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Thermal modelling and optimisation of parameter distributed systems is a rather time-consuming process. In this
paper the problem of optimisation of temperature fields of VLSI circuits and systems is attacked by a self-
organising neural net. The net directly solves the task generated by a heuristic algorithm. No physical model of
thermal phenomena is used. The proposed method is simple. Some examples and statistical results are presented.
The proposed method is addressed mostly to large, high-speed system designs.
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1 INTRODUCTION

Due to the rather small thermal conductivity of substrates of VLSI systems, heat dissipated in

semiconductor structures may be a reason for the strong electrical feedback between compo-

nents [1]. The aim of this work is to find such a placement of heat sources (power units, e.g.

groups of transistors, integrated parts of processors, power structures in SmartPower systems,

etc.) on a chip which leads to flat temperature distribution on the chip. Such a placement

guarantees the minimisation of thermo-mechanical stresses, and minimisation of extreme

temperatures on the substrate [2]. As a consequence the reliability of the circuit increases

[3]. This problem was attacked in some papers [4–6]. A new approach based on a self-orga-

nising neural net idea [7], and a heuristic method [8] is proposed in this work. The heuristic

approach is based on a simple idea: each heat source of a microcircuit is placed in the centre

of gravity of an area proportional to the power dissipated in the heat source. The areas are

separable and their sum covers the whole area of a substrate of the circuit. The algorithm

is as follows: the substrate is divided into a number n of equal subareas (cells). If P is the

total dissipated power, an amount P=n is attributed to each subarea. It is necessary that n

be sufficiently large that all the powers P1;P2; . . . ;Pn of the heat sources are integer

multiples of P=n. If P1 ¼ P=n, for example, a single subarea is chosen and heat source 1
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will be placed in the centre of the substrate. If P2 ¼ 3P=n, three neighbouring subareas are

grouped together and heat source 2 is placed in the gravity centre of this group. There are, of

course, several possibilities to make clusters of subareas. It can be illustrated in Fig. 1 for a

simple example and Fig. 2 for a larger number of heat sources.

From the physical point of view it is clear that the areas should resemble hot spots i.e.

circles [4]. It means their perimeters should have minimum length. If one perimeter

decreases, the others increase. Here one faces the well-known NP-problem. As the number

of heat sources increases, the number of possible solutions increases significantly.

To solve that, an approach based on a self-organised neural net [7] is proposed. For sim-

plification of a description it is assumed that every heat source is marked with a separate

colour (feature in general) and has the number of his own cells, so called subsources.

The number is proportional to the value of power dissipated in the source. The subsources

are also identified by their own common colour. The neural net works as follows: subsources

are gathered together according to their common features. The subsources having the same

colour create only one area attributed to their heat source. One distinguishable subsource in a

FIGURE 1 Example with two heat sources on the substrate. Power dissipated in 2 is 3 times bigger than in 1.
Source 2 is placed in the centre of gravity of three adjacent cells. (a) ¼ area of source 1, (b) þ (c) þ (d) ¼ area of
source 2.

FIGURE 2 Substrate division chosen out of dozens of cases. Placement of four heat sources dissipating 0.4, 1, 2
and 3 Watts
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set of subsources of the same colour gathers other cells around itself. In conclusion, the areas

created by the same colour subsources should be proportional to the power dissipated in their

heat source, and resemble a circle. To get the shape of areas similar to hot spots the sum of

distances from subsources having the same colour to their distinguished subsource are mini-

mised. The neural algorithm is described in Section 2.

The motivation of using neural nets is that the abilities of the human brain are still much

higher than the abilities of the fastest and most powerful computer ever created. This

encourages people to search for new ways of data holding and processing based on the

current knowledge of the behaviour of biological brains. Maybe that is why the interest in

artificial neural networks has grown so rapidly over the last decade. The most important

advantage is that the networks are able to hold and process information in an associative

manner. It means that items of information interweave with one another and are processed

in a parallel way. The proposed approach does not require any physical models of thermal

phenomena taking place in powered integrated circuits and systems.

2 NEURAL ALGORITHM

The algorithm consists of two main stages. The first results in a rough placement of heat

sources on a substrate. The outcome of the second stage is coherent areas with minimal peri-

meters attributed to each heat source. The areas are proportional to the powers dissipated in

each heat source. Finally the sources are placed in the centres of gravity of their own areas.

Initial Data: lateral expansions of the substrate, number of heat subsources, powers attributed

to each subsource.

2.1 Stage I (Pre-processing)

At this stage the number of input nodes of the neural net (Fig. 3) equals approximately 25%

of the number of output nodes.

Step 1 Create connectivity matrices. The connectivity matrices Ci ði ¼ 1; . . . ;N – number

of heat sources) are created in the following manner:

(1) For every two cells i; j, having a common side ckði; jÞ ¼ 1, otherwise ckði; jÞ ¼

0; k ¼ 1; . . . ;N .

(2) No self-connections exist, i.e. ckði; iÞ ¼ 0.

(3) Dimension of Ci equals the number of subsources attributed to kth heat source.

FIGURE 3 Substrate and self-organising neural net.
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Let us take into consideration an example. The heat source, represented by three sub-

sources a1; b1; c1 (Fig. 3), has the following connectivity matrix:

C1 ¼

0 1 0

1 0 1

0 1 0

2
4

3
5: ð1Þ

The connectivity matrix does not include information about connections of subsources via

intermediate subsources. To find such strengths of connections, modified connectivity

matrices (strength matrices) C0
i are introduced. For the example mentioned above the strength

matrix has the following form:

C0
i ¼

0 1 0:5
1 0 1

0:5 1 0

2
4

3
5: ð2Þ

Step 2 Create input data. The columns of matrices Ci are used as input sequences for

the neural net, input sequence ¼ input sequence for k, where input sequence for k ¼

<k; l1; l2; . . . ; lm>; l1; l2; . . . ; lm – numbers of subsources connected to k in the following

manner:

c0iðk; l1Þ � c0iðk; l2Þ � . . . � c0iðk; lmÞ:

Step 3 Initialise weights of the neural net. For every input node k, and every output node l a

small random value of the weight wðk; lÞ is applied.

Step 4 Do until convergence.

Step 4.1 New input.

Step 4.2 Find the optimum placement l� for kth input. The following cost function is

minimised:

cos t for k ¼
Xi¼N 0

j �1

i¼0

c0jðk; iÞ � djðk; iÞ ð3Þ

where djðk; iÞ ¼ distance between cells, N 0
j ¼ number of subsources for jth source

ð j ¼ 1; . . . ;N Þ

Condition (3) can be rewritten in such a way that the response function (response of input i

at output node l ) is maximised:

responseðk; lÞ ¼
Xi¼N 0

j�1

i¼0

c0jðk; iÞ � wjði; lÞ: ð4Þ

Step 4.3 Adjust weight. For every output node l 2 NEt; l 6¼ l�:

wðk; lÞ½t þ 1� ¼ wðk; lÞ½t� þ g1

1

dðl; l�Þ
� wðk; lÞ½t�

� �
: ð5Þ
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For l ¼ l�:

wðk; lÞ½t þ 1� ¼ wðk; lÞ½t� þ g2

number of subsources placed

total number of subsources
ð1 � wðk; lÞ½t�Þ ð6Þ

where t¼ iteration, g1; g2 ¼ coefficients, NEl ¼ neighbourhood of node l, l� ¼ the best

responding node.

If the solution is not found, go to Step 4.1.

Stage I results in a rough shape of every subarea attributed to its heat source. The centres

of gravity of every subarea create convergence points. In the next stage subsources attributed

to proper heat sources converge around their own convergence points.

2.2 Stage II (Main)

This stage leads to the division of the substrate into characteristic regions, proportional to

powers dissipated in each heat source. The numbers of input and output nodes of the neural

network are the same (Fig.3).

Step 1 Attribute proper area of the substrate to every heat source. It is done according to

the following formula:

number of subsources½0; 1; . . . ;N � 1� ¼ ð power½0; 1; . . . ;N � 1� � areaÞ=total power

ð7Þ

where area ¼ area of substrate, power ¼ value of power dissipated in ith heat source,

total power ¼ total power dissipated in the substrate.

Subsources attributed to various heat sources are indicated with different colours.

Step 2 Initialise weights. Every weight is set to a small random value.

Step 3 Find the output node which best fits the input value. It will be achieved by com-

puting the minimum of the following expression:

ðinputðinput nodeÞ � wðinput node; output nodeÞÞ2: ð8Þ

Step 4 Adapt weights. In this step the weights are adapted in the neighbourhood of node j�

by the formula:

wði; jÞ½t þ 1� ¼ wði; jÞ þ ZðtÞðxðiÞ � wði; jÞ½t�Þ ð9Þ

for j 2 NEj� ðtÞ, 0 � i � number of subsources � 1 where x ¼ input, i ¼ number of input

node, j ¼ number of output node, ZðtÞ ¼ coefficient decreasing according to the experimen-

tal formula:

ZðtÞ ¼
0:55

iteration
; ð10Þ
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NEj� ¼ neighbourhood of node j�. The greater the number of iteration, the smaller the

neighbourhood.

Step 5 Go to Step 3 or stop. In the next section hypothetical tasks are solved with the neural

algorithm.

3 EXAMPLES

The following parameters of the algorithm were assumed: maximal number of heat

sources ¼ 10, maximal number of subsources ¼ 2500, g1 ¼ 0:01; g2 ¼ 0:2.

3.1 Example I

Let us take into consideration a silicon substrate with lateral expansions: 30� 40 mm,

thickness 0.6 mm, cooled by free air. Two heat sources dissipate power 1 W and 2 W,

respectively. The lateral expansion of each heat source is 5 mm. Figure 4 shows the place-

FIGURE 4 Substrate from Example 1.
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ment generated by the neural net. For verification the traditional gradient method was used.

The objective function of the optimisation algorithm was the following:

J ¼

ð
½T ðx; yÞ � Tmðx; yÞ�2N dx ð11Þ

where Tm ¼ average temperature of the substrate, N ¼ number of heat sources. The differ-

ence between the temperatures of the central points of heat sources obtained by the new tech-

nique and the gradient method was less than 5%.

3.2 Example II

Three heat sources case (1 W, 2 W, 3 W) is presented in Fig. 5. Also for this example the

difference between the new technique and the gradient method is less than 5%.

The large number of simulations of heat sources with the different dissipated power was

carried out. The results are shown in Fig. 6 and 7.

The yield of the algorithm is defined as a number of successful solutions to the whole

number of simulations. The neural computations have been verified by classical tools

described in Ref. [2, 5].

FIGURE 5 Topology from Example 2.
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4 CONCLUSION

This paper presents a new idea of an optimisation algorithm dedicated to microcircuits and

microsystems topography design in thermal aspect. The algorithm is based on the

heuristic method and self-organising neural net. It is much simpler than classical tools,

and needs much less time for computation. The algorithm solves up to five heat source pro-

blems almost without any mistakes. For much more complicated cases the algorithm can be

treated as a generator of quasi-optimum placement, which is a start point for traditional algo-

rithms searching for an optimum solution.
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