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PINCHING ON OPEN MANIFOLDS

MANUEL STREIL

Abstract. We show that the 2-jet bundle of local Riemannian metrics
on an arbitrary differentiable manifold admits a section which pointwise
fulfills the curvature relation sec(g) = a for any a ∈ R. It follows by
Gromov’s h-principle for open, invariant differential relations that every
noncompact differentiable manifold carries arbitrarily pinched (incom-
plete) Riemannian metrics.

1. Introduction

A basic question in Riemannian geometry is what effect the existence of a
Riemannian metric with particular curvature properties has on the topology
of the underlying manifold. One usually considers complete metrics and
obtains even on an elementary level rather strong restrictions. For instance,
complete manifolds of negative sectional curvature are always aspherical
and all nontrivial elements of the fundamental group have infinite order.
Furthermore a closed manifold does not support two metrics of different
signed sectional curvatures. We also mention the result of Gromoll and
Meyer [3] that a complete open manifold of positive sectional curvature is
diffeomorphic to some R

m.

The situation changes completely if we skip the completeness assumption,
which is automatically imposed on metrics on closed manifolds but is an
extra condition on open manifolds. Gromov remarks in his thesis [4] the
astonishing fact that every open manifold carries metrics with strict positive
and negative sectional curvature.

In this paper we extend this result and prove the existence of arbitrarily
pinched (incomplete) metrics on open manifolds.

Theorem 1.1. Let M be an open manifold. Given δ > 0 and a ∈ R there

exists a Riemannian metric on M such that all sectional curvatures are in

(a− δ, a + δ).

In other words the geometric significance of the sign of the curvature and
even of curvature bounds depends on the completeness of the underlying
metric. It turns out that the only question concerning curvature which in-
volves geometry in the incomplete case is the existence of metrics of constant
sectional curvature, since then topological obstructions are known. For ex-
ample such manifolds have trivial Pontryagin classes (cf. Theorem 43 and
Corollary 44 in [9]).
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Theorem 1.1 is an application of a deep differential topological insight of
M. Gromov who greatly generalized in his thesis [4] Smale-Hirsch-Phillips
immersion-submersion theory (see [8], [6], [7]) by proving what is now called
the h-principle for invariant, open differential relations on open manifolds.

Roughly speaking, a partial differential relation R is any condition im-
posed on the partial derivatives of an unknown function. By substituting
derivatives by new independent variables one gets an underlying algebraic
relation. Obviously the existence of a formal solution, i. e. a solution of the
corresponding algebraic relation, is a necessary condition for the solvability
of R. It turns out that under certain cirumstances any formal solution of R
can be deformed into a genuine one.

In general one considers a smooth fibre bundle over the underlying man-
ifold. A partial differential relation is a condition imposed on the r−jet
bundle of local sections. Now we could try and construct a section of this
r−jet bundle which pointwise fulfills the relation, i.e. a formal solution,
and deform it to get a real solution. In other words, we reduce the prob-
lem to algebraic-topological obstruction theory. We refer to [2] and [5] for
expositions of this technique.

In our case we study the bundle of symmetric bilinear forms the posi-
tive definite sections of which are Riemannian metrics on the underlying
manifold. The observation that the sectional curvature only depends on
the 2−jet of the metric allows us to translate the pinching problem into a
curvature relation, see Definition 3.2. In Lemma 3.5 we will prove that on
any manifold there are formal solutions with constant curvature. Then, as
an application of Gromov’s h-principle, Theorem 3.4 implies the existence
of arbitrarily pinched metrics.

2. Some basic facts concerning jets

Given a (C∞-)smooth fibre bundle q : V →M over a smooth manifoldM
of dimension m we identify two local smooth sections σ1 and σ2 defined in a
neighbourhood of some point p ∈M if in local local coordinates on M and
V they have the same partial derivatives up to order r at p. An equivalence
class [(σ, p)] = jrpσ under this relation is called r-jet of σ at p. We denote
by V r the space of r-jets of local sections. A partial differential relation of
order r is a subset R ⊂ V r.

In the following we consider the bundle q : E →M of the positive definite
2-forms onM, which is an open subbundle of the bundle q : S2T ∗M →M of
the symmetric bilinear forms on M. Having chosen a chart neighbourhood
U ⊂M we have trivialisations q−1(U) ∼= U ×S(m) and q−1(U) ∼= U ×P (m)
where we denote by S(m) ⊂ R

m×m the vectorspace (dimS(m) =: d) of
symmetric m×m matrices and by P (m) ⊂ S(m) the open subset of positive
definite m×m matrices.
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We consider the projection map

q2 : E2 → M

j2pg 7→ p.

Let p ∈ M and j2pg ∈ E
2 a 2-jet represented by a local Riemannian metric

g. Using a chart (U,Φ, x1, ..., xm) around p, we obtain a local description

(gΦij(Φ(p)),
∂gΦij

∂xk
(Φ(p)),

∂2gΦij

∂xl∂xk
(Φ(p))) ∈ P (m)2 := P (m)× R

dm × R
dm(m+1)

2

of j2pg taking symmetries of the partial derivatives into account. Vice versa,

given (gΦij , g
Φ
ijk, g

Φ
ijkl) ∈ P (m)2 we choose the associated taylor polynom hij

near Φ(p) such that

(hij(Φ(p)),
∂hij

∂xk
(Φ(p)),

∂2hij

∂xl∂xk
(Φ(p))) = (gΦij , g

Φ
ijk, g

Φ
ijkl).

As a consequence there is a 1-1 correspondence

(q2)−1(U)
1−1
←→ U × P (m)2.

Now let (W,Ψ, y1, ..., ym) be another chart defined near p. Keeping in mind
that

gΨij =
∑

k,l

∂xk

∂yi
∂xl

∂yj
gΦkl

a change of coordinates on M obviously induces a linear transformation of
P (m)2. This allows us to give E2 a canonical structure of a smooth manifold
and we have proven

Lemma 2.1. The space E2 of 2-jets of local Riemannian metrics on M

defines a smooth fibre bundle

q2 : E2 → M

j2pg 7→ p

with linear transformations of the fibre P (m)2 = P (m)× R
dm × R

dm(m+1)
2 .

3. The curvature relation

Let τ = j2pg be a 2-jet of a local Riemannian metric g at p ∈ M and

(U,Φ, x1, ..., xm) a chart around p. We may assume that g is defined on U.
In local coordinates τ is associated to

(Φ(p), τij , τijk, τijkl) = (Φ(p), gΦij(Φ(p)), ∂kg
Φ
ij(Φ(p)), ∂l∂kg

Φ
ij(Φ(p))).

On U the metric g induces the Levi-Civita connection ∇ given locally by
means of the Christoffelsymbols defined by

∇ ∂

∂xi

∂

∂xj
=

m
∑

k=1

Γk
ij ·

∂

∂xk
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or more explicitly

Γk
ij =

1

2

m
∑

l=1

(gΦ)lk(∂ig
Φ
jl + ∂jg

Φ
li − ∂lg

Φ
ij)

where ((gΦ)ij) is the inverse of the matrix (gΦij). We note that the entries

(gΦ)ij are rational functions in terms of the gΦij . It follows that the compo-
nents Rijks of the curvature tensor given by

g

(

R

(

∂

∂xi
,
∂

∂xj

)

∂

∂xk
,
∂

∂xs

)

= g

(

∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xk
−∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
,
∂

∂xs

)

at p are completely determined by τ and independent of the choice of the
representative g. This implies that the sectional curvature

sec(V ) =
g(R(v,w)v,w)

g(v, v) · g(w,w) − g(v,w)2

of a plane V ⊂ TpM spanned by two linearly independent vectors v,w ∈
TpM only depends on τ. In other words, we have a well-defined notion of
sectional curvature of 2-jets of local Riemannian metrics.

Definiton 3.1. Let τ ∈ E2 be a 2-jet at p ∈ M of a Riemannian metric g

on a neighbourhood U of p and V a plane in TpM. We define the sectional

curvature secτ V as the sectional curvature sec(U,g) V with respect to the

Levi-Civita connection induced by g on U.

Definiton 3.2. Given a ∈ R and δ ≥ 0 the curvature relation Rδ,a is defined

as the subset

Rδ,a = {τ ∈ E2 : secτ V ∈ (a− δ, a + δ) for all planes V ⊂ Tq2(τ)M}

where we think of (a, a) as {a} if δ = 0 by abuse of notation.

We call a continuous section α of E2 satisfying α(M) ⊂ Rδ,a a formal

solution to the curvature relation Rδ,a. A formal solution α is holonomic if
j2g = α for some section g of E. In other words, g is a Riemannian metric on
M such that all sectional curvatures lie in (a− δ, a+ δ). We refer to [2] and
[5] for these notions in the broader context of partial differential relations.

LetM1 andM2 be two differentiable manifolds of the same dimension. As
above we define bundles qi : Ei →Mi and q

2
i : E2

i →Mi as well as curvature
relations Ri

δ,a with i ∈ {1, 2}. A local diffeomorphism f : U1 → U2 between
open subsets U1 ⊂M1 and U2 ⊂M2 induces in a canonical way a map

f∗ : E
2
1 |U1 → E2

2 |U2

as follows: Let τ = j2pg ∈ E
2
1 . We may assume that its representative g is

defined on U1. The push-forward f∗g yields a metric on U2 via

f∗g(v,w) = g(f∗v, f∗w)

for all v,w ∈ Tp̃M2 and arbitrary p̃ ∈ U2. Now we define

f∗τ := j2f(p)f∗g.
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One readily checks that f∗τ is well-defined. Suppose that τ = j2pg ∈ R
1
δ,a.

Due to the fact that f : (U1, g)→ (U2, f∗g) is an isometry we have

secf∗τ E(v,w) = secτ E(f∗v, f∗w)

where E(v,w) is the plane spanned by two linearly independent vectors
v,w ∈ Tf(p)U2. In other words, f∗τ ∈ R

2
δ,a. In this sense curvature relations

are invariant under local diffeomorphisms.

Lemma 3.3. The restriction q2 : Rδ,a → M defines a subbundle of q2 :
E2 →M. This bundle is open if δ > 0.

Proof. Let p ∈ M and (U,Φ) a chart of M near p. We obtain a local triv-
ialisation (q2)−1(U) ∼= U × P (m)2 of the bundle q2 : E2 → M. Any 2-jet
τ ∈ Rδ,a has a local representation

(p, τij , τijk, τijkl) ∈ U × P (m)2.

We note that the sectional curvature depends only on (τij, τijk, τijkl). Con-
sequently, τ̃ = (p̃, τij, τijk, τijkl) ∈ Rδ,a for any p̃ ∈ U. We define Fδ,a as a
subset of P (m)2 in the following way: (τij , τijk, τijkl) ∈ Fδ,a if and only if for
some (and hence any) p̃ ∈ U we have

τ̃ = (p̃, τij, τijk, τijkl) ∈ Rδ,a.

In other words,
(q2)−1(U) ∩Rδ,a

∼= U × Fδ,a.

As a result, q2 : Rδ,a →M is trivial over charts ofM. A change of coodinates
onM induces a linear transformation of Fδ,a ⊂ P (m)2, because the sectional
curvature is independent of the choice of local coordinates.
Now assume δ > 0. We identify TpM with R

m and parametrize the set of
all planes in TpM by the Stiefel manifold Vm,2 of the orthonormal 2-frames
(v,w) ∈ R

m. Furthermore, let E(v,w) be the plane in R
m spanned by two

linearly independent vectors v and w. The function

η : P (m)2 × Vm,2 → R

(σ′, (v,w)) 7→ sec(p,σ)(E(v,w))

is continuous and Vm,2 is compact. It follows that Fδ,a is an open subset of
P (m)2. �

Let δ > 0. We denote by ΓRδ,a the space of formal solutions equipped
with the compact-open topology and write

ΓRδ,a
E = {g ∈ Γ∞(E) : j2g ∈ Rδ,a}

for the space of smooth sections of E, i.e. Riemannian metrics on M, such
that all sectional curvatures lie in (a−δ, a+δ). The map j2 : ΓRδ,a

E → ΓRδ,a

induces the weak C2−topology on ΓRδ,a
E.

So far we have discussed all technical notions we need to apply Gromov’s
general h-principle for open, invariant relations on open manifolds to our
special case of curvature relations (cf. Theorem 3.12 in [1]):
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Theorem 3.4. Let M be an open manifold and Rδ,a a curvature relation

with δ > 0. Then

j2 : ΓRδ,a
E → ΓRδ,a

is a weak homotopy equivalence.

In other words, if we can prove that there exist formal solutions we are
done. Surjectivity on π0 then yields arbitrarily pinched Riemannian metrics.

Lemma 3.5. The space ΓRδ,a of formal solutions is nonempty for any a ∈ R

and δ ≥ 0.

Proof. It suffices to show that R0,a ⊂ Rδ,a admits formal solutions. We
will prove that the fibre F0,a =: Fa smoothly deformation retracts to an
arbitrary element of Fa.

Note that Fa is nonempty. In a neighbourhood of 0 ∈ R
m we choose a

Riemannian metric g with constant sectional curvature a. Then

τ ′ = (τij , τijk, τijkl) = (gij(0), ∂kgij(0), ∂l∂kgij(0)) ∈ Fa.

Let τ be the Taylor polynom which represents the 2-jet (0, τ ′) ∈ R
m × Fa.

We regard τ as a Riemannian metric defined in a neighbourhood of 0 ∈ R
m.

Now we choose a reference basis B = {b1, ..., bm} of Rm. Applying the
Gram-Schmidt procedure yields an orthonormal basis Bτ w.r.t. τ(0). We
change to normal coordinates centered at 0 w.r.t. τ and Bτ , i.e. we iden-
tify T0R

m with R
m via Bτ , and the exponential map induces a linear and

invertible transformation

L̃ : Fa → Fa

τ ′ 7→ τ̃ ′ = (δij , 0, τ̃ijkl),

where δij = 1 if i = j and δij = 0 if i 6= j.

Let ψ′ ∈ P (m)2 and ψ the Taylor polynom associated to (0, ψ′) ∈ R
m ×

P (m)2. Like τ we think of ψ as a Riemannian metric defined near 0 ∈ R
m.

Then

ψt = t · τ + (1− t) · ψ, t ∈ [0, 1]

is a Riemannian metric in a neighbourhood of 0 ∈ R
m with ψ0 = ψ und

ψ1 = τ. We write

ψ′

t = ((ψt)ij(0), ∂k(ψt)ij(0), ∂l∂k(ψt)ij(0)) ∈ P (m)2.

The Gram-Schmidt procedure w.r.t. ψt(0) transformsB into an orthonormal
basis

B(t, ψ′) = {b1(t, ψ
′), ..., bm(t, ψ′)}

with respect to ψt(0) such that the maps

[0, 1] × P (m)2 → R
m

(t, ψ′) 7→ bi(t, ψ
′) i = 1, ...,m
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are smooth and B(1, ψ′) = Bτ . Changing to normal coordinates at 0 w.r.t.
ψt and B(t, ψ′), we obtain a family

L(t, ψ′) : P (m)2 → P (m)2

of linear and invertible transformations with L(1, ψ′) = L̃.

We claim that L(t, ψ′) depends smoothly on (t, ψ′) (and so does L(t, ψ′)−1

by Kramer’s rule).
We observe that (t, ψ′, x) 7→ ψt(x) is smooth. Let (t0, φ

′) ∈ [0, 1]×P (m)2,
then φt0(0) ∈ P (m).We find a neighbourhood V of (t0, φ

′) and a neighbour-
hood U of 0 ∈ R

m such that ψt(x) ∈ P (m) if (t, ψ′, x) ∈ V × U.
The Christoffel symbols associated to ψt depend smoothly on (t, ψ′) ∈ V,

i.e.

V × U → R

(t, ψ′, x) 7→ Γk
ij(t, ψ

′, x)

is smooth. Thus we obtain a system

ẍk +
m
∑

i,j=1

Γk
ij(t, ψ

′, x)ẋiẋj = 0, k = 1, ...,m

of geodesic equations. Hence there exist neighbourhoods V ′ of (t0, φ
′) and

W of 0 ∈ T0R
m such that

V ′ ×W → R
m

(t, ψ′, v) 7→ exp0(t, ψ
′, v)

is smooth and our claim follows.
We write ψ̃′ = L(0, ψ′)(ψ′) and define a smooth map

h : [0, 1] × P (m)2 → P (m)2

(s, ψ′) 7→ s · τ̃ ′ + (1− s) · ψ̃′.

We set

G : [0, 1] × P (m)2 → P (m)2

(t, ψ′) 7→ L(t, ψ′)−1(h(t, ψ′))

and obtain a smooth map which satisfies

G(0, ψ′) = L(0, ψ′)−1(h(0, ψ′)) = L(0, ψ′)−1(ψ̃′) = ψ′

and

G(1, ψ′) = L(1, ψ′)−1(h(1, ψ′)) = L̃−1(τ̃ ′) = τ ′.

In case ψ′ = τ ′ it follows that ψt = τ and L(t, τ ′) = L̃ independent of

t ∈ [0, 1]. Thus, h(s, τ ′) = τ̃ ′ for all s ∈ [0, 1] and G(t, τ ′) = L̃−1(τ̃ ′) = τ ′

for all t ∈ [0, 1]. In other words, G is a deformation retraction of P (m)2 to
τ ′ ∈ Fa.

We claim that the restriction G|[0,1]×Fa
is a deformation retraction of Fa

to τ ′ ∈ Fa.
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Now assume ψ′ ∈ Fa. It follows that ψ̃
′ ∈ Fa is of the form (δij , 0, ψ̃ijkl) as

well as τ̃ ′ = (δij , 0, τ̃ijkl) ∈ Fa and h(s, ψ′) = (δij , 0, s · τ̃ijkl + (1− s) · ψ̃ijkl).
Suppose we have a Riemannian metric g defined near 0 ∈ R

m which
satisfies gij(0) = δij and ∂kgij(0) = 0. Then an elementary calculation shows

Rijks(0) =
1

2
(∂j∂kgsi − ∂j∂sgik − ∂i∂kgsj + ∂i∂sgjk) (0).

Thus we conclude h(s, ψ′) ∈ Fa for all s ∈ [0, 1]. Taking into account that
the transformations L(t, ψ′) are induced by coordinate changes we have

G(t, ψ′) = L(t, ψ′)−1(h(t, ψ′)) ∈ Fa

for all t ∈ [0, 1].
It follows that Fa is contractible and by elementary obstruction theory

there exists a global section of q2 : R0,a →M, i.e. a formal solution. �
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