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CURVATURE INVARIANTS AND GENERALIZED CANONICAL

OPERATOR MODELS

RONALD G. DOUGLAS, YUN-SU KIM, HYUN-KYOUNG KWON, AND JAYDEB SARKAR

Abstract. There are two models for contraction operators on reproducing kernel Hilbert
spaces, that of Sz.-Nagy-Foias introduced in the sixties and the later one from the late seven-
ties due to M. Cowen and the first author. In comparing the two models, this paper interprets
the former as a quotient Hilbert module of vector-valued Hardy spaces. Alongside this reso-
lution is a resolution of hermitian anti-holomorphic vector bundles for which the curvatures
can be calculated. Moreover, one can obtain other models replacing the Hardy space by
other Hilbert spaces of holomorphic functions on the unit disk such as the weighted Bergman
spaces. Further, one can decide when such quotient modules are unitarily equivalent and,
perhaps, similar. In particular, it seems that the results are independent of the building
block Hilbert spaces of holomorphic functions used. The techniques involved are a blend
of complex geometry and harmonic analysis. In many cases, questions about the quotient
Hilbert modules are reduced to questions involving anti-holomorphic sub-bundles of trivial
finite-dimensional bundles over the disk.

1. Introduction

One goal of operator theory is to obtain unitary invariants, ideally, in the context of a
concrete model for the operators being studied. For a multiplication operator on a space of
holomorphic functions on the unit disk D, which happens to be contractive, there are two
distinct approaches to models and their associated invariants, one due to Sz.-Nagy and Foias
[10] and the other due to M. Cowen and the first author [1]. The starting point for this
work was an attempt to compare the two sets of invariants and models obtained in these
approaches. Although one could, in principle, work at the same level of generality as that in
which these models are framed, we opt to consider some of the simplest possible cases in which
the various phenomena possible present themselves, in order to make the relationships clearer.
Extensions of these results to more general situations can proceed later, particularly those
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dictated by particular concrete applications. We discuss some possibilities for generalizations
at the end of the paper.

For the Sz.-Nagy-Foias canonical model theory, the Hardy space, H2(D), of holomorphic
functions on the unit disk D is central if one allows the functions to take values in some
coefficient Hilbert space E . In this case, we will now denote the space by H2(D) ⊗ E . One
can view the canonical model Hilbert space (in the case of a C·0 contraction T ) as given by
the quotient of H2(D) ⊗ E∗, for some Hilbert space E∗, by the range of a map TΘ defined
to be multiplication by a bounded holomorphic operator-valued function, Θ(z) ∈ L(E , E∗),
from H2(D) ⊗ E to H2(D) ⊗ E∗. If one assumes that the multiplication operator associated
with Θ(z) defines an isometry (or is inner), and satisfies a certain non-triviality assumption
(pureness), then Θ(z) is the characteristic operator function for the operator T . Hence, Θ(z)
provides a complete unitary invariant for the operator Mz defined to be the compression of
multiplication by z to the quotient Hilbert space of H2(D) ⊗ E∗ by the range of Θ(z). In
general, neither the operator T nor its adjoint T ∗ is in the Bn(D) class of [1] but we are
interested in the case in which the adjoint T ∗ is in Bn(D) and we study the relation between
its complex geometric invariants (see [1]) and Θ(z).

We use the language of Hilbert modules which we believe to be natural in this context.
Also we consider ”models” obtained as quotient Hilbert modules in which the Hardy module
is replaced by other Hilbert modules of holomorphic functions on D such as the Bergman or
weighted Bergman spaces. Once we make this change, the requirement that Θ(z) be inner
becomes artificial and we require instead that the range of TΘ is closed. In most cases we
assume that some analogue of the corona condition holds.

After a preliminary Section 2 in which the above terminology is made precise, we introduce
in Section 3 an illustrative family of examples of quotient Hilbert modules in which the role
of the Hardy space is played by weighted Bergman spaces, which lie in the B1(D) class. We
determine when two of these examples are unitarily equivalent by calculating the curvatures
of the associative hermitian anti-holomorphic vector bundles. The proof is completed using a
calculation involving harmonic analysis. In Section 4 we proceed to the more general case of
these phenomena and again, determine when two such quotient Hilbert modules are unitarily
equivalent. Here we represent the associated hermitian anti-holomorphic bundle as a twisted
tensor product of the bundle for the basic Hilbert module by a line bundle determined by the
multiplier used. A version of this representation was used earlier by Uchiyama [15] and Treil
and the third author [9]. However, we observe that while the bundles obtained in the exact
sequence of bundles are all pull-backs from an infinite dimensional Grassmanian, they are all
actually the tensor product of a resolution of sub-bundles of finite rank, trivial bundles by the
fixed bundle for the basic Hilbert module. Hence, all calculations and proofs can be carried
out in this finite dimensional context.

In Section 5 we explore some similarity questions for quotient Hilbert modules drawing
upon the research of two earlier groups. First, the similarity question in the Hardy space
context was originally studied by Sz.-Nagy and Foias [10] and more recently by Treil and the
third author [9]. In the latter work, similarity is shown to be equivalent to the existence of
a bounded function whose Laplacian is related to the curvature. The second research, by a
group of Chinese researchers (cf. [8]), shows that in the case of contractive Hilbert modules
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over D, some results for similarity are independent of the particular basic Hilbert module. For
example, a quotient Hilbert module defined by the Bergman module is similar to the Bergman
module if and only if the same is true for the analogous quotient Hilbert module defined using
the Hardy module. Our proof of this fact rests on the tensor product factorization mentioned
above since the finite bundle involved does not depend on the basic Hilbert module used. In
Section 6 we conclude with a number of remarks including several avenues, we believe, worthy
of exploration. Finally, analogues of many of the results in this paper will be carried over to
the several variables context in [7].

2. Preliminaries

We begin by providing precise definitions for the terminology used in the introduction,
which will be needed in the paper. We start with the fundamental notion of a contractive
Hilbert module.

Definition 2.1. Let T be a linear operator on a Hilbert space HT . Then HT is said to be a
contractive Hilbert module over C[z] relative to T if the module action

C[z]×HT , p · h 7→ p(T )h

defines bounded operators for p ∈ C[z] such that

‖p · h‖HT
= ‖p(T )h‖HT

≤ ‖p‖∞‖h‖HT
,

for all h ∈ HT , where ‖p‖∞ is the supremum norm on D.

If the Hilbert module HT is contractive, then the operator Mz defined by multiplication
by z is a contraction and HT = HMz

. Conversely, since one can extend the module action
from C[z] to all of the disk algebra A(D), using the von-Neumann inequality, a contraction
operator gives rise to a contractive Hilbert module. Recall that A(D) consists of the functions
continuous on the closure of D that are holomorphic on D.

Now we restrict our attention to a special class of Hilbert modules. Here C[z] ⊗alg Cn

denotes the algebraic tensor product.

Definition 2.2. A Hilbert module R over A(D) is said to be a contractive quasi-free Hilbert
module of multiplicity n, 1 ≤ n <∞, if there is an inner product defined on C[z]⊗alg C

n with

R = C[z]⊗alg C
n such that

(i) the evaluation operator evw : C[z] ⊗alg C
n → Cn defined by evw(f) = f(w) is bounded

for all w ∈ D,
(ii) the module multiplication Mz on R defined by Mzf = zf is contractive, and
(iii) for all {fi}

∞
i=1 in C[z]⊗alg C

n, evw(fi) = fi(w) → 0 if and only if fi → 0 in R.

One can identify a quasi-free Hilbert module R as a subspace of the space O(D,Cn) of
holomorphic functions taking values in Cn so that {f(w0) : f ∈ R} = Cn for w0 ∈ D and such
that the module multiplication agrees with pointwise multiplication. On D it seems likely
that this latter description characterizes the quasi-free Hilbert modules of finite multiplicity.
An affirmative answer depends on the existence of n generators for R.



4 DOUGLAS, KIM, KWON, AND SARKAR

The Hardy moduleH2(D), the Bergman module L2
a(D), and the weighted Bergman modules

L2,α
a (D) for all α > −1 are all quasi-free Hilbert modules of multiplicity one over A(D). Recall

that H2(D) consists of the functions f holomorphic on D for which

‖f‖2 = (
∞
∑

k=0

|ak|
2)

1

2 <∞,

where
∑∞

k=0 akz
k is the Taylor series expansion of f . Similarly, for all α, −1 < α < ∞, the

weighted Bergman space L2,α
a (D) consists of the holomorphic functions f on D for which

‖f‖2,α = (
1

2π

∫

D

|f(z)|2dAα)
1

2 <∞,

where dAα is the weighted area measure dAα = (1+α)(1−|z|2)αdA with dA the area measure
on D.

The assumptions in the definition of a quasi-free Hilbert module R assure one that R is a
contractive and an analytic reproducing kernel Hilbert module. We briefly recall the definition
of the latter.

Definition 2.3. A function K : D×D → L(E) for a Hilbert space E , is said to be a positive
definite kernel if the operator K(z, z) is positive and injective for all z ∈ D and

〈

p
∑

i,j=1

K(zi, zj)ηj , ηi〉 ≥ 0,

for all ηi ∈ E , zi ∈ D, 1 ≤ i ≤ p and for all p ∈ N.

Given a positive definite kernel, one can construct the Hilbert space HK of E-valued func-
tions which is defined to be the closure of

span {K(·, z)η : z ∈ D, η ∈ E},

with the inner product

〈K(·, w)η, K(·, z)ζ〉HK
= 〈K(z, w)η, ζ〉E,

for all z, w ∈ D and η, ζ ∈ E . The evaluation of a function f in HK at a point z ∈ D is given
by the reproducing property so that

〈f(z), η〉E = 〈f,K(·, z)η〉HK
,

for all f ∈ HK , z ∈ D and η ∈ E . In particular, the evaluation operator evz : HK → E defined
by evz(f) = f(z) is bounded for all z ∈ D.

Conversely, given a Hilbert spaceH of holomorphic E-valued functions on D with a bounded
evaluation operator evz ∈ L(H, E) for each z ∈ D, one can construct the reproducing kernel

evz ◦ ev
∗
w : D× D → L(E),

for all z, w ∈ D such that H = Hevz◦ev
∗
w
. To ensure that evz ◦ ev

∗
w is injective, the set of

values of f ∈ H must equal E for z ∈ D.
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For H2(D), the kernel function is K(z, w) = (1− zw̄)−1. For L2,α
a (D), one can calculate the

reproducing kernel function and show that

K(z, w) = (1− zw̄)−2−α =

∞
∑

k=0

Γ(k + 2 + α)

n!Γ(2 + α)
(zw̄)k,

where Γ is the gamma function.
A reproducing kernel Hilbert space HK is said to define a contractive reproducing kernel

Hilbert module over A(D) if the operator Mz is contractive. In other words, HK is the
Hilbert module with module multiplication obtained from the multiplication operator Mz.
Moreover, one can show that MϕHK ⊆ HK , where Mϕ is the multiplication operator defined
by ϕ ∈ H∞(D) or, the multiplier algebra for HK is H∞(D). One can prove that if HK is a
reproducing kernel Hilbert module over A(D), then

M∗
ϕK(·, z)η = K(·, z)ϕ(z)∗η,

for all ϕ in H∞(D) and η ∈ E . In particular,

M∗
z (K(·, z)η) = z̄(K(·, z)η),

for η ∈ E and z ∈ D.
In [1] M. Cowen and the first author introduced a class of operators, Bn(D), which includes

M∗
z for the operator Mz defined above on a contractive reproducing Hilbert module with

dim E = n. We recall this notion. (Note that T ∗ corresponds to the operator Mz defined on
a Hilbert module.)

Definition 2.4. For 1 ≤ n < ∞, the operator T on the Hilbert space HT is in the class
Bn(D) if

(i) ran (T − w) = HT for all w ∈ D,
(ii) dim ker(T − w) = n for all w ∈ D, and
(iii) ∨w∈Dker (T − w) = HT .

By a result of Shubin [12], one can show that for T on H in Bn(D) there is a hermitian anti-
holomorphic rank n vector bundle E∗

H over D defined as the pull-back of the anti-holomorphic
map w 7→ ker (T − w) from D to the Grassmannian Gr(n,H) of n-dimensional subspaces of
HT . (We use the notation E∗

H since this bundle is the dual of a natural hermitian holomorphic
vector bundle EH.) As a consequence, there exists a frame {ψi}

n
i=1 of anti-holomorphic H-

valued functions on D such that

∨n
i=1ψi(w) = ker (T − w) ⊆ H,

for w ∈ D. In many cases, the existence of such a frame is sufficient for many applications of
complex geometrical method to operator theory. Thus we will introduce a weaker version of
Bn(D) after we establish a fact to prepare for this.

Proposition 2.5. Let {ϕi}
n
i=1 and {ϕ̃i}

n
i=1 be anti-holomorphic functions, ϕi : D → H and

ϕ̃i : D → H̃, for Hilbert spaces H and H̃ with T ∈ L(H) and T̃ ∈ L(H̃) satisfying
(1) Tϕi(w) = w̄ϕi(w), T̃ ϕ̃i(w) = w̄ϕ̃i(w), i = 1, . . . , n, w ∈ D and

(2) span{ϕi(w) : 1 ≤ i ≤ n, w ∈ D} = H and span{ϕ̃i(w) : 1 ≤ i ≤ n, w ∈ D} = H̃.
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Then there exists an anti-holomorphic partial isometry-valued function V (w) : H → H̃ such
that kerV (w) = span{ϕi(w) : 1 ≤ i ≤ n}⊥ and ranV (w) = span{ϕ̃i(w) : 1 ≤ i ≤ n} if

and only if there exists a unitary operator V : H → H̃ such that V ϕi(w) = V (w)ϕi(w) for
1 ≤ i ≤ n and w ∈ D.

Proof. Same as in the proof of the rigidity theorem in [1] where the above hypotheses are
restated in the language of bundles.

The first author would like to point out that the basic calculation, used to prove the rigidity
theorem in [1], appeared earlier in the book by Polya [11]. This reference was pointed out to
him by N. Nikolski.

Definition 2.6. For 1 ≤ n <∞, the operator T on H is in the class Bw
n (D) or weak-Bn(D)

if there exist anti-holomorphic functions {ψi}
n
i=1 from D to H so that

(i) ∨n
i=1ψi(w) ⊆ ker (T − w) for w ∈ D,

(ii) ∨w∈D ∨n
i=1 {ψi(w)} = H,

(iii) {ψi(w)}
n
i=1 is linearly independent for w ∈ D, and

(iv) dim ker (T − w) = n for all w ∈ D.

The class Bw
n (D) is closely related to the class considered earlier by Uchiyama [15].

One can extend the rigidity theorem of [1] to the case of Hilbert modules in Bw
n (D), since

the tuple {ψi} frames a rank n hermitian anti-holomorphic bundle.
If one assumes only that the dimension of ker (T − w) is finite and constant, without the

requirement that (T −w)∗ is onto or has closed range, then it is not clear if these spaces form
a bundle or that there exists a frame. However, as we will see, in many cases, such a frame
can be shown to exist.

We continue this section with a brief discussion of some complex geometric notions. Since
the anti-holomorphic vector bundle E∗

H, for a Hilbert module H ∈ Bn(D) also has a hermitian
structure, one can define the canonical Chern connection ▽ on E∗

H along with its associated
curvature two-form KE∗

H
(z). For the n = 1 case, E∗

H is a line bundle and

(2.1) KE∗

H
(z) = −

1

4
▽2 log ‖γz‖

2 dz ∧ dz̄, z ∈ D,

where ▽2 = 4∂∂̄ is the Laplacian and γz is an anti-holomorphic cross section of the bundle.
In Section 4 we will use the formula for the curvature for the case in which the bundle E∗

H is
not a line bundle.

Finally, we define the Sz.-Nagy-Foias model. Let T be a contraction operator on the Hilbert
space H in the C·0 class; that is, T

∗n → 0 in the strong operator topology. The Sz.-Nagy-Foias
model for T has the form H2

D∗
(D)/ΘH2

D(D), where D and D∗ are coefficient Hilbert spaces and
Θ(z) : D → L(D,D∗) is a bounded holomorphic operator-valued function such that Θ(eit) is
an isometry on ∂D a.e. In the next section we take up the case in which D = C and D∗ = C2

in some detail. In Section 4 we extend some results to the case in which D and D∗ are finite
dimensional.
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3. Family of examples

We consider a family of quotient Hilbert modules including and generalizing those of Sz.-
Nagy-Foias in which the basic building blocks are the weighted Bergman spaces.

Definition 3.1. A pair of functions {ϕ1, ϕ2} in H∞(D) is said to be a corona pair if it
satisfies the corona condition

|ϕ1(z)|
2 + |ϕ2(z)|

2 ≥ ǫ > 0,

for some ǫ and all z ∈ D. We denote by Φ the function Φ = (ϕ1, ϕ2) : D → C2 or Φ : D →
L(C,C2) defined by

Φ(z) = (ϕ1(z), ϕ2(z)),

for z ∈ D.

We begin by considering the case for the Hardy module. Let {ϕ1, ϕ2} be a corona pair and
HΦ be the quotient Hilbert module given by

0 −→ H2(D)⊗ C
TΦ−→ H2(D)⊗ C2 πΦ−→ HΦ −→ 0,

where the first map is TΦ which is defined by TΦf = (ϕ1f, ϕ2f) and the second map, πΦ, is the
quotient Hilbert module map. The fact that Φ is a corona pair implies that the range of TΦ
is closed. Note that the A(D)-action on the quotient Hilbert module HΦ is the compression
of the multiplication operatorMz ⊗ IC2 on H2(D)⊗C2 to the co-submodule (ranTΦ)

⊥, where
Mz is the standard module multiplication on H2(D). Equivalently, the module multiplication
operator on HΦ is PHΦ

(Mz ⊗ IC2)|HΦ
. We denote this operator by Nz. In Section 4 we will

show that HΦ is in B1(D) but first we demonstrate that it is in Bw
1 (D) which is sufficient for

our purpose here.

Proposition 3.2. Let {ϕ1, ϕ2} be a corona pair and {e1, e2} an orthonormal basis for C2.

Then γw = kw ⊗ (ϕ2(w)e1 − ϕ1(w)e2) = ϕ2(w)kw ⊗ e1 − ϕ1(w)kw ⊗ e2 is a non-vanishing
anti-holomorphic function from D to H2(D)⊗ C2 such that

(1) N∗
z γw = w̄γw for w ∈ D and

(2) ∨w∈Dγw = HΦ,
where kw is a kernel function for H2(D); that is, M∗

z kw = w̄kw for w ∈ D.

Proof. Since ϕ1, ϕ2 are holomorphic and kw is anti-holomorphic, the fact that w 7→ γw is
anti-holomorphic follows. Furthermore, since {ϕ1, ϕ2} is a corona pair, the functions have no
common zero and hence γw 6= 0 for w ∈ D. Now, for f ∈ H2(D), TΦf = ϕ1f ⊗ e1 + ϕ2f ⊗ e2
and therefore for all w ∈ D,

〈TΦf, γw〉 = 〈ϕ1f, kw〉〈e1, ϕ2(w)e1〉 − 〈ϕ2f, kw〉〈e2, ϕ1(w)e2〉

= ϕ1(w)f(w)ϕ2(w)− ϕ2(w)f(w)ϕ1(w) = 0.
(3.1)

Hence, γw ∈ (ranTΦ)
⊥ = HΦ. Moreover,

N∗
z γw = (Mz ⊗ IC2)∗γw =M∗

z (ϕ2(w)kw)⊗ e1 −M∗
z (ϕ1(w)kw)⊗ e2

= ϕ2(w)w̄kw ⊗ e1 − ϕ1(w)w̄kw ⊗ e2

= w̄γw.
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Finally in order to show that (2) holds, it suffices to prove that for G = g1 ⊗ e1 + g2 ⊗ e2 ∈
H2(D)⊗C2 such that G ⊥ ∨w∈Dγw, we have G ∈ ker RΦ and that in turn implies G ∈ ran TΦ.
Here, RΦ : H2(D)⊗ C2 → H2(D)⊗ C is the operator defined to be RΦ(g1 ⊗ e1 + g2 ⊗ e2) =
ϕ2g1 − ϕ1g2. By the corona theorem there exist ψ1, ψ2 ∈ H∞(D) such that ϕ1ψ1 + ϕ2ψ2 = 1
which implies the exactness of the Koszul complex for the pair (Mϕ1

,Mϕ2
). Hence, there

exists an f ∈ H2(D) satisfying ϕ1f = g1 and ϕ2f = g2, so G ∈ ker RΦ is indeed in ran TΦ
which concludes the proof.

In generalizations of this result in the following section we offer another proof using directly
the formulation of the corona theorem in terms of the existence of a left inverse for the
multiplier map Φ. The above proof has the advantage of showing in this case that HΦ is
similar to H2(D). To see that, note that RΦ defines a module isomorphism between HΦ and
H2(D). We summarize this observation and a further consequence in the following corollary.

Corollary 3.3. For a corona pair {ϕ1, ϕ2} in H∞(D), HΦ ∈ B1(D) and is similar to H2(D).

Before continuing, let us indicate a part of a more general argument why HΦ ∈ B1(D). If
one considers localization of the exact sequence

· · · → H2(D)⊗ C
TΦ→ H2(D)⊗ C2 πΦ→ HΦ → 0,

one can see that dim ker (Nz −w)
∗ = 1 for w ∈ D. In particular, localizing the exact sequence

at w ∈ D yields

H2(D)/Iw ·H2(D) −→ (H2(D)⊗ C2)/Iw · (H2(D)⊗ C2) −→ HΦ/Iw · HΦ −→ 0,

or

Cw ⊗ C
ICw⊗Φ(w)
−→ Cw ⊗ C2 πΦ(w)

−→ HΦ/Iw · HΦ −→ 0.

(Recall that Iw is the maximal ideal, Iw = {p(z) ∈ C[z] : p(w) = 0} in C[z].) Since the range
of Φ(w) is one dimensional, we see that dim ker πΦ(w) = 1 and hence dimHΦ/Iw · HΦ = 1 for
w ∈ D. To show HΦ ∈ B1(D), we need to know that Nz −w is onto for w ∈ D. We postpone
that argument till Section 4.

There is another interpretation of the preceding discussion, closely related to the work of
Uchiyama [15].

Proposition 3.4. Let {ϕ1, ϕ2} be a corona pair and L be the quotient hermitian holomorphic
line bundle defined so that

0 −→ C
Φ

−→ C2 −→ L −→ 0.

Then

E∗
HΦ

∼= E∗
H2(D) ⊗ L∗,

as hermitian anti-holomorphic vector bundles over D.

We will provide more details for this result in the next section in which we replace the
Hardy module by a general quasi-free Hilbert module over A(D).
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A result of M. Cowen and the first author [1] can be reformulated to state that the curvature
is a complete unitary invariant for Hilbert modules in B1(D). More precisely, two Hilbert
modules H and H̃ in B1(D) are unitarily equivalent if and only if

KH(w) = K
H̃
(w), w ∈ D.

Based on Proposition 2.5, one can extend the result to Hilbert modules in Bw
1 (D). Using this

generalization, we obtain the following theorem.

Theorem 3.5. Let {ϕ1, ϕ2} and {ψ1, ψ2} be two corona pairs in H∞(D). Then the quotient
Hilbert modules HΦ and HΨ are unitarily equivalent if and only if

▽2log (|ϕ1(z)|
2 + |ϕ2(z)|

2) = ▽2log (|ψ1(z)|
2 + |ψ2(z)|

2), for all z ∈ D.

Proof. The result follows easily once we can compute the norm of the section

γw(·) = kw(·)⊗ (ϕ2(w),−ϕ1(w)), w ∈ D,

as

‖γw‖
2 = ‖kw‖

2‖(ϕ2(w),−ϕ1(w))‖
2 = ‖kw‖

2(|ϕ1(w)|
2 + |ϕ2(w)|

2),

and hence, we get

(3.2) KHΦ
(w) = KH2(D)(w)−

1

4
▽2 log (|ϕ1(w)|

2 + |ϕ2(w)|
2).

We have the analogous formula for KHΨ
and the result follows.

In the next section, we show that formula (3.2) holds when H2(D) is replaced by other
quasi-free Hilbert module of multiplicity one over D. Here we extend the result replacing the
Hardy module by a weighted Bergman module L2,α

a (D) for −1 < α < ∞. The calculations
are all the same. In particular, one has

· · · −→ L2,α
a (D)⊗ C

TΦ−→ L2,α
a (D)⊗ C2 πΦ−→ L2,α

a (D)Φ −→ 0,

and

(3.3) K
L
2,α
a (D)

Φ

(w) = K
L
2,α
a (D)(w)−

1

4
▽2 log (|ϕ1(w)|

2 + |ϕ2(w)|
2).

Remark 3.6. Observe that the above calculation shows that the hermitian anti-holomorphic
line bundle corresponding to the quotient Hilbert module HΦ is the twisted vector bundle
obtained from the bundle tensor product of the anti-hermitian holomorphic line bundle for
H2(D) with the line bundle

∐

w∈D
C2/Φ(w)C. This holds in general. More precisely, suppose

the Hilbert module Hθ is in Bn(D), where θ ∈ H∞
L(E,E∗)

(D) and E and E∗ are Hilbert spaces,
Tθ has closed range, and Hθ is the quotient Hilbert module

0 → H2(D)⊗ E
Tθ→ H2(D)⊗ E∗ → Hθ → 0.

Then the hermitian anti-holomorphic vector bundle E∗
Hθ

for Hθ is the bundle tensor product

of E∗
H2(D) with the rank n bundle

∐

w∈D
E∗/ranθ(w). In particular, the latter bundle depends

only on a family of finite dimensional objects.
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In the following, we will discuss a specific case of a more general question in which one
considers contractive Hilbert modules H, H̃ ∈ Bw

1 (D), with corona pairs Φ and Ψ in H∞(D).
In particular, which quotient Hilbert modules of this form yield unitarily equivalent Hilbert
modules

HΦ
∼= H̃Ψ?

We answer this question here in case H and H̃ are the Hardy or weighted Bergman modules.
First, we recall a few basic facts.

Since the kernel function for L2,α
a (D) is

D× D ∋ (z, w) 7→ kαw(z) = (1− zw̄)−2−α,

for all z, w ∈ D, −1 < α <∞ and L2,α
a (D) ∈ B1(D); it follows that

KL
2,α
a (D)(w) = −

∂2 log ‖kαw‖
2

∂ω∂w̄
= −

2 + α

(1 − |w|2)2
.

and

KH2(D)(w) = −
1

(1− |w|2)2
.

In particular, L2,α
a (D) ∼= L2,β

a (D) if and only if α = β for −1 < α, β < ∞. Similarly,
L2,α
a (D) ≇ H2(D) for −1 < α < ∞. We extend this result to quotient Hilbert modules

defined for such Hilbert modules which is the main result in this section.

Theorem 3.7. Let Φ and Ψ be two corona pairs in H∞(D). Then the quotient Hilbert modules
L2,α
a (D)Φ and L2,β

a (D)Ψ are unitarily equivalent if and only if α = β and

▽2log
( |ϕ1(w)|

2 + |ϕ2(w)|
2

|ψ1(w)|2 + |ψ2(w)|2

)

= 0.

Moreover, H2(D)Φ is not unitarily equivalent to L2,α
a (D)Ψ for any Φ and Ψ.

Proof. By equation (3.3), we get

KL
2,α
a (D)Φ

(w) = −
2 + α

(1 − |w|2)2
−

1

4
▽2 log (|ϕ1(w)|

2 + |ϕ2(w)|
2),

and

KL
2,α
a (D)Ψ

(w) = −
2 + β

(1 − |w|2)2
−

1

4
▽2 log (|ψ1(w)|

2 + |ψ2(w)|
2).

The sufficiency part of the theorem follows from the above formulas. To prove that the
conditions are necessary, suppose L2,α

a (D)Φ ∼= L2,β
a (D)Ψ. It is enough to prove that α = β.

Since the curvature is a complete unitary invariant, we have

KL
2,α
a (D)Φ

(w) = KL
2,α
a (D)Ψ

(w),

and so
4(α− β)

(1− |w|2)2
= ▽2log

|ψ1(w)|
2 + |ψ2(w)|

2

|ϕ1(w)|2 + |ϕ2(w)|2
.

By the above equality, the result follows from the following lemma. This is because the fact
that Φ and Ψ are corona pairs implies that the logarithm of the quotient is bounded.
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Lemma 3.8. There does not exist a bounded function f : D → (0,∞) such that

(3.4)
1

(1− |z|2)2
= ▽2f(z).

Proof. Suppose f is a bounded function which solves equation (3.4). Since 1
4
▽2 [(|z|2)m] =

∂∂̄[(|z|2)m] = m2(|z|2)m−1 for all m ∈ N, it follows that

▽2g(z) =
1

(1− |z|2)2
,

where

g(z) =
1

4

∞
∑

m=1

|z|2m

m
= −

1

4
log (1− |z|2),

and the series converges for all z ∈ D. Consequently, the general solution of equation (3.4) is
given by

f(z) = g(z) + h(z),

where h(z) is a harmonic function. Moreover, by assumption

|g(z) + h(z)| ≤ M,

for some M > 0; that is,

−g(z)−M ≤ h(z) ≤ −g(z) +M.

This yields

exp (h(z)) ≤ exp (−g(z) +M) = (1− |z|2) exp (M).

Thus for z = reiθ we have exp (h(reiθ)) ≤ (1−r2)exp (M), so that exp (h(reiθ)) → 0 uniformly
as r → 1−. This implies that exp h(z) ≡ 0 by the maximum principle since exp h(z) =

| exp(h(z) + ih̃(z))|, where h̃ is a harmonic conjugate for h. This is a contradiction, and the
proof is complete.

A key idea for this proof was provided to the authors by E. Straube.
A natural question arises as to what happens to these results if we weaken the corona

condition. We will discuss this situation in Section 6.

4. Curvature equalities for general R

An interesting observation in the proof of Theorem 3.5 is that the difference of the curvature
of HΦ and that of H2(D),

KHΦ
(w)−KH2(D)(w) = −

1

4
▽2 log (|ϕ1(w)|

2 + |ϕ2(w)|
2) dz ∧ dz̄,

depends only on the multipliers ϕ1 and ϕ2 and not on H2(D). Moreover, the same is seen to
be true when H2(D) is replaced by any of the family of weighted Bergman Hilbert modules.
In this section, we prove that this phenomenon holds for a large class of quasi-free Hilbert
modules.
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Theorem 4.1. Suppose R is a contractive, reproducing kernel Hilbert module over D with
kernel function k : D×D → C such that R ∈ B1(D) and set kw = k(·, w) for w ∈ D. Assume
that Φ = {ϕ1, ϕ2} is a corona pair in H∞(D), TΦ : R⊗C → R⊗C2, and RΦ is the quotient
Hilbert module defined so that RΦ = (R⊗ C2)/ran TΦ. Then

(1) γw = kw⊗(ϕ2(w)e1−ϕ1(w)e2) = kw⊗det

[

e1 ϕ1(w)

e2 ϕ2(w)

]

is anti-holomorphic and satisfies

N∗
z γw = w̄γw, where {e1, e2} is an orthonormal basis for C2, and Nz is module multiplication

on RΦ,
(2) ∨w∈Dγw = RΦ ⊆ R⊗ C2, and
(3) RΦ ∈ B1(D).

Proof. That function γw is anti-holomorphic follows from the fact that ϕ1(w), ϕ2(w) and
kw are anti-holomorphic functions from D to C, C and R, respectively. Similarly, the same
argument used in the proof of Proposition 3.2 shows that N∗

z γw = w̄γw for all w ∈ D.
To show (2) we must prove for G = g1 ⊗ e1 + g2 ⊗ e2 ∈ R⊗C2, that G ⊥

∨

w∈D
γw implies

that G ∈ ran TΦ. If G ⊥ γw for every w ∈ D, then

〈G, γw〉 = 〈g1, kw〉〈e1, ϕ2(w)e1〉 − 〈g2, kw〉〈e2, ϕ1(w)e2〉

= g1(w)ϕ2(w)− g2(w)ϕ1(w) = 0,

or

(4.1) det

[

g1(w) ϕ1(w)
g2(w) ϕ2(w)

]

= 0,

for all w ∈ D. Then there exists a unique nonzero function η(w) satisfying gi(w) = ϕi(w)η(w)

for i = 1, 2. Here we are using the fact that the rank of

[

ϕ1(w)
ϕ2(w)

]

is one for w ∈ D.

The proof is completed once we show that η ∈ R. Let ψi for i = 1, 2 be functions in H∞(D)
such that ψ1(w)ϕ1(w) + ψ2(w)ϕ2(w) = 1 for every w ∈ D. Note that the existence of such
functions follows from the corona theorem and the assumption that {ϕ1, ϕ2} is a corona pair.
Then the claim follows since we can express the function η as η = (ψ1ϕ1+ψ2ϕ2)η = ψ1g1+ψ2g2,
where ψi ∈ H∞(D) and gi ∈ R for i = 1, 2. This completes the proof of (2).

Now, applying localization to the short exact sequence

0 −→ R⊗ C
TΦ−→ R⊗ C2 −→ RΦ −→ 0,

we find that dim ker (Nz − w)∗ = 1 for w ∈ D. Hence, we have RΦ ∈ Bw
1 (D). Finally, if we

write

Mz ∽

[

∗ ∗
0 Nz

]

,

relative to the decomposition R = ranTΦ ⊕ (ranTΦ)
⊥, then we see that the assumption

R ∈ B1(D) implies Mz is onto, which implies Nz is onto for w ∈ D and hence RΦ ∈ B1(D).
If we assume that H∞(D) is the multiplier algebra for a bounded quasi-free Hilbert module

R, then we do not need to assume that R is contractive.
We continue with some further consequences.



CURVATURE INVARIANTS AND GENERALIZED CANONICAL OPERATOR MODELS 13

Theorem 4.2. Assume that the hypotheses of Theorem 4.1 hold. Consider the hermitian
holomorphic line bundle LΦ given by the exact sequence

0 −→ C
Φ

−→ C2 −→ LΦ −→ 0;

that is, the fiber LΦ(w) = C2/ranΦ(w). Then
(1) E∗

RΦ

∼= E∗
R ⊗ L∗

Φ, where ⊗ denotes the tensor product of vector bundles,
(2) KRΦ

−KR = KLΦ
, and

(3) KLΦ
= −1

4
▽2 log (|ϕ1(z)|

2 + |ϕ2(z)|
2)dz ∧ dz̄.

Proof. The main observation is that we can use the anti-holomorphic section γw for E∗
RΦ

to

represent E∗
RΦ

as E∗
R ⊗L∗

Φ since kw and and ϕ2(w)e1−ϕ1(w)e2 are anti-holomorphic sections
of E∗

R and L∗
Φ, respectively. To calculate the curvature of E∗

RΦ
, we note that

log ‖γw‖
2 = log (‖ϕ2(w)e1 − ϕ1(w)e2‖

2‖kw‖
2) = log (|ϕ1(z)|

2 + |ϕ2(z)|
2) + log ‖kw‖

2,

and the result follows.
Essentially this identification was used implicitly by Uchiyama [15] and Treil and the third

author [9] when R = H2(D).
We can use this result to show that the question of when two quotient Hilbert modules

RΦ and RΨ are unitarily equivalent for some contractive quasi-free Hilbert module R is
independent of R.

Corollary 4.3. Let R and R̃ be two Hilbert modules satisfying the hypotheses of Theorem
4.1 and {ϕ1, ϕ2}, {ψ1, ψ2} be two corona pairs. Then RΦ

∼= RΨ if and only if R̃Φ
∼= R̃Ψ.

One can extend these results to the case of a quotient Hilbert module RΦ, where Φ is a
multiplier from Cm to Cm+1. We can assume that R is contractive in which case its multiplier
algebra is H∞(D) or finesse that issue by assuming Φ has a left inverse in the multiplier
algebra. Here we do the latter avoiding the use of the corona theorem.

Theorem 4.4. Let R be a reproducing kernel Hilbert module over D such that R ∈ B1(D).
Assume that Φ : D → L(Cm,Cm+1) is a multiplier which has a left inverse multiplier map
Ψ : D → L(Cm+1,Cm). Then the multiplication operator TΦ has closed range, rank Φ(w) = m
for w ∈ D and Φ∗(z)Φ(z) ≥ δICm for some δ > 0. If RΦ is the quotient Hilbert module
RΦ = (R⊗ Cm+1)/ran TΦ, then

(1) RΦ ∈ B1(D),
(2) LΦ(w) = Cm+1/ranΦ(w) defines a holomorphic line bundle such that E∗

RΦ

∼= E∗
R ⊗L∗

Φ,
and

(3) KRΦ
−KR = KLΦ

.

Proof. Essentially the same proof as that used above will work once we exhibit a non-vanishing
anti-holomorphic cross section of L∗

Φ and the resulting anti-holomorphic cross section of RΦ.
To that end express Φ as an (m+ 1)×m matrix of functions {ϕij} ⊆ M(R), the multiplier
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algebra of R, and let {e1, . . . , em+1} be the standard orthonormal basis for Cm+1. If we set

(4.2) ∆Φ(w) = det





e1 ϕ1,1 · · · ϕ1,m
...

...
...

...
em+1 ϕm+1,1 · · · ϕm+1,m



 ,

the formal determinant, for w ∈ D, then standard properties of determinants show that
kw ⊗∆Φ(w) is orthogonal to ran TΦ for w ∈ D, where kw is an anti-holomorphic cross section

of E∗
R and ∆Φ(w) is the complex conjugate of ∆Φ(w). Moreover, since the rank of Φ(w) is

m, ∆Φ(w) 6= 0 for w ∈ D. Thus γw = kw ⊗∆Φ(w) 6= 0 for w ∈ D because the coefficients of
∆Φ(w) are the complex conjugate of the determinants of the principal minors of the matrix
for Φ(w) and hence a cross section of E∗

RΦ
.

We claim that kw ⊗ ∆Φ(w) is the desired anti-holomorphic cross-section of E∗
RΦ

; that is,
∨

w∈D
kw⊗∆Φ(w) = RΦ, which would complete the proof since the remainder of the argument

is the same as that for Proposition 3.2. Let G = Σm+1
i=1 gi⊗ ei ∈ R⊗Cm+1 and assume G ⊥ γw

for every w ∈ D. Then we have that gi(w) = Σm
j=1ηj(w)ϕij(w) for i = 1, ..., m + 1, for

some unique functions {ηj(w)}
m
j=1 on D. To show this one uses Cramer’s rule to solve for

the {ηj(w)}
m
j=1 as follows. For each w0 ∈ D at least one of the principal minors of Φ(w0) is

non-zero. Since the determinant of the matrix




g1(w0) ϕ1,1(w0) · · · ϕ1,m(w0)
...

...
...

...
gm+1(w0) ϕm+1,1(w0) · · · ϕm+1,m(w0)





is zero and the determinant of some principal minor is not, we can solve uniquely for the

{ηj(w0)}
m
j=1. To prove that the resulting functions on D are in R, let G =





g1
...

gm+1



 and

Ξ =





η1
...
ηm



 so that G(w) = Φ(w)Ξ(w) for w ∈ D. By hypothesis there exists a multiplier

Ψ such that ΨΦ = I. Since Ξ(w) = (Ψ(w)Φ(w))Ξ(w) = Ψ(w)(Φ(w)Ξ(w)) = Ψ(w)G(w) as
functions on D, we have that Ξ(w) is indeed in the vector-valued R⊗ Cm, which completes
the proof.

This result enables us to generalize Theorem 3.5 to a larger class of quasi-free Hilbert
modules R and to multipliers from R⊗ Cm to R⊗ Cm+1 for m ∈ N.

Corollary 4.5. Assuming the hypotheses of Theorem 4.4 hold, then the quotient Hilbert
modules RΦ and RΨ are unitarily equivalent if and only if

▽2log ‖∆Φ‖ = ▽2log ‖∆Ψ‖,

where △Φ and △Ψ are defined in the proof of Theorem 4.4.

Proof. The result follows since kw⊗∆Φ(w) and kw⊗∆Ψ(w) are anti-holomorphic cross-sections
of E∗

RΦ
and E∗

RΨ
, respectively.
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This representation of reproducing kernel Hilbert modules in B1(D) as a quotient module,
does not include all of the quotient Hilbert modules in B1(D). For that, one would need to
consider infinite dimensional coefficient Hilbert spaces E and E∗, and a multiplier Φ : D →
L(E , E∗) such that dim E∗/ranΦ(z) = 1 for z ∈ D. An explicit formula for an anti-holomorphic
cross-section and the curvature of the quotient Hilbert module, however, would require some
additional hypothesis such as the existence of the operator-valued determinant to define an
analogue of △Φ(w). We will not pursue this matter in the current paper.

For E and E∗ finite dimensional and a multiplier Φ : D → L(E , E∗) with constant rank, one
can define bundles with fibers ker Φ(w) and coker Φ(w) = E∗/ ranΦ(w) for w ∈ D. Moreover,
using the reproducing kernel, related Hilbert modules in Bk(D) can be defined for k ≥ 1. We
consider here the most general case when Φ has no kernel and only some of the most direct
results.

Theorem 4.6. Suppose R ∈ B1(D) is a reproducing kernel Hilbert module over D. Assume
that Φ : D → L(E , E∗) is a multiplier and that TΦ : R⊗ E → R⊗ E∗ has a left inverse TΨ for
some multiplier Ψ : D → L(E∗, E). Then the rank Φ(z) = dim E = m for z ∈ D, the range of
TΦ is closed and there exists an n-dimensional hermitian holomorphic bundle V over D such
that

E∗
RΦ

∼= E∗
R ⊗ V ∗,

or

E∗
RΦ

(w) ∼= E∗
R(w)⊗ V ∗(w),

for w ∈ D, where RΦ is the quotient Hilbert module defined by (R ⊗ E∗)/ranTΦ, V (w) =
E∗/ran Φ(w) and n = dim E∗ −m. Moreover, one has KRΦ

−KR ⊗ IV = IR ⊗KV , or

KRΦ
(w)−KR(w)⊗ IV (w) = IR(w)⊗KV (w),

for w ∈ D. Finally, RΦ ∈ Bn(D).

Proof. First, the fact that Φ has a left inverse implies that rank Φ(w) = dim E for w ∈ D. Now
let V ∗ be the anti-holomorphic sub-bundle of D×E∗ defined to be the orthogonal complement
of ran Φ(w). Here we are using the fact that rank Φ(w) is constant. (The bundle V , the dual
of V ∗, is most naturally defined as the quotient bundle of D×E∗ by ran Φ(w).) Since V ∗ is an
anti-holomorphic vector bundle over D, it is trivial and hence there exists an anti-holomorphic
frame {hi(w)}

n
i=1 for V ∗. If kw is a non-vanishing anti-holomorphic cross-section of the line

bundle E∗
R, then we show that {kw ⊗ hi(w)}

n
i=1 is an anti-holomorphic frame for E∗

RΦ
. The

rest of the proof is similar to that given for Theorem 4.4.
First, we observe that each kw⊗hi(w), w ∈ D and i = 1, . . . , n, is orthogonal to the range of

TΦ. To prove RΦ ∈ Bn(D), we need to show that RΦ = ∨{kw ⊗ hi(w) : w ∈ D, i = 1, . . . , n}.

Suppose G =
∑dimE∗

i=1 gi ⊗ ei ∈ R⊗ E∗ is orthogonal to ∨{kw ⊗ hi(w) : w ∈ D, i = 1, . . . , n},

where {ei}
dim E∗
i=1 is an orthonormal basis for E∗, or 〈G, kw ⊗ hi(w)〉 = 0 for w ∈ D and

i = 1, . . . , n. Since for w0 ∈ D, the rank of Φ(w0) is m, we can identify an m×m sub-matrix
of Φ(w0) with non-zero determinant. Again, using Cramer’s rule we can solve uniquely for
an m-tuple of complex numbers, Ξ(w0) = {ηi(w0)}

m
i=1 ∈ Cm, such that G(w0) = Φ(w0)Ξ(w0).
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To show that the resulting functions {ηi}
m
i=1 on D are in R, we use the left inverse Ψ(w) of

Φ(w) to conclude that

Ξ(w) = Ψ(w)Φ(w)Ξ(w) = Ψ(w)G(w) ∈ R⊗ E∗.

Here we are using the fact that G ∈ R⊗ E∗ and Ψ is a multiplier in L(R⊗ E∗,R⊗ E).
To establish the curvature formula, we first recall that the formula for the curvature of

the Chern connection for a vector bundle is ∂[H−1∂̄H ], where H is the gramian for an anti-
holomorphic frame for the bundle (see [16]). IfHΦ is the gramian for the frame {kw⊗hi(w)}

m
i=1,

then HΦ(w) is the n× n matrix

HΦ(w) =
(

〈kw ⊗ hi(w), kw ⊗ hj(w)〉
)n

i,j=1
= ‖kw‖

2
(

〈hi(w), hj(w)〉
)n

i,j=1
= ‖kw‖

2Hh(w),

where Hh is the gramian for the anti-holomorphic frame {hi(w)}
n
i=1 for V ∗. Then

∂[H−1
Φ (∂̄HΦ)] = ∂[

1

‖kw‖2
H−1

h (∂̄(‖kw‖
2Hh))]

= ∂[
1

‖kw‖2
H−1

h ((∂̄(‖kw‖
2)Hh) + ‖kw‖

2∂̄Hh)]

= ∂(
1

‖kw‖2
∂̄(‖kw‖

2) +H−1
h ∂̄Hh))

= ∂(
1

‖kw‖2
∂̄(‖kw‖

2)) + ∂[H−1
h (∂̄Hh)].

Hence, expressing these matrices in terms of the respective frames and using the fact that the
coordinates of a bundle and its dual can be identified, one has

KRΦ
(w)−KR(w)⊗ IV (w) = IR(w)⊗KV (w),

for w ∈ D, and its dual are adjoints of each other and hence can be identified since they are
self-adjoint, which completes the proof.

As a consequence we can extend our corollary on the independence of unitary equivalence
of the quotient Hilbert modules on the building block Hilbert module as follows.

Corollary 4.7. Let R and R̃ be Hilbert modules and Φi : D → L(E , E∗) for i = 1, 2 be

multiplier maps for R and R̃, respectively, satisfying the hypotheses of Theorem 4.4. Then
RΦ1

∼= RΦ2
if and only if R̃Φ1

∼= R̃Φ2
.

Proof. From the theorem we see that E∗
RΦi

∼= E∗
R⊗V ∗

Φi
and E∗

R̃Φi

∼= E∗

R̃
⊗V ∗

Φi
for i = 1, 2. The

result follows from the fact that E∗
R ⊗V ∗

Φ1
is isometrically isomorphic to E∗

R⊗V ∗
Φ2

if and only
if V ∗

Φ1

∼= V ∗
Φ2
, which follows from the fact that E∗

R⊗V ∗
Φ1

is isomorphic to V ∗
Φ1

and isometrically
isomorphic to the latter in which the metric on each fiber of V ∗

Φ1
(w) is multiplied by ‖kw‖.

5. B1(D) class and Similarity

In this section, we investigate a sufficient condition for certain quotient Hilbert modules,
which are in B1(D), to be similar to the rank one quasi-free Hilbert module from which it is
constructed.
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Theorem 5.1. LetR be a multiplicity one quasi-free Hilbert module over D. Let ϕ1, ϕ2, ψ1, ψ2 ∈
M(R) such that ϕ1ψ1 + ϕ2ψ2 = 1. Then the range of TΦ is closed, where TΦf = (ϕ1f, ϕ2f),
and the quotient Hilbert module RΦ given by

· · · −→ R⊗ C
TΦ−→ R⊗ C2 πΦ−→ RΦ −→ 0,

is similar to R, where πΦ is the quotient map.

Proof. Let RΨ : R⊕R → R be the bounded module map defined by RΨ(f ⊕ g) = ψ1f +ψ2g
for f, g ∈ R. By assumption,

RΨTΦ = I.

Then for any f ⊕ g ∈ R⊕R, we have

f ⊕ g = (TΦRΨ(f ⊕ g)) + (f ⊕ g − TΦRΨ(f ⊕ g)),

with TΦRΨ(f ⊕ g) ∈ ranTΦ and (f ⊕ g − TΦRΨ(f ⊕ g)) ∈ kerRΨ. Also

ranTΦ ∩ kerRΨ = {0}.

Consequently,

R⊕R = ranTΦ
·

+ kerRΨ.

Hence, there exists an idempotent Q ∈ M(R) such that Q(Φf + g) = g for f ∈ R and
g ∈ ker RΨ. Moreover, ranTΦ = kerQ and kerRΨ = ranQ. The invertible module map
Q ◦ π−1

Φ : RΦ → R is well defined and the required similarity.

Corollary 5.2. Let {ϕ1, ϕ2} be a corona pair in H∞(D) and R be a multiplicity one, con-
tractive quasi-free Hilbert module. Then the quotient Hilbert module RΦ given by

· · · −→ R⊗ C
TΦ−→ R⊗ C2 πΦ−→ RΦ −→ 0,

is similar to R.

Proof. We appeal to the corona theorem for H∞(D) to get ψ1, ψ2 ∈ H∞(D) such that
ϕ1ψ1 + ϕ2ψ2 = 1. The corollary now follows from Theorem 5.1.

Another way to prove Corollary 5.2 is to use a Koszul complex type construction. In other
words, if ϕ1ψ1 + ϕ2ψ2 = 1, then we let TΨ̃ be the module map in L(R,R ⊕ R) defined by
TΨ̃f = (−ψ2f ⊕ ψ1f). Therefore,

R⊗ C2 = ranTΦ
·

+ ranTΨ̃,

and hence

ranTΨ̃ ≃ RΦ.

Since ker TΨ̃ = {0}, the corollary follows.
We conclude the section with a result which essentially states that the similarity criterion

for a certain class of quotient Hilbert modules is independent of the choice of the basic quasi-
free Hilbert module ”building blocks”. We begin with the following theorem, which states
that the splitting for a class of quotient Hilbert modules is an invariant property.
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Theorem 5.3. Suppose R, R̂ ∈ B1(D) are two reproducing kernel Hilbert module over D with

multiplier spaces M(R) and M(R̂), respectively, and let θ ∈ M(R) ∩M(R̂) such that both

Tθ ∈ L(R⊗ E ,R⊗ E∗) and T̂θ ∈ L(R̂ ⊗ E , R̂ ⊗ E∗) have multiplier left inverse with E and E∗
finite dimensional Hilbert spaces. Then the quotient Hilbert modules Rθ = (R ⊗ E∗)/ran Tθ
and R̂θ = (R̂ ⊗ E∗)/ran T̂θ are in Bn(D). Moreover, the resolution

R⊗ E
Tθ−→ R⊗ E∗

πθ−→ Rθ −→ 0,

of Rθ splits if and only if the analogous resolution of R̂θ splits.

Proof. The first part follows from Theorem 4.6. To prove the second part, first, since Rθ and
R̂θ are in Bn(D), localizing at z ∈ D, we have the following diagram

Ez E∗ z Vθ,z 0

ER ⊗ E ER ⊗ E∗ ER ⊗ Vθ 0

-

- -

- -

-

? ? ?

where Vθ = ⊔w∈ΩE∗/(θ(w)E) and dim [E∗/(θ(w)E)] = n for all w ∈ D. Now assume that Rθ

splits; that is, there exists a cross section σθ : Rθ → R⊗ E∗ such that πθσθ = IRθ
. Again we

localize this module map to obtain

Vθ z
σθ(z)
−→ E∗ z.

Moreover,

πθ(z)σθ(z) = IVθz
.

Then,

E∗z = ran θ(z)
·

+ ran σθ(z).

This decomposition is clearly independent of the choice of the Hilbert module R. Moreover,
given such a decomposition, one can obtain the cross section σθ. Hence, Rθ splits if and only
if R̂θ also splits.

By Theorem 3.2 of [2] and Theorem 5.3, we obtain

Theorem 5.4. Let R ∈ B1(D) be a reproducing kernel Hilbert module with H∞(D) as the
multiplier space and let θ ∈ H∞

L(E,E∗)
(D) with E and E∗ finite dimensional Hilbert spaces such

that Tθ ∈ L(R⊗ E ,R⊗ E∗) has a left inverse in H∞
L(E∗,E)

(D). If the quotient Hilbert module

Rθ = (R⊗E∗)/ran Tθ is in Bn(D), then the quotient Hilbert module Hθ = (H2(D)⊗E∗)/ran Tθ
is similar to R⊗F if and only if Hθ is similar to H2(D)⊗ F for the same Hilbert space F .
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Proof. Restricting Theorem 3.2 in [2] to the one-variable context, we have that Hθ is similar
to H2(D)⊗F for some Hilbert space F if and only if the short exact module sequence defining
Hθ splits. The rest of the proof follows from the previous theorem.

Theorem 5.4 along with Theorem 0.1 in [9] provide a connection between the quotient
Hilbert modules of the Hardy module and those of any other reasonable contractive repro-
ducing kernel Hilbert module over D such as the Bergman module or the weighted Bergman
modules.

Corollary 5.5. With the assumptions in Theorem 5.4, if Π(z) is the orthogonal projection
onto the localization of πθ at z, then the following statements are equivalent:

(1) Rθ is similar to R⊗F for some Hilbert space F .
(2) Hθ is similar to H2(D)⊗F for some Hilbert space F .
(3) The eigenvector bundles of Rθ and R⊗F are uniformly equivalent; that is, there exists

an anti-holomorphic point-wise invertible bundle map Φ : E∗
RΦ

→ E∗
R ⊗F and a scalar c > 0

such that ‖Φ(w)‖ ≤ c and ‖Φ−1(w)‖ ≤ c for all w ∈ D.
(4)There exists a bounded subharmonic function ϕ on D such that

∇2ϕ(z) ≥ ‖
∂Π(z)

∂z
‖22 −

n

(1− |z|2)2
, (z ∈ D),

for some n = dim F where ‖ · ‖2 denotes the Hilbert-Schmidt norm.
(5) The measure

(‖
∂Π(z)

∂z
‖22 −

n

(1− |z|2)2
)(1− |z|)dxdy

is a Carleson measure for some n = dim F and the estimate

(‖
∂Π(z)

∂z
‖22 −

n

(1− |z|2)2
)
1

2 ≤
C

1− |z|

holds for some C > 0.

6. Concluding remarks

In this paper we have confined our attention to multipliers with a left inverse and hence
closed range and no zeros. Obviously, both assumptions are artificial restrictions. Given a
pair {ϕ1, ϕ2} in M(R), one can consider the quotient module defined by the submodule of
R⊗C2 equal to the closure of the range of TΦ. Many of the results obtained in Section 4 can
be extended to this case with their proof based on the existence of an appropriate analogue of
inner-outer factorization for functions in R. Details will be provided in a subsequent paper.

Another possible direction for generalization concerns the case in which the pair of functions
is allowed to have common zeros or to converge to zero at the boundary of D. Consideration
of the case in which ‖Φ(z)‖ is dominated by the absolute value of a singular inner function
is instructive for what can happen. This phenomenon will also be considered in a subsequent
paper.

In Sections 3 and 4 we took up the question of which quotient modules Rθ1 and Rθ2 are
unitarily equivalent for θi(z) : C

m → Cm+1 for z ∈ D and i = 1, 2 and obtained an explicit
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criterion. Of course, this question is of interest for the case of quotient modules defined by
multipliers θi(z) : Cm → Cl for i = 1, 2 and arbitrary non-negative integers m and l. The
arguments for Theorem 4.6 and Corollary 4.7 indicate one approach to providing an answer
using the characterization of finite dimensional hermitian holomorphic bundles and hence in
terms of partial derivatives of the curvatures (see [1]). However, one might be able to obtain
more concrete results paralleling the one in Theorem 4.4. Rather than attempt to suggest
such general results here, we pose the problem of doing that for the case C → Cm for general
m or, for example, for C → C4.

Another question concerns a possible generalization of Corollary 5.5 to the case in which
one or both of E and E∗ are infinite dimensional. Examples due to Treil [13] (see also [14])
show some of the pathology that can occur in a holomorphic sub-bundle S of the trivial
bundle D×H for H an infinite dimensional Hilbert space even when S or (D×H)/S is finite
dimensional. Hence, any extension of Corollary 5.5 to such cases is likely to be very technical.

Another question concerns the extension of the results of this paper to a general bounded
domain Ω in C or to bounded domain in Cm for m > 1. Some questions for the latter case
will be considered in [7].

Finally, the natural framework for the kind of similarity question studied in the last section
would be to ask when two quotient modules RΦ1

and RΦ2
are similar for corona pairs Φ1 and

Φ2. Since Φ being a corona pair implies RΦ is similar to R, this question only makes sense
for more general pairs such as those covered by the following definition.

Definition 6.1. A pair of functions {ϕ1, ϕ2} in H∞(D) is said to be a quasi-corona pair if

|ϕ1(z)|
2 + |ϕ2(z)|

2 > 0,

for all z ∈ D except for an at most countable set.

The considerations of Theorems 3.5 and 3.7 hold if we replace the assumption that Φ is
a corona pair by the assumption that Φ is a quasi-corona pair. Since the set of zeroes of
a holomorphic function is countable, it is discrete. One would also need to consider the
derivatives in the sense of distributions to handle the curvature of quotient modules defined
by the closure of ranges of two quasi-corona pairs Φ1 and Φ2.
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