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The jeep problem was first solved by O. Helmer and N.J. Fine. But not
much later, C.G. Phipps formulated a more general solution. He formulated
a so-called convoy or caravan variant of the jeep problem and reduced the
original problem to it.

The convoy idea of Phipps was refined in [3]. Here we will apply this refined
idea to several variants of the jeep problem.
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1. A FINE JEEP AND DEPOTS TO BE USED

Suppose we have a jeep that has a fuel capacity of one tankload of fuel,
which can ride one distance unit per tankload. Furthermore, the jeep may
set up depots of fuel on any position in the desert for future use. We call
such a jeep from now on a Fine jeep.
Say we have a Fine jeep that must cross a desert in order to reach an

oasis, and possibly return to the desert border afterwards. How can this
be achieved with a minimal amount of fuel, which is available at the desert
border? This problem was solved first in [8] and [7].
We now consider the problem of a Fine jeep crossing the desert in order

to reach an oasis, with both depots to be used and depots to be filled.
Although we assume that there is only one jeep, we formulate the algorithm
as a backward convoy algorithm, which has been introduced in [3] using
ideas of [13]. The algorithm is both for the outward trip case and the
return trip case. For the moment, we assume that the jeep has to end at
the oasis finally in the outward trip case.
One of the aspects of a backward convoy algorithm is that compared to

a normal algorithm, time is in fact eliminated. But in case of depots to be
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used, time might matter, since some depot must be reached first, before
its fuel can be used. So in general, there are positions where fuel is more
scarce before than after some depot is reached.
To take this into account, we will split the backward convoy into two

parts at some depots. One part is the reaching part: a forward refueling

subconvoy with relatively less fuel. The other part is the using part: a
backward refueling subconvoy with relatively more fuel. In case of a round
trip to the oasis, one of the double jeeps splits in fact in two single jeeps:
one for each subconvoy. The single jeep for the backward refueling convoy
is in fact a returning single jeep and therefore called a ringle jeep. The
other single jeep is just called a single jeep.
In a backward convoy, the forward refueling subconvoy has at most one

tankload of fuel, but on the contrary, the backward refueling subconvoy
has at most one tankload of emptiness in its tanks. As soon as the back-
ward refueling subconvoy gets one tankload of emptiness, one of its jeeps
is canceled. This canceling takes only one tankload of fuel, and therefore
eliminates all emptiness in the backward refueling convoy.
For an easier formulation, we assume by definition that there is always a

forward and a backward refueling subconvoy. The backward refueling sub-
convoy is improper if it is reduced to a convoy without jeeps or an empty
ringle jeep.

Algorithm 1.1. Start with a single jeep with one tankload of fuel
and possibly an empty ringle jeep. If there is fuel at the oasis, then do the
handler of event 1 first. Ride to the desert border. Each time the forward
refueling subconvoy gets out of fuel, a double jeep with one tankload of
fuel is added to it. A backward refueling subconvoy that only consists of
one empty ringle jeep uses fuel of the forward refueling subconvoy.
Event 1: The convoy meets a depot with fuel.

Handler: The forward refueling subconvoy absorbs as much fuel as possible,
but each time this subconvoy gets more than one tankload of tank fuel, it
cancels a double jeep with one tankload of fuel. If there is more fuel than the
forward refueling subconvoy can accept, then we call the current position a
saturation point. At a saturation point, the backward refueling subconvoy
absorbs all remaining fuel. It creates a double jeep with one tankload of
fuel each time it gets more fuel than it can absorb. This new double jeep
with one tankload of fuel can absorb another tankload of fuel, since its
tankfuel capacity is two tankloads.
If fuel need to be restored at the current position for the party organi-

zation, or – even worse – more fuel has to be put on the current position
than there was before this handler, then do the handler of event 2 first.
Ride to the desert border with both subconvoys. The backward refueling
subconvoy cancels a double jeep with one tankload of fuel each time it gets
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more than one tankload of tank emptiness, since then one double jeep less
is required to transport all fuel.
Event 2: The convoy meets a depot to be filled.

Handler: Use fuel of the backward refueling subconvoy, canceling a double
jeep with one tankload of fuel each time this subconvoy gets more than
one tankload of tank emptiness. If more fuel is needed than the backward
refueling subconvoy can give, then the forward refueling subconvoy must
give the remaining fuel. To do this, it creates as many double jeeps with
one tankload of fuel each as necessary.
Eventually at the desert border, the fuel tanks of the forward refueling

subconvoy are filled up to a level of one tankload. The fuel of the tanks of
the backward convoy above the level of one tankload, as well as all tank
fuel from the ringle jeep, can be returned at the desert border if that is
allowed.

In case there is a position where fuel can be used but where fuel has to be
put as well, then possibly double jeeps are created that are canceled on the
same position in algorithm 1.1. But an algorithm in which this does not
happen needs more words. Furthermore, a position may be a saturation
point, even if on balance, it requires fuel.
Before we prove the optimality of algorithm 1.1, we formulate a trivial

but very important result, which is used implicitly in [11] as well.

Proposition 1.1 (Split Lemma). Suppose we have a Fine jeep that

rides from a to b, using fuel from the desert and passing x one or more

times. Suppose that this jeep executes some fuel transportations as well

along the way.

Then the same consumptions and transportations of fuel can be done

by two Fine jeeps in the following way. One jeep rides from min{a, x}
to min{b, x} and the other jeep rides from max{a, x} to max{b, x}, both

without passing x. If we allow borrowing fuel at x that is not yet carried to

x, then both jeeps may ride after each other in any order.

Proof. The proof is left as an exercise to the reader.

Let a rejoining point be a position where the backward refueling sub-
convoy gets improper. Now we are ready for our final theorem.

Theorem 1.1. Algorithm 1.1 is optimal and can be executed as a normal

algorithm.

Proof. Let S be a normal algorithm where the jeep reaches the oasis,
and T be an instance of algorithm 1.1 that has the same effect on fuel
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depots as S, with a ringle jeep if and only if S is a round trip, but in which
more fuel might be used from the desert border. We must show that no
more fuel is used from the desert border in T . Furthermore, we must show
that T can be executed as a normal algorithm as well.
We call the following positions special:

• Positions with fuel and rejoining points of T ,

• The desert border and the oasis.

Let G = {G1, G2, . . . , Gr} be the set of special points with G1 > G2 >
· · · > Gr = 0.
Split S into parts Si on [Gi+1, Gi] by way of the split lemma. Split T

into parts Ti on [Gi+1, Gi]. First, we prove that T is optimal. After that,
we show that T can be transformed into a normal algorithm.
In order to prove that T is optimal, we show that each of its parts Ti

is optimal. Assume by induction that T1, . . . , Ti−1 are optimal. Then in
Ti−1, at least as much fuel is dumped on Gi or at most as much fuel is
taken from Gi on balance as in Si−1. So in Ti, at most as much fuel need
to be dumped on Gi or at most as much fuel may be taken from Gi on
balance as in Si.
In case there is no proper backward convoy on the interval (Gi+1, Gi)

in T , it follows from [3, Th. 4.1] that we can change Si into a normal
algorithm that follows algorithm 1.1. So assume that there is a proper
backward convoy on the interval (Gi+1, Gi) in T .
There are normal algorithms Ti1 and Ti2 corresponding to the forward

and backward refueling subconvoy of T respectively over the interval [Gi+1,
Gi]. Since there is no rejoining point between Gi+1 and Gi exclusive, no
fuel is taken from position Gi+1 in Ti2.
Si can be split into a part Si1 before reaching Gi for the first time and a

part Si2 after that. If we apply [3, Th. 4.1] on Si1, with the desert border
and the oasis replaced by Gi+1 and Gi respectively, we see that in Ti1, no
more fuel is used as in Si1.
If we apply [3, Th. 4.1] on Si2, with the desert border and the oasis

replaced by Gi and Gi+1 respectively, we see that we may assume that
Si2 is derived from a backward convoy algorithm. In a backward convoy
algorithm, and hence in Si2, fuel molecules do not need to cross each other.
So we may assume that in Si2, either Gi-fuel does not reach Gi+1 or only
Gi-fuel is used.
In the former case, Ti2 is at least as economical as Si2, since no Gi+1-

fuel is used in Ti2. In the latter case, it follows from [3, Th. 4.1] that the
amount of Gi-fuel of T and S which reaches Gi+1 is at least as large in Ti2

as in Si2. It follows that Ti is optimal.
So the optimality of T follows by induction. Next, we need to show

that T can be executed as a normal algorithm. Notice that each of the
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parts Tij can be executed as a normal algorithm. The only problem is to
combine them such that on the special points Gi, no temporary underflows
of fuel occur. Assume first that S is a two-way trip. Then T can be
executed as a normal algorithm in the order T(r−1)1 . . . T11T12 . . . T(r−1)2.
This is because the forward parts T(r−1)1 . . . T11 are constructed in such a
way that only present fuel of the point Gi is used, and in the backward
parts T12 . . . T(r−1)2, the amount of fuel first only increases and then only
decreases on the points Gi.
In case S is a one-way trip, things are more difficult. Assume first that

in (Gi+1, Gi), the backward refueling subconvoy is improper. If we do T
in the order Tr−1, . . . , Ti+1, Ti, Ti−1, . . . , T1, then temporary underflows of
fuel might occur, but not during Ti. In order to remove all temporary
underflows, we only need to look at blocks of intervals (Gi+1, Gi) where
the backward convoy is proper.
Let (Gj , Gj−1), . . . , (Gi+1, Gi) be such a block. Split Tk2 into a part Tk21

before reaching Gk+1 for the last time and a part Tk22 thereafter, and exe-
cute Tj−1, . . . , Ti in the order T(j−1)1 . . . Ti1Ti21 . . . T(j−1)21T(j−1)22 . . . Ti22.
This way, no temporary underflows occur in Tj−1, . . . , Ti, as can be shown

with essentially the same arguments as in the round trip case.

In case the jeep does not need to end at the oasis or the desert border,
the optimal algorithm is the best of the following.

1. The outward trip variant of 1.1.

2. The round trip variant of 1.1.

3. All variants of 1.1 that start with a ringle jeep, but where at some
rejoining point, the ringle jeep is thrown away.

The reader may show this. In the normal algorithm corresponding to 3.,
the jeep ends where the ringle jeep is thrown away.

2. A CONVOY ALGORITHM FOR DEWDNEY JEEPS

We already met Dewdney jeeps in Maddex’ jeep problem. A Dewdney
jeep has a tank of one unit and in addition, it can transport B cans of C
units each. The depots must be made of cans and only can fuel may be
used to fill them.
We consider the problem of crossing a desert of d miles n = n1+n2 times

to reach an oasis on position d, of which exactly n2 times in both ways.
There are n+m Dewdney jeeps to do so, of which exactly n1 +m1 jeeps
do not need to return to the desert border finally. Instead, they may end
up anywhere in the desert.
In the backward convoy algorithm for normal jeeps, we did not care in

what jeep fuel was transported, since there were no restrictions on trans-
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ferring fuel from one jeep to another. In this sense, fuel was global, i.e.
belonged to the whole convoy. In the backward convoy formulation with
Dewdney jeeps, we will only see the can fuel as global fuel. But fuel in a
jeep’s fuel tank is local to that jeep.
We allow jeeps to consume can fuel directly, instead of by way of their fuel

tank. This is no problem, since instead the jeeps can get a little fuel from
the cans such that the convoy can advance a little farther. Despite the fact
that tank fuel is local, we will allow jeeps to consume tank fuel from other
jeeps in a backward convoy algorithm for Dewdney jeeps, but only if the
receiving jeep is created at the lowest position. The idea behind this is the
following: the receiving jeep is actually created on an even later moment in
the backward convoy and its transportation before its real creation is done
by means of to and fro’s of the jeep which tank fuel is used.
Furthermore, we allow double jeeps to be replaced by single jeeps in the

backward convoy algorithm for Dewdney jeeps. If such a replacement takes
place on position p, then the following happens in a normal algorithm: the
jeep rides from position 0 to a position farther than p first and returns to
position p finally.
If on a position, both a single and a double jeep are created, then the

double jeep may consume fuel from the tank of the single jeep. So the
fuel of the backward convoy can be ordered by applicability. The tank
fuel of the jeep that is created the last in the backward convoy is the least
applicable, and the can fuel as well as the tank fuel of the n1 initial single
jeeps is the most applicable, provided n1 > 0.
If we include fuel depots with fuel to be used in the backward convoy

algorithm for Dewdney jeeps, then cans may become scarce, just as with
Maddex’ jeep problem. A solution is to use jeeps that have a tank capacity
of one unit and can transport BC units of fuel in addition, fuel that may
be put in any proportion on the desert just as the fuel of Fine jeeps. Next,
we could try to formulate an algorithm for one jeep just as in section 1.
But besides saturation points, there is other trouble that can occur.

Suppose we have a depot with fuel to be used. Now it seems optimal to
use that fuel to cancel as many double jeeps as possible. But in order to
do that, these double jeeps should be able to use all tank fuel available.
This is impossible, since tank fuel is not global. For this reason, we do not
include depots with fuel to be used in the backward convoy algorithm for
Dewdney jeeps.

Algorithm 2.1. Start with a convoy at position d with n1 single jeeps
and n2 double jeeps initially, all jeeps with B full cans of C units of fuel
each and one unit of tank fuel. If a depot has to be filled at position d,
then call the handler of event 1 first. After that, ride to position 0 with
the whole convoy. Each jeeps consumes the least applicable fuel it can



JEEP VARIANTS 7

consume, so a jeep use its own tank fuel first, then other tank fuel and at
last can fuel.
Event 1: The convoy meets a position where a depot has to be filled.

Handler: Use can fuel to make the depot. If there is not enough fuel to
make the depot, then call the handler of event 2 first and then repeat this
handler. Otherwise, advance to 0.
Event 2: There is at least one jeep that can not ride farther any more,

due to lack of fuel.

Handler: Create a new double jeep with one unit of tank fuel and B full
cans of C units of fuel each. If the convoy has less than m1 + n1 single
jeeps now, then replace the oldest double jeep in the backward convoy by
a single jeep.
Eventually at the desert border, the amount of fuel of all jeeps is made

equal to one unit. So the result of the algorithm is the number of jeeps
minus the final amount of fuel.

3. OPTIMALITY RESULTS FOR CONVOYS OF DEWDNEY

JEEPS

In the backward convoy algorithm for Fine jeeps in [3], it was possible
to remove double jeeps in an extended convoy algorithm if they contained
exactly one unit of fuel in their tank. Since the amount of tank fuel can
not be controlled with Dewdney jeeps, other methods are needed to remove
double jeeps, which we call jeep merges. We distinguish two jeep merges:

1. A single jeep and a double jeep with r units of tank fuel together
merge to a single jeep with r − 1 units of fuel, where 1 ≤ r ≤ 2.

2. Two double jeeps with r units of tank fuel together merge to a double
jeep with r − 1 units of fuel, where 1 ≤ r ≤ 3.

For each of both merges, B full cans of fuel has to be payed. We allow these
jeep merges in an extended backward convoy algorithm for Dewdney jeeps,
but we do not allow jeeps to consume tank fuel of other jeeps now. Although
cans may be transported in backward direction in a normal algorithm, we
do not need double jeeps to carry such things as anti-cans, since each
such can must be transported in forward direction first. Thus with time
eliminated, we can demand that the number of cans each jeep carries lies
between 0 and B inclusive in an extended backward convoy algorithm.
Suppose that some jeep turns from backward to forward at some position

p > 0. If that jeep passes p after this turn, then this turn corresponds
to merge 2, otherwise it corresponds to merge 1. Some jeep merges are
illustrated in figure 3. A jeep that rides back to p > 0 and stays there
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FIG. 1. An illustration of several types of jeep merges

corresponds to a creation of a single jeep at p, immediately followed by a
merge of type 1 at position p.

Proposition 3.1. A normal algorithm for Dewdney jeeps can be trans-

formed to an extended backward convoy algorithm for Dewdney jeeps.

Proof. The proof is similar to that for Fine jeeps instead of Dewdney

jeeps in [3, Prop. 3.1], and therefore omitted.

The problem of making a normal algorithm for Dewdney jeeps from a
backward convoy algorithms for Dewdney jeeps will be discussed in section
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4. For that reason, the word ‘optimal’ in the theorems below should be
read as ‘at least as good as an optimal normal algorithm’ for the present.

Theorem 3.1. Algorithm 2.1 is optimal.

Proof. Consider an extended backward convoy algorithm for Dewdney
jeeps. We do not transfer can fuel to fuel tanks until position 0: jeep must
consume can fuel directly instead. So all jeeps have at most one unit of tank
fuel each. Furthermore, we impose the following harmless assumption on
the backward convoy algorithm: we postpone adding a jeep to the convoy
until no can fuel is left, except if the added jeep is merged immediately.
We first show that jeep merges always coincide with jeep creations, i.e.

each jeep merge implies a jeep creation at the same place. Suppose that
this is not the case. Say that at the first merge that does not coincide with
a jeep creation, some jeep A with x units of tank fuel is merged with a jeep
B with y units of tank fuel, where x ≤ y.
If the number of jeeps of the backward convoy is n before the merge,

then the merge will make the number of jeeps of the convoy too small;
contradiction. If the number of jeeps of the convoy is more than n, then
at least one jeep has already been added to the initial convoy for another
reason than a merge. The only reason for that jeep addition can be that
the convoy ran out of can fuel. It follows that the amount of can fuel is
less than B · C now, which is not enough for a merge; contradiction.
A merge implies a jeep creation at the same place, but both do not cancel

out in general. Suppose we have a creation of a jeep and a merge of two
other jeeps. The amount of tank fuel of the created jeep is equal to one,
but the merging jeeps might have other amounts of tank fuel. Say that
at the first merge of the backward convoy, a jeep A with x units of fuel
merges with a jeep B with y units of tank fuel, where jeep A is created
before jeep B. The jeep merge results in a jeep with x + y − 1 units of
tank fuel. Simultaneously, a new jeep with one unit of tank fuel must be
created. Since we do not transfer can fuel to fuel tanks before position 0,
y ≤ 1. Therefore, the above jeep merge and jeep creation can be simulated
by transferring 1 − y units of tank fuel from jeep A to jeep B, if we allow
jeeps to change type between single and double jeep.
Subsequent jeep merges can be simulated in a similar matter. So if

we allow that tank fuel is transferred from a jeep A to a jeep B if A
is created before B, as well as changes of type, then jeep merges are no
longer necessary. Instead of transferring tank fuel from jeep A to jeep B,
we allow jeep B to consume the tank fuel of jeep A directly, just as in
algorithm 2.1.
Since tank fuel may be transferred from older jeeps to newer jeeps and

single jeeps are more economical than double jeeps, we may assume that the
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oldest jeeps are single jeeps and the newest jeeps are double jeeps. This is
the case in algorithm 2.1. Furthermore, the total number of jeeps is minimal
and as many jeeps as possible are single jeeps all the time in algorithm 2.1.

So algorithm 2.1 is optimal.

4. A NORMAL ALGORITHM FOR DEWDNEY JEEPS

Let us first turn algorithm 2.1 into a normal convoy algorithm under the
assumption that the number of jeeps is unlimited. The problem that must
be overcome is that transferring tank fuel from one jeep to another is not
allowed. Fortunately, the jeep that receives fuel is always a double jeep and
the jeep from which tank fuel is taken is always created earlier in algorithm
2.1. Therefore, the farthest miles of the receiving double jeep can be done
by to and fro’s of the jeeps corresponding to the single and double jeeps
from which tank fuel is taken.
However, some of the n2 initial double jeeps might consume tank fuel

from other jeeps, which makes that the n2 round trips might be scattered.
This is solved by taking all to and fro’s together, and next apply the split
lemma to give each jeep that perform to and for’s an interval that corre-
sponds to its moment of creation in the backward convoy algorithm. It is
tank fuel that is used for these to and fro’s, thus the jeeps doing them do
not need to be with each other to share a can.
Notice that also jeeps corresponding to double jeeps can be ordered to

do to and fro’s: the double jeep becomes a single jeep later in the backward
convoy, saving fuel with respect to the double jeep that receives the tank
fuel. As said before, a double jeep that is replaced by a single jeep at
position p > 0 in algorithm 2.1 corresponds to a jeep that reaches farther
than position p and finally ends at position p in a normal algorithm.
So we can replace algorithm 2.1 by a backward convoy algorithm where

no transfers of tank fuel occur, if we see single and double jeeps from which
tankfuel is used as triple and quadruple jeeps respectively or bigger. Sub-
sequently, we can formulate a normal algorithm for an unlimited number
of jeeps, where those jeeps ride together as far as they are riding on that
moment.
Next, assume that there is a limited number of jeeps. Then double jeeps

that are replaced by single jeeps might be a serious problem. For that
purpose, we start with assuming that m1 = 0. The next problem is that
the round trip might be scattered. Therefore, we additionally assume that
there are at least n jeeps.
Thus cosider the case that there are exactly n jeeps. Notice that jeeps do

not use tank fuel of other jeeps any more after the creation of the (n+1)th

jeep in the backward convoy. Think of the (n + 1)th jeep as a round trip
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before the convoy rode out, possibly the farthest reaching jeep of another
convoy of at most n jeeps. The (n + 1)th jeep is needed for fuel, so a can
is opened.
Now the jeeps in the backward convoy can absorb their portions of the

fuel of this can as long as it does not exceed their tanks. If that is the case,
the can does not need to be dragged with the backward convoy and it is
thus no problem that the convoy is split in subconvoys of at most n jeeps
in a normal algorithm, provided we assume that the (n+1)th jeep fills the
depots with their portions of fuel from that same can in its outward trip.
More generally, making a normal algorithm is straightforward, as long

as the jeeps of the backward convoy can absorb their portions of fuel of the
cans after the creation of the (n + 1)th jeep all the time. So assume that
at some point in the backward convoy, a can is opened with more can fuel
than the jeeps can absorb. Say that x is the position closest to the desert
border where this happens. Let y be the position where the next can is
opened in the backward convoy, in case that occurs, and y = 0 otherwise.
We can get a normal algorithm as follows. First, the jeeps ride out in

convoys of at most n jeeps to positions less than y, returning to the desert
border, provided y > 0. Next, all n jeeps ride to y and next to x, where
some jeeps ride to and fro’s between y and x, but no jeep gets too far away
from the jeep with the can that is opened at position x in the backward
convoy. After that, all riding on positions farther than x is done, and
induction tells us how, where the desert border is replaced by x. Finally,
zero or more jeeps return to the desert border.

5. DEWDNEY JEEPS WITH SEALED CANS

We now consider the problem of Dewdney jeeps with sealed cans. In order
to take fuel from a sealed can, it must be unsealed. But after unsealing, a
can must not be transported any more. It is however not necessary for an
unsealed can to be emptied immediately.
We first give a backward convoy algorithm for Dewdney jeeps with sealed

cans. Since unsealed cans can be seen as fuel depots to be used, we allow
both additional fuel depots to be used and fuel depots to be filled. Depot
fuel to be used may be put in the fuel tanks of the jeeps. Can fuel has to
be used to fill depots with the indicated amount of fuel.
The problem has some similarities with that of the Fine jeep in section

1. For that problem, it was relatively hard for the jeep to reach a position
with lots of fuel and relatively easy after reaching this position. Since each
jeep in the convoy must reach such a position, the actual number of jeeps
matters. For that reason, we assume that there are exactly n jeeps, all of
which have to reach an oasis, of which n1 jeeps stay at the oasis and n2
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jeeps return to the desert border. Double jeeps that are added later to the
backward convoy are to and fro’s of the above n jeeps.
For the to and fro’s that are global in nature, we add red double jeeps

for forward loops of the above n jeeps, and blue double jeeps for backward
loops of the above n jeep. The red and blue double jeeps are replaced by
each other when the loop ends. Blue double jeeps have some similarities
with the backward refueling subconvoy in section 1.
For very local to and fro’s, we introduce another type of jeep, namely

spider jeeps. Spider jeeps are double jeeps without a fuel tank, which can
consume tank fuel of other jeeps. From above, a spider jeep that uses tank
fuel of eight surrounding regular jeeps looks like a spider. Spider jeeps may
replace or may be replaced by red and blue double jeeps.

Algorithm 5.1. Start with a convoy at position d, with n1 single
jeeps with one unit of tank fuel and n2 regular double jeeps with one unit
of tank fuel initially. All jeeps get B sealed cans of C units of fuel each. If
there is a depot at d to be used, then call the handler of event 1 first. Ride
to position 0 with the whole convoy.
Spider jeeps that are created along the way consume fuel of any other

type of jeep with relatively the most fuel, until all such jeeps have at most
50 percent of tank fuel. At that point, all spider jeeps are replaced by red
double jeeps.
Blue jeeps that get only one unit of tank fuel are removed from the

backward convoy in case there are B sealed cans of C units available to
do so. Otherwise, they are replaced by spider jeeps if there is a jeep with
more than 50 percent of tank fuel at that moment and by red jeeps if all
jeeps have at most 50 percent of tank fuel.
Due to riding, the relative amount of tank fuel decreases at a rate that

is equal for all jeeps. Since spider jeeps affect the relative amount of tank
fuel of the relatively fullest jeep, the difference in relative amount of tank
fuel cannot get larger than 50 percent between two jeeps. Neither do the
events below affect this difference property.
Event 1: The convoy meets a depot to be used.

Handler: Distribute the fuel amongst the tanks of regular jeeps and red
double jeeps in the backward convoy, such that the minimum relative
amount of tank fuel becomes as large as possible, but do not give fuel
when tanks get or are more filled than 50 percent. If the relative amount
of tank fuel for these jeeps gets 50 percent, then replace all red double jeeps
by spider jeeps.
If there is still fuel left, then distribute the fuel amongst all regular jeeps,

such that the minimum relative amount of tank fuel of the regular jeeps
becomes as large as possible. If there is more fuel than these jeeps can
accept, then fill the tank of the blue double jeep with the most tank fuel.
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If there is still fuel left, then advance with the blue double jeep with the
next most tank fuel, etc.
If there is still fuel left, then replace a spider jeep by a blue double jeep

with one unit of tank fuel and fill that blue jeep up to two units. If this is
not enough to absorb all fuel, then do the same with another spider jeep,
etc. If there is still fuel left, then create a new blue double jeep with one
unit of tank fuel and fill its tank. Create blue double jeeps until all fuel
can be absorbed. Advance to 0.
Event 2: There is at least one jeep that gets out of fuel and can not ride

farther any more.

Handler: Notice that there are no jeeps that are more than half filled, and
thus no blue jeeps or spider jeeps. Unseal a can and do the handler of event
1, seeing the opened can as a fuel depot. If there is no can to be unsealed,
then create a new red double jeep with one unit of tank fuel and B sealed
cans of C units of fuel each first. Advance to 0.
Event 3: The convoy meets a depot to be filled.

Handler: Unseal as many cans as necessary to fill the depot. If there is
still fuel needed, then create as many spider jeeps with B cans of C units
as necessary. In the last can, some fuel might remain.
Assume first that there is no jeep with more than 50 percent of tank fuel.

Then replace all (above) spider jeeps by red double jeeps with one unit of
tank fuel. After that, perform the handler of event 1 for the remainder of
the last can, if there is. Next, advance to 0.
Assume next that some jeep has more than 50 percent of tank fuel. If

some regular double jeep has more than 50 percent of tank fuel and a spider
jeep was created to provide some cans, then replace the spider jeep that
provided the last can by a blue double jeep with one unit of tank fuel, and
use the remainder of the last can to fill the tank of this blue double jeep,
until the last can is empty or the blue double jeep has the same amount of
fuel as the regular double jeep.
Next, if some can fuel remains in the last can, then perform the handler

of event 1 for it. After that, advance to 0.
Eventually at the desert border, the amount of fuel of all jeeps is made

equal to one unit. So the result of the algorithm is the number of jeeps
minus the final amount of fuel.

In algorithm 5.1, the types of jeeps indicate more or less how a normal
algorithm for Dewdney jeeps with sealed cans should look. Furthermore,
the cans do not move any more after being opened, so there is not much
difference between them in algorithm 5.1 and in a normal algorithm. Never-
theless, making a normal algorithm of algorithm 5.1 is not always possible.
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One problem occurs in event 3, in case some fuel remains after filling
the depot and there are blue double jeeps. In that case, the can of the
remaining fuel must be from a regular jeep or red jeep, since otherwise the
regular jeeps and red jeeps are too early to take advantage of the fuel that
remains after filling the depot.
Thus is it a good idea to use the cans of blue double jeeps first, but not

those of the blue double jeeps that will be canceled, since all the B cans of
such a jeep are needed for that. Another option is that cans are transferred
from a blue double jeep or a spider jeep to a regular jeep, but this is not
always possible. It is however possible for blue jeeps at creation and for
spider jeeps when there are no blue jeeps.
Talking about the spider jeeps, there is another problem that might occur

when making a normal algorithm of algorithm 5.1. The problem is that
a spider jeep must use tank fuel of blue jeeps before tank fuel of regular
jeeps, since the blue jeeps ride later in a normal algorithm. Sometimes,
even the order of blue jeeps matters. In section 7, we will however show
that this problem can be overcome.
Another problem occurs when in the last mile of algorithm 5.1, the miles

closest to the desert border, the amount of tank fuel in one of the double
jeeps becomes larger than x+ 1 on position x. We discuss this problem in
the rest of this section.
Although the backward convoy algorithm can not always be seen as a

normal algorithm (i.e. more fuel is required for a normal algorithm), we
roughly describe a way to make a normal algorithm from a backward convoy
algorithm first. We start with a convoy of n1+n2 jeeps riding the outward
part and n2 jeeps riding the return part. But then, we do not have enough
transportation.
Therefore, we add forward loops and backward loops to make the normal

algorithm complete. A blue double jeep implies a backward loop there and
a red double jeep implies a forward loop there.
We now show that algorithm 5.1 can not always be seen as a normal

algorithm. Let n1 = 0 and suppose that there are n2 = 5 double jeeps
when the backward convoy reaches position 1. Suppose that all 5 jeeps are
empty then and there are only 2 cans of 1 unit of fuel each. Then both
cans are unsealed and the convoy can ride to 4

5 before getting empty again.
At position 4

5 , a new double jeep is created and a new can is unsealed. The
convoy rides farther to position 3

4 . Next, assume that there is an unlimited
depot at position 3

4 . All jeeps can get completely filled at position 3
4 and

can ride to position 0, which they reach with half a unit of tank fuel each.
In order to be canceled, another half a unit of fuel is needed for each jeep,

and of course, the cans that are used in the algorithm. But in a normal
algorithm, the n2 = 5 initial jeeps need more fuel: at least 3

4 units of fuel
each to be able to reach the unlimited depot at 3

4 from position 0. The
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bound on the amount of fuel is only met if returning tank fuel is allowed
at position 0. So it seems a good idea, not to allow more than 1 + x units
of tank fuel in initial double jeeps, where x is the position of the jeeps.
Similarly, it seems a good idea to bound the amount of fuel in an added
double jeep by 1 + 2x, since otherwise such a jeep reaches position 0 with
more than 1 unit of tank fuel and can not be canceled. But on 3

4 , the
amount of tank fuel of the jeep that is added on position 4

5 is bounded by
2 rather than 5

2 .
This way, 5 · 34 +

1
2 = 4 1

4 units of fuel are needed at position 0. But in the
following way, the 1

2 unit of fuel of the added double jeep can be saved and
only 3 3

4 units are needed at position 0, i.e. 4 instead of 5 cans. First, the 5
jeeps ride to position 3

4 , using
3
4 units of fuel from position 0 each. Then,

they ride to position 1 and completely refill there, by way of 5
4 units of can

fuel. For that purpose, 2 cans of 1 unit of fuel are unsealed at position 1,
so 3

4 units of can fuel remains. After that, the jeeps go to the oasis and
ride back to position 1. Until now, the difference with algorithm 5.1 is that
the can at position 4

5 is not transported yet and can fuel from position 1 is
used instead.
The 5 jeeps reach position 1 empty in the return trip. Now, only 3

of them ride farther, using the remaining 3
4 units of can fuel at position

1. These three jeeps just reach the unlimited depot at position 3
4 . From

position 3
4 , the first jeep rides to position 0, carries a can from 0 to 1

8 and
rides back to 0. The second jeep rides to 1

8 , carries the can there to 1
4 and

rides to 0. The third jeep fetches the can at position 1
4 and rides to position

1. All remaining 3 jeeps ride back to position 0 using fuel from the last can
and the unlimited depot.
So we get the following question. Does the above method of restricting

the amount of tank fuel from double jeeps work in case there are no real
depots in the last mile of the backward convoy algorithm, but only unsealed
cans? The answer is affirmative, which the reader may show.

6. OPTIMALITY RESULTS FOR DEWDNEY JEEPS WITH

SEALED CANS

We first show that jeep merges do not work with depots of fuel to be used.
Let x be a position with a depot of fuel to be used. Say that 2k double
jeeps get completely filled. When those jeeps reach x− 1

2 , they have become
half filled, and they can merge to 2k−1 completely filled jeeps. When these
2k−1 double jeeps reach x − 1, they can merge to 2k−2 completely filled
jeeps, etc.
For that reason, we do not allow jeep merges in an extended backward

convoy algorithm for dewdney jeeps with sealed cans. Instead, we allow a
double jeep with one unit of tank fuel and B cans with C units of fuel to be
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canceled. In addition, we allow spider jeeps to consume tank fuel of other
jeeps.

Lemma 6.1. Assume f is a nowhere constant function of time with

finitely many local extrema, of which one local minimum in the interior

of its time interval. If f has a global minimum at the beginning of its in-

terval and another global extremum at the end, then up to a transformation

of time, the graph of f has one of the following subgraphs.
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Proof. Starting at the beginning of the time interval, local maxima and
minima vary. These extrema cannot get closer and closer to each other, so
we have the following:
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Proposition 6.1. A normal algorithm for Dewdney jeeps with sealed

cans can be transformed to an extended convoy algorithm for Dewdney jeeps

with sealed cans.

Proof. Notice first that each jeep can do the things it should do by
means of finitely many changes of direction. So there are only finitely
many local extrema. Furthermore, a normal algorithm for which the jeeps
do not have interior local minima is already an extended convoy algorithm
for Dewdney jeeps with sealed cans. So assume that one of the jeeps, say
jeep J , has an interior local minimum. Then the graph of that jeep has
a subgraph as in lemma 6.1, where t1 < t2 < t3 and t4 /∈ [t1, t3]. We
distinguish three cases:
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i) There is a position in the subgraph where jeep J gets twice with the
same amount of tank fuel.
Then we can cut off the part in between the two moments at that position
from the path of J and replace it by a double jeep. Since the part that is
cut off must contain a refuel position (possibly on the edge), the number
of times jeep J gets on a refuel position decreases.

ii) Jeep J has more tank fuel on moment t3 than on moment t1.
Assuming that we do not have case i), we see that jeep J has more fuel
directly after t2 than directly before t2. Thus jeep J refuels its tank on
moment t2. Now move as much as possible of this refueling to moment t4.
This results in a completely filled jeep J before t2, a completely empty jeep
J after t2, or no refueling any more on moment t2.

If ii) is not preserved during the process, then restore some refueling on
moment t2 to make that jeep J has the same amount tank fuel on moment
t3 as on moment t1, such that case i) applies. So assume that ii) is still sat-
isfied. The one can verify that i) applies in all three cases after transferring
tank refueling from t2 to t4.

iii) Jeep J has less tank fuel on moment t3 than on moment t1.
Let p1 be the position where the jeep is on t2 and t4, and p2 that on t1
and t3. Let p3 be the smallest refuel position of jeep J between t1 and t3
if there is such a position, and take p3 = p2 otherwise. Assuming that we
do not have case i), we see that jeep J has less fuel directly before t2 than
directly after t2. Thus jeep J does not refuel on position p1 on moment t2,
i.e. p3 > p1.

Now cut off as much as possible from the round trip from p3 to p1 by jeep
J as possible, and replace it by a spider jeep that uses tank fuel of jeep J ,
in the neighborhood of t4 where jeep J rides from p1 to p3 (in case t4 < t2)
or from p3 to p1 (in case t4 > t2).

This results in a completely empty jeep J before t2, a completely filled jeep
J after t2, or that jeep J is on position p3 on moment t2. In the first two
cases, either i) or ii) applies. In the last case, jeep J gets one time less on
refuel position p3 as before if p3 < p2, and a better path in case p3 = p2 is
not a refuel position.

By repeatedly focusing on interior local minima and reducing them, we get
an algorithm where the jeeps do not have interior local minima. Thus we fi-
nally have an extended backward convoy algorithm for Dewdney jeeps with

sealed cans.

Theorem 6.1. Algorithm 5.1 is optimal.
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Proof. As soon as a blue jeep is created in algorithm 5.1, the backward
convoy consumes the tank fuel above the level of 50 percent first. Fur-
thermore, given that all available fuel on the road is used, the blue jeeps
are canceled as soon as possible if there are enough cans to do so. This is
because there are no spider jeeps when there are B or more full cans.
If there are no blue jeeps, then the opening of a can for refueling purposes

is postponed as long as possible in algorithm 5.1, and the use of spider jeeps
is in such a way that subsequent unsealings for refueling are postponed as
long as possible, too.
Since unsealing cans is postponed as long as possible in algorithm, 5.1, so

is the creation of a new red double jeep or spider jeep for getting new cans.

Thus algorithm 5.1 is optimal.

7. A NORMAL ALGORITHM FOR DEWDNEY JEEPS

WITH SEALED CANS

Let p0 = 0 and p1, p2, . . . be the positions > 0 where the regular jeep
with the least relative amount of tank fuel has 50 percent of tank fuel in
algorithm 5.1, in increasing order. If the oasis to be reached is not included
in the positions pi, then add that as well, to obtain a finite sequence

0 = p0 < p1 < p2 < · · · < pk

If we do not count the to and fro’s for spider jeeps, then the general scheme
is the following. First, the n jeeps do all riding and transportations within
[0, pi], except for n2 jeeps riding from pi to 0. Next, the jeeps do all riding
and transportations within [pi, pi+1] except for n2 jeeps riding from pi+1 to
pi. After that, the jeeps do all riding and transportation within [pi+1, pk].
Finally, n2 jeeps ride from pi+1 back to 0.
Notice that red double jeeps have at least as much fuel as regular double

jeeps, but no more than 50 percent. On the other hand, blue double jeeps
have at most as much fuel as regular double jeeps, but no less than 50
percent. From this, it follows that all double jeeps of any type have 50
percent of tank fuel on pi for each 0 < i < k, and that the schemes for each
i are compatible with each other.
So we only need to describe the riding and transportations within [pi, pi+1].

There are two cases: the relatively emptiest regular jeep has less than 50
percent of tank fuel or this jeep has more than 50 percent of tank fuel in
]pi, pi+1[.
Assume first that the relatively emptiest regular jeep has less than 50

percent of tank fuel in ]pi, pi+1[. Then all regular jeeps with the same
multiplicity (single or double) have the same less than 50 percent of tank
fuel in ]pi, pi+1[. Furthermore, all double jeeps that are created in [pi+1, pk]
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have 50 percent of tank fuel on pi+1 and all double jeeps that are created
in ]pi, pi+1[ are spider jeeps or red jeeps that have 50 percent of tank fuel
when they are created.
So all riding of red double jeeps between pi and pi+1 can be done by

forward loops form pi. Perform these forward loops first and ride with n
jeeps from pi to pi+1 after that, where the n1 single jeeps perform the to
and fro’s of the spider jeeps along the road.
If i = 0, then the amount of tank fuel of the jeeps performing the for-

ward loop and regular double jeeps is min{f(x)/2, x} in the return part on
position x and min{1− f(x)/2, 1− f(x) + x} in the outward part (instead
of just f(x)/2 and 1− f(x)/2 respectively), with f(x) being the amount of
tank fuel of the red or regular double jeep at hand on position x. This is
to ensure that jeeps return empty on position 0.
Assume next that the relatively emptiest regular jeep has more than 50

percent of tank fuel in ]pi, pi+1[. Then all regular jeeps have more than 50
percent of tank fuel in ]pi, pi+1[.
Looking at the backward convoy algorithm 5.1, we can see how much

riding and transportations need to be done on each interval. With this, we
do not count blue double jeeps that are canceled later together with their
B cans. These jeeps can be removed from the backward convoy algorithm.
This is because spider jeeps are only present in the convoy when there are
less than B cans in case there are blue jeep, thus the above blue jeeps do
not need to give tank fuel to other jeeps.
Now that the total number of double jeeps of any type is determined

everywhere by algorithm 5.1, we replace event 1 of it by the following.

Event 1: The convoy meets a depot to be used.

Handler: Distribute the fuel amongst the regular jeeps and red double jeeps
in the backward convoy, such that the minimum relative amount of tank
fuel becomes as large as possible, but not larger than 50 percent. If the
relative amount of tank fuel for these jeeps gets 50 percent, then replace
all red double jeeps by spider jeeps.
If there is still fuel left, then replace all spider jeeps by blue double jeeps

and create additional blue double jeeps until the number of double jeeps of
any type is what it should be. Next, distribute the fuel amongst all regular
and blue double jeeps, under the following conditions:

• The regular double jeeps must not get more than 1 + x units of fuel,
where x is the current position, unless the regular single jeeps and blue
double jeeps get 100 percent filled.

• The minimum amount of tank fuel for all regular jeeps and blue double
jeeps is maximized as a first priority. Next, the minimum amount of tank
fuel for all regular single jeeps and blue double jeeps is maximized.
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Notice that the spider jeeps are replaced by blue double jeeps on position
pi+1. If we ignore the spider jeeps for a moment, then the blue double jeeps
can be done as backward loops from the points where they are created or
made blue.
So assume that some spider jeep occurs in ]pi, pi+1[. The jeeps do not

need tank fuel, since they are more than 50 percent filled or have enough to
reach 0. Thus there is a depot to be filled. This is done by the spider jeep
or a blue double jeep that becomes the spider jeep later in the backward
convoy in ]pi, pi+1[.
Some regular jeeps and blue double jeeps perform the to and fro’s of

these spider jeeps, and the order does not matter, since the regular jeeps
and blue double jeeps doing so will not get any fuel as long as there are
spider jeeps and blue jeeps with a less relative amount of fuel than the
regular jeeps.
Therefore, the n regular jeeps start the spidering process, of which the

n2 double jeeps only half of it. Next, the blue double jeeps follow, and
at last the other halves of the n2 double jeep during their returns to the
desert border.
This way, the remainder of the last can will not be available for the jeeps.

But this remainder can be used for the transportation of some cans by a
round trip of one jeep over the last part towards the depot, a round trip
that can be performed by one of the n2 double jeeps during their returns
to the desert border, or any single jeep in case n2 = 0.

8. CONCLUSION

We attained optimality results for many jeep variants, using convoy for-
mulations as C.G. Phipps suggested. On the other hand, many jeep variants
are still open. These jeep variants seem much harder to solve. So a lot of
research can still be done on this topic.
I wonder what our godfather C.G. Phipps would have thought of this

article. In his article [13, p. 462] he writes the following.

The number of variations upon these problems is almost endless. One could
have rendezvous points where jeeps are to assemble. One could consider the
delivery of a certain number of jeeps to another supply station by caravans meet
halfway. Still another variation would be to have tank-trucks accompany the
jeeps. Most of such problems can be worked by the general principles developed
here.

Maybe, C.G. Phipps already knew most of the results attained in this
article.
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