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ON THE CHARACTER DEGREES OF SYLOW p-SUBGROUPS
OF CHEVALLEY GROUP OF TYPE E(p/)

TUNG LE AND KAY MAGAARD

ABSTRACT. Let Fy be a field of characteristic p with ¢ elements. It is known
that the degrees of the irreducible characters of the Sylow p-subgroup of
GL,(Fq) are powers of ¢, see Isaacs [4]. On the other hand Sangroniz [6]
showed that this is true for a Sylow p-subgroup of a classical group defined
over Fy if and only if p is odd. For the classical groups of Lie type B, C and
D the only bad prime is 2. For the exceptional groups there are others. In
this paper we construct irreducible characters for the Sylow p-subgroups of the
Chevalley groups D4(q) with ¢ = 2/ of degree ¢®/2. Then we use an analogous
construction for Eg(g) with ¢ = 3/ to obtain characters of degree ¢7/3, and for
FEs(q) with ¢ = 5/ to obtain characters of degree ¢'%/5. This helps to explain
why the primes 2, 3 and 5 are bad for the Chevalley groups of type E in terms
of the representation theory of the Sylow p-subgroup.

1. INTRODUCTION

Let G be a Chevalley group defined over a field F, of order ¢ and characteristic
p > 0. By ap we denote the highest root of the root system ¥ of GG. It is well known
that ag is a positive integral linear combination of the fundamental roots of ¥. So
without loss ag = 22:1 a;c; where the a; are fundamental roots of 3. Recall that
p is a bad prime for G if p is a divisor of some a;.

It is well known that if G classical then the only possible bad prime for G is
2. On the other hand if G is exceptional of type F, then the prime 3 is also bad.
The “badness” of the prime evidences itself in the classification of the unipotent
conjugacy classes of G. Here we aim to explain why the primes 3 and 5 are bad
for groups of type F in terms to the representation theory of the Sylow p-subgroup
of G = Eg(q) with prime 3 and G = Fs(q) with prime 5. Let UE(q) denote the
unipotent radical of the standard Borel subgroup of Fj(q) for k = 6 and 8; i.e.
the subgroup generated by all the positive root groups of G. By Uy we denote the
quotient UFy(q)/Ky—1, where Kj_1 is the normal subgroup of UFE}(q) generated
by all root groups X, such that a has height £ — 1 or more. Clearly any character
of Uy, inflates to a character of UFE})(q). Abusing terminology slightly we call the
image under the natural projection of a root group of UFEy(q), a root group of Uy.
We observe that Z(Uy) is generated by the root groups of height £ — 2 and hence
|Z(Up)| = ¢"~'. We define the family

Fr i ={x elir(Uy) : X, & Ker(x) for all X, C Z(Uy)}.

Theorem 1.1. The following are true.
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(a) If ¢ = 37, then for all x € Fs we have x(1) € {q",q7/3}. Moreover Fg
contains ezxactly (q—1)°(q®> — (¢ —1)/2) characters of degree " and exactly
3%2(q — 1)%/2 characters of degree q7 /3.

(b) If ¢ = 57, then for all x € Fs we have x(1) € {q'%,¢'°/5}. Moreover Fy
contains ezactly (¢ — 1)%(q® + ¢* + q + 3/4) characters of degree ¢*° and
ezactly 52(q — 1)8/4 characters of degree ¢*°/5.

We remark that 9(¢ —1)%/2, (¢ —1)°(¢®* — (¢ —1)/2), (¢ — 1)¥(¢® + ¢* + ¢+ 3/4)
and 25(q — 1)8/4 are not in Z[g]. On the other hand we remark also that |Fg| =
(g —1)°¢? € Z|q] and every character in Fg has degree q” whenever p # 3, and that
|Fs| = (¢ — 1)7¢* € Z|[q] and every character in Fg has degree ¢'% whenever p # 5.
Taken together these remarks provide evidence for a generalization of Higman’s
conjecture for groups of type UE;(q), i = 6,7,8, see for example [2], namely that
|Irr(UE;(q))| € Z[q] if and only if p is a bad prime for E;(q) .

To prove our main theorem we begin by analyzing our construction of the irre-
ducible characters of the Sylow 2-subgroup of D4(2/) from [3]. Our starting point
is the quotient of UD4(q)/K4 where UD4(q) is the unipotent radical of the stan-
dard Borel subgroup of the universal Chevalley group D4(¢q) and K is the normal
subgroup of UDy(q) generated by the root groups of roots of height 4 and 5. We
showed that when p = 2 we have a family of characters of degree ¢3/2 of size
4(g—1)* As UDy4(q) is a quotient of UE;(q) for i = 6,7,8 we also have families of
irreducible characters of degree ¢®/2 for groups of type UE;(q), i = 6,7,8 and ¢ is
even.

Our construction is fairly elementary. Starting with large elementary abelian
normal subgroups we construct our characters via induction, using Clifford theory.
To compute the necessary stabilizers we critically use Proposition 1.3 and Lemma
1.5. Throughout this paper we fix a nontrivial homomorphism ¢ : (F,, +) — C*.
For each a € Iy, we define ¢,(z) := ¢(az) for all z € Fy, and denote F* :=F,—{1}.
Hence, {¢, : a € F} are all non-principal irreducible characters of F,.

Definition 1.2. For a € F,, we define T, := {tP —aP~1t: t € F,}.
We note that Ty = IFy.

Proposition 1.3. The following are true.

(a) tP —aP~ = Hcele (t — ca).
ac , then T, 1s an additive subgroup o of index p.
b) I IFqX hen T, 4 dditi bg F, ind
c) For each a € , there exists b € such that b1, = ker ¢. Furthermore,
F h qu h sts b qu h that bT k Furth
cbTy = ker(¢) iff c € F.

(d) {To:a€Fy} = {ker¢,:a€Fy} are all subgroups of index p in F,.

Proof. Part (a) is clear since the degree of the polynomial t¥ —aP~!t is p and the F-
multiples of a are clearly zeros. As F, is of characteristic p, the map 9, : F;, — F),
defined by 1,(t) = t? — a?~'t is F,-linear. By Part (a) the kernel of the map is
1-dimensional and thus (b) follows. Evidently (d) follows from (c). We defer the
proof (c) to Subsection 5.1. [J

Definition 1.4. For each a € F,

we pick ag such that ayT, = ker ¢.
By Proposition 1.3 (c), ag exists and but is only determined up to a scalar in
the prime field. In the definition above we make some arbitrary choice which will

not change throughout the paper.
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Throughout we fix notation as follows. Let G be a group. G* := G—{1}, I'rr(G)
the set of all complex irreducible characters of G, and Irr(G)* := Irr(G) — {1g}.
For H K < G, and § € Irr(H), define Irr(G/K) := {x € Irr(G) : K C ker(x)},
Irr(G,€) = {x € Irr(G) : (x,£Y) # 0}, and Irr(G/K, &) := Irr(G/K)NIrr(G, ).
Furthermore, for a character x of G, we denote its restriction to H by x|x.

Lemma 1.5. Let NG and 1 € X be a transversal of N in G. Suppose N = ZY M
where Y AN, Z C Z(N), M < N and X C Ng(ZY). If there is X\ € Irr(ZY') such
that Y C ker(X\), and "\ #£ Y\ for all u # v € X, then the following are true.

(a) Forallx € Irr(N/Y, ), x¢ € Irr(G). Moreover, if x1 # x2 € Irr(N/Y, \),

then x19 # x2©.
(b) The induction map from Irr(N/Y,\) to Irr(G, ) is bijective.

Proof. See Subsection 5.2. [J

We recall that a p-group P is monomial, i.e. for each x € Irr(P), there exist a
subgroup H of P and a linear character A\ of H such that y = A”. To construct
irreducible characters whose degrees are not powers of ¢ = p/, f > 1 we construct
subgroups H < P and T' < P such that T is a transversal of H. Then we find
a linear character A\ of H such that the order of the stabilizer Stabr(X\) of T is
not a power of q. Moreover we insure that ) is extendable to the inertial group
Ip(\) = HStabr(X\). Let A; denote some extension of A to Ip(A). By Clifford
theory the induction of A; to P is irreducible, of degree not a power of q. The
existence of a suitable pair (H, \) is based on Proposition 1.3 because a polynomial
of the form zP + a?~'x, a # 0, appears in the formulae of the action of elements of
T on the characters of H.

We will now highlight the main steps of the constructions of our characters. We
have deferred all of our proofs to Section 5.

2. SYLOW 2-SUBGROUPS OF THE CHEVALLEY GROUPS Dy(2/)

Let Fy be a field of order ¢ and characteristic 2. Let ¥ := (aq, aa, a3, aa) be the
root system of type Dy, see Carter [1], Chapter 3. The Dynkin diagram of ¥ is

Qa2

851 as o%1

The positive roots are those roots which can be written as linear combinations
of the simple roots ay, e, a3, auy with nonnegative coefficients and we write ¥ for

the set of positive roots. We use the notation 1 ; 1 for the root a1 + a9+ 203+ ay

and we use a similar notation for the remaining positive roots. The 12 positive
roots of ¥ are given in Table 1.

For ao € ¥ we denote the corresponding root subgroup of the Chevalley group G
by X whose elements we label by x,(t) where t € F,. We note that X, = (F,, +).

We recall that the commutator formula [z (r), 3(s)] = zays(—Ca,ars) if a4 €
3, and = 1 otherwise, see Carter [1], Theorem 5.2.2. Since p = 2 we have —1 =1
in Fg, so all non-zero coefficients C,, g are equal to 1. For positive roots, we use the
abbreviation x;(t) := x4, (t), i = 1,2,...,12. All nontrivial commutators are given
in Table 2.
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TABLE 1. Positive roots of the root system X of type Dy.

Height | Roots
5 M2 = ; 1
4 Q11 = 1 i 1
5 1 0 1
A= 1109 YT 111 MOT g1
2 Qg = v Qg = ! Q7 1= 0
110 010 011
1 aq (0% a3 Qg
TABLE 2. Commutator relations for type Dy.
[z1(t), z3(uw)] = 5(tu), [21(t),76(u)] = zs(tu),
[z1(t), 27 (w)] = o (tu),  [m1(t), x10(0)] = 211 (tw),
[z2(t), w3 (u)] = we(tu), [22(t),25(u)] = zs(tu),
[z2(t), 27(u)] = @10(tu), [22(1),29(u)] = 11 (tu),
[z3(t), za(u)] = 27(tu), [23(1),211(v)] = T12(t0),
[24(t), 25 ()] = g (tu),  [w4(t),w6(u)] = 10(t0),
[z4(t), 28 (w)] = 211 (tu), [75(t), 210(0)] = 212(t0),
[z6(t), z9(uw)] = T12(tu), [v7(t),2s(u)] = z12(tu)

The group UD, generated by all X, for a € ¥T is a Sylow 2-subgroup of the

Chevalley group Dy(q). Each element u € UDy can be written uniquely as
u =12 (tl)xg(t2)$4(t4)l'3 (t3)$5(f5) s 1‘12(f12) where ,Ti(ti) S Xi.

So we write Hzli1 x;(t;) as this order. We note that our ordering of the roots is
slightly non-standard as the positions of x3 and x4 are reversed.

We define Fy := {x € Irr(UD4(q)) : (1)@, for each as, ag,a10 € F}.
If U is a representation affording x € Fy, then we have U([zs(ts),za(ts)]) =
[W(xs(ts)), U(xa(ts))] = [Pas (ts)¥ (1), U(xa(ta))] = ¥(1) for all t4,ts € Fy. There-
fore, X11 = [Xs,X4] C ker(x). Use the same argument for X2 = [Xg, X7] C
ker(x). Thus only the factor group U = UD4/X12X11 acts on a module affording
x- Therefore, we may work with U which has has order ¢'°, and Z(U) = XgXg¢X1p.

asg (675 Q10
o

Figure UDy(q): Relations of Roots

Let H := [U, U] = X5X6X7X8X9X10, and T = X1X2X4. It is clear that H, HX3
and T are elementary abelian. The group U can be visualized in the above figure.
The roots in boxes are in T, the others outside are in H, and «3, which is neither
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in T nor in H, is in a circle. The disconnected lines demonstrate the relations of
sum of roots equal to roots in center, e.g. as + a5 = apg + a1 = as, ... Each edge of
the triangle contains four roots, two on the outside and two on the inside. Each of
the three vertices of the triangle together with the four adjacent inside roots forms
a hook of length 2, see [3]. The corresponding hook group is special of order ¢'*4.
The group generated by each hook group ¢*** and X3 is isomorphic to a Sylow
2-subgroup of the general linear group GL4(F,).

To study those characters y, we start with a linear character A of H such that
A x, # 1x, for i = 8,9, 10.

Definition 2.1. For as,ag,a10 € F; and bs,bs, b7 € Fy, we define

(a) N (TL 25 i(1)) 1= (X 1_s biti + 3,25 ajty).

(b) 5567 = {$567(t) = :v5(a10t)x6(agt):v7(agt) telr }

(C) 5124 = {$124(t) =T (alot)xg (agt)$4(agt) 1t e Fq}
(d) = agagaig and to = %(b5a10 + bﬁag + b7ag).

(e) F124 = {1, z124(t0)}

(f) F5:={1} ifto =0, and F5 := {1,3:3(%)} otherwise.

It is easy to check that Ssg7, S124, Fi24, F3 are subgroups of U. If ty = 0, then
F124 = F3 = {1}, otherwise F124 = F3 = (Fg, +) Since 512475567 = (Fq,'i‘), their
linear characters are in the form ¢y, (z;(t)) = ¢(b;t) where ¢ € {124,567} for all
bi,t € Fy. For each & € Irr(Fios), &€ = Qvyy, | Fip, fOr some ¢p,,, € Ir7r(S124), b124a €
F,. If F124 is nontrivial, we choose b124 € {0, @124} = (F2, +) where ¢(a124t0) = —1.
The same for F3 < X3, for each & € Irr(F3), £ = ¢u,|p, for some ¢p, € Irr(X3)
and bz € {0, a3} = (Fo,+) such that ¢(as (tOA)“’) —1if (tg)y exists.

For each as, ag,a1p € F, there are ¢* linear characters AI9:99910 of H. By the
definition of ty, there are ¢? of them such that to = 0 and the others ?(q—1)
linears such that ¢y # 0. Therefore, there are ¢ cases where Fyo4, F3 are trivial and
q*(q — 1) cases where Fya4, F3 are of order 2.

For all xq(t1)x2(t2)z4(ts) € T, we have

z1(t1)za(t2)za(ts) (98,249,010 asg,ag9,a10
()\ ,be b7 ) )\b s+agta+agts,be+agti+aiots,br+agti+aiote”

Hence, T" acts on the set of linears {\"*2*1%} Tt is easy to check that #¢ is invariant

under this action. All properties of A\j*7?}"' are known as follows.

Lemma 2.2. Set )\ := /\Z:’g:’bim. The following are true.

(a) Si2sa = Stabr(\) and Sse7 = {z € X5XeX7 : [NV (x)] = AV (1)}. Moreover,
AV Sse7 — )‘U(l)(bAtg-

(b) A extends to HX3Fy24 and HF3S5124. Let A1, A2 be extensions of X to HX3Fa4.
The inertia groups Iyy(A1) = HX3F24.

(C) )\1U = )\QU S ITT‘(U) iﬁ)\1|F3 = )\2|F3 and )\1|F124 = )\2|F124-

Proof. See Subsection 5.3.1.

Remark When ¢ is odd, both {z € X5XsX7 : [AV(2)] = AY(1) = ¢*} and
Stabr(X\) are trivial. Thus, A extends to HX3 and induces irreducibly to U of
degree ¢°.

When ¢y # 0, the statement in Lemma 2.2 (¢) makes sense since the dihedral
subgroup (Fia4, F3) C Iy(A\1). By Lemma 2.2 (b), X3, S124 C Iy(A\) but A is not
able to extend to HX3S124 since [X3, S124] € ker(\)
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By Lemma 2.2 (a), T  acts on the set of ¢* linears \****>*** into ¢ orbits, each has
size ¢°. By Lemma 2.2 (b), all ¢° linears \**:*°%* extend to H X3 and we obtain
¢* linear extensions, in which there are ¢° linears with to = 0 and ¢3(q — 1) linears
with to 75 0.

If tg = 0, Fioq is trivial. By Lemma 2.2 (b), A extends to Iy(\) = HX3 < U,
as . T is a transversal of HX3 in U and acts regularly on these ¢* linears n with
to = 0. Therefore, n¥ € Irr(U) of degree ¢* only depends on ag,ag, aig, so we
denote it by xg%1gs € Irr(U). This character is the unique x € Fy of degree 7
such that x|x, = x(1)¢a, where i = 8,9,10. Furthermore, by Lemma 2.2 (a), this
is the unique constituent x of (A|x;x,x,,)Y such that Sse7 C ker(x).

If tg # 0, Fio4, F5 are isomorphic to Fo. By Lemma 2.2 (b), A extends to H X3F124
as A, and MY € Irr(U) of degree %. For each typ # 0, by Lemma 2.2 (c), all

constituents )\1U of AU only depend on the restrictions of A; to Fio4 and Fs. There-

, bioa,bs,t
fore, we denote these constituents of AV by X81;41’03;3°’a8’a9’a1° where by24,b3 € Fo,
9,10, 5%

to, as, ag,aip € . For each as,ag,a10 € F), there are 4(g — 1) characters x € Fy

of degree % such that x|x, = x(1)¢q, where i = 8,9, 10.

The next theorem lists generic character values of all x € Irr(U) such that
Xlx; = x(1)¢a, where i =8,9,10.
Theorem 2.3. For as,ag,a10 € F)*, suppose x € Irr(U) such that x|x, = x(1)¢a,
wherei = 8,9,10. Set Z = F1245567 X3 X9 X10 and the Kronecker §; j = { (1) Zf;te:mgi’se
The following are true.

(a) If x(1) = ¢°, then x = xguygs and

X(Hzlol Il(tl)) - 50 t150 t250 t460 t'a(sast'; a10t760«8t6 agtzq ¢(Zz 8 altz)
(b) If x(1) = % then x = Xglg“l’g?’;t”’as’ag’“w for some biay, b3 € Fo, to € F
and X([1.2, @i(t:) =

= ¢(b124 -+ Atos t7 + ZZ g aiti) if Hlolxl( t;) € Z, and
5,18,51,,110,54(5(18,52@9,546153 wh ¢(b124 -+ bsts + Ato + (%) + Zl g ait;) otherwise,

e § = 50 and ) = i+ B+ )

Proof. See Subsection 5.3.2.

3. SYLOW 3-SUBGROUPS OF THE CHEVALLEY GROUPS Fg(37)

Let F, be a field of order ¢ and characteristic 3. We study Es(g) by its Lie root
system. Let ¥ := (a1, as, a3, a4, as, ag) be the root system of Fg, see Carter [1],
Chapter 3. The Dynkin diagram of ¥ is

(65]

[ O O O 0
aq Qs Qg Qs (675

The positive roots are those roots which can be written as integral linear com-
binations of the simple roots a1, as, ..., &g with nonnegative coefficients. We write
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2
12321
for the root ay + 2as + 2ai3 + 3as + 2a5 + g and we use a similar notation for
the remaining positive roots. Let X, := (x.(t)|t € F,) be the root subgroup
corresponding to a € ¥. The group generated by all X, for « € X7 is a Sylow
3-subgroup of the Chevally group Eg(q), which we call U Eg.

2T for the set of positive roots. Here, |[X7| = 36. We use the notation

7
In this section, we are going to construct irreducible characters x of degree %

3
by considering the following special family of irreducible characters of U Eg.
Fo :={x € Irr(UEs) : X|x, = X(1)¢a, ht(a) =4, a € F}.

Let ¢ be an affording representation of some x € Fg. Using the same argument as in
Section 2 for all positive roots « with height greater than 4 to obtain X, C ker(x).
Let K5 be the normal subgroup of UFEg generated by all root subgroups of height
greater than 4. Thus only the factor group U := U Fg/ K5 acts on a module affording
X. By the nature of the canonical map from U Eg to U, we can identify all root groups
of root heights less than or equal 4 to their image groups. There are 21 roots o € X
with ht(a) < 4. These 21 positive roots are given in Table 3. Therefore, the group
U has order q21 and Z(U) = X17X18X19X20X21 = <Xﬁ : ht(ﬂ) = 4>

For positive roots, we use the abbreviation x;(t) = zq,(t), i = 1,2,...,21. Each
element u € U can be written uniquely as

u = Ig(tg)zl(tl)xg (t3)$4(t4)175(t5) s $21(t21) where Il(tl) S Xl
So we write H?il x;(t;) as this order. It is noted that there is a permutation of xs.

TABLE 3. Positive roots of the root system X of type Fg.

Height | Roots
4 oo 1= 1 o] 1= 0

2079090111 2T 01111

(6] = 1 18 — 0 (6] =

7= 11100 B-= 171110 ¥=9p1110
3 ayp 1= 0 Qg 1= 0

B~ 91110 6= 90111

19 ‘= 0 (6% = 1 (6% =

2= 911100 B~ 91100 M= 9p0p0110
2 aqp = 0 aq] = 0

0= 9p0110 L= 90011

A7 = 0 ag — 1 Qg — 0

7 11000 8 00100 9 01100
1 o) aq Qs Qy Qs Qg

For each o € ¥, since the lengths of a-chains of roots through a root are at most
1, the commutator formula [, (r), 23(s)] = xat+s(—Caprs) f a+ € X, and =1
otherwise, see Cater [1], Theorem 5.2.2. For each extraspecial pair («, ), we choose
the coefficient C, 3 := —1. By computing directly or using MAGMA [5] with the
following codes, all nontrivial commutators are given in Table 4.

W:=RootDatum("E6” );

R:=PositiveRoots(W); A:=R[1..21];
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for i in [7..21] do
for j in [1..(i-1)] do
if (R[i]-R[j]) in A then
k:=RootPosition(W,R[i]-R[j]);
if k le j then print k,”+7,j,”=",i,” (7, LieConstant_C(W,1,1,k,j),”)”; end if;

end if;
end for;
end for;
TABLE 4. Commutator relations for type Fjs.

[z1(t), x3(u)] = 27 (tu), [z2(t), za(u)] = w3 (tu), [23(t), T4 (u)] = 29 (tu),
[za(t), x5 (u)] = 210(tu),  [25(t), 26(u)] = 211 (tw),  [21(2),29(u)] = z12(tu),
[za(t), 27(u)] = 12(—tu), [22(t),29(u)] = 213(tw),  [23(1),28(u)] = 213(tu),
[z2(t), z10(u)] = z14(tu),  [25(t), 78(u)] = 214(—t0), [23(t), 210(0)] = T15(t0),
[25(t), z9(u)] = T15(—tu), [z4(t),711(0)] = T16(tu), [26(t), T10(0)] = T16(—1U),
[21(t), 13(w)] = 217 (tw),  [z7(t),28(u)] = 217(tu),  [22(1),z12(u)] = 217(t0),
[21(t), 215(w)] = 218(tw),  [27(F), 210(0)] = 218(t0),  [25(2), 212 (0)] = 218(—tU),
[z2(t), 215(u)] = 219(tu),  [23(1), 214(0)] = T19(tu),  [25(2), 213 ()] = 19(—tU),
[z2(t), z16(u)] = 220(tu), [28(t),711(u)] = D20(tu), [76(t), v14(u)] = T20(—10),
[23(1), z16(u)] = z21(tu),  [z9(t), 711 (0)] = 221 (tu), [76(t), T15(u)] = 221 (—tu).

@10, A9

s a2
04125 / \ §a16 |
G
. 04.1.3 (.3;14 :
Conr - ds B ..-..;.O.QO_..

Figure U Eg(q) : Relations of Roots.

Let H := (Xo: a4 #a € X1, (a,a4) > 0) = HyH3Hy where Hy := Z(U), H3 :=
10, Xi, Hy :=T[2s X;, and T := (Xo, X1, X3, X5, X6) = Xo X1 X3 X7 X5 X6X11.
It is clear that |H| = ¢'2, |T| = ¢*, Hj, is generated by all root groups of root height
k in H, and T is a transversal of HX, in U. Both H and H X, are elementary
abelian and normal in U, and T is isomorphic to UA3(q) x U A2(q) x UA1(q), where
UAg(q) is the unipotent subgroup of the standard Borel subgroup of the general
linear group G Lj+1(q). We can visualize the group U in the above figure. The roots
in boxes are in T, the others outside are in H, and a4, which is neither in H nor
in 7T, is in a circle. The disconnected lines demonstrate the relations between roots
to give a sum root in center, e.g. a7 + a9 = ays, ar + ag = ai7... In addition, we
have two triangles, as same as in Section 2 of UDy(q), namely (a7, a1, a19) and
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(@19, g, 21). These two triangles share a common pair of roots (asg, a15) where
az + a15 = aqg.

We consider A € Irr(H) such that A x, = ¢q, # 1X for 17 <4 < 21. Since the
maximal split torus of Fg(q) acts transitively on @21 -Irr(X;)*, it is allowed to
assume that A x, = ¢ for 17 <4 < 21. So we set A = )\gféglgl’ﬁ“’b””bm € Irr(H)

x,; = ¢p, where b; € F, for all 8 <14 < 16,7 # 11.

Definition 3.1. For bg, bg, blO; b12, blg, b14, b15, b16 S Fq, we deﬁne
(a) S1:={s1(t, 7, s) = xa(t)z1(t)x3(—t)w5(t)x6 (—t)x7(r)T11(8) : £, 7,5 € Fy}.

) So = {sa(t) = s1(t,2t%,2t%) : t € Fy}.

( ) Rg = {Tg(t) = Ilg(t)Ilg(—t)$14(—t)$15(t)$16(t) it e Fq}

(d) Ry = {Tg(t) = ,Tg(—t)xg(t),flo(t) 1t e Fq}
)
)
)

B3 :=b13 — b1z — b1a + b5 + bys.
B2 = blO + bg - bg.
If By =c? ¢ qu, Fy = {1, s2(%c)} and Fy := {1, 24(Fcy)}.

We note that Ry < Hj for k = 2,3, Fb, < Sy < 51 < T, and F; < Xjy.
Since Ry = F,, for each a € F, we define ¢, (ri(t)) = ¢q(t) for all r(t) 6 Ry,.
Hence, Irr(Ri) = {¢q : a € F,}. Since Sy = Fy, we can define ¢, (s2(t)) = ¢a(t)
for all s5(t) € So. When By = ¢* € F), for each linear £ € Irr(Fy) there is
by € {0, £as} = (F3,+) such that £ = ¢b2|F2 where ¢y, € Irr(S2) and ¢(azc) # 1.
Use the same argument for Fy, for each § € Irr(Fy) thereis by € {0, £as} = (F3,+)
such that & = ¢y, |p,, where ¢y, € Irr(X4) and ¢(ascy) # 1.

Let Hs be the normal closure of Hs in HX4S:. Since HX, is abelian, X, C
Staby(A). All properties of A = /\g;fézfgl’z“’b“’bw are known as follows.

Lemma 3.2. The following are true

(a) Ry = {z € Hs : |A\V(z)] = \Y(1)} and S1 = Stabr(Nw,u,). Moreover,
)‘Ule = )\U(]‘)¢B3'

(b) If B3 # 0, then Stabr(\) = {1}. Hence, if n is an extension of X to HXy,
then Iy (n) = HX}4.

(c) If B3 = 0, then there exists x € T such that “\ = Ag/0b9 2/0 for some
b, by, Vg € Fy. Furthermore, Hs C ker(*\)HX451 and the induction map
from Irr(HX4S1,%X) to Irr(U, \) is bijective.

Proof. See Subsection 5.4.1. [J

Remark If ged(q,3) = 1, then {z € Hs : [A\Y(z)] = AY(1)} and Stabr()) are
trivial. Thus A extends to H X4 and hence induces up to U irreducibly.

By Lemma 3.2 (a), it is easy to see that T acts invariant on B3 = Bs(\), i.e.
Bs(\) = Bs(*\) for all x € T. As above we fix the actions of \|x, = ¢, 17 < i < 21,
H has ¢® linears, in which there are ¢” linears with B3 = 0 and ¢”(¢ — 1) linears
with Bg 75 0.

By Lemma 3.2 (b), these ¢”(¢—1) linears of H with Bs # 0 extend to H X, to be

q®(q — 1) linears and induce irreducibly to U of degree [U : HX4] = q". Therefore,
a*(g—1)
a7

there are
(ba, B3). So we denote them by Xb4 B5 where by € F, and B3 € F.

Since H < U, we have A\, € ITT(H) and Irr(U,\) = Irr(U,” ) for all z € T,
hence, by Lemma 3.2 (c¢), we suppose that A = Agé?ég:?);?)' Since [U : HX451] = ¢*

= ¢q(¢ — 1) irreducibles in this case and they are parametrized by
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and the induction map from HX4S; to U is irreducible from all constituents of
Irr(HX4S1,)), the above ¢” linears of H with B3 = 0 are corresponding with
these ¢2 linears /\géol;g’gf) when we observe them at level of HX4S,.

Lemma 3.3. The following are true.

(a) Ry = {x € Hy: |NIX151 ()| = NHX4S1(1)} and Sy = Stabs, (). Moreover,
)‘HX4S1 |Rz = )‘HX4S1 (1)¢Bz'

(b) If By ¢ {¢® : ¢ € Fy} and let n be an extension of X to HXy, then
Iux,s,(n) = HX4. Therefore, Sa acts transitively and faithfully on all
extensions of X\ to HXjy.

(c) If Ba =c% ¢ F, then A extends to HX4F> and HFySs. Let A1, A2 be exten-
sions of X to HX,Fs. Then Igx,s, (A1) = HX4Fs. Moreover, N\ XS =
MK N g, = Xalp, and M|E, = Xo| R,

Proof. See Subsection 5.4.2. [J

Remark When By = ¢ # 0, we see that HX,F3 < U and HF,S, ﬂ U, and
both have index % in U. By Lemma 3.2(c) and Lemma 3.3 (c) all constituents of
AY have degree %7. Hence, if 77 is an extension of A to HFySs, then nV € Irr(U, \).

We have X4, S5 C Iy(A\) and X extends to H X, F5 and HF,S5, but A is not able to
extend to H X4.S5.

The group HX, has ¢* linear characters A such that \| g = )\g;?g)gjg’l?). Since F
is even and cyclic, there are @ linears with By ¢ {¢* : ¢ € F)}, and @
linears with By € {¢* : ¢ € F)}. Hence, by Lemma 3.3 (b), there are % = %1
irreducibles of degree |S;| = ¢* which are parametrized by By ¢ {¢* : ¢ € F)}. By
Lemma 3.2 (c), we obtain %1 irreducibles of degree ¢3[U : HX,S1] = ¢ which are
denoted by x? where By € F,—{c*: c€ Fy }+. Therefore, together with characters
ng,Bs as computed above, Fg has exactly (¢ — 1)g + #
of degree ¢” such that x|x, = x(1)¢ for all X; C Z(U).

By Lemma 3.3 (c), let \; be an extension of A\ to HX,F», then A FXa51 g
irreducible of degree [HX,S1 : HX,Fy] = %. These A FX+51 only depend on Bs
and their restrictions to Fy, Fy. Hence, by Lemma 3.2 (¢), MV € Irr(U) of degree q3—7
is denoted by ng,b4,32 where by, by € F3 and By € {¢?: c € Fx}. Therefore, F¢ has

a’
3

irreducible characters y

exactly @ irreducibles of degree % such that x|x, = x(1)¢ for all X; C Z(U).

By the transitivity of the conjugate action of the maximal split torus Ty of
the Chevalley group Eg(q) on @2L,,Irr(X;)*, there are (¢ — 1)°(¢> — ¢ + 442)
characters x € Fg of degree ¢”, and M characters x € Fg of degree % such
that x|x, = x(1)¢a,, where a; € F;,17 < < 21. This gives the proof for the next

theorem.
Theorem 3.4. Let x € Fg. The following are true.
(a) If x(1) = ¢7, then there exists t € Ty such that tx is either x
for some by € Fy, B3 € FY, and By e F, — {c¢* : c € F}.
(b) If x(1) = %7, then there ewists t € Ty such that 'y = xlz;’b“’Bz, for some
5

b3, by € F3 and By € {¢* : c € F}.

by, B3

B>
a7 O Xg7
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4. SYLOW 5-SUBGROUPS OF THE CHEVALLEY GROUPS Fg(57)

Let F, be a field of order g and characteristic 5. We study Es(g) by its Lie
root system. Let X := (o, a2, a3, ay, as, ag, ar, ag) be the root system of Fs, see
Carter [1], Chapter 3. The Dynkin diagram of ¥ is

Q2

[ O O O O O 0
aq Q3 Q4 Qs (€75 a7 arg

The positive roots are those roots which can be written as linear combinations
of the simple roots ay,ao, ..., ag with nonnegative coefficients and we write ¥ for

the set of positive roots. Here, [©¥| = 120. We use the notation , , « - , 5

for the root 2a; + 3ag + 4ag + 6y + Has + 4dag + 3ar + 2as and we use a similar
notation for the remaining positive roots. Let X, := (x4 (t) |t € F,) be the root
subgroup corresponding to € 3. The group generated by all X, for a« € X7 is a
Sylow 5-subgroup of the Chevalley group Es(q), which we call UEs.

In this section, we are going to construct irreducible characters x of degree %
by considering the following special family of irreducible characters of U Eg.

Fs:={x € Irr(UEs) : x|x, = X(1)¢a, ht(a) =6, a € F}.

Let ¢ be an affording representation of some x € Fg. Using the same argument as in
Section 2 for all positive roots « with height greater than 6 to obtain X, C ker(x).
Let K7 be the normal subgroup of UFEg generated by all root subgroups of root
heights greater than 6. Thus only the factor group U := U Eg/ K7 acts on a module
affording x. By the nature of the canonical map from U Ejg to U, we can identify all
root groups of root heights less than or equal 6 to their image groups. There are
43 positive roots of height less than or equal 6. These 43 roots are given in Table 5.

For positive roots, we use the abbreviation x;(t) = x4, (t), i = 1,2,...,43. Hence,
Z(U) = X37X38X39X40X41 X402 Xy3 = <Xﬁ : ht(ﬂ) = 6> Each element u € U can
be written uniquely as

u = IQ(tQ)Il(tl)xg (t3)$4(t4)175(t5) s $43(t43) where Il(tl) S Xl

So we write Hil x;(t;) as this order. It is noted that there is a permutation of 5.

For a, 8 € X, the commutator formula [z4 (1), 25(5)] = Tats(—Ca,prs) if a4 €
%, = 1 otherwise, see Cater [1], Theorem 5.2.2. For each extraspecial pair («, j3),
we choose the coefficient C,, g := —1. By computing directly or using MAGMA [5],
all nontrivial commutators are given in Table 6.

Let H := <Xa oy 7§ o € E+,(OA,OA5> > O> = HgHsH4H3H5 where Hg =
Z(U), Hs = [1°%4 Xi, Hy = [122,, Xi, Hs = [[-1,5 X and Hy = X15X 3. Let
T := <X1, X37X4, XQ,XG, X7,X8> = T4T3T2T1 where T4 = X23, T3 = X16X17X22,
TQ = X9X10X11X14X15 and T1 = X1X3X4X2X6X7X8. It is clear that |H| = L]267
|T| = q'%, Hy is generated by all root groups in H of root height k, as same as for
Ty, generated by all root subgroups in T of root height k, and T is a transversal
of HX5 in U. Both H and HXj5 are elementary abelian and normal in U. T is
isomorphic to UA4(q) x UAs(q), where UA(q) is the unipotent subgroup of the
standard Borel subgroup of the general linear group GLgy1(g). It is noted that
by letting {81, B2, B3, B4} be a simple root set of type A4, the isomorphism from
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TABLE 5. Positive roots of the root system X of type E;.

Height | Roots
. 0
6 3= g 111111
Q40 = 1 g1 — 1 Ay — 1
0= 9121100 A= 90111110 27 9001111
Q37 — 1 (6] = 1 (6] = 0
377 1121000 387 1111100 37 111111
. 0
5 M6°= 9011111
o33 1= ! Q3g 1= ! Q35 = 0
37 0111100 37 90011110 BT 011111
Q30 :— 1 (6] = 0 (6] = 1
307 1111000 317 1111100 327 9012100
_ 0
4 A29°= 509001111
Qo :— 1 Q97 — 0 Q98 — 0
26— 0011100 277 0111100 287 001111
g3 1= ! gy 1= v Qg5 1= !
27 1110000 247 1111000 %= p11100
— 0
3 M2°= 50900111
Q19 = 0 (6] = 0 (6] = 0
U= 9111000 207 90011100 27 9go001 11
e i 0 Qi e 1 PO 1
6= 1110000 7= 0110000 B~ 9001100
. 0
2 5= 5000011
19 — 0 13 = 0 14 :— 0
2= 9011000 B~ 90001100 M= 900011
Qg = 0 (e = 1 (e = 0
97 1100000 0= 9010000 = 911000
1 (65) (&3] Qa3 QY (6753 (675 (0744 asg

<X1,X3,X4,X2> to UA4(Q) sends T (t) to ZBy (t), xg(t) to T By (t), ZC4(t) to TBg (t),
and z2(t) to xg,(—t) for all t € Fy.

We consider linear characters A € Irr(H) such that \|x, = ¢q, for 37 <i <43
and A|x, = ¢s, for all appropriate j < 36 where a; € Fy and b; € F,. Since the max-
imal split torus of the Chevalley group Es(q) acts transitively on ®72 .- Irr(X;)*,
it suffices to suppose that \|x, = ¢ for all 37 <14 < 43.

Definition 4.1. For b, € F, where i € [12..13,18..21,24..36] we define

(a) Bs :=bsg + b3 — b3z — bz — 2b34 + 2b35 + 2b36.

(b) By := 2bgs — 2bas + bag — bay — bag + bog.

(c) Bz :=big —big — bao + ba1.
) B>

(d = b12 — blg.
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TABLE 6. Commutator relations for type Eg.
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(1) Sq:={la(u) := l3(u)z23(3u?) : u € Fy}.
(m) If By =c¢* € FY, Fy := {sa4(uc) : u € F5} and F5 := {z5(vcy) : v € Fs}.

It is easy to check that for k € [2..5], Ry < Hj of order ¢, S < Sp—1 < T
with S5 = {1}, and Fy < Sy, F5 < X5 of order 5. It is noted that all B; are
defined for each A as above, hence B; = B;(\). Since Ry, = F, for each a € F, we
define ¢, (1 (t)) = ¢qo(t) for all r4(t) € Ry. Hence, Irr(Ry) = {¢q : a € Fy}. Since
Sy = Fy, we can define ¢q (s4(t)) = ¢a(t) for all s4(t) € Sy When By = ¢* € F)S, for
each linear & € Irr(Fy) there is by € {tas : t € F5} = (F5,+) such that & = ¢p,|r,
where ¢y, € Irr(Sys) and ¢(asc) # 1. Use the same argument for F5 < X5, for each
& € Irr(Fs) there is bs € {tas : t € F5} = (Fs5,+) such that £ = ¢, |p,, where
v € Irr(Xs) and ¢(ascy) # 1.

Let Hs be the normal closure of Hs in H X5S,. All properties of X’s are known
as follows. It is clear that X5 C Staby(N).

Lemma 4.2. The following are true

(a) Ry = {z € Hs : |\V(z)] = \Y(1)} and S1 = Stabr(Nu,u,). Moreover,
)‘Ule = )‘U(1)¢Bs'

(b) If Bs # 0, then Stabp(X\) = {1}. Hence, if n is an extension of \ to HXs5,
then Iy (n) = HX5. Furthermore, if n,n' are two extensions of N, m,m, to
HX5, then nV ="V iff Bi(n) = Bi(n) fori = 2,3 and nlx, = 1'|x,.

(c) If Bs = 0, then there exists © € T such that “N x, = lx, for all X; C Hs.
Furthermore, Hs C ker(*X\)#X551 and the induction map from Irr(H X5S1,%\)
to Irr(U, \) is bijective.

Proof. See Subsection 5.5.1. [J

Remark When (¢,5) = 1, both R5 and Stabr()) are trivial. Hence, A\ extends
to HX5 and induces irreducibly to U of degree [U : HX5] = ¢'S.

Lemma 4.2 (a) can be observed by the following figure.

-39

.__..le

30

0436 0434 0132

“ai “aigg
Figure UFEg(q): Relations among roots of heights 5 in H and 1 in 7.

We have ¢'% linear characters A of H such that Ay, = ¢ for all X; C Z(U).
In these, there are ¢'® linears with Bs = 0 and ¢'®(q — 1) linears with Bs # 0.
By Lemma 4.2 (a), it is clear that Bs = Bs(\) is invariant under the action of
T. Therefore, by Lemma 4.2 (b), these ¢'8(q — 1) linears with Bs # 0 extend to

H X5 and induce irreducibly to U. Thus, we obtain % = ¢*(q — 1) irreducible
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characters of U of degree ¢'® which are parametrized by (bs, B2, B3, Bs) where

bs, Ba, B3 € F, and Bs € IFqX. Hence, we denote them by XZ‘?’GBz’B3’B5.

Since [U : HX5S1] = ¢%, by Lemma 4.2(c), the constituents of ¢'® linears of H
with Bs = 0 inducing to U correspond to the ones of ¢*2 linears A of H inducing
to HX5S1, where \|x, = ¢ for all X; C Hg, \|x, = lx, for all X; C Hj, and
Ax, = ¢p, for all X; C HyH3Hy where b; € F,. Let A € Irr(H) be one of these
above ¢'? linears. Now we consider ) in the scenario of the subgroup H X5S5;. Let
HgH, be the normal closure of HsHy in H X5.S5.

Lemma 4.3. The following are true

(a) Ry = {x € Hy : [NX51(2)| = NEX51 (1)) and Sy = Stabs, (N mg .51, )-
Moreover, NHXs51|p = NHX551 ()¢, .

(b) If By # 0, then Stabs,(\) = {1}. Hence, if n is an extension of \ to
HXs, then Igx,s,(n) = HXs. Furthermore, if n,n' are two extensions
of Mugusm,ms to HX5, then nf1XsS1 = p/HXsS1 4 By(n) = Ba(n') and
77|X5 = 77/|X5'

(c) If By = 0, then there exists x € S1 such that “Nx, = 1x, for all X; C
HsHy. Furthermore, HsHy C ker(*A\)2%592 and the induction map from
Irr(HX5S2,%X) to Irr(H X551, \) is bijective.

Proof. See Subsection 5.5.2. [J

The main idea of Lemma 4.3 (a) can be visualized in the following figure.

T T T s
-. e : s

s oz

Q4o RPN VNI RE e Y E R

Figure U FE3(q): Relations of between root heights 4 in H and 2 in 7.

0427."'-._

Recall that we have ¢'? linear characters A of H such that \|x, = ¢ for all
X; C Z(U) and \|x, = lx, for all X; C Hs. In these, there are ¢! linears with
By = 0 and ¢'*(q — 1) linears with By # 0. By Lemma 4.3 (a), it is clear that
By = By() is invariant under the action of S;. Therefore, by Lemma 4.3 (b), these

q''(q — 1) linears with By # 0 extend to HX5 and induce irreducibly to H X5S.

Thus, we obtain % = ¢*(q — 1) irreducible characters of HX4S; of degree

|S1] = ¢*° which are parametrized by (bs, B, By) where bs, B € F, and By € Fy.
By Lemma 4.2 (c), we obtain ¢?(q — 1) characters of U of degree ¢'® which can be

denoted by XZ?;,Bz Ba,

Since [HX5S : HX5S5) = 5, by Lemma 4.3(c), the constituents of ¢'! linears
of H with B, = 0 inducing to HX5S5; correspond to the ones of ¢°® linears \ of H
inducing to H X555, where A|x, = ¢ for all X; C Hg, \|x, = 1x, for all X; C HsH,y,
and A x, = ¢y, for all X; C H3Hs where b, € F,. Let A € Irr(H) be one of above
q® linears of H. Now we consider \ in the scenario of the subgroup HXj5Ss. Let
HsHyHs be the normal closure of Hs Hy4H3 in H X5S53.
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Lemma 4.4. The following are true

(a) R3 = {,T € Hj : |)\HX5S2($)| = )\HX‘E’SQ(l)} and S3 = StabS2()\|H6H5H4H3)-
Moreover, NHXs52|p = \HX552 ()¢ .

(b) If B # 0, then Stabs,(\) = {1}. Hence, if n is an extension of X\ to HXs5,
then Iyx,s,(n) = HXs. Furthermore, if n,n' are two extensions of A to
HXs, then n'1Xs52 = g/ HXs5 gff =1/ x, .

(c) If Bs = 0, then there exists x € So such that “Nx, = 1x, for all X; C
HsHyHs. Furthermore, HsHyHz C ker(*\)7Xs5 and the induction map
from Irr(HX5S3,%X\) to Irr(H X552, \) is bijective.

Proof. See Subsection 5.5.3. [J
The main idea of Lemma 4.4 (a) can be described as follows.

Qa3 Qa2 37 @39 Q41 40

02.19 .'Oé 1'é .'042'.1 .'0420

Figure U FEg(q): Relations of between root heights 3 in H and 3 in 7.

Recall that we have ¢% linear characters A\ of H such that \|x, = ¢ for all
X; € Z(U) and Nx, = lx, for all X; C Hs;Hy. In these, there are ¢° linears
with B3 = 0 and ¢°(¢ — 1) linears with B3z # 0. By Lemma 4.4 (a), it is clear
that Bs = Bs(\) is invariant under the action of Sy. Therefore, by Lemma 4.4
(b), these ¢°(q — 1) linears with Bs # 0 extend to H X5 and induce irreducibly to

H X5S5. Thus, we obtain % = ¢(q — 1) irreducible characters of HX4Ss of

degree | S| = ¢° which are parametrized by (b5, Bs3) where bs € F, and B3 € Fy.
By Lemma 4.3 (¢) and Lemma 4.2 (c), we obtain ¢(¢ — 1) characters of U of degree

q'% which can be denoted by XZ‘E{’GBS

Since [HX5S2 : HX5S3) = 3, by Lemma 4.4(c), the constituents of ¢° linears
of H with By = 0 inducing to HX5S> correspond to the ones of ¢? linears \
of H inducing to HX5S3, where \|x, = ¢ for all X; C Hg, A|x, = lx, for all
X; C HsHyHs, and N x, = ¢y, for all X; C Hy where b; € F,. Let A € Irr(H) be
one of above ¢? linears of H. Now we consider A in the scenario of the subgroup
HX5S5.

Lemma 4.5. The following are true.

(a) Ry = {x € Hy: [NHXs53(g)| = A\HXs93 (1)) and Sy = Stabs,()\). Moreover,
)\HX5S3|R2 — )\HXSSS(l)d)Bg-

(b) If By & {c* : ¢ € F} and let n be an extension of X to HXs, then
Inx,s,(n) = HXs. Therefore, Sy acts transitively and faithfully on all
extensions of X\ to HXs.

(c) If By = ¢* € Fy, then X\ extends to HX5Fy and HF5Ss. Let A, A2 be
two extensions of A to HXsFy. Then Ipx,s,(\1) = HXsFy. Moreover,

M X5 = N XSS i Nk = Moy and M |ry = Ao|my

Proof. See Subsection 5.5.4. [J

It is noted that Stabg,(\) = Stabr(\). The main idea of Lemma 4.5 (a) can be
visualized in the following figure.




ON THE CHARACTER DEGREES OF SYLOW p-SUBGROUPS OF E(pf) 17

Qar 38

a1z ais
Figure U FE3(q): Relations of between root heights 2 in H and 4 in 7.

Recall that we have ¢? linear characters A\ of H such that \|x, = ¢ for all
X; C Z(U) and Mx, = lx, for all X; C HsHyHs. By Lemma 4.5 (a), it is clear
that By = Ba()) is invariant under the action of S3. Since F¢ is cyclic, we have
{c' 1 c e Ff} = 4L Therefore, there are @ linears with By = ¢* € FY,
and there are w linears with By ¢ {c' : ¢ € F)}. Thus, these linears with
By & {c*:ce IFqX} extend to HXj5 and induce irreducibly to HX5S3 of degree

|S5] = ¢. By Lemma 4.4 (c), Lemma 4.3 (c) and Lemma 4.2 (c), we obtain w

characters of U of degree ¢'® which can be denoted by xﬁ%.

Now we sum up all irreducibles of degree ¢'® as counted above and denoted by

bs,B2,B3,Bs _bs,B2,Bs _bs,B .
xqf{g 27875 quié 2 Xq?;, 3 and Xfl%- Therefore, Fg contains exactly ¢3(q —1) +
3(q

Plg—1)+qlg—1)+ %1) characters x of U of degree ¢' such that x|x, = x(1)¢
for all X; C Z(U).
By Lemma 4.5 (c), let \; be an extension of A\ to HX5Fy, then A X558 g

irreducible of degree [HX5S3 : HX5Fy] = %. These A\ 7553 only depend on Bs
and their restrictions to Fy, F5. Hence, Lemma 4.4 (c), Lemma 4.3 (¢) and Lemma
4.2 (c), MY e Irr(U) of degree % is denoted by xb4’6b5’32 where by, bs € F5 and

ql
5

By € {c¢* : ¢ € F)}. Therefore, Fg has exactly %{1) irreducibles of degree %
such that x|x, = x(1)¢ for all X; C Z(U).

By the transitivity of the conjugate action of the maximal split torus Ty of
the Chevalley group Es(q) on @24, Irr(X;)*, there are (g — 1)*(¢®* + ¢* + ¢+ 3)
characters y € Fg of degree ¢'%, and M characters x € Fg of degree %
such that x|x;, = x(1)¢a,, where a; € F;,37 < i < 43. The following diagram
summarizes all the above arguments with their assumptions.

Bs Bs =0

H: A—DP5=0_ pgx.5, B1=0_ px.g, H X555

B5750 B4750 B3750 32#04 BQZC4€]F;<
U - 21;1632133735 XZ?(,;B2,B4 XZ%BS XquQG Xl;il;655132
No: (¢—1)%¢*  (q—1)%¢? (q—1)% 3(g—1)*/4  25(q—1)%/4

Figure U FEg(q): Summary on the branching rules of .
This gives the proof for the next theorem.

Theorem 4.6. Let x € Fg. The following are true.

(a) If x(1) = ¢, then there exists t € Ty such that tx is an element of

bs,B2,B3 | bs,Ba b B
{qu 1y Xgio qul,G s Xq126 .
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(b) If x(1) = ¢*6 /5, then there exists t € Ty such that ' = x"4>P2.

qlf
5
5. ALL PROOFS.

In all proofs, we use the following technique:
(a) For all the decomposition of the commutator formula into product, we apply
the formula [a, be] = [a, c][a, b]°.
(b) For H < G and L 4G, for each X € Irr(L), Stabg(\) :={z € G: "X = A},
and Stabg(\) C Stabg (N i) =: K, hence, Stabg(\) = Stabg (X).
(c) For K < G and H <G, to extend a linear character A of H to HK, we
check if [HK, HK] C ker()).

5.1. Proof of Proposition 1.3. Let a € F;'. We are going to prove 1.3 ().

Since ged(q — 1,p) = 1, for each b € S, there is s € F;* such that b = s”. We
have b [ .cp (t — ca) = s? [ [ ep, (t — ca) = [ ep, (st — csa) € Tsq. Hence, F acts
on {T,:a€ IFqX} such that s?T, = Ts,. We claim that bT, = T, iff b € F};.

By (a), it is clear if b € F)\. Suppose there exists b € F; —F,, such that bT, = T,,.
Since b € F, — F,,, we have b = s? for some s € F, — F,. Hence, s~ # 1. By
induction, we have T, = bT, = b*T, = ... = b*T, for all k € N. Therefore, for each
t € Fy, tP — (as®)P~1t € T, for all k € N. For each [ € N*, we have

aP~ (Pt — 1) =Pt Z%:o #ik)!s(p_l)k(—l)l_k —tr(1 l— 1)!
— ! — — | —
=a? lltZk:O ms(p DR — 237 m(—l)l F
— ! —
= o) e (# — (ast) 1) € T
Since sP~! — 1 € F), there exists [ € N* such that (s~ — 1)! = 1. Therefore,
a?~1t € T, for all t € F,. We have (tP — aP~'t) + aP~1t = t? € T,. This makes a
contradiction since {t” : t € F,} = F, 2 T,. So the claim holds. Thus Fy /F acts
faithfully and transitively on {T, : a € F}, and [{T, : a € F}| = %.
It is easy to see that kerg, = kerg, for all ¢ € F since F), = Z,, and ¢, (ku) =
k . _ g—1
¢a(u)" for all k € N. Therefore, [{kergq : a € Fy}| = I=.
Since {ker¢, : a € Fy} are all subgroups of index p in Fy, {kerg, : a € F}
{T, : a € F;}. Therefore, for each a € F, there exists b € F,* such that bT, =
ker¢, and cbT, = ker¢ iff c € F ;. [J

5.2. Proof of Proposition 1.5. (a) Suppose x € Irr(N/Y,\), we are going to
show that & € Irr(G) by showing that the inertia group Ig(x) = N.

Since Y C ker(x) and Z C Z(N), we have x|zy = x(1)A. Since X C Ng(ZY),
for each x € X, *\ € Irr(ZY'). Hence, for any u # v € X we have

“Xlzy = x(1)"A # x(1) "A = "X|zv, L.e. “x # "x.
Therefore, z € X such that ®*x = x iff x = 1. Since X is a transversal of N in G,
this shows that the inertia group Ig(x) = N.
The above argument also proves that for yi1,x2 € Irr(N/Y,\) and u #v € X
we have “x1 # Yx2. So by the Mackey formula for the double coset N\G/N = G/N
represented by X, we have

1 ify, =
G Gy _ G _ z _ _ X1 = X2
(17 x2”) = v, x2) = ;{( X1, X2) = (X1, X2) —{ 0 otherwise
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(b) It is enough to show that the induction map is surjective, i.e. for each
¢ € Irr(G, \) there exists x € Irr(N/Y, \) such that & = y©.

Suppose {|nv = >_, cgaix; where a; € N* and S C Irr(H). By Frobenious
reciprocity, 0 # (£§,A\9) = (¢|zy, \), there exists at least a constituent xo of &|n
such that (xolzy,A) # 0, i.e. xo € Irr(N,\).

Since Aly = A(1)1y and (xoly, Aly) > (xolzy,A) > 0, we have xo is a constituent
of 1y". Since Y < N, all constituents of 1y are Irr(N/Y). Therefore, xo €
Irr(N/Y,\). By (a), xo© € Irr(G), hence it forces & = xo%. O

5.3. Proofs of Sylow 2-subgroups of D,(2/).

5.3.1. Proof of Lemma 2.2. Set A = \*y*") for the whole proof.

(a)First we show that Stabp(\) = Sias. Since YA(z) = A(x) iff AN(z~12¥) =
A[z,y]) = 1 and XsXo9X10 C Z(U), it suffices to check for [X5X¢X7,T]. For all
t;, 55 € Fy, we have

[175(t5)x6(t6)x7(t7), I1(51)$2(82)$4(S4)] = Ig(t6t1+t5t2>$9 (t7t1—|—t5t4)$10(t7t2—|—t6t4).
Therefore, x1(s1)z2(s2)xa(s4) € Stabr(N) iff for all ¢5, 6,17 € F,
1 = ¢(asg(tes1 +tss2) + ag(trsy + tssa) + aro(trs2 + tesa))
(ts(agsz + agss) + te(agsy + a10s4) + tr(agsy + a1osz2))
iff agsSe + ag9S4 = agS1 + a1084 = @981 + Q1082 = O, ie. 115_110 = Z—z = Z—z. So
StabT()\) = 5124.
To find all scalar points of X5XsX7 on AV, since X37T is a transversal of H in
U and (X3, X5 X6X7] = {1}, it is enough to find ones of X5XsX7 on T, i.e. find
xsrerr € X5X6X7 such that A\([xszex7, x12224]) = 1 for all z12024 € T. Use above
computation, for all s; € F;, we need
1 = ¢(ag(tss1 +tss2) + ag(trsy + tsss) + aro(trs2 + tesa))
= (;5(81 (agtﬁ + a9t7) + Sg(agtf, + a10t7) + 84(a9t5 + alotﬁ))
iff CLth + a9t7 = CLgt5 + a10t7 = a9t5 + a10t6 = 0, i.e. at_fo = Z—Z = 2—78. Hence,
HZ:5 l‘l(tl) = 1'567(2—;) (S 5567- So 5567 = {LL‘ € X5 XgX7: |)\U($)| = )\U(l)}
Now, to prove that \U|s... = q¢*¢ay,, it suffices to check that A(wse7(t)) =
@ at, (t). For each x5e7(t) = w5(arot)xe(aot)xr(ast) € Sse7, we have

Mzse7(t)) = d(t(bsaio + beag + brag)) = d(tAto) = pay, (t).

(b) We study Irr(U, \) by two following ways. Let Ky := HX3Fj24 and Ko :=
H S124F3. Since H = [U, U], it is clear that Hy, K1 < U.

H
v AN
HXj5 HS124
{ {
Ky = HX3F24 Ko = HS124F3
¢ N
U

Since H X3 is abelian, A extends to H X3 as n1. By (a), Si24 = Stabr()), for all
x € H,x124 € S124, A([x, 2124]) = 1, hence X extends to HS124 as 12. To show that
A extends to K3 and Ks, we prove that [Ky, K] C ker(n), [K2, Ka] C ker(n2). We
have
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[23(t3), z1(s1)72(52)74(84)] = @5 (51t3)T6(S2t3) w7 (8483) T8 (515283) 0 (815483)T10(525413),
and A(I5(Slt3)$6(Sth)I7(S4t3)I8(51$2t3)$9(8154t3)1710($254t3))
= ¢(f3(b581 + bgSo + brsy + ags1So + ags1S4 + a108284)) = (*)

Plug s1 = a1ot, s2 = agt, s4 = agt into (x), we have

(*) = @(ts(t(bsaro + beag + bras) + t2asagaig)) = d(tzAt(to +1)).

Now we divide into two cases where to = 0 and to # 0. First, if tg = 0, ¢p(t3At?) =
1 for all tg iff ¢t = O, hence, StabT(m) = {1} = F124, i.e. IU(’Ih) = HX3 And
d(t3At?) = 0 for all t iff t3 = 0, hence, Stabx, (n2) = {1} = F3, i.e. Iy (n2) = HS124.

If to # 0, then ¢(tsAt(to +1t)) = 1 for all 3 iff ¢ € {0, ¢0}. Therefore, [K1, K1) C
ker\. For each n € Irr(H X3, \), Stabr(n) = {1, x124(t0)} = Fi24.

We have ¢(t3At(to+t)) = 1 for all t iff ¢35 € {0, (tOA)"’ }, by Proposition 1.3. Hence,

[K2, K] C ker()). For each v € Irr(H S124, A), Stabx, () = {1,13(%)} = F3.
So A extends to K; and Ks. For each \; € Irr(K;,\), Iy(\) = K;, i =1,2.

(c) Let A1, Ay be extensions of A to K. Let n be an extension of A to K. By
(b), we have MY, Y, 0V € Irr(U,\).

We choose 1 € S C T as a representative set of the double coset K1\U/K3, by
Mackey formula, since K1 N Ko = HF3F)24 and K1 < U, we have

()‘1U777U) :Zses(s)‘ﬂsl\flﬂKw77|3K10K2)
= Zses(s)‘1|HF3F124v77|HF3F124)'

For each s € S, if *Ai|pp,Fiay = NHEFFa,s then *Ai|g = n|g. Since both are
extensions of A from H, we have *\ = A, ie. s € Stabp(\) = Sia4. There is
unique s = 1 € SN S since S is a representative set of K;\U/Ks. Therefore,
M) = Mlar i m2 R P) = I Mi|r, = 1lR, i € {124,3)

So MY =0V = XY € Irr(U, ) iff Mi|p, = No|ry,i € {124,3}. O

It is remarked that since K7, Ko<U, the double coset K1\U/ K5 equals U/ K1 Ko =
U/H X3S5124. Hence, we can pick above S = X7 X5 as a transversal of U/K; K».

5.3.2. Proof of Theorem 2.3. Fix as,ag,aio € F; and set A = /\Z:’gs’b?“ for some
bs, bs, by € IFy in the whole proof. By Lemma 2.2 and using the same notations, we

mainly find the generic character values: in (a) ng“fd‘jzgo =mY where ty = 0, and
. s 19,10,
in (b) X81;41,03;3o,a87a97a10 — 771U where b124, b3 c F27 to € F;

9,10, 5

(a) Suppose to = 0 and Fiao4 = {1}. Call  an extension of A to HX3. By Lemma
2.2 (b), Iy(n) = HXs. Therefore, nV € Irr(U) and n¥ (1) = ¢*. By Lemma 2.2
(a), S567Xs X9 X109 C Z(’I]U), hence |’I7U($)| = q3 for all x € S567XgX9X19. We
have |Ss567 X3 X9 X10|¢%¢® = ¢! = |U|. By the scalar product (n¥,nY) = 1, it forces
nY(x) = 0 if 2 ¢ S567XsX9X10. So we have the formula as stated.

(b) Suppose ty # 0, and |F3| = |Fi24] = 2. By Lemma 2.2 (b), let n1,7n2 be
extensions of A\ to Ky := HX3Fi24 and Ko := HS124F5 respectively such that
mlr, = m2|F, = ¢»,, where b; € Fo, i € {124,3}. By the proof of Lemma 2.2 (c),
m¥ =mnv.

We choose V' C T as a transversal of K1 in U, and 1 € S € X3 such that SX; X
is a transversal of K3 in U, so |S| = ¢/2. Since K; < U, we have 771U(H£1 x;) =
Y owev ””171(]_[321 x;) = 0 if zyzomy ¢ K;. Since T is abelian, [z,y] =1 forallz € V
and y € Fya4. Therefore, F1o4 C Z(mY) and we have

MY (T2 i(t:) = Oagts arotaOasts.aots @(br2a 2 )m Y (w3 (ts) TT;25 2 (£:))-
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Since Ko < U, we have oY (3 ]_[225 x;) = ZmeSXIXQ 1o (s ]_[325 x;) = 0 if
x3 ¢ F3. Since XgXoX19 C Z(U), we need to compute the two following cases:
772U(Hi7:5 x;) and noY (23 HZ:s z;) with z3 € Fy*.

Since [X3, X5 X6X7] = {1}, we have nY (vsz627) = Zmesxlxz Iy (wsweny) =
2D imex, X, M2(T5T677). Since (v57677)"1 72 = w5w677[T5, T2 [T6, T1][T7, T1][T7, 2],
plug in x5 (t5)ze(te)x7 (t7) and 1(s1)z2(s2), we have

" (LTis wi(t:)

=23 . o M(w5(ts)z6(te)z7(tr) T8 (ts552 + tes1)m9(t751)T10(t752))

= dna(as(ts)we(te)vr(t7)) Doy, o, Plas(tssz +tes1) + agtrsi + aiotrsa)
am2(ws (ts)we (te)w7(t7)) Do, 4, P(81(aste + agtr) + s2(asts + aiotr)).

Since Ztqu ¢(t) = 0, to obtain non-zero values, it forces agts + agty = 0 and

a8t5 + a10t7 = 0. Hence ds = te — t—7, and HZ:S IEZ(tz) = 113567( ) S S567 By

? aio ag ag
Lemma 2.2 (a), we have

7
nQU(Hi:5 Il(tl)) = 60«8t5 a10t75a8t6 agltr 5 2 772(I567(a8 ))
- 60«8t5 a10t75a8t6 agt7r "o ¢(At )

Therefore, no¥ (112 xi(t:)) = = ¢(b124 + Ato t7 +0 g aity) if 12, 2i(t;) €
F124S567X8X9X10 = Z7 as stated in the theorem

Now we compute 72V (23 HZ:5 z;) with z3 € F) = {z3(t3)} where t§ = (tz)“’.
Since Ir7(n2) = K2 QU and SX; X3 is a representative set of U/Ka, (“n2)Y = n¥
Irr(U) for all x € SX1X5. For each x2(s) € Xo, we have

2203y (5 (t)) = ma(ws(t)ws(ts)) = G(bst + asts) = G(t(bs + ass)).
bs

So instead of choosing s = &, we suppose that 75 has bs = 0, i.e. n2(x5) =1 for all
x5 € X5. It is easy to check that 10, M2|Fros = Pbrpy a0d 1m2|m, = ¢p, are invariant
under this conjugate action.
We have [Ig(tg)I5(t5)$6(t6)$7(t7), Il(Sl)IQ(SQ)]

= $3(t3)$5(t5 + t351)$6(t6 + t352)$7(t7)I8(t3$182 + t5$2 + tﬁsl)Ig(t781)I10(t782).
Therefore,

oY (3 (t3)2s(t5) 26 (t6)27(t7)) = X pcox, x, “M2(®3(ts)ws(ts)z6(te) 27 (t7))

=3 vex,x, "M2(@s(ts)ws(ts)ze(te)r(t7))

=22 . o 12(@3(t3)5(ts + t3s1)T6(te + tase)wr(tr)zs(tas152 + tss2 + t6s1)wo(t7s1)w10(t752))
= dmo(x3(ts) HZ:5 2 (ti)) D4, s, Pbetssa + as(tzsis2 + t552 +t681) + agtrst + aiotrs2)
dm2(ws(ts)we(te)z7(t7)) Do, 4, P(s1(astase + aste + agty) + sa(bsts + aioty + asts)).
Set C(t5, tg, t7) = 251,52 ¢(81(a8t382 + agtg + agl7) + 82(b6t3 + aiot7 + agtg,)).
We have

Clts,t6,0) =324 s ¢(81(t382 +to)as + s2(bets + asts))
= ‘JZSZ— o o3 (bsts + asts))
= q@(bots + astst“)

Therefore, we get
12¥ (w3 (ts)ws (s )z (to)) 2%772(903( 3)a6(te))P(bete + “721¢)
= Sma(s(ts))p( 221,

Since x5 (t5) 26 (te) w7 (t7) = @5 (ts + a208t7)$6 (te + )$567(a ), where 5E567(t—7) -
x5(a102—;)x6(a92—;)x7(a85—;) € S124 € Z(n2Y) and 772(513567(?7) P, (L L), we have
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noY (z3(t3)xs (t5) w6 (te) 27 (t7)) _¢At0(a8)772 (z3(t3)zs (t5 + a10t7)x6(t6+ am))
= Ot 52) (s (£3)) B (15 + %) (15 + “222)

§¢(b3t3 + Atoa—g aﬁz‘;g)“m (ts + a1°t7)(t + a:z:?

Lolbat] + Atofz + i3 (3% + 2@ + )

(to)e

)
)

5.4. Proof of Sylow 3-subgroups of Es(37).

5.4.1. Proof of Lemma 3.2. Set A = )\g;fégf;ﬁ“’bls’bm for the whole proof.

(a) Recall Hy = H}iu X; < H is elementary abelian and Hy4H3 < U. First, we
show that Rz = {z € Hjz : [A\Y(x)] = AY(1)} and A\Y(r3(t)) = ¢®¢p,(t) for all
Tg(t) € Rs.

Since A is linear and A(x) € C for all x € H, by the induction formula, we have
INV(z)] = AV (1) iff ¥A(z) = A(z) for all y € T Xy which is a transversal of H in
U. Since YA(z) = A=) iff A([z,y]) = 1, we are going to find all # € Hj such that
Az, y]) =1 for all y € TX,. Tt is clear that [X;, X4] = {1} = [X;, X7X11] for all
12 <4 < 16. Here, we write HJ 1 @i(uj) € T with ug = 0, it suffices to check for
ally = HJ 1 %j(uj) € T. For t;,u; € Fq, we have

[Hz 12 %i(ti), Hj 125 (uj)] =

[212(t12), 22 (u2)] [215(t15), T2 (u2)][T16(t16), T2 (u2)][T13(t13), T2 (u1)]

(215 (t15), w1 (u1)] [214(t14), w3 (us)][216(t16), w3 (us)] [212(t12), @5 (us)]

[213(t13), 5 (us)] [214(t14), w6 (ue)] [215 (t15), w6 (ue)]
= 217(—t12u2)r19(—t15u2)T20 (—t16U2)T17(—t13u1)T18(—L15U1 ) T19(—L14U3)
w21 (—t16u3)r18(t12us) w19 (t13us ) T20 (t14ue ) To1 (T15Us)

Since A(z;(t)) = ¢(t), 17 <14 < 21, for all u; € F, it forces
(—ti2—tis—tig)uz+ (—tiz3—t1s)ur +(—tia—tig)us+ (tiz+t13)us+ (t1a +t15)ug = 0.
So we have a system with variables ¢;:

—t1g —t15 —t1g =0

—ti3—1t15 =0
—tiy—tig =0
ti2+t3 =0
tiu+tis =0

Since ng(q, 3) = 3, we have tlg = t16 = t15, tlg = t14 = —t15 for all t15 =te Fq.
So x € H3 satisfies |AU(I)| = AU(l) iff x = {E12(t)xlg(—t)I14(—t>{E15(t)$16(t) =
r3(t) € R3 for t € F,, i.e. Ry ={x € Hy: |\ (x)] =V (1)}.

By the above computation, to show that AY|r, = AV(1)ég,, it is enough to
check that A(r3(t) = ¢, (t). For each r3(t) € R3, we have

A(r3(t)) = @(t(br2 — b1z — bia + b1s + bis)) = d, (1)

Now we show that Sy = Staby(\|m,m,). Since [Hy, T] = [Hs, X7X11] = {1}, it
suffices to find y € X2 X1 X3X5Xg such that A([z,y]) =1 for all x C Hs. Using the
above computation of [H1612 z;i(t;), H?:l xj(uy)], for all t; € F, it forces
(—uz+us)tio+ (—u1 +us)tiz + (—us+ue)tia + (u1 +uz —ug)t1s + (—uz2 —usz)tis = 0.

So we have a system with variables u; :
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—Uz +us =
—U1 + us = O
—uz+us =
—UuU] — U2 + ug —
—U2 — U3z = 0.
Since ged(g,3) = 3, we have uq = us = ug2,uz = ug = —ug for all us =t € F,,.
So [T5_y @ (u;) = wa () (t)ws(—t)ws(t)ze(—t) = s1(t) € Si.

(b) Since H = Z(U)HngXgXlo, to find SthT(A) C StabT(A|H4H3) = Sl, by
(a), it is enough to find s; € Sy such that **A(z;) = A(z;) for i = 8,9,10. Again,
for each z;(¢t;) € X;, 1 =8,9,10 and s1 = s1(¢t,7,s) € S1, we compute [x;, s1]
[,Tg(tg) 81] = xgo(t88)$17( th)$14(fgt)$20(—t8t2)$13(tgt)$19(t8t2).
[,T ( ) 81] —xgl(t98)$15(t9t)$21( t9t2)$12(—t9t)$18(—t9t2)$13(—t9t)$19(—t9t2)$17(t9t2).
[210(t10), $1] = @18(—t10r)z16(—t10t) 215 (t10t)T21 (—t10t?) @14 (—t10t) 220 (E1082) 210 (—t10t?)
Since A(z;(t)) = ¢(bit),12 < i < 16 and A(z;(t)) = ¢(t),17 < i < 21, from
)\([Ig(fg), 81]) = /\([$10(t10), 51]) =1 for all tg,tl() S Fq, we have
s = 2t% + byt + b1zt — bist and r = 2t2 — byst + byst — bygt.
From A([zs(ts),s1]) = 1 for all tg € Fy, we have s — r + byat + b13t = 0. Therefore,
s1 € Stabr(X) iff r, s as above and

s — 1+ biat + bist = 2t + biot + bist — bist — (2t2 — b1t + b1st — blﬁt) + bigt + bist
= t(biz — b1z — bia + b15 + bis)
— By = 0.
Therefore, if B3 # 0, then Stabp(A) = {1}.

(c) By (a), T/S1 acts faithfully on the set of all extensions of A| g, to HyHs with
the same Bs. Since |T/S1| = ¢* = |H3/R3|, this action is transitive. Therefore,

with Bg = 0, there exists € T such that "\ = )\g,ob? 2,0 for some 0§, by, b}, € Fy.

Now set A\ = )\0 0,0, 21?), and Hsj is the normal closure of Hs in HX4S;. To show

that Hs C ker()\HX451) < HX,S1, it suffices to show that Hs C ker(A\X451) By
(a) Stabrx, (A m, m,) = S1X4 which is a transversal of H in H X451, the claim holds
by the induction formula and Hs C ker(A).

By Lemma 1.5 for G = U with N = M = HX4S1, X = X1 X3X5Xg, Y = H3
and Z = Hy, the induction map from Irr(HX4S51/Hs, \) to Irr(U, A) is bijective.
Since Hz C ANHXe51 | [pr(HX S, /Hz, \) = Irr(HX,S1,\). O

5.4.2. Proof of Lemma 3.3. Recall Ry = {ra(t) := zg(—t)xg(t)z10(t) : t € Fy} <
Hy = XgX9X10 and A = )\2801)2 21?) By Lemma 3.2 (c), it suffices to work with the
quotient group H X4S1/Hs.

(a) The fact Sy = Stabg, (\) comes directly from Lemma 3.2 (b) with Bz = 0.
Since X457 is a transversal of H in HX4S; and [Ha, X4 = {1}, to show Ry =
{x € Hy : |[NTX151(7)| = MIX451(1)} we are going to find all z € Hj such that
Az, y]) =1 for all y € Sy. Since H < HX 4S5, is abelian, using the computation in
Lemma 3.2 (b), for s1(t,r,s) € S and xg(tg)xg(tg)x10(t10) € Ha we have

[zs(ts)wo (te)z10(t10), s1(t, 7, 8)]

= [zs(ts), s1(¢t, 7, 8)][x9(te), s1(t, 1, 8)]|[T10(£10), s1(L, 7, 8)]
= woo(tss)w17(—tsr)woo(—tst?) w19 (tst?)zo1 (tos)Ta1 (—tot?) 18 (—tot?) 19 (—tot?)
z17(tot?)z18(—t107) @21 (—t10t?) 220 (t10t%) 19 (—t10t?)
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Therefore, with A

x;, = ¢ for all 17 <+ < 21, for all ¢, 7, s € F; we need
(ts +to)s — (ts + t1o)r + (tg — t10)t2 =0

So tg =t10 = v and tg = —u for all u € Fy, i.e. © =ra(u) € Ro.
To show that \HX451|p = \HX451(1)¢p, it is enough to check that A(r2(t)) =
¢B,(t). For each r3(t) € Ry we have

A(r2(t)) = d(t(—bs + by + bio)) = ¢, ().

(b) Suppose that By ¢ {c¢* : ¢ € F}. Let n be an extension of X\ to HXj.
By (a) that Sy = Stabg, ()), hence Stabs, (n|m) = Sa. Since S; is a tranversal of
HX, in HX4S1, to find Stabg, (), it is enough to find all s3(t) € Sy such that
N([z4, s2(t)]) = 1 for all x4 € X,4. For each sa(t) € Sz, we have

[{E4 (t4), S92 (t)] = 10 (t4t)179 (t4t)$21 (2t4t3)$21 (—t4t3)$8(—t4t)
$20(—2t4t3)1717(2t4t3)1720 (t4t3)$19(—t4t3).

Since n(z;(t)) = ¢(bit),8 < i < 10 and n(z:(t)) = ¢(t), 17 < i < 21, for all t4 € F,,
n([xa(ts), s3(t)]) = 1 forces

t4(t3 — Bot) = t4(t> — Bat) € kerg.

Since t4(t* — Bat) € ker¢ for all ty, € F,, we have 0 = ¢3 — Bot = t(t* — Bs).
Since By ¢ {¢* : ¢ € F)}, the equation (¢* — By) = 0 only has trivial solution ¢ = 0
in F,. Therefore, so(t) = 1, i.e. Stabs,(n) = {1}. Hence, Inx,s, (1) = HX.4.

(c) Suppose By = ¢ € F and let 1) be an extension of A to HX,. Using the
computation in (b), we continue with the analysis for the solutions of ¢ to obtain
t4t(t* — Bs) € ker¢ for all t4 € Fy. So it forces ¢(t* — By) = 0. This equation has 3
solutions {0, £c}. Hence, Stabg, (n) = {1, s2(fc)} = Fa. So Iux,s,(n) = HX4F>.
By the above argument, [H X, Fy, HX 4 F5] C ker(n), hence n extends to Iy x,s, (7).

To show that X extends to H FySs, we check [H FySo, HF4S5] C ker(X\). With the
same argument, it is enough to check that [s2(t), 24 (t4)] € kerA. By the computation
in (b), we need t4(t* — Bat) = t4(t* — ¢*t) € ker¢ for all t € F,. By Proposition 1.3,
since t4 € {0, £cq}, the claim holds.

Let A1, A2 be two extensions of A to HX,F5, and « an extension of A to H FyS5.

3
)\HX451 is % HX4517

Since the degree of all irreducible constituents of , we have \q

AKXty HXaS1 € Trp(H X451, N).
Choose 1 € S C S as arepresentative set of the double coset H Fy S\ HX4S1/HX 4 F>.
Since HF4S2 N HX4F2 = HF4F2 and HX4F2 S] HX481, by Mackey formula,

(AlHX4517 HX4S1)

= ZSGS(S)\l |S(HX4F2)ﬂHF4S2 b ’Y|S(HX4F2)QHF4S2)
=> sesCMlurm, YHR )

v

For each s € S, if *M\|gp,p, = Y|HF, R, then *Ai|g = 7|m. Since both are
extensions of A, we have *A = A, i.e. s € Stabg, (\) = S2. There is unique 1 € SN S,
since S is a representative set of H FySo\H X451/HX4F». So ()leX451,7HX4Sl) =
Mlarm, Y arr) =1HE Mg =9[p, i € {2,4}.

Therefore, \; X451 = AHXaS1 = N HXaS1 4 (| = \o|p,i € {2,4). O

5.5. Proofs of Sylow 5-subgroups of Eg(57).
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5.5.1. Proof of Lemma 4.2. (a) First we find all x € Hj such that |A\Y(x)| = AV (1).
Since T' X5 is a transversal of H in U, [Hs, X5] = {1} = [Hs,T}] for all k > 2, and
YX(x) = M) iff AM(Jz,y]) = 1, it suffices to find all © € Hys such that A([y,z]) =1
where y € Ty. For each y = Hf x;(u;) € Ty with us =0, and = H?iso zj(v;) €
Hsj, to write shortly for the decomposition we write x; = z;(—) and plug in the
parameters in (—) latter, we have
T1;% 50 25 (0), 15 @i(ws)] = [w30, 2a] w30, 6] (w31, o] (w31, 7] [w30, 71 ][50, 6] [w33, 1]
(233, T4] (33, T7] (34, T3] (34, 8] [X35, 2] (X35, T1][X35, 28] [X36, 22236, T3]
= 37(—v30u4) 238 (V30U6 ) T3s (—V31U2) 30 (V31 U7) T37(—V32U1 ) Ta0 (V326 ) 38 (—V33U1)
T40(—v33Ua) a1 (V33U7) Ta1 (—V34U3)Ta2(V34us)Ta1 (—V35U2) T30 (—V35U1 ) T3 (V35US)
Ta2(—v36U2) T3 (—V36U3).-

Since A|x, = ¢ for all ¢ € [37..43], for all s; we need
(—v31 — v3s — V36)u2 + (—v3z — V33 — V35)u1 + (—v34 — v36)us + (—vs0 — v33)us +
(v30 + v32)ue + (v31 + v33)u7 + (V34 + v35)ug = 0.
Therefore, we obtain a system with variables v; as follows.

—v31 —v3s —Uzg =0
—v32 —v33 —v35s =0
—v34 —v3s =0

—v3p —v3z =0

v3p +v32 =0

v31 +v3z3 =0

v3q +v3zs =0.

Since ged(q,5) = 5, (vs0,vs1, V32, U3, V34, U35, V36) = (U, 0, —v, —v, —20, 20, 20)
for all v € F,. Hence, x = r5(v) € R, i.e. Rs ={x € Hs: |[A\V(z)| =V (1)}.

To show that A\Y|g, = AV (1)¢p., it suffices to check that A(r5(v)) = ¢p. (v). For
each 75(v) € Rs, we have

A(r5(v)) = ¢(v(bso + bzt — baz — bag — 2b34 + 2b35 + 2b3g)) = P, (v).

To show that S; = Stabr (A mgm;), we find all y € T such that A([z,y]) = 1 for
all x € HgHs. Since Hg = Z(U) and [Hs, T)] = {1} for all £k > 2, it is enough to
find y € Ty such that A([x,y]) =1 for all x € H;5. Using the above computation of
[H?iw zj(v;), Hf x;(u;)], we find u; such that for all v; :

(—ug + ug)vzo + (—u2 + ur)vsy + (—u1 + ug)vzz + (—u1r — ug + u7)vsz + (—ugz +
ug)vas + (—uz — uy + ug)vss + (—uz2 — uz)vse = 0.
Therefore, we obtain a system with variables wu; as follows.

—U4—|—u6 =0
—us+uy =0
—u1+ug =0
—up —ug +uy =0
—uz+ug =20
—UQ—U1+U8 =0
—Ug — U3 =0.

Since ged(gq, 5) = 5, we have (ug, u1, us, uq, ug, u7, us) = (2u, u, —2u, u, u, 2u, —2u)
for all w € Fy. So y = l1(u) € Ly, i.e. S = Stabr(N ;)

(b) Suppose Bs # 0. To show that Stabr(\) = {1}, we are going to show that
Stabsl (>\|H6H5H4) = T3T4, StabTST4 (>\|H6H5H4H3) = T4 and Stabn ()\) = {1}
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First, we show that Stabs, (A mgmsm,) = TsTa. By the root heights, it is clear
that [HeHsHy, T5T4] = {1}, hence, T5Ty C Stabs, (A mgmsm, ). It suffices to show
that Stabr, 1, (A memsm,) = {1}, i.e. there is no nontrivial y € LT such that
A([h,y]) =1 for all h € HsH,. For each y = Hllil xi(u;) € LTy (with us = uj2 =
u3 = 0 and H 1 Ti(u;) =11 (u)), and h = H;’i% xj(v;) € HsHy, we have

[Hjﬁ 24 Lj (Uj)7 H?El 331(%)} = [3324, 1?10] [3324, 1?14] [3325, 3314][3326, 1?15][3326, 1?9][3326, 1?11]
(227, 215] [T27, T10][T20, 211][24, T2][[T24, T2], T6][[T24, T2, T4][224, 6][[724, T6], 7]
[3325,1?1] [[l’25,$1] ][[3325,331] 336][3325,334][[113257334]7336][113257336][[3325,1136],1137][3326,1133]
[[3326, 333] ] [[$267 333] H$267 $7][[$267 337], 1?8][3327, 332][[3327, l’2], 331][[3327, 332], 334]
(w27, 2], x7] [X27, 21][[227, 1], W7][W27, W7][[27, 7], 8] [ 28, T2 [[28, 2], 3]
[[w28, 2], xs] [T2s, 23] [[28, T3], w8][w28, T8][229, 4]
= 237(v24110) 739 (V24u14)Ta1 (VasU14)Ta2 (V26 U15) T38 (—V26U0 ) Ta0 (Va6 U11) T3 (V2T U1 5)
240 (V27U10) T 39 (— V28U ) Ta2 (—V20U10) T4z (—v20u11 ) T30 (—2024u) 38 (—2024u? ) w37 (2024u?)
©31 (V240) T39 (V242?30 (—V25U) T 37 (V25 U? ) w38 (—V25U? ) T32 (—V25U) Ta0 (—V25u?) 33 (V25 W)
241 (2v25u?) 233 (2026 1) 210 (—2v26u?) 241 (4v26u?) T34 (2026 ) T 42 (—4va6u?) T35 (—2v271)
238 (2027u?) 240 (2027u? ) 241 (—4voru?) w31 (—V27U) T30 (—2V27u?) 35 (Vo7 2U) a3 (—dv27U?)
T34(—2v28u) 241 (—4v28u?) 242 (4vosu? ) 35 (2028 U) T a3 (—4v2gu? ) 236 (— V282U ) T36 (—V29U).
Since A|x, = ¢ for all i € [37..43]
the above with A to get 1, for all v;, we need
V24 (u10 + u14 — 2bgou + by u + 2u?) + vas (u14 — bzou — bsgu + bazu + u?) + vag(u15 —
ug + u1q + 2bgzu — 2u? + 2b34u) + U27(U15 + w19 — 2bgsu — b31u + 2b3su — u2) +
U28(_U9 — 2b34u + 2b35u + u2 — 2b36u) + ’Ugg(—’ulo — Uil — b36u) =0.
Hence, we have a system with variables u; and wu :

, for the others, after evaluating

U0 + U4 — 2b30u + b31u + 2u2 =
w14 — bzou — bgou + byzu + u? =
Uls — Ug + U1 + 2b33u — 2u? + 2bsqu =

U1 + w19 — 2b33u — bg1u + 2bzsu — uw? =0
—ug — 2bzqu + 2bzsu + u? — 2bsgu =
—uo — u11 —bgeu = 0.

It is equivalent to:

ug = u® + (3bsq + 2b3s + 3bse)u,
u1p = —u® + (bso — b31 — sz + baz)u,
u1y = u® + (—bso + bs1 + bsz — bz — bsg)u,
u1y = —u® + (bso + bz — b3s)u,
Ul = 2u? + (—bgo + 2b31 + b3go + b33 + 3b35)u,
(b3o 4 b31 — bza — bzg — 2b34 + 2b35 + 2b3s)u = 0.
The last equation is actually Bsu = 0. Since Bs # 0, we have uv = 0 and ug =
U = U1 = U4 = u15 = 0, i.e. Stabr,n, ()\|H6H5H4) = Stabp, 1, ()\|H6H5H4) = {1}.
Thus 7175 acts faithfully on the set of all extensions of \|g, to HeHsHy with
the same Bj # 0, which is invariant under the action of T, i.e. Bs(\) = B5(*A) for
all z € T. Since |H5H4 /Rs| = ¢'? = |T1T3|, this action is transitive. Therefore, we
choose A|x, = ¢ for all i € [37..43], N|x,, = éB,/2, and A x, = 1x, for the others
X; C HsH,. By the root heights, we have Ry [[4, Xi C Z(HX5TyT3), HX5TyT3<
U and Hy[[%4, X; 9 HX5TyTs. By Lemma 1.5 for G = U with N = M =
HX:T3T,, X =T11Ts, Z = HgR5 and Y = Hy ]_[Z 30 Xi, the induction map from
Irr(HX5T4T5/Y, ) to Irr(U, \) is bijective. Since X5TyT3 = Stabx,r (A mem, )

(*)
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is a transversal of H in HX5T,T3, we have NHX6T41s |y = [HXTyTs : H|\|y =
| XsTuTs|1y. Hence, Irr(HXsTyTs/Y, \) = Irr(HX5TyTs, \).

Now we find Stabnn ()\|H6H5H4H3)- Since [H6H5H4H3, T3T4] = [I’I37 T3], we find
y € T3 such that A([z,y]) =1 for all 2 € Hs. For each y = [[;_15 17207 (u;) € T3
and x = H?ilg x;(v;) € Hs we have
[z, y] = [718, T16][718, T22][T19, T22][T20, T17][T20, T16] [T 21, T17]

= 11737(U1su16)$42(018U22)I43(U19u22)1740(—v20u17)1739(—U2lu16)$41(—1)21u17)-
Since M x, = ¢ for all ¢ € [37..43], for all v; we need

v1g(U16 + U22) + VigU2z — VapU17 + Va1 (—U17 — u1e) = 0.

The only solution is (u16, u17, u22) = (0,0,0), i.e. Stabr, 7y (N momsm,8s) = Ta.

Next, we find Stabr, (). Since [H,Ty| = [Hz,Ty], we find y € Ty such that
Az, y]) =1 for all z € Hs. For each y = xo3(ug3) € Ty and = = x12(vi2)x13(v13) €
Hs we have

[T12(v12)T13(v13), T23(u23)] = [T12, T23][13, T23] = T37(—v12u23) 38 (—V13U23).
Evaluate with A, for all v; we need (—v12 —v13)us3 = 0. Therefore, the only solution
is ugz = 0, i.e. Stabr,(\) = {1}. So we finish the proof of Stabr(\) = {1}.

Let n,n" be two extensions of A| g, .1, to HX5. By the bijection of the induc-
tion map from Irr(HX5TyT3, \) to Irr(U, \), it suffices to show that nffXsTaTs =
nHXsTaTs §ff | g, = 0| R, for j = 2,3 and n|x, = '|x,. By the Mackey formula for
the double coset HXs\HX5TyT5/HX5 = HX5TyT3/H X5 represented by T,T5 we

have
(X Tals  HXSTaTo) — N (v, o)
yeTyTs

Since [X5,T5T4] C Hy H?i% X; C ker(X), we have ¥n|x, = n|x,. Therefore, the re-
strictions to X5 of both 7, 1’ are clear for the proof. To show for the restrictions to
Ry with k = 2,3, we are going to prove that RoR3 = {x € HoHj : [NAXTaTs(g)| =
)\HX5T4T3(1)} and Ty153 = StabT4T3 ()‘|R2R3)' Then by S’tabT4T3()\) = {1} and
|TyT3| = ¢* = |H3H2/R2 R3], the claim holds.

By the above computations of [Hs, T5] and [Ha, Ty] we find all 2 € HsHj such
that )\([I, y]) = 1forall Yy € T,T53. For Yy = Ilﬁ(ulﬁ)$17(’ul7)$22 (’U,QQ)IQg (Uzg) € 13Ty

and x = x12(v12)213(v13) H?ils x;(v;) € HoHs, we solve for v; in the following.
u16(v18 — v21) + w17(—v20 — v21) + u22(v1s + v1g9) + u23(—viz — v13) =0

We have a system with variables v; :

vig —wv21 =10
—v20 —v21 =10
vig +vig =0
—V12 — V13 =0.

We obtain solutions (vig,v19, V20, v21) = (v, —v, —v,v) and (vi2,v13) = (s, —$)
for all v, s € F,. Therefore, x € RoRs. Hence, YA|g,ry, = A Ryr, for all y € TyT5.

(c) Suppose that Bs = 0. By (a), T/S; acts faithfully on the set of all extensions
of A m, to HgHs with the same Bs. Since |Hs|/|Rs| = ¢% = |T/S1], this action is
transitive. Hence, there exists x € T such that “A|x, = 1x, for all X; C Hs. Let
A be this linear. So 51 X5 = Stabrx, (A mem, ), a transversal of H in H X551, and
MNIXsS1| g = NHXsS (1)) | ., ie. Hs C ker(ATX551) and so is its normal closure
E in HX581.
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By Lemma 1.5 with G = U, N = M = HX5Sy, X = [[\, X;XeXs, Z = Hg
and Y = Hs, the induction map from ITT(HX5&/F5, A) to Irr(U, \) is bijective.
Since Hs C ker(A1Xs51) we have Irr(H X551 /Hs, \) = Irr(HX551,\). O

5.5.2. Proof of Lemma 4.3. Recall that A\ is a linear character of H such that
Ax, = ¢ for all X; C Hg, and A x, = ¢, for the others
X, C HyH3H, where b; € F,. By Lemma 4.2 (c), we work with the quotient group
H X551 /Hs. Abusing the notation of root groups, we call them root groups in the
quotient group.

(a) By computation (*) in Lemma 4.2 (b) with B = 0, So = Stabs, (A, 11, )-
Now we show that Ry = {zx € Hy : [NIX551(2)| = MXs51(1)}. For each l1yay3ys €
LiToT5Ty = Sy and hy € Hy, we have [hg, l1y2ysya] = [ha,l1y2]. Hence, we are
going to find all hy € Hy such that A([hg,l1y2]) = 1 for all lyys € LiT5. Using
the computation of [HJG24 xj(v)), Hzlil xi(u;)] in Lemma 4.2 (b) with b; = 0 for
j € [30..36], we solve for v; in the following equation:
ug(—v26 — V2g) + w10(V2a + Va7 — V29) + u11 (V26 — V29) + w14(V2a + V25) + u15(v2s +
va7) + u2(2v24 + Vo5 — 2096 — V27 + Uzg) =0.

So we have a system with variables v; :

—vg¢ —v2g =10

U4 + V27 —v29 =0

v2g — V29 =10

vag +v25 =0

vog +v27 =10

2094 + V25 — 2u6 — V27 + U2 =0

We obtain the solution (va4, vas, vag, Va7, Vas, V2g) = (2v, —2v,v, —v, —v,v) for all
v e Fq, ie. A([h4,lly2]) =1 for all llyQ € LT iff hy = T4(U) € Ry.

It is clear that AX551(ry(v)) = AIX551 (1) ¢, (v) for all r4(v) € Ry by checking
directly that A(r4(v)) = ¢ 5, (v).

(b) Suppose that By # 0. Since Staby (A m,m,) = S2 = LaT5Ty, we are going
to show that Stabs, (A, msH,1s) = T4, and then, Stabr, (A\) = 1 is done by using
the same argument in Lemma 4.2 (b). It means that we find all y € Ss such that
Mz, y]) =1 for all x € Hj since N([HgHsHy, S2]) = {1}.

It is clear that Ty C Stabs,(A|ggmsm,m5)- So by (a) and |Hs| = ¢* = |LaT3), it
suffices to show that LT3 acts faithfully on the set of all extensions of A| g, i, m,
to HeHsHyHs, i.e. Stabr,rs(Nusmsm,ms) = {1}. By the root heights and H
is abelian, [Hs, LoT3] = [Hs, T5][Hs, Lo], where [Hs, T3] is computed in Lemma
4.2 (b). Since we work with HX5S;/Hs, for each x = Hfilg x;(v;) € Hs and

y=T1;L 2(uj) T2, 2 (u)w22 (uss) € LoTh, we have

[z, y] = [z, x16017222][T18, T3] [[[X18, 23], X4, T6][[[T18, 3], 6], 7] [ 18, 23], X14] 718, 26)
[[[l’w,ﬂ?ﬁ] 7] ] [[$18;I6]7$15][[I187$6] 3311][[1?18,336],Ig][l“w,332][[[1319,332],331],l’4]

[[[z19, z2], 71], w6] [[[z19, T2], 24, T6][[[T19, 22, 6], T7][[T19, T2], Z14][19, T1][[[T19, 21], T6], 77]
[[z19, 21], z10] [[T19, 21], T14][210, @6 ][[[719, 6], 27], x8][[T19, T6], T10] [T 19, 6], T15] (220, T2]
[[[720, z2], 23], w4] [[[220, 22], 23], 27][[[220, T2], T7], 8] [[20, T2], T15][[T20, T2, 11]

me, x2], o) [T20, x3][[[20, T3], ¥7], 28] [[#20, 3], Z10][[T20, 3], T15][220, 27][[220, 27], @]

T21, l’4] [[l’21, 334], 339] [1321, 338][[3321, 1138], 11310][[3321, 1138], 11311]
= 1?37(1118u16)3342 (018U22)1?43 (U19u22)11340(—v20u17)1?39(—U2lu16)$41 (—1121U17)
25 (2018U) Z40(—2v18u3) 241 (4v18u3) 241 (—2018U% ) 226 (V18 U) a2 (—4v18u>) 242 (2018u3)
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240 (v18u* ) w38 (—v18U>)T25 (—2019u) T37 (—2019u% ) 238 (2019 ) w40 (20190 ) w41 (—4V19U?)
741 (201 u3) 24(—v101) T30 (—2v19u”) 37 (V19U® )39 (V19U* ) 27 (VigU) T4z (—4V10U?)
T40(—v19u®) 43 (2019u3) D26 (—20201) T40 (V20U ) 241 (—8v20u?) 42 (8v20u3) T4 (—dv2gu?)

(—2U20u3)$38(2U20u3)$27(2U20u)$43 8v20u3)x4o(—2v20u3)x43 (4U20u3)x28(2v20u)
T39(—2v20u> ) 225 (—v21U)T39 (V21 U?) 29 (— 2021 1) Ta2 (— 2021 U ) 243 (2091 u?).

Evaluating with A to get 1, we need the following equation true for all v; :
Uls(ule+U22+2525U+b2eu—2u3)+019(u22 —boau— 2bosu+boru— 3u®) +vao(—ur7 —
2b26u + 2()27’& + 2b28u — 3u3) + ’U21(—U16 — U7 — bgg’u — 2b29U + U3) =0.

So we have a system with variables u; and w :

U1 + U2 + 2bo5u + bogu — ud = 0,

Uoo — bogu — 2bosu + boru — 3ud = 0,
—u17 — 2bogu + 2bo7u + 2bogu — 3ud = R
—U1e — U7 — b28u — 21)29’& + U3 = 0.

It is equivalent to:
uze = 3u® + (bag + 2ba5 — bar)u,
Uy = 2U3 + (3b26 + 2b27 + 2b28)u,
Ul = 4U3 + (2b26 — 2b27 — 3b28)u,
(2b24 — 2b25 + b2e — bar — bag + bag)u = 0.

The last equation in the system is actually Bju = 0. Since By # 0, the only
solution of this system is (ug, u17,u22) = (0,0,0), i.e. Stabr,r, (N Her:H Hs) =
{1} Hence, Stab52 (/\|H6H5H4H3) = T4 and Stabsl (/\) = {1}

The above argument also proves that L7575 acts transitively on the set of all
extensions of A| g, p. 1, to HeHsHyHs with the same By # 0. The number of these
extensions is |HyHs|/|R4|. Therefore, there exists © € L175T3 such that “A|x, = ¢
for all X; C Hg, *A|x, = &B,, "M x,; = lx, for the others X; C Hs HyHs. Let A be
this linear character. By Lemma 1.5 with G = HX5S1, N = M = HX;Ty, X =
11\ T5Ts, Z = HgRy, Y = Hj 1_[Z o4 Xl7 the induction map from Irr(HX5T4/Y, \)
to Irr(H X551, A) is bijective. Let 1,7’ be two extensions of N g, p,m,H, to HX.
We have nfIXs52 nHXs52 ¢ [rp(H X5S5/Y, \). Using the same argument in Lemma
4.2 (b), we obtain (nfXs52 yHXs52) = 1 iff n|r, = n'|r, and n|x, = 7’| x,-

(c) Suppose that By = 0. By (a), S1/52 acts faithfully on the set of all extensions
of N men. to HeHsHy with the same By. Since |S1/S2| = ¢° = |H4/R4|, this action
is transitive. Hence, with By = 0, there exists x € Sy such that *A|x, = 1x, for all
X; C HsHy. Let A be this linear character. Since So X5 = Stabs, x; (A gem,m,) is a
transversal of H in H X552, we have N1X592| = [H X555 : H|\ g, = |X552|14,.
So Hy C ker(A1Xs52), By Lemma 1.5 for G = HX5S; with N = M = HX5S,,
X =T, Y = Hy and Z = Hg, the induction map from Irr(HXs5S2/HsHy, \) to
Irr(H X551, A\) is bijective where HsHy is the normal closure of HsHy in HX5S55.
Since HsH, C ker(A%X552) we have Irr(HX5Ss/HsHy, \) = Irr(H X552, \). O

5.5.3. Proof of Lemma 4.4. Recall that A\ is a linear character of H such that
Mx, = ¢ for all X; C Hg, \|x, = lx, for all X; C HsHy, and M x, = ¢, for the
others X; C H3H, where b; € Fy. By Lemma 4.3 (c), we work with the quotient
group H X5S>/HsH,. Abusing the notation of root groups, we continue to call them
root groups in the quotient group.

(a) By the computation in Lemma 4.3 (b) with By = 0, it is clear that S3 =
Stabs, (| g s 1,1, )- Now we show that Ry = {x € Ha : [NIXs52(2)| = N Xs592(1)],
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Since X553 is a transversal of H in H X3S, we are going to find x € Hs such

that A([z,y]) = 1 for all y € S,. Since [H3, X5] = {1} = [Hs,T4], it is enough

to work with z € Hs and y € SyT3. For each x = Hfils x;(v;) € Hs and

y = H;il xj(u;) H;LM xj(u;)we(u22) € S2T3, by the computation in Lemma 4.3,

we find (v;)ie[s..21] satisfying for all u; and u in the following equation:

u16(v1s — v21) + u17(—v20 — v21) + u22(V18 + v19) + u? (—2018 — Bv1g — Bvz0 +v21) = 0.
We have a system with variables v; :

vig —v21 =0,
—v20 —v21 =0,
vig +vig =0,
—21)18 — 31)19 — 3’020 + v = 0.
Its solutions are (vis,vig, V20,v21) = (u, —u, —u,u) for all u € Fy, ie. = =

r3(u) € R3. Now to show that \HXs52|p = [H X555 : H|¢p,, it is enough to check
A(r3(t)) = ¢p,(t) which is clear.

(b) Suppose that Bs # 0. By (a) we have Stabs, (A|pgmsm,m,) = S3 = L3Ty.
To show that Stabs,(\) = {1}, since |L3Ty| = ¢* = |Hz|, we show that L3T} acts
faithfully on the set of all extensions of \|g, i, 1,1, to H, i.e. proving that there is
no nontrivial y € L3Ty such that A([x,y]) =1 for all = € Hs.

By the root heights, [Hz, LsTy] = [Ha,T4][Ha2, L3], where [Ha, Ty] is computed
in Lemma 4.2(b). For z = z12(v12)x13(v13) € Ha and y = I3(u)xa3(uas) € LTy,
we have
[, y] = [, ®23][z, l3] = w12, ¥23][w12, T2][[[[712, w2), @3], wa], w6][[[[212, w2], 23], we], 27]
[[[[9612,1’2] 6}, x7l, ws] (w12, ws][[[[w12, 23], we], 7], ws][w12, w6][[[w12, w2], @3], %14]

[[[#12, z2], 6], o] [[[w12, 2], w6, w11][[[w12, x2], we], 15][[[12, %3], w6], w10][[[212, 23], 6], #15]
[[[z12, 6], 27, To] [[w12, T2, T22][[w12, T2, T16][[712, T3], T22][[712, 6], T17][[T12, D], T10]
[[z12, Zo], T14] [213, T2s] (213, 4] (213, 7] [[[T13, T4a], 7], 2o][[[212, 27], 28], Z10]

[[z13, 7], 28], x11] [[213, Za], T17][[T13, 27], Z16] [[T13, T7], Z17] [[213, Z10], T15)

[[$13,l’10] 3311] [[1313,3311],1“15]

= 37(—v12u23) 218 (—2v12u) 40 (4v12u*) 241 (—8v12ut)T42 (Buru® )2 19 (2012u) T43(—8v12u?)
220 (v12w)Ta1 (4v12u) 238 (2012u?) T 40 (— 20120 ) T42 (—dv12u?) 240 (— 2012t 243 (4012ut )
T39(—2v12ut) 242 (—6v12u" ) 237 (—8v12ut ) 243 (6V12ub) a0 (— 20120t ) 237 (V12ut) T30 (VI2UT)
T38(—v13U23)T20 (—v13U)T21 (20130) T390 (2013u" ) 242 (—4v13ut) a3 (dv13ut) 240 (2015ut)
239(—8v1zut)zar (—4vizut)za2 (2v13u) 240 (V13ut) 245 (—2013u%).

Evaluating with A to get 1, we obtain in the following equation:

1)12(—823 - 2b18u + b20u + 2b19u - 2u4) + 1)13(—11,23 - bgou + 2b21u - 2u4) =0.

We have a system with variables u; and u :

—UuUg23 — 2b18U + b20u + 2b19u — 2u4 = 0,
{ —Uu23 — b20u =+ 2b21u — 2u4 = 0
It is equivalent to:
{ u23 = 3u4 —|— (—2b18 —|— b20 —|— 2b19)u,
(b1g — b2o — b1g + b21)u = 0.

The last equation is actually Bsu = 0. Since B3 # 0, the only solution is
(ugz,u) = (0,0), i.e. Stabp,r,(A\) = {1} or L3Ty acts faithfully on the set of
all extensions of A| g, . 1, 11, to H. Hence, we also get Stabgs, () = {1}.

Therefore, there exists x € L3Ty such that “A|x, = ¢ for all Xi C Hg, “A|x,, =
OBy, “Mx, = lx, for the others X; C HsHyHs. Let A be this linear. By Lemma
1.5 with G = HX585, N = M = HX5, X = S5, Y = [[22 s Xi and Z = Hg X1,
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the induction map from Irr(HX5/Y,\) to Irr(H X552, \) is bijective. Using the
same technique in Lemma 4.2 (c), the rest statement holds.

(¢) Suppose Bz = 0. By (a), S2/S3 acts faithfully on the set of all extensions
of )\|H6H5H4 to H6H5H4H3 with the same Bg. Since |SQ/S3| = q3 = |H3/R3|, this
action is transitive. Hence, there exists x € S such that “A|x, = lx, for all
X; € HsH4Hj3. Let A be this linear. Since X553 is a transversal of H in H X553
and S3 = Stab52()\|H6H5H4H3)7 we have )\HX553|H5H4H3 e )\HX5S3(1)/\|H5H4H3.
Therefore, Hs HyHs C ker(A7%X553) 5o is its normal closure HsH,Hs in HX5S5.

By Lemma 1.5 with G = HX5S2, N =M = HX5S3, X = Tg, Y = H3
Z = Hg, the induction map from Irr(H X5S3/Y,\) to Irr(H X552, ). Since Y C
ker(\AXs53) we have Irr(HX5S3/Y,\) = Irr(H X553, ).

5.5.4. Proof of Lemma 4.5. Recall that A is a linear character of H such that
)\|Xi = gf) for all X; C Hg = Z(U), /\|X1 = 1Xi for all X; C HsH,Hs, and )\|X7. = d)bi
for the others X; C Hs where b; € Fy. By Lemma 4.3 (¢), we work with the quotient
group HX5S3/HsHyHs. Abusing the notation of root groups, we continue to call
them root group in the quotient group.

(a) By the computation in Lemma 4.4 (b) with B3 = 0, Sy = Stabs,(\). Now we
show that Ry = {x € Hy : |N1X59(2)] = MX595 (1)}, Since X593 is a transversal
of H in HX5S3, we are going to find « € Hy such that A([z,y]) =1 for all y € Ss.
Since [Ha, X5] = {1}, it is enough to work with € Hs and y € Sy. For each x =
H;im zi(vi) € Hy and y = I3(u)za3(ug3) € S3Ty, by the computation in Lemma
4.4 (b), we find (vi2,v13) satisfying for all usg and u in the following equation:

u23(—v12 — v13) + 2u*(—vi2 — v13) = 0.

So (vi2,v13) = (v, —v) for all v € Fy, i.e. = ra(v). Since A(r2(v)) = ¢p, (v) for all
7‘2(’0) € Rs, we have )\HX5S3|H2 = [HX553 : H]¢32.

(b) Suppose that By € F, — {¢* : ¢ € F}. Let 1 be an extension of A to HX.
Since Sy = Stabg,(N), to get Inx,s,(n) = HX5, we show that Sy acts transi-
tively on the set of all extensions of A to HX5. Hence, we find all 4 € S4 such
that A([has,l4]) = 1 for all h € H and x5 € X5. Since Sy = Stabg,(\), we have
A([h,l4]) = 1 for all h € H,l4 € S4. Thus we compute [x5,l4]. Since we work with
HX553/H5H4H3, for each 5(vs) € X5 and ly(u) € Sy, we have
[25(vs), la(w)] = (5, ][5, 24], 0], 210][[[%5, T4], o], 14][[[5, 24], 6], 27], T9]
[[[#5, z4], 6], 17] [[5, w4], w2s][w5, we][[[25, x6], @10], 211][[[25, 6], 10], %15]
[[[x5, we], x11], m15] [[[[%5, w6], 7], w8, w10][[[[2s5, w6], 27], ws], w1:]([[25, w6], 7], % 16]
[[xs, 6], 7], x17] [[z5, T6], 223][[®5, T14], T16][[@5, T14], T17][[25, Z11], T22]
(5, z10], z16] [[@5, Z10], T22]
= x12(—vsu)w37(—v5u°) 30 (—V5U5) T30 (205U )T 40 (205U ) 237 (35U )T13 (V5U) T 40 (V5U)
242 (205u°) 243 (—205u° ) 242 (— 451 ) w43 (4v5U° ) 239 (—8V5U° ) 241 (—4V5U° ) 238 (—3V5U°)
239 (4v5u°) 241 (205u° ) 243 (—3v5u° ) 242 (Bvsu®) 37 (dvsUd)

Evaluating with A to get 1, for all vs we need

’U5(—(b12 — blg)’u + u5) S ker(¢),

which is vs(u® — Bau) € ker(¢) for all vs. Hence, we solve for u : u(u* — Ba) = 0.
Since By € F, —{c*: c € [}, this equation only has one trivial solution u = 0,
i.e. Stab54(77) = {1}, or IHX5S3(77) = HX5.
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(c) Suppose that By = ¢* € FX. Let 7 be an extension of A to HX5. Continue the
computation in (b), the equation u(u* — By) = 0 has 5 solutions u € {ac: a € Fs5},
ie. ly(u) € Fy. Hence, Iyx,s,(n) = HX5Fy. Since [HX5, Fy] C ker(n), n extends
to HX5Fy, i.e. X extends to HX5Fy.

Since Sy = Stabg,(\) = F,, we have [H,S;] C ker(\). So A extends to HSy <
HX5S55. Let A be an extension of A to HSy. We find Iy x, s, (). Since Stabx, s, (\') C
Stabx,s,(N'|m) = X554, it is enough to find all x5 € X5 such that X ([z5, hls]) =1
for all hly € HS4. Since HXj5 is abelian, we have [z5, hls] = [x5,14]. For each
x5(vs) € X5 and l4(u) € S4, by the computation in (b), we need

vs(u® — Bou) € ker(¢), for all u € F,.
By Proposition 1.3, there are 5 solutions vs € {acy : a € Fs}, i.e. x5(vs) € Fs.
Hence, Iy x.s,(N') = HF5Sy. Since [F5, Sy4] C ker(XN), X extends to HF5S4, i.e. A
extends to HF5S,.

Let A1, A2 be two extensions of A to HX5Fy, and « an extension of A\ to H F5S3.

2
Since the degree of all irreducible constituents of A7X593 ig %, we have A\ 7X5%,

N TXe53 A HXsSs € Trp(H X583, N).

Choose 1 € S C S; as arepresentative set of the double coset H F5S4\ H X555/ H X5 Fj.
Since HF55, N HXsF, = HF5F, and HX5F, < HX5S3, by Mackey formula,

(A e yHXSa) - =357 M| (X, FonH PS40

=> wesCMluarr,Y|HE L)

For each s € S, if *X\i|pr,r, = Y|HrF,, then *Ai|g = ~|g. Since both are

extensions of A\, we have *A = A, i.e. s € Stabg,(\) = Sy. There is unique 1 € SNSy

since S is a representative set of HF5S,\HX5S3/HX5Fy. So (A 7X352 ~HXs55) —

(>‘1|HF5F47FY|HF5F4) =1iff \ F; =7|F,1 € {4a 5}

Therefore, A\ #X553 = yHXsSs — )\, HXs55 31 )

S(HX5F4)QHF5S4)
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