; but for its approximate realisation an enormous number

of elementary emitting systems would be required. Hence, the el-

ementary process of light-emission has not as such the character

of reversibility. Herein, I believe, our wave theory is incorrect. It

seems in relation to this point Newton’s emission theory contains
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more truth than the wave theory, for the energy communicated

to a light-particle in emission is not spread over infinite space but

remains available for an elementary process of absorption.

Here, Einstein is agreeing with Ritz’s position that retarded potentials express the

elementary process of emission, whereas Maxwell’s equations do not. We get a

further clue to Einstein’s thinking on this subject from his Autobiographical notes

of 1949 [11] (see Brown [12]).

Reflections of this type made it clear to me as long ago as 1900,

i.e., shortly after Planck’s trailblazing work, that neither mechanics

nor electrodynamics could (except in limiting cases) claim exact

validity.

Brown points out that, because he was not sure that Maxwell’s theory would sur-

vive the existence of photons, Einstein had the foresight to derive the Lorentz

transformations from kinematical arguments, as opposed to the symmetry proper-

ties of Maxwell’s equations. (He believed that the Lorentz transformations were

fundamental and would survive any failures in the Maxwell theory.)

There always was a certain tension between field theory and action-at-a-distance.

The most famous recent work on the subject is the Wheeler-Feynman formulation

of classical electrodynamics [13], in which they eliminate the field completely in

favor of action-at-a-distance. This allowed them to solve the self-energy divergence

problem associated with the then-accepted Dirac theory [14] (for details, see [18]).

However, among other things, the need for both advanced and retarded interactions,

the inability to quantize and the intrinsic usefulness of the self-energy divergence
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for the success of quantum electrodynamics became important reasons for its lack

of favor as a replacement for the Dirac approach.

Purpose: In this paper, we introduce a canonical proper-time formulation of clas-

sical electrodynamics, where the local clock of the moving system replaces the clock

of the observer. This approach is mathematically equivalent, but is not physically

equivalent to the conventional approach. Physically, this change is equivalent to a

new definition of velocity for relativistic systems and by-passes all the well-known

problems with the conventional theory. We also develop the corresponding particle

theory, which produces a positive definite canonical Hamiltonian; the local clock

is non-invariant under time-reversal (time-arrow). As an application, we briefly

look at a few areas where additional assumptions are required in order to restore

the conventional theory and explain new findings. The main purpose is to prepare

the way, on the classical level, for the corresponding (relativistic) quantum theory.

However, we briefly discuss the quantum foundations and our current progress in

this direction.

1. Maxwell Theory

1.1. Foundations. The basis for all of natural science is the belief that there is

a real, external world, which exists independent of our perceptions of it. The first

postulate is an outgrowth of the fundamental question of what can we know about

this external world and how do we know we can actually establish that we know

it? The answer to this question for physics is to explicitly state the conditions

under which we are willing to call a particular mathematical model a physical law,

namely, if it satisfies the principle of relativity.
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A major objective of theoretical physics is to provide a mathematical model (us-

ing a minimal number of variables) to describe the cause and effect relationships

observed in the experiment. If this model is physically reliable, mathematically con-

sistent and leads to insights and/or predictions that were heretofore unsuspected,

it may, over time, acquire the status of a physical law. The first postulate of the

special theory of relativity imposes a natural constraint on the extent that we may

believe in the law and the results of related experiments; namely that, any other ob-

server (not necessarily human), in any other galaxy using similar equipment, in any

other inertial frame of reference, must be able to obtain similar results and model,

with differences accounted for by a Lorentz transformation. Thus, a true physical

law must be independent of the particular class of sentient beings discovering it.

1.2. Local-time Maxwell Equations. In his formulation, it was natural for Ein-

stein to use the clock of the observer to measure time. In the following section, we

show that an equally valid clock to use is the local clock of the observed system,

which is generally known as the proper-time. (In this terminology, the conventional

clock used is the proper-time of the observer.)

In order to formulate the local-time version of Maxwell’s equations, it is conve-

nient to start with the standard definition of proper-time:

dτ2 = dt2 − 1

c2
dx2 = dt2

[

1− w2

c2

]

, w =
dx

dt
.

Motivated by geometry and the mathematical philosophy of the era, Minkowski

introduced the concept of proper time (first discovered by Poincaré). Recently, it

has been suggested by Damour [15] that Minkowski was not aware that dτ is not an

exact one-form and hence cannot be used for a metric. It is clear that Minkowski
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became aware of this fact (see Sommerfeld’s notes in [16] after the translation of

Minkowski’s paper (pg. 94)). (For very interesting additional discussion on this

and other related points, see Walters [17] and included references.)

Nevertheless, some have dismissed this (physical) fact by attaching a “co-moving

observer” on the tangent curve (bundle) of the moving particle in order to induce

an instantaneous exact one-form for the four-geometry at each time slice. This is

mathematically correct but physically invalid, since for example, it is impossible

for such an observer to sit on the tangent curve of a high-energy muon entering

our atmosphere, or an antiproton in the accelerator at Fermi Laboratory. In fact,

the use of time dilation in order to explain results that have no explanation using

the observer’s measuring rods and clock, must be considered incorrect at a basic

methodological level.

However, there is an important physical reason why dτ is not an exact one-form.

Physically, a particle can traverse many different paths (in space) during any given

τ interval. This reflects the fact that the distance traveled in a given time interval

depends on the forces acting on the particle. This suggests that the actual clock of

the source carries additional physical information about the acting forces. In order

to see that this is the case, rewrite the above equation as:

dt2 = dτ2 +
1

c2
dx2 = dτ2

[

1 +
u2

c2

]

, u =
dx

dτ
.

For any other observer, we have:

dt′2 = dτ2 +
1

c2
dx′2 = dτ2

[

1 +
u′2

c2

]

, u′ =
dx′

dτ
.

Thus, all observers can use one unique clock to discuss all events associated with the

source (simultaneity). It should also be noted that this also corresponds to a change
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in our (independent) configuration space variables from (x(t),w(t))→ (x(τ),u(τ)).

(However, because the corresponding momentum p = mw = m0u where m = γm0,

the phase space variables do not change.) Returning to the first equation, we see

that the new metric defined by dt is clearly exact, while the representation space is

now Euclidean. However, the natural definition of velocity is no longer w = dx/dt

but u = dx/dτ . This fact suggests that there may be a certain duality in the

relationship between t, τ and w, u. To see that this is indeed the case, recall that

u = w
/
√

1−
(

w2
/

c2
)

. Solving for w, we get that w = u
/
√

1 +
(

u2
/

c2
)

. If we

set b =
√
c2 + u2, this relationship can be written as

w

c
=

u

b
.(1)

For reasons to be clear momentarily, we call b the collaborative speed of light.

Indeed, we see that

1

c

∂

∂t
=

1

c

∂τ

∂t

∂

∂τ
=

1

c

1
√

1 +
(

u2
/

c2
)

∂

∂τ
=

1

b

∂

∂τ
.(2)

For any other observer, it is easy to see that the corresponding result will be:

w′

c
=

u′

b′
,

1

c

∂

∂t′
=

1

b′
∂

∂τ
.

We see from the above two equations that the non-invariance of t and the invariance

of c on the left is replaced by the non-invariance of b and the invariance of τ on the

right. These equations clearly represent mathematically equivalent relations (i.e.,

they are identities). Thus, wherever they are used consistently as replacements for

each other, they can’t change the mathematical relationships. In order to see their
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impact on Maxwell’s equations, write them (in c.g.s. units)

∇ ·B = 0, ∇ · E = 4πρ,

∇×E = −1

c

∂B

∂t
, ∇×B =

1

c

[

∂E

∂t
+ 4πρw

]

.

(3)

Using equations (1) and (2) in (3), we have (the identical mathematical representa-

tion for Maxwell’s equations):

∇ ·B = 0, ∇ ·E = 4πρ,

∇×E = −1

b

∂B

∂τ
, ∇×B =

1

b

[

∂E

∂τ
+ 4πρu

]

.

Thus, we see that Maxwell’s equations are equally valid when the local time of the

particle is used to describe the fields. This leads to the following conclusions:

(1) There are two distinct clocks to use in the representation of Maxwell’s

equations. Thus, the choice of clocks is a convention in the true sense of

Poincaré (see conclusion).

(2) Since the two representations are mathematically equivalent, we conclude

that mathematical equivalence is not always physical equivalence. (This

will be clear after we derive the corresponding wave equation below.)

(3) When the local clock of the system is used, the constant speed of light c is

replaced by the effective speed of light b, which depends on the motion of

the system (i.e., b =
√
c2 + u2).

(4) There is another group (closely related to the Lorentz group) which fixes

the local-time of the particle for all observers.

Before constructing the proper-time group, we derive the corresponding wave equa-

tions in the local-time variable. Taking the curl of the last two equations (above),
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and using standard vector identities, we get:

1

b2
∂2B

∂τ2
− u · a

b4

[

∂B

∂τ

]

−∇2 ·B =
1

b
[4π∇× (ρu)] ,

1

b2
∂2E

∂τ2
− u · a

b4

[

∂E

∂τ

]

−∇2 ·E = −∇(4πρ)− 1

b

∂

∂τ

[

4π(ρu)

b

]

,

(4)

where a = du/dτ is the effective acceleration caused by external forces. Thus, we

see that a new term arises when the proper-time of the source is used to describe

the fields. This makes it clear that the local clock encodes information about the

particle’s interaction that is unavailable when the clock of the observer is used to

describe the fields, and shows clearly that physical equivalence is not the same as

mathematical equivalence. The new term in equation (4) is dissipative, acts to

oppose the acceleration, is zero when a = 0 and, arises instantaneously with the

action of forces on the particle. Furthermore, as expected, this term does not depend

on the nature of the force causing the acceleration of the charged particle. This is

exactly what one expects of the back reaction caused by the inertial resistance of

the particle to accelerated motion and, according to Wheeler and Feynman [13], is

precisely what is meant by radiation reaction. Thus, the collaborative use of the

observer’s coordinate system and the local clock of the observed system provides

intrinsic information about the field dynamics not available in the conventional for-

mulation of Maxwell’s theory. If we make a scale transformation (at fixed position)

with E→ (b/c)1/2E and B→ (b/c)1/2B, the equations in (4) transform to

1

b2
∂2B

∂τ2
− ∇2 ·B+

[

b̈

2b3
− 3ḃ2

4b4

]

B =
c1/2

b3/2
[4π∇× (ρu)] ,

1

b2
∂2E

∂τ2
− ∇2 ·E+

[

b̈

2b3
− 3ḃ2

4b4

]

E = −c
1/2

b1/2
∇(4πρ)− c1/2

b3/2
∂

∂τ

[

4π(ρu)

b

]

.

(5)
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This is the Klein-Gordon equation with an effective mass µ given by

µ =

{

~
2

c2

[

b̈

2b3
− 3ḃ2

4b4

]}1/2

=

{

~
2

c2

[

u · ü+ u̇2

2b4
− 5 (u · u̇)2

4b6

]}1/2

.(6)

Let (x(τ), τ) represent the field position and (x̄(τ ′), τ ′) the retarded position of

a source charge e, with r = x − x̄. If we set r = |x− x̄|, s = r − ( (r·u)b ), and

ru = r − r
bu, then we were able to compute the E and B fields directly in [18] to

obtain:

E(x, τ) =
e
[

ru(1− u2
/

b2)
]

s3
+
e [r× (ru × a)]

b2s3
+
e(u · a) [r× (u× r)]

b4s3
(7)

and

B(x, τ) =
e
[

(r× ru)(1− u2
/

b2)
]

rs3
+
er× [r× (ru × a)]

rb2s3
+
er(u · a)(r× u)

b4s3
.

(It is easy to see that B is orthogonal to E.) The first two terms in the above equa-

tions are standard, in the (x(t),w(t)) variables. The third part of both equations

is new and arises because of the dissipative term in our wave equation. It is easy

to see that r× (u× r) = r2u− (u · r)r, so we get a component along the direction

of motion. (Thus, the E field has a longitudinal part.) This confirms our claim

that the new dissipative term is equivalent to an effective mass that arises due to

the collaborative acceleration of the particle. This means that the cause for radia-

tion reaction comes directly from the use of the local clock to formulate Maxwell’s

equations. Thus, in this approach, there is no need to assume advanced potentials,

self-interaction, mass renormalization along with the Lorentz-Dirac equation in or-

der to account for it (radiation reaction), as has been required when the observer

clock is used. Furthermore, no assumptions about the structure of the source are

required.
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1.3. Proper-time Group. We now identify the new (proper-time) transforma-

tion group that preserves the first postulate of the special theory. The standard

(Lorentz) time transformations between two inertial observers can be written as

t′ = γ(v)
[

t− x · v
/

c2
]

, t = γ(v)
[

t′ + x′ · v
/

c2
]

.(8)

We want to replace t, t′ by τ . To do this, use the relationship between dt and dτ

to get:

t = 1
c

∫ τ

0

b(s)ds = 1
c b̄τ, t′ = 1

c

∫ τ

0

b′(s)ds = 1
c b̄

′τ,(9)

where we have used the mean value theorem of calculus to obtain the end result,

so that both b̄ and b̄′ represent an earlier τ -value of b and b′ respectively. Note

that, as b and b′ depend on τ , the transformations (9) represent explicit nonlinear

relationships between t, t′ and τ (during interaction). (This is to be expected in

the general case when the system is acted on by external forces.) If we set

d∗ = d/γ(v)− (1− γ(v))
[

(v · d)
/

(γ(v)v2)
]

v,

we can write the transformations that fix τ as:

x′ = γ(v)
[

x∗ − (v/c)b̄τ
]

, x = γ(v)
[

x′∗ + (v/c)b̄′τ
]

,

u′ = γ(v) [u∗ − (v/c)b] , u = γ(v)
[

u′∗ + (v/c)b′
]

,

a′ = γ(v) {a∗ − v [(u · a)/(bc)]} , a = γ(v)
{

a′
∗

+ v [(u′ · a′)/(b′c)]
}

.

(10)

If we put equation (9) in (8), differentiate with respect to τ and cancel the extra

factor of c, we get the transformations between b and b′:

b′(τ) = γ(v) [b(τ)− u · v/c] , b(τ) = γ(v) [b′(τ) + u′ · v/c] .(11)
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Equations (10) in (11) provide an explicit nonlinear representation of the Lorentz

group, which uses the local clock to describe the dynamics of the system and pre-

serves the first postulate of the special theory (the only one that really matters).

We call this group the proper-time group.

It was shown in [18] that Maxwell’s equations transform in the same way as in

the conventional theory. However, the charge and current density have the following

transformations:

J′ = J+ (γ − 1)
(J · v)
v2

v − γ b
c
ρv,(12)

b′ρ′ = γ(v) [bρ− (J · v/c)] .(13)

Using the first equation of (11) in (13), we get:

ρ′ =
ρ− (J · v/bc)
1− (u · v/bc) .(14)

This result is different from the standard one, (which we obtain if we set b′ = b = c

in (13)),

ρ′ = γ(v)
[

ρ− (J · v
/

c2)
]

.

Furthermore, if we insert the expression J/c = ρ(u/b) in (14); we obtain

ρ′ = ρ
1− (u · v

/

b2)

1− (u · v/bc) .(15)

In order to see the impact of equation (15), suppose that a spherical charge distribu-

tion is at rest in the unprimed frame. From (15), we see that u = 0, so that ρ′ = ρ.

Since the primed frame is arbitrary, the charge distribution will appear spherical to

all observers. This is what we would expect on physical grounds, so that relatively

moving frames should not change the symmetry properties of charged objects. In



TWO MATHEMATICALLY EQUIVALENT VERSIONS OF MAXWELL’S EQUATIONS15

particular, a spherical charge distribution in one frame should not be distorted

in another moving frame (i.e., display physical effects due to another observer’s

relative motion).

1.4. Canonical Proper-Time Particle Theory. We now investigate the corre-

sponding particle theory. Since we desire complete compatibility with quantum

theory, it is natural to require that any change from the observer clock to the local

clock of the observed system be a canonical change of variables. The key concept

to our approach may be seen by examining the time evolution of a dynamical pa-

rameter W (x,p), via the standard formulation of classical mechanics, described in

terms of the Poisson brackets:

dW

dt
= {H,W} .(16)

We can also represent the dynamics using the proper (or local) time of the system

by using the representation dτ = (1/γ)dt = (mc2
/

H)dt, so that:

dW

dτ
=
dt

dτ

dW

dt
=

H

mc2
{H,W} .

Assuming a well-defined (invariant) rest energy (mc2) for the system, we determine

the canonical proper-time Hamiltonian K such that:

{K,W} = H

mc2
{H,W} , K|p=0 = H |p=0 = mc2.

Using

{K,W} =
[

H

mc2
∂H

∂p

]

∂W

∂x
−
[

H

mc2
∂H

∂x

]

∂W

∂p

=
∂

∂p

[

H2

2mc2
+ a

]

∂W

∂x
− ∂

∂x

[

H2

2mc2
+ a′

]

∂W

∂p
,
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we get that a = a′ = 1
2mc

2, so that (assuming no explicit time dependence)

K =
H2

2mc2
+
mc2

2
, and

dW

dτ
= {K,W} .

Since τ is invariant during interaction (minimal coupling), we make the natural

assumption that (the form of) K also remains invariant. Thus, if
√

c2p2 +m2c4 →
√
c2π2 +m2c4 + V , where A a vector potential, V is a potential energy term and

π = p− e
cA. In this case, K becomes:

K =
π

2

2m
+mc2 +

V 2

2mc2
+
V
√
c2π2 +m2c4

mc2
.

If we set H0 =
√
c2π2 +m2c4, use standard vector identities with H0 = mcb,

∇× π = − ecB, and compute Hamilton’s equations, we get:

u =
dx

dτ
=

[

1 +
V

H0

]

π

m
=

π

m̃
, m̃ =

[

1 +
V

H0

]

−1

m,

dp

dτ
= −

[

(π · ∇)π + e
cπ ×B

]

m

[

1 +
V

H0

]

−∇V H0

mc2

[

1 +
V

H0

]

= e
c (u · ∇)A+ e

cu×B−∇V b
c

[

1 +
V

H0

]

.

(17)

We remark that one can view m̃ as a (finite) renormalization of m which occurs the

moment that the potential is turned on. This may seem strange to one not familiar

with the history of this subject. An excellent discussion of renormalization from a

historical perspective can be found in the article by Dresden [19].

In order to see the impact of our condition that K remains invariant during

interaction in another way, compute the Lagrangian from Ldτ = p · dx −Kdτ , to

get:

L = m̃u2 − m̃u2

2

(

m̃

m

)

−mc2 − V 2

2mc2
− V

(

b

c

)

+
e

c
A · u.

However, if we use the fact that π = m̃u directly in H0, we get the implicit relation

b =
√

c2 + m̃2u2

m2 . If we use this in our equation for the metric, we get (in spherical
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coordinates):

dt2 =






1 +

u2

c2
[

1 + V
H0

]2






dτ2 ⇒

c2dt2 = c2dτ2 +
dx2

[

1 + V
H0

]2 = c2dτ2 +
dr2

[

1 + V
H0

]2 +
r2dθ2

[

1 + V
H0

]2 +
r2 sin2 θdφ2
[

1 + V
H0

]2 .

Thus, we see that the metric becomes deformed in the presence of a potential (i.e.,

geometry is created by physics).

If we multiply equation (17) by b/c, compute the total derivative of A with

respect to τ and use the definition of E, with V = eΦ, we have:

c

b

[

dp

dτ
− e

c

dA

dτ

]

= −e
b

∂A

∂τ
+ e

bu×B− e∇Φ
[

1 +
V

mcb

]

= eE+ e
bu×B− e∇Φ V

mcb
.

(18)

It has been observed by Feynman [20] that, although there is experimental evidence

for the existence of electromagnetic mass, the conventional theory “falls on its face”

in accounting for this mass ..., “because it does not produce a consistent theory–and

the same is true for quantum modifications”.

The last term in equation (18) is an addition to the Lorentz force, with the

opposite sign of −∇Φ, which appears in E. In order to see the physical meaning of

the term, assume an interaction between a proton and an electron, where A = 0

and V is the Coulomb interaction, so that (17) and (18) become:

u =

[

1 +
V

mc2

]

π

m
,

c

b

dp

dτ
= −∇V −∇V V

mcb
.

If we treat u as (approximately) p/m and set b = c, we get that

ma = −∇V −∇V V

mc2
.
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In this case, it is easy to show that the classical electron radius, r0, is a critical

point (i.e., −∇Φ − ∇Φ(V/mc2) = 0). Thus, for 0 < r < r0, the force becomes

repulsive. We interpret this as a fixed region of repulsion, so that the singularity

r = 0 is impossible to reach at the classical level. The neglected terms are attractive

but of lower order. This makes the critical point slightly less than r0. Thus, in

general, the electron experiences a strongly repulsive force when it gets too close

to the proton. This means that the classical principle of impenetrability, namely

that no two particles can occupy the same space at the same time occurs naturally.

Furthermore, this analysis shows conclusively that information about the (classical)

structure of the particle is not required in the canonical proper-time theory.

Finally, It is clear that the neglect of second order terms gives us the non-

relativistic theory.

2. Many-Particle Case

Once it was agreed that the “correct formulation of” relativistic classical me-

chanics should be invariant under the Lorentz group, work on this problem was

generally ignored until after World War Two when it was realized that quantum

theory did not solve the open problems of classical electrodynamics. In particular,

it was first noticed that the canonical center-of-mass is not the three-vector part

of a four-vector (see Pryce [21]). The well-known no-interaction theorem of Currie,

Jordan and Sudarshan [22] shows that it is impossible to construct a (interacting)

relativistic many-particle theory that allows covariance and independent particle

world-lines. (For a discussion of this and all known problems, see [18].) Thus, the
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four-vector approach “falls on its face” for more than one particle. In this sec-

tion we construct a consistent classical (relativistic) many-particle theory that is

quantizable and includes Newtonian mechanics.

Suppose we have a closed system of n interacting particles with Hamiltonians

Hi and total Hamiltonian H . We assume that H is of the form H =
n
∑

i=1

Hi. If we

define the effective mass M and total momentum P by

Mc2 =
√

H2 − c2P2, P =

n
∑

i=1

pi,

then H also has the representation H =
√
c2P2 +M2c4. To construct the many-

particle theory, we observe that the representation dτ = (Mc2/H)dt does not de-

pend on the number of particles in the system and is an invariant for all observers

(see [18]). Thus, we can uniquely define the proper-time of the system for all ob-

servers. If we let L be the boost (generator of pure Lorentz transformations) and

define the total angular momentum J by

J =
n
∑

i=1

xi × pi,

we then have the following Poisson Bracket relations characteristic of the Lie algebra

for the Poincaré group (when we use the observer proper-time):

dP

dt
= {H,P} = 0

dJ

dt
= {H,J} = 0 {Pi, Pj} = 0

{Ji, Pj} = εijkPk {Ji, Jj} = εijkJk {Ji, Lj} = εijkLk

dL

dt
= {H,L} = −P {Pi, Lj} = −δijH/c2, {Li, Lj} = −εijkJk/c2.
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It is easy to see thatM commutes with H , P, and J, and to show thatM commutes

with L. Constructing K as in the one-particle case, we have

K =
H2

2Mc2
+
Mc2

2
=

P2

2M
+Mc2.

Thus, we can use the same definitions for P, J, and L to obtain our new commu-

tation relations:

dP

dτ
= {K,P} = 0,

dJ

dτ
= {K,J} = 0, {Pi, Pj} = 0,

{Ji, Pj} = εijkPk, {Ji, Jj} = εijkJk, {Ji, Lj} = εijkLk,

dL

dτ
= {K,L} = −H

Mc2
P, {Pi, Lj} = −δijH/c2, {Li, Lj} = −εijkJk /c2.

It follows that, except for a constant scale change, the inhomogeneous proper-time

group is generated by the same Lie algebra as the Poincaré group. This result is

not surprising given the close relation between the two groups. It also proves our

earlier statement that the form of K is fully relativistic.

Let the map from (xi, t) → (xi, τ) be denoted by C[ t, τ ], and let P(O′, O) be

the Poincaré map from O→ O′.

Theorem 2. The proper-time coordinates of the system as seen by an observer at

O are related to those of an observer at O′ by the transformation:

RM [τ ] = C[ t′, τ ]P(O′, O)C−1[ t, τ ].
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Proof. The proof follows since the diagram below is commutative.

O({xi}, t) −→ O′({x′

i}, t′)

C−1[ t, τ ]

x

















y

C[ t′, τ ]

O({xi}, τ) ←− O′({x′

i}, τ)

�

The top diagram is the Poincaré map from O → O′. It is important to note

that this map is between the coordinates of observers. In this sense, our approach

may be viewed as a direct generalization of the conventional theory. In the global

case, when U is constant, t is related to τ by a scale transformation so that we

have a group with the same Lie algebra as the Poincaré group (up to a constant

scale), but it has an Euclidean metric. In this case, Theorem 2 proves that RM is

in the proper-time group formed by a similarity action on the Poincaré group by

the canonical group Cτ . On the other hand, Theorem 2 is true in general. This

means that in both the local and global cases (when the acceleration is nonzero)

t is related to τi and τ via nonlocal (nonlinear) transformations. It follows that,

in general, the group action is not linear, and hence is not covered by the Cartan

classification.

Since K does not depend on the center-of-mass position X, it is easy to see that

U =
dX

dτ
=
∂K

∂P
=

P

M
=

1

M

n
∑

i=1

miui,(19)
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where ui = dxi/dτi. We can now define b by

b =
√

U2 + c2 ⇒ H =Mcb.

Thus, we can represent the relationship between dτ and dt as:

dτ = (c/b)dt.

If we set vi = dxi/dτ , an easy calculation shows that

ui =
dxi
dτi

=
dτ

dτi

dxi
dτ

=
bi
b
vi ⇒

ui

bi
=

vi

b
.

The velocity vi is the one our observer sees when he uses the global proper-clock of

the system to compute the particle velocity, while ui is the one seen when he uses

the local proper clock of the particle to compute its velocity. Solving for ui and bi

in terms of vi and b, we get

ui =
cvi

√

b2 − v2
i

, bi =
cb

√

b2 − v2
i

or
bi
b
=

c
√

b2 − v2
i

.

Note that, since b2 = U2 + c2, if U is not zero, then any vi can be larger than c.

On the other hand, if U is zero, b = c and, from the global perspective, our theory

looks like the conventional one. Using (19), we can rewrite U as

U =
1

M

n
∑

i=1

miui =
1

M

n
∑

i=1

micvi
√

b2 − v2
i

=
1

M

n
∑

i=1

bimivi

b
=

1

H

n
∑

i=1

Hivi.

It follows that the position of the center-of-mass (energy) satisfies

X =
1

H

n
∑

i=1

Hixi +Y,
dY

dτ
= 0.

It is natural to choose Y so that X is the canonical center of mass:

X =
1

H

n
∑

i=1

Hixi +
c2(S×P)

H(Mc2 +H)
,
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where S is the (conserved) spin of the system (see [23]). The important point is

that (X,P, τ,K) is the new set of (global) variables for the system.

As the system is closed, U is constant and τ is linearly related to t. Yet, the

physical interpretation is very different if U is not zero. Furthermore, it is easy to

see that, even if U is zero in one frame, it will not be zero in any other frame which

is in relative motion (see the next section). It is clear that τ is uniquely determined

by the particles in the system and is available to all observers. Thus, it offers a

unique definition of simultaneity for all events associated with the global system.

In general, an individual particle in a large system may not be directly observable

(e.g., a small planet near a large sun in a distant galaxy). On the other hand, if an

individual particle is observable, we have another unique definition of simultaneity

for all events associated with that particle. Furthermore, if a subsystem of particles

is observable, the local proper clock of the subsystem offers yet another unique

definition of simultaneity (for all events associated with it). Thus, the convention

used provides a unique definition of simultaneity.

It should be noted that there is a basic relationship between the global system

clock and the clocks of the individual particles. In order to derive this relationship,

we return to our definition of the global HamiltonianK and letW be any observable.

Then

dW

dτ
= {K,W} = H

Mc2
{H,W} = H

Mc2

n
∑

i=1

{Hi,W}

=
H

Mc2

n
∑

i=1

mic
2

Hi

[

Hi

mic2
{Hi,W}

]

=
n
∑

i=1

Hmi

MHi
{Ki,W}.(20)
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Using the (easily derived) fact that dτi/dτ = Hmi/MHi = bi/b, we get

dW

dτ
=

n
∑

i=1

dτi
dτ
{Ki,W}.(21)

Equation (21) allows us to relate the global systems dynamics to the local systems

dynamics and provides the basis for a direct approach to the quantum relativistic

many-body problem using one (universal) wave function.

We now show directly that the transformation, at the global level, is a canonical

change of variables (time).

Theorem 3. There exists a function S = S ({xi}, {pi}, τ) such that

P · dX−Hdt ≡ P · dX−Kdτ + dS,

n
∑

i=1

pi · dxi −
n
∑

i=1

Hidt ≡
n
∑

i=1

pi · dxi −Kdτ + dS.

Proof. Set S = [Mc2 − K]τ . An easy calculation, using the fact that both Mc2

and K are conserved quantities, shows that dS = [Mc2−K]dτ . An additional easy

calculation gives the result. �

It should be observed that, in a manner similar to that of Horwitz and Piron

[24], we can formulate a dynamical principle which generalizes Hamilton’s principle

by using the integral invariant of Poincaré-Cartan (see Arnol’d [25]):

I =

∮

C

∑n

i=1
pi · dxi−Kdτ,

where C is a closed curve on extended phase space Γ = Γ ({xi}, {pi}, τ), and

the above integral is invariant for arbitrary deformations of C along trajectories

corresponding to solutions of the equations of motion.
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A fundamental conclusion of this section is that, for any system of particles, we

can always choose a unique observer-independent measure of time that is intrin-

sically related to the local clocks of the individual particles. (This is not true for

any of the other attempted formulations of either a classical or quantum relativistic

many-particle theory.) One important consequence of this result can be stated as

a theorem.

Theorem 4. Suppose that the observable universe is representable in the sense

that the observed ratio of mass to total energy is constant and independent of our

observed portion of the universe. Then the universe has a unique clock that is

available to all observers.

The above assumption is equivalent to the homogeneity and isotropy of the

energy and mass density of the universe.

In the study of physical systems one is sometimes not interested in the behavior of

the global system, but only in some subsystem. The cluster decomposition property

is a requirement of any theory purporting to be a possible representation of the real

world. Basically this is the property that, if any two or more subsystems become

widely separated, then they may be treated as independent systems (clusters).

Theorem 5. Suppose that our system of particles can be decomposed (by the ob-

server) into two or more clusters. Then there exists a unique (local) clock and

corresponding canonical Hamiltonian for each cluster.

Proof. We assume that the subsystems are sufficiently separated that all observers

can agree that they are distinct. In this case, each observer can identify effective

masses M1, M2 and Hamiltonians H1, H2. It follows that dτ1 = [(M1c
2)/H1]dt
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and dτ2 = [(M2c
2)/H2]dt, so that each observer can construct a local-time theory

for each cluster. �

Actually, the theorem is true without the assumption that the systems are weakly

interacting. This makes the theorem less difficult to apply than the various phe-

nomenological approaches, which require both model justification and consistency

analysis prior to use. This theorem also allows us to prove a weaker version of The-

orem 4, in the sense that we replace the assumption of homogeneity and isotropy

of the energy and mass density for a possible infinite universe by finite energy and

mass density for a possibly inhomogeneous universe.

Theorem 6. Suppose the universe has finite mass and energy density and that each

observer can choose a local inertial frame from which his/her region of the universe

is at rest relative to the observed system. Then there exists a unique proper clock

for the universe.

Proof. Applying the cluster decomposition theorem, our observer can identify masses

M1 for his/her region of the universe and M2 for the complement region, along

with Hamiltonians H1 and H2. It follows that H = H1 + H2, M = M1 + M2

and dτ = [(Mc2)/H ]dt define the total mass, Hamiltonian and proper clock for the

universe. We can now construct our canonical proper-time Hamiltonian K. Since

M and H are fixed, and invariant for all observers, we see that both K and τ are

unique and invariant for all observers. �

Remark 7. It should be remarked that Mi and Hi, i = 1, 2, will vary with ob-

servers, reflecting the nonuniqueness of inertial frames.
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2.1. Preferred Rest Frame. It has been known since the pioneering work of Pen-

zias and Wilson [26] that a unique preferred frame of rest exists throughout the

universe and is available to all observers. This is the 2.7 ◦K microwave background

radiation (MBR) which was discovered in 1965 using basic microwave equipment

(by today’s standards). This radiation is now known to be highly isotropic with

anisotropy limits set at 0.001%. Futhermore, direct measurements have been made

of the velocity of both our Solar System and Galaxy through this radiation (370

and 600 km/sec respectively, see Peebles [27] ). One can only speculate as to

what impact this information would have had on the thinking of Einstein, Lorentz,

Minkowski, Poincaré, Ritz and the many other investigators of the early 1900’s who

were concerned with the foundations of electrodynamics and mechanics. The im-

portance of this discovery for the foundations of electrodynamics is that this frame

is determined by radiation from all accelerated charged particles in the universe.

This frame has not found a natural place in the standard framework for the-

oretical physics and in fact, has been (almost) ignored. (However, Glashow and

co-workers have used it as a part of a program to explore possible departures from

strict Lorentz invariance in the context of elementary-particle kinematics (see Co-

hen and Glashow [28], and cited references)).

Since all inertial reference frames are equivalent, the one chosen by any observer

is a convention. If we seek simplicity in this basic representation for physical reality,

it is natural to attach all (globally defined) frames to the MBR, and use the proper-

time of the universe for the clock. In this case, the two postulates of the special

theory are automatically satisfied, while the field and particle equations of any

system will be invariant (not covariant) under the action of the Lorentz group at
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the global level (for all observers). Furthermore, the speed of light would always be

c relative to this frame. Thus, we suggest this as the natural choice for all global

systems. With this choice, we can have c unique at the global level, while speeds

larger then c are allowed and not unnatural at the local level. This approach has

the additional advantage of eliminating all the known paradoxes associated with

the special theory.

2.2. Time Reversal Noninvariance. We focus on the single particle case. (The

same discussion applies to the many-particle case.) Since dτ = (mc2/H)dt, while

K(= [H2/2mc2 + mc2/2]) and m are always positive, we see that, if H → −H

(negative energy) or t→ −t (time reversal), then K → K is invariant (no negative

energy), while τ changes sign. In particular, our theory is noninvariant under

observer time reversal at the classical level and, since τ is monotonically increasing,

we acquire an arrow for (proper) time. It is thus natural to interpret antimatter as

matter with its proper-time reversed.

A more complete (and elegant) discussion requires the introduction of Santilli’s

isodual numbers [29], in which the unit 1 is replaced by −1 and ab → a • b =

−ab so that (−1) • (−1) = −1. It follows that (R,+, •) is a field. This clearly

induces an isomorphism on R which is equivalent to reversing the direction of the

real line. Santilli shows that use of the isodual numbers as the scalar field on

the dual Hilbert space H∗, allows him to provide a consistent formulation of the

Stuckelberg-Feynman (quantum) theory of antimatter as matter in the isodual state

(over H∗), and proved that this gives an equivalence between charge conjugation

and isoduality.
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Thus, by introducing a symmetric theory of numbers, we can construct a com-

pletely symmetric theory of matter which avoids all of the natural objections to

hole theory, while maintaining consistency with our physical sense of a monotoni-

cally increasing time variable. Both Feynman [30] and Stueckelberg [31] introduced

the idea of representing antimatter as matter with its time reversed. Our final

conclusion is the same as theirs. However, the two approaches are distinct. In our

approach, we replace t by τ and acquire K as its canonical Hamiltonian, so all

physical interpretations only require information about τ .

The quantum theory now follows by replacing the Poisson bracket in equation

(21) by the Heisenberg bracket, which leads to Schrödinger-like equations:

i~∂ψ∂τ = Kψ, and i~ ∂ψ∂τi = Kiψ,

for the same (universal) wave function ψ = ψ(X, τ) = ψ(x1, · · · ,xn, τ1, · · · , τn)

(see equation (21) and Theorem 3). Since K, Ki are both positive definite, as

operators, they are bounded below. Thus, the problem of negative energy which

caused confusion during the early attempts to merge quantum mechanics and the

special theory of relativity do not arise. (From equations (20) and (21), we see that

K is not equal to the sum of the Ki.)

The question of particle number is easily included (even in the classical case)

by observing that, for any closed system of interacting particles, we can replace

the definite particle number n by a variable (random) particle number N(t), the

number of particles up to time t (as seen by the observer). Now, the only relevant

variables are the conserved quantities: the total global energy, momentum, angular

momentum and spin and, as in QED, for large negative t, N(t) → ni, (the initial
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particle number), and for large positive t, N(t)→ nf , (the final particle number),

where ni and nf are assumed known from experiment.

3. Light: Its Nature, Its Mass and Its Speed

3.1. Photon Nature. Given that, in our local-time formulation of the Maxwell

theory, the value of the “natural” speed of light depends on the motion of the

source, it is not presumptuous to take another look at the age-old problem of its

nature and seek to understand the impediments to treating a photon on the same

footing as any other elementary particle.

The single most important problem with any attempt to treat photons as el-

ementary particles is its well-known wave property. Interference and diffraction

experiments and, indeed, a number of major fields of electrical engineering attest

to the amazing precision, effectiveness and efficiency of the wave picture. The field

theory view of both photons and particles is that they are localized wave packets

of the quantized electromagnetic field (or the particular particle field). Hence, one

expects that matter will behave like particles in some experiments and like waves

in others and, as such, may be viewed as some type of atomic compromise between

two distinct classical views. However, these ideas go back to the fundamental work

of Born, deBroglie and Heisenberg, while today we have much more experimental

information about photons since those pioneering efforts (see the next section).

It has now been known for over twenty-five years that we can control the inten-

sity of a beam of photons in interference (or diffraction) experiments to the point

that individual photons may be counted on a photographic plate (see Paul [32]).

Furthermore, the distribution of photons appears random and, only after a long
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time period (depending on the intensity level), do we begin to see wave patterns.

These experiments, along with the photoelectric and Compton effects, conclusively

tell us the following:

(1) It is not unreasonable to treat photons as elementary particles.

(2) The wave length and frequency are characteristic of groups of photons.

(3) Concepts such as electric and magnetic fields are macro-properties that

have some (but limited) reality on the atomic scale and (possibly) none at

the sub-atomic scale.

For an excellent discussion of the above, see Buenker [33].

3.2. Photon Mass. In the past, work on the question of photon mass has fo-

cused on the addition of a mass term to the Lagrangian density for Maxwell’s

equations and generally leads to the Proca equation (see Bargmann and Wigner

[34]). Early work in this direction can be traced back from the paper of Schrödinger

and Bass [35]. As in our approach, the speed of light is no longer constant in all

reference frames. In this case, the fields are distorted by the mass term and exper-

iments of Goldhaber and Nieto [36] use geomagnetic data to set an upper bound

of 3× 10−24GeV for the mass term (see Jackiw [37]). This approach causes gauge

formulation difficulties, and has not found favor at the classical level.

It should be recalled that Maxwell’s equations are (spin 1) relativistic wave

equations (see Akhiezer and Berestetskii [39]). On the other hand, experiments

show directly that photons have a weight as one would expect of any material

object. These experiments do not depend on either the special or general theory of

relativity (according to Pound and Snider [40]) and are not directly dependent on

frequency or wavelength measurements.
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The results of this paper establish that, at the classical level, photons are created

by external forces acting on charged particles. These photons arise due to the

resistance of charged particles to any change in their motion. From our derivation of

the wave equations, it is clear that the theory is fully gauge invariant. Furthermore,

from equation (6), we see that the effective (photon) mass is dynamical, appearing

only during acceleration of the source. From equation (7), we see that this mass

generates the expected longitudinal component to the electromagnetic field.

In a recent paper, Afshar et. al. [58] report on the presence of sharp interference

and highly reliable which-way information in the same experimental arrangement

for the same photons using new non-perturbative measurement techniques at sepa-

rate spacetime coordinates, both of which refer back to the behavior of the photon

at the same event (i.e., the passage through the pinholes).

They inferred full fringe visibility from the observation that the total photon

flux was only slightly decreased when thin wires were placed exactly at the minima

of the interference pattern. Which-way information was then obtained downstream

via imaging using a special lens system. This allowed them to determine which-

way information about each photon as it passed the plane of the pinholes. The

experiment allowed them to circumvent the predicted limitations imposed by the

uncertainty principle and the entanglement between the which-way marker and

the interfering quantum object as employed in other experiments. They further

point out that the non-perturbative measurement technique used in the experiment

is conceptually quite different from quantum non-demolition or non-destructive
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techniques which perturb the photon wavefunction directly. This shows that wave-

particle duality is more a property of experimental approach and technique as

opposed to an intrinsic property of photons.

It is not unreasonable to correlate the frequency of a photon with that of linear

harmonic oscillations for low energy fields. Drozov and Stahlhofen [59] note that the

Planck formula, E = hν, was based on the fact that the energy emitted from atoms

resulted from electromagnetic waves propagating as continuous harmonic oscilla-

tions. In order to solve the cavity problem, Planck postulated energy quantization

in terms of the frequencies defined by the oscillations, leading to the above formula,

where the total energy of the emitted electromagnetic wave is an integer multiple

of h. From the success of this approach, it is now natural to believe that photons

are small parts of the electromagnetic field. However, such a view is untenable for

describing the ultra-short pulses that are obtained in laboratories today. If we com-

bine the Planck formula with c = λν, one must then accept that λ = hc/E . Since

we now don’t have wave-particle dualism to save us, the concept of a photon as a

wave begs the question posed by Drozov and Stahlhofen: “how many oscillations

does it contain?”. We agree with them that it is much more reasonable to relate ν

to the source emission time. From this view, the emission time is only restricted by

the time energy uncertainty relationship ∆Eτ ≈ h/2. Thus, we conclude that there

is no oscillation period with frequency ν, just the characteristic time τ = 1/(2ν),

for a single (massive) energy pulse. (We note that the use of a Fourier series rep-

resentation, as is generally done in optics, is no more than a good mathematical

device and should not be used for physical interpretation.) In closing, we point out
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that, as noted by Feynman [38], a small photon mass will eliminate the infrared

catastrophe in QED.

3.3. Light Speed. In this and the remaining sections, we give additional consid-

eration to the physical implications of our interpretation of b and b′ as the speed of

light relative to the source for the different observers (collaborative speed of light).

We also consider a few topics in astrophysics in which the conventional theory re-

quires additional assumptions in order to explain observations that point to speeds

higher than c.

In order to gain some perspective, suppose an emitting system is at rest in

the unprimed frame so that b = c. In this case, the collaborative speed of light

observed in the primed frame is b′ = γ(v)c and the velocity of the source is seen

as u′ = −γ(v)v. Thus, if the two observers are separating at high speeds, both b′

and u′ may be very large.

There are some experiments where use of the observer’s clock provides a clear

answer. A classic example is the Michelson-Morley experiment. This experiment

gave the first bell of doom for the ether theory, and is easily explained by the special

theory (using the clock of the observer). It also has a simple explanation when the

clock of the source is used since, in this case, the source is at rest in the frame of

the observer so that u = 0⇒ b = c.

It is clear that, at the speeds obtained in the world of our ordinary experience,

no significant difference between the two approaches is expected. However, at high

energies and/or small distances, we expect differences to show up in a dramatic

way. Indeed they have, but the definition of velocity depends on the clock attached

to the observer, w = dx/dt, while all contrary results are interpreted as due to
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time dilation. For example, without a switch in clocks, the existence of cosmic ray

muons at the surface of the earth have no explanation.

An equally valid interpretation is that the velocity of the system is not w, but

u = dx/dτ and, in this case, no contrary results occur. The use of w is clearly a

convenient choice for most of ordinary physics (where both choices are the same).

However, in high-energy experiments, the local clock of the system is necessary

(and used) to analyze and explain scattering events by using time dilation to make

the results correspond to velocities below c.

In order to obtain a different view of experiments on the lifetime of fast mesons

and the velocity of γ rays and light from moving sources, first consider the definition

of momentum. When the clock of the observer is used to measure time, momentum

increase is attributed to relativistic mass increase so that p = mw and m = m0[1−

w2/c2]−1/2. On the other hand, if we use the clock of the source, we have p = m0u

and u = w[1 − w2/c2]−1/2 so that there is no mass increase, the (proper) velocity

increases. Thus, in particle experiments, the particle has a fixed mass and invariant

decay constant, independent of its velocity, but can have speeds > c. An analysis

of experiments on the lifetime of fast mesons, the velocity of γ rays and light from

moving sources reveal that, at some point, either the speed of light is assumed to be

independent of the motion of the source, or time dilation is used. Both assumptions

imply that only the clock of the observer is used. This is basically inconsistent since

one is using two clocks to explain one experiment. Either, the speed of the particle

is less then c as determined by the observer’s measuring instruments and clock,

or, if time dilation is used, one is in fact inferring that the clock of the particle

is needed to explain the experiment. In the latter case, the actual speed of the
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particle is then u, which can be greater than c. The problem is that one cannot

use two clocks and claim consistency with the basic measurement framework for

special relativity. Thus, the analysis of these experiments is flawed in its validation

of the conventional theory and does not prove that the speed of light relative to the

particle is c.

3.4. Relativistic Jets in Our Galaxy. In 1918 Curtis [41] made the first discov-

ery of jet-like features emanating from the nuclei of galaxies. He identified a jet in

the optical range from an elliptical galaxy in the Virgo cluster (M87). Since then,

a large number of objects with a jet-like structure have been discovered. However,

starting about 30 years ago, researchers began to find quasars with jet expansions of

up to ten or more times the speed of light (see Pearson and Zensus [42]; Zensus [43];

Mirabel and Rodŕıguez [44]). This started quite a stir and led many to suggest the

possible breakdown of the special theory. Since the source appeared to be at rest

relative to earth, unlike the decay of fast muons from the top of the atmosphere, the

assumption of time-dilation would not work. However, Rees [45] suggested that we

may be looking at the jets from some angle relative to the observer. He showed how

these large speeds may be an aberration because we were looking at a projection

of the true image onto the plane of view of the observer. This would explain the

apparent approaching and receding condensations with very different velocities.

This is an additional assumption with no independent verification and has not

been completely accepted (see Mirabel and Rodŕıguez [44]; De Rújula [46]). If our

formulation is correct, it is possible that the measured speeds are correct, but the

approaching and receding condensations are caused by different physical mecha-

nisms. It then follows that the additional assumptions of Rees are not required.
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3.5. Ultra-high Energy Cosmic Rays. The nature and origin of ultra-high en-

ergy cosmic rays (UHECR) continues to cause controversy and concern. One year

after Penzias and Wilson [26] discovered the cosmic microwave background radia-

tion (CMBR), Greisen [47] and Zatsepin and Kuzmin [48] estimated that the mean

free path of an energetic 1019 eV proton moving through the CMBR would be less

than the size of our galaxy. From this work, it was expected that all protons with

energies above about 4 × 1019 eV (GZK cutoff energy) would be suppressed by

dissipative losses in the CMBR. (This limits how far protons can travel to about

100 Mpc.) Thus, it was a real surprise when the Akeno Giant Air Shower Array

(AGASA) Collaboration [49] reported observations of a large flux of UHECR with

energies above 1020 eV . The HiRes (fluorescence detector) Collaboration group

[50] published results that appear consistent with support for a cut-off. Additional

studies are currently being conducted at the Pierre Auger Observatory designed to

resolve the discrepancy.

Since the first draft of this paper, recent results confirm the GZK suppression

and appear to indicate that UHECRs above the GZK threshold arrive from nearby

active galactic nuclei (see the review by Dar [51].)

With the conventional definition of velocity, it is very difficult to imagine even

the most powerful astrophysical systems, such as active galactic nuclei and/or radio

galaxies, accelerating heavy nuclei or protons to the required high energies within

existing physical theories. However, if the local clock of the ejecting system de-

termines the distance traveled and speed (u) of a particle, then no new particles

or the breakdown of the special theory are needed to explain the results. Since

most measurements (physical and astronomical) are based on the dimensionless
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ratio β = w/c ≡ u/b, we see that the results will not change. For example, ([52],

pp. 556-561), the red shift factor z, used to determined distances in astronomy, is

defined by:

z =

√

1 + w
c

1− w
c

− 1 ≡
√

1 + u
b

1− u
b

− 1.

(The formula z = w
c = u

b is normally used for values of |w| ≤ 104km/sec.) We thus

conclude that light may reach us from much farther away and with more intensity

than is traditionally expected. Thus, we may well be looking at some galaxies that

are not as close and others that are not as far as predicted from conventional theory.

4. Foundations for Relativistic Quantum Theory

In this section we provide some discussion of our current work on the corre-

sponding canonical proper-time quantum theory. Because of a number of unex-

pected problems that have come to our attention, we begin with a discussion of

mathematics as it relates to physics.

4.1. The Relationship Between Mathematics and Physics. With respect to

the question of the relationship between physical and mathematical equivalence, we

have uncovered three additional instances that shed doubt on such an unanalyzed

but important assumption.

4.1.1. Feynman Operator Calculus. In response to the need to provide the mathe-

matical foundations for Feynman’s time-ordered operator calculus used in quantum

electrodynamics (QED), we have developed a constructive theory in which time is

accorded its natural role as the director of physical processes (see [53] for a full

discussion).
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Briefly, the theory is constructive in that operators acting at different times

actually commute. This approach allowed us to develop a general (exact) pertur-

bation theory for all theories generated by unitary groups, by providing the missing

remainder term for the Dyson expansion. We were also able to show that the the-

ory could be reformulated as a physically motivated sum over paths as suggested

by Feynman [54]. These results made it possible to prove the last two remaining

conjectures of Dyson [55] concerning QED.

(1) The renormalized perturbation series of QED is at most asymptotic.

(2) The ultraviolet divergency of QED is caused by a violation of the time-

energy uncertainty relations.

In the Feynman world-view, the universe is a three-dimensional motion picture in

which more and more of the future appears as time evolves. Thus, in this view,

time is a physically defined variable. This view is inconsistent with the Minkowski

world-view, in which time is a mathematical variable; i.e, an additional coordinate

for a space-time geometry.

In order to see that unitary equivalence cannot always mean physical equivalence,

we observe that all solutions to the dynamical Schrödinger equation (on the same

Hilbert space) generate unitary groups. However, in almost all cases, we would

never equate this unitary equivalence with physical equivalence.

We suggest the following formal definition of physical equivalence.

Definition 8. Two representations of a given physical system are said to be physi-

cally equivalent if they can be related mathematically, and any change of independent

variables can be justified by comparison with both experimental as well as theoretical

results.



40 GILL AND ZACHARY

From this definition, we conclude that the Lagrange and Hamiltonian formula-

tions of classical mechanics and the Schrödinger-Heisenberg formulations of quan-

tum theory are physically equivalent. On the other hand (see below), the Dirac

equation and the square root equation are not physically equivalent. We also con-

clude that the canonical proper-time formulation of classical electrodynamics is not

physically equivalent to the conventional formulation.

4.2. The Dirac Equation and Square-Root Equations. In order to prepare

a solid foundation for the canonical proper-time quantum theory, in [57] we began

with an investigation of the Dirac equation. It is generally believed that it is

not possible to separate the particle and antiparticle components directly without

approximations (when interactions are present). We were able to construct an

analytical separation (diagonalization) of the full (minimal coupling) Dirac equation

into particle and antiparticle components. The diagonalization was analytic in the

sense that it was achieved without transforming the wave function or the variables,

as is done with the Foldy-Wouthuysen unitary transformation. We started with

the Dirac equation in the form:

i~
∂ψ

∂t
= (V +mc2)ψ + c(σ · π)φ

i~
∂φ

∂t
= (V −mc2)φ+ c(σ · π)ψ.

Treating these as first order partial differential equations with forcing, we first

solved for delta term forcing and obtained the general solution via convolution, to

get the following set of completely separated equations

i~
∂ψ

∂t
= (V +mc2)ψ +

[

c2(σ · π)
/

i~
]

∫ t

−∞

exp{−iB(t− τ)}(σ · π)ψ(τ)dτ

i~
∂φ

∂t
= (V −mc2)φ+

[

c2(σ · π)
/

i~
]

∫ t

−∞

exp{−iB′(t− τ)}(σ · π)φ(τ)dτ ,
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where B =
[

(V −mc2)
/

~
]

and B′ =
[

(V +mc2)
/

~
]

. We also showed how, for each

equation, to construct the complete probability density function:

ρψ = |ψ|2 +
∣

∣

∣

∣

∫ t

−∞

c exp{−iB(t− τ)} [(σ · π)/i~]ψ(τ)dτ
∣

∣

∣

∣

2

ρφ = |φ|2 +
∣

∣

∣

∣

∫ t

−∞

c exp{−iB′(t− τ)} [(σ · π)/i~]φ(τ)dτ
∣

∣

∣

∣

2

.

This separation shows that the Dirac equation is actually two equations, both

nonlocal in time. It is well-known that the square-root operator is nonlocal in space,

but related to the Dirac operator by a Foldy-Wouthuysen unitary transformation.

Thus, the true relationship between the two representations of a spin 1/2 particle is

that one is (explicitly) spatially nonlocal, while the other is implicitly time nonlocal.

We infer that this mathematical equivalence cannot be what we should mean by

physical equivalence.

Since our research suggests that time may not be a (mathematical) fourth coor-

dinate, we took another look at the Dirac equation. In [56], we observed that the

operator part of Dirac equation can also be written with the potential energy as a

part of the mass (Ψ = (ψ, φ)t):

D[Ψ] =
{

cα · π + βmc2 + V
}

Ψ =
{

cα · π + β
(

mc2 + βV
)}

Ψ.

From this point of view, we were able to construct another version of the Klein-

Gordon equation (assuming that A and V do not depend on time):

−~2∂
2Ψ

∂t2
=

{

c2π2 + 2cV α · p− e~cΣ ·B− i~cα · ∇V +
(

mc2 + βV
)2
}

Ψ.

This equation can be factored to give a new square-root equation without any

transformation of variables or any change in the wave functions:

i~
∂Ψ

∂t
=

{

β

√

c2π2 + 2cV α · p− e~cΣ ·B− i~cα · ∇V + (mc2 + βV )
2

}

Ψ.
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Note that the above equation is not a diagonalized representation. However, it is

an exact representation, which retains the same eigenfunctions and eigenvalues as

the Dirac equation. Thus, we have another analytic representation for the Dirac

equation, which does not require a Foldy-Wouthuysen unitary transformation. Also

observe that, when V = 0, we get the standard square-root operator equation with-

out potential. We conclude that the square-root operator equation with potential:

i~
∂Ψ

∂t
=

{

β
√

c2π2 − e~cΣ ·B+m2c4 + V
}

Ψ,(22)

does not represent the same physics as the Dirac equation.

As noted above, it is known that the square-root operator is spatially nonlocal

but, to our knowledge, there was no information in the literature about the na-

ture of the nonlocality or its relationship to actual physical particles. In [56], we

constructed an analytic representation of the square-root energy operator, which is

valid for all values of the spin: (S[ψ](x) = β
√

c2p2 +m2c4ψ(x))

S[ψ](x) = −µ
2
~
2cβ
π2

∫

R3

[

1

‖x− y‖ − 4πδ (x− y)

]

{

K0 [µ ‖x− y‖ ]
‖x− y‖ +

2K1 [µ ‖x− y‖ ]
µ ‖x− y‖2

}

ψ(y)dy.

The functions, K0, K1 are modified Bessel functions of the third kind. They have

exponential cutoffs, at about a Compton wavelength, like the well-known Yukawa

potential (= K1/2). The K0 term diverges like −ln |x− y|, while the K1 term

diverges like |x− y|−2 at x = y. The delta term acts to cancel the divergency

at this point. Thus, the square-root operator has a representation as a (spatial)

nonlocal composite of three singularities (divergent integrals). In the standard

interpretation, the particle component has two negative parts and one (hard core)

positive part, while the antiparticle component has two positive parts and one (hard

core) negative part. These singularities are confined within a Compton wavelength
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such that, at the point of divergence, they naturally cancel each other, providing

a finite result. This certainly appears to represent a free three-dimensional soliton

with three confined singularities (associated with a linear operator).

4.3. Canonical Proper-Time Equations. We have identified two possible canon-

ical proper-time particle equations for spin- 12 particles. The first and second below

are the same, but are derived from two different starting points. (The second is

included in order to validate our assertion that the Dirac equation and square-root

equation with potential does not represent the same physics.)

(1) The canonical proper-time version of the Dirac equation:

i~
∂Ψ

∂τ
=

{

π2

2m
+ βV +mc2 +

V α · π
mc

− e~Σ ·B
2mc

− i~α · ∇V
2mc

+
V 2

2mc2

}

Ψ.

(2) The canonical proper-time version of the square-root equation, derived from

the Dirac equation with the potential energy a part of the mass:

i~
∂Ψ

∂τ
=

{

π2

2m
+ βV +mc2 +

V α · π
mc

− e~Σ ·B
2mc

− i~α · ∇V
2mc

+
V 2

2mc2

}

Ψ.

(3) The canonical proper-time version of the standard square-root equation:

i~
∂Ψ

∂τ
=

{

π2

2m
− e~Σ ·B

2mc
+mc2 +

V 2

2mc2

}

Ψ

+
V β
√
c2π2 − ec~Σ ·B+m2c4

2mc2
Ψ+

β
√
c2π2 − ec~Σ ·B+m2c4

2mc2
VΨ.

(23)

We should note that the eigenvalue problem for the Dirac equation and the corre-

sponding canonical proper-time equation are closely related. In particular,

EnΨn =
[

cα · π + β(mc2 + βV )
]

Ψn =
[

cα · π + βmc2 + V
]

Ψn,
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implies that

[

E2
n

2mc2
+
mc2

2

]

Ψn

=

[

π2

2m
+ βV +mc2 +

V α · π
mc

− e~Σ ·B
2m

− i~α · ∇V
2mc

]

Ψn.

(24)

However, the eigenvalue spacing (for the two equations) is clearly not the same.

The objective our study of equations (23) and (24) is to make sure that the

spectrum of Hydrogen cannot be explained as a standard eigenvalue problem be-

fore investigating possible many-particle and/or field theory approaches. We have

made substantial progress on the equation (24), and expect to conclude our studies

shortly.

Equation (23) is of paramount interest. However, our current progress is slowed

by the need for additional mathematical research before any important physical

implications can be obtained.

Conclusion

In this paper, we have provided the foundations for a new approach to relativistic

quantum theory.

First, we have developed a physically and mathematically consistent formulation

of classical electrodynamics and mechanics, within which:

(1) The invariant speed of light c is replaced by the invariant local clock of the

observed system. In this formulation, the new (collaborative or effective)

speed of light is not invariant but depends on the motion of the observed

system.

(2) Distant simultaneity is unique for all observers.
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(3) The local metric is defined in three-dimensional Euclidean space and be-

comes deformed in the presence of a potential field.

(4) The corresponding canonical Hamiltonian particle theory fixes a particular

time direction (i.e., is noninvariant under time reversal).

(5) The classical principle of impenetrability, that no two particles can occupy

the same space at the same time is intrinsic to the theory.

(6) The formulation of Maxwell’s equations is mathematically but not physi-

cally equivalent to the conventional one.

(7) This formulation does not depend on the structure of charged particles and

does not require self-energy, advanced potentials, mass renormalization, or

the problematic Lorentz-Dirac equation in order to account for radiation

reaction.

In light of the above, it is no longer clear how far cosmic rays can travel, how far we

are from the distant galaxies, or how old the universe is. Thus, all experiments and

observations based on the assumed constant speed of light c, relative to all physical

systems, needs reevaluation.

We offer a table below, comparing the two (mathematically equivalent) formu-

lations of classical electrodynamics.
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Minkowski Proper-time

Reference System inertial required inertial required

Light speed independent of source dependent on source

Space-time dependent variables independent variables

Transformations linear Lorentz nonlinear Lorentz

Cluster Property highly problematic general theory

Many-particle highly problematic general theory

Radiation reaction highly problematic follows from theory

Quantum theory highly problematic follows from theory

Time arrow does not exist follows from theory

Universal clock does not exist follows from theory

We have also discussed our work on a new analytical separation (diagonaliza-

tion) of the full (minimal coupling) Dirac equation into particle and antiparticle

components. This work reveals the time nonlocal nature of the Dirac equation.

Since it is known that the square-root equation is spatially nonlocal and, they are

related by a unitary transformation, we conclude that this unitary transformation

does not preserve physical equivalence.

We have introduced a new square-root equation that is obtained from the Dirac

equation without any change of variables, by treating the potential energy as a part

of the mass. (This equation has the same eigenvalues and eigenfunctions.) This

approach also leads to a new Klein-Gordon equation. We have also introduced

the quantum version of our canonical proper-time theory. We obtain two distinct

possible wave equations for spin- 12 particles. We are currently investigating these
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equations in order to rule out the possibility that the spectrum of Hydrogen is

obtainable as an eigenvalue problem.
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