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Groups, cacti and framed little discs

Richard Hepworth

Copenhagen University

Abstract

Let G be a topological group. Then the based loopspace ΩG of G is an
algebra over the cacti operad, while the double loopspace Ω2

BG of the
classifying space of G is an algebra over the framed little discs operad.
This paper shows that these two algebras are equivalent, in the sense
that they are weakly equivalent E-algebras, where E is an operad weakly
equivalent to both framed little discs and cacti. We recover the equivalence
between cacti and framed little discs, and Menichi’s isomorphism between
the BV-algebras H∗(ΩG) and H∗(Ω

2
BG).

1 Introduction

The framed little discs operad fD was introduced by Getzler in [5]. The double
loopspace Ω2X of any based space X is naturally an algebra over fD, and any
such algebra is weakly equivalent to one of the form Ω2BG for some topological
group G (with non-degenerate basepoint, which we assume throughout).

The cacti operad was introduced by Voronov [13] in order to understand
the BV-algebras H∗(LM) of Chas and Sullivan [2]. We will use a variant of
cacti introduced by Salvatore in [12], and will denote it by C. Salvatore used a
version of the Deligne conjecture to show that for any topological group G, the
loopspace ΩG is an algebra over C.

So, given a topological group G we have an fD-algebra Ω2BG and a C-
algebra ΩG. There is a standard weak equivalence ΩG ≃ Ω2BG, while C and
fD are weakly equivalent operads. It is therefore natural to ask whether ΩG
and Ω2BG are related as algebras. The theorem below shows that this is indeed
the case.

Theorem. There is an operad E equipped with weak equivalences of operads

fD
≃

←−−−−−
π1

E
≃

−−−−−→
π2

C

such that, for any topological group G, there is an E-algebra εG equipped with
weak equivalences of E-algebras

Ω2BG
≃

←−−−−−
p1

εG
≃

−−−−−→
p2

ΩG.

Here Ω2BG and ΩG are regarded as E-algebras using π1 and π2 respectively, and

p1 and p2 are compatible with the standard weak equivalence h : ΩG
≃
−→ Ω2BG

in the sense that h ◦ p2 ≃ p1.
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The operad E is defined as follows. Given elements a ∈ fD(n) and c ∈ C(n),
write |a| for the space obtained from D2 by deleting the interiors of the little
discs of a, and write |c| for the configuration of circles underlying c. Then E(n) is
the space of triples (a, c, f), where a ∈ fD(n), c ∈ C(n), and where f : |a| → |c|
is a homotopy equivalence satisfying the following two boundary conditions.
First, the boundary of the i-th little disc is sent into |c| by the inclusion of the
i-th lobe. Second, the boundary of the big disc is sent into |c| by the pinch map.
A typical element (a, c, f) ∈ E(2) is depicted below.

a c f

1 2

1 2

There are forgetful maps

fD(n)
π1←−−−−− E(n)

π2−−−−−→ C(n).

The first part of our theorem can now be restated as follows.

Theorem A. The spaces E = {E(n)} form a topological operad, and π1 and π2
are weak equivalences of operads.

In particular, we recover the fact that cacti and framed little discs are weakly
equivalent. This was stated by Voronov [13] and first proved by Kaufmann [8].
A different proof has since been given by Bargheer [1]. In those accounts, as
in Theorem A, one constructs some intermediate operad O equipped with weak
equivalences to both fD and C. In Kaufmann’s proof O is obtained using a
recognition principle of Fiedorowicz [4], while in Bargheer’s proof one takes
O = WfD, the Boardman-Vogt W-construction on fD. The advantage of
Theorem A is that E is constructed using only the geometry of the original
operads fD and C. Further, it allows us to construct a natural E-algebra εG
weakly equivalent to both ΩG and Ω2BG. Note, however, that Theorem A still
relies on Kaufmann’s computation of the weak homotopy type of the C(n).

Now we describe the E-algebra εG. Let EG→ BG be the universal principal
G-bundle. Then εG is the space of based maps D2 → EG that send S1 into the
orbit of the basepoint. There are maps

Ω2BG
p1

←−−−−− εG
p2

−−−−−→ ΩG

given respectively by projecting from EG to BG and by restricting from D2 to

S1. These are compatible with h : ΩG
≃
−→ Ω2BG in the sense that h ◦ p2 ≃ p1.

We can now restate the second part of our theorem as follows.

Theorem B. The space εG is an E-algebra, and the maps p1 and p2 are weak
equivalences of E-algebras.

We recover a result of Menichi [11] which states that h∗ : H∗(ΩG)→ H∗(Ω
2BG)

is an isomorphism of BV-algebras. (Menichi’s result holds in the more general
case that G is a grouplike topological monoid.)
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The key ingredient in our paper is the following common feature of the operads
fD and C. To elements a ∈ fD(n) and c ∈ C(n) we can associate the spaces |a|
and |c| defined above, which we call the realizations of a and c. The realizations
come together with incoming boundary maps

∂1, . . . , ∂n : S
1 → |a|, ∂1, . . . , ∂n : S

1 → |c|

and outgoing boundary maps

∂out : S
1 → |a|, ∂out : S

1 → |c|.

Together, these realizations and boundary maps form what we call realization
systems for fD and C. This means that they are compatible with the symmetry
maps, composition maps, and topology of the original operads fD and C. Most
importantly, the realization |x ◦i y| of the composite of x and y is the pushout
of ∂i : S

1 → |x| and ∂out : S
1 → |y|. This fact is easily verified for both fD and

C, and leads directly to the definition of composition in E.
The paper contains a detailed development of realization systems. The cru-

cial result takes two operads P and Q with realization systems and constructs a
mapping operad M. Points ofM(n) are triples (p, q, f) where p ∈ P(n), q ∈ Q(n)
and f : |p| → |q| is a map satisfying f ◦ ∂i = ∂i and f ◦ ∂out = ∂out. The operad
E is obtained in the case P = fD, Q = C by restricting to the suboperad of M
consisting of triples (p, q, f) in which f is a homotopy equivalence. The three
algebras studied in the paper, namely the fD-algebra Ω2BG, the C-algebra ΩG,
and the E-algebra εG, are also described in terms of the realization systems for
fD and C.

The paper begins in Section 2 with a discussion of realization systems, and
proves that from a pair of operads with realization systems, one obtains a map-
ping operadM. Sections 3 and 4 recall framed little discs and cacti, and describe
their realization systems. Then Section 5 applies the mapping operad construc-
tion to P = fD and Q = C to obtain E.

Section 6 uses the realization systems to describe the actions of fD on Ω2BG,
of C on ΩG, and of E on εG. With these ingredients in place Theorem B follows
without difficulty.

It remains to complete the proof of Theorem A by showing that π1 and
π2 are weak equivalences. The structure of the proof is explained in detail in
Section 7. It is shown there that Theorem A follows from the computation of
a certain long exact sequence, which is carried out in Section 8, and from a
further result, Theorem C.

Theorem C states roughly that the projection π1×π2 : E(n)→ fD(n)×C(n)
is a quasifibration. It relies on some basic results on mapping spaces which are
given in Section 9, and on a study of the fibrewise structure of the realizations of
fD and C, which is carried out in Sections 10 and 11. The proof of Theorem C
is completed in Section 12.

An appendix recalls some basic results of fibrewise topology.

2 Realization systems for operads

In this section we introduce realization systems for an operad O. A realization
system with boundariesX is a rule that assigns to each element x ∈ O(n) a space
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|x|, the realization of x, equipped with (n + 1) different maps X → |x|. The
rule carries further structure and is subject to a number of axioms, all of which
roughly amount to saying that the spaces |x| are compatible with symmetry and
composition in O, and vary continuously as x varies within O(n). This is made
precise in §2.1, and two simple examples are given in §2.2.

Then in §2.3 we define the mapping operad. Given operads P and Q, both
equipped with realizations, there is an associated mapping operad. It lies over
both P and Q, and its elements are triples consisting of points p ∈ P(n), q ∈ Q(n),
and a map |p| → |q| satisfying boundary conditions. The operad E of Theorem A
will be constructed as a suboperad of such a mapping operad.

For us, all operads are Σ-operads with a 0-th space, which we do not insist
be equal to a single point. Composition within operads will be denoted using
either the symbol γ or the symbol ◦i, for example γ(x; y1, . . . , yn) or x ◦i y.

2.1 Realization systems

Fix a compact, Hausdorff topological space X and a topological operad O. The
following three definitions together define the notion of a realization system.
The definitions are somewhat abstract, and so the reader may find it helpful to
bear in mind the example of framed little discs. In this case, the realization |a|
of a ∈ fD(n) is the complement of the interiors of the little discs; the incoming
boundary maps S1 → |a| are the boundaries of the little discs; and the outgoing
boundary map S1 → |a| is the boundary of the big disc.

The first definition states what data must be given in order to define a
realization system. It is analogous to defining an operad by specifying spaces,
symmetry maps, and composition maps.

Definition 2.1. A realization system for O with boundaries X is a rule RO that
for each n > 0 and each x ∈ O(n) produces a topological space |x| called the
realization of x, and that furthermore equips these spaces with the following
structure:

• Boundary Maps. For each x ∈ O(n), incoming boundary maps

∂1, . . . , ∂n : X → |x|

and an outgoing boundary map ∂out : X → |x|.

• Symmetries. For each x ∈ O(n) and σ ∈ Σn, a symmetry map σ∗ : |x| →
|xσ|.

• Pasting and composition. Given x ∈ O(n) and yi ∈ O(mi) for i =
1, . . . , n, a pushout diagram

⊔n
i=1X

⊔
∂out //

⊔
∂i

��

|y1| ⊔ · · · ⊔ |yn|

��
|x| // |γ(x; y1, . . . , yn)|

(1)

called the pasting square.
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The system RO is required to satisfy the axioms of Definition 2.2, and to be
topologized in the sense of Definition 2.3, both below.

Our second definition lists the axioms that the structures above must satisfy.
It is analogous to the axioms satisfied by the various composition and symmetry
maps in an operad. Although we list no fewer than six axioms, they are almost
trivial to verify in the example of framed little discs.

Definition 2.2. A realization system RO must satisfy the axioms listed be-
low. In what follows we will use underlines to indicate tuples of elements. For
example, y will denote y1, . . . , yn.

1. Unit: Taking x = 1O, the boundary maps ∂1, ∂out : X → |1O| are home-
omorphisms and coincide. Applying these homeomorphisms to (1) in the
case n = 1 and x = 1O, and to (1) in the case yi = 1O, one obtains the
diagrams

X
∂out // |y|

X
∂out

// |y|

and
⊔

X

⊔
∂i

��

⊔

X

⊔
∂i

��
|x| |x|

respectively.

2. Symmetries: The symmetry maps satisfy σ∗ ◦ τ∗ = (τσ)∗ and are com-
patible with the boundary maps in the sense that

σ∗ ◦ ∂i = ∂σ−1i, σ∗ ◦ ∂out = ∂out.

3. Pasting and boundaries: The lower and right-hand maps of diagram
(1) are compatible with the boundary maps, in the sense that the following
triangles commute.

|x| // |γ(x; y)|

X

∂out

OO

∂out

<<xxxxxxxxxxxx

⊔

|yi|

��

⊔⊔

X

⊔⊔
∂joo

⊔⊔
∂i,j

zzvv
vvv

vv
vv

vv
vv

|γ(x; y)|

The unions run over i = 1, . . . , n and j = 1, . . . ,mi; the symbol ∂i,j
denotes ∂m1+···+mi−1+j .

4. Pasting and symmetries I: Given σ1 ∈ Σm1
, . . . , σn ∈ Σmn

, we can
formulate diagram (1) for x and y1, . . . , yn, and for x and y1σ1, . . . , ynσn.
Then the resulting squares are isomorphic under the relevant symmetry
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map, which means that the following diagram commutes.

⊔

X

yyttt
tt

t

%%KKKKKK

��

⊔

|yi|
σ∗

1
⊔···⊔σ∗

n

//

��

⊔

|yiσi|

��

|x|

zzttt
tt

tt

%%KKKKKKK

|γ(x; y)|
(σ1⊕···⊕σn)

∗

// |γ(x; yσ)|

Here yσ = y1σ1, . . . , ynσn.

5. Pasting and symmetries II: Similarly, given σ ∈ Σn we can formulate
diagram (1) for x, y1, . . . , yn, and for xσ, yσ−1

1

, . . . , yσ−1

n
. Then the two

squares are isomorphic under the relevant symmetry maps, which means
that the following diagram commutes.

⊔

X //

��

σ⊔ ""EE
EE

EE

⊔

|yσ−1

i
|

σ⊔

''OOOOOOOO

��

⊔

X //

��

⊔

|yi|

��

|x|

σ∗ ""EE
EE

EE
// |γ(x; yσ−1)|

σ(m1,...,mn)
∗

''OOOOOOO

|xσ| // |γ(xσ; y)|

Here yσ−1 = yσ−1

1

, . . . , yσ−1

n
and σ⊔ sends the σi-th cofactor to the i-th

cofactor.

6. Associativity of pasting: Suppose we are given the data for an iterated
composition in O. Thus we have elements x ∈ O(n), yi ∈ O(mi) and z

j
i ∈

O(lji ), for i = 1, . . . , n and j = 1, . . . ,mi. Then we can form composites

γ(x; y), γ(yi; zi), γ(γ(x; y); z), γ(x; γ(y1; z1), . . . , γ(yn; zn)).

The last two composites coincide, and consequently so do their realiza-
tions,

|γ(γ(x; y); z)| = |γ(x; γ(y1; z1), . . . , γ(yn; zn))|.

By considering the pasting diagram (1) for each composite, we obtain two
maps from each of |x|, |y1|, . . . , |yn|, |z

1
1 |, . . . , |z

mn
n | into the single space

above. The two maps in each such pair coincide.

The next definition says what it means to topologize a realization system,
and makes use of fibrewise topology. The standard reference for this is [6], and
we have recalled the necessary ideas in Appendix A. A space fibred over B is
just a space X equipped with a map X → B, and the appendix recalls what it
means for such a fibred space to be fibrewise compact or fibrewise Hausdorff.
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Definition 2.3 (Topology on a realization system). A topology on a realization
system RO consists of fibred spaces

ρn : RO(n)→ O(n)

for n > 0, such that for each x ∈ O(n) the fibre ρ−1
n (x) is identified with |x|.

Each RO(n) must be fibrewise compact Hausdorff over O(n). The boundary
and symmetry maps determine functions

∂1, . . . , ∂n, ∂out : O(n)×X → RO(n), σ∗ : RO(n)→ σ∗
RO(n)

between spaces over O(n), and the pasting squares (1) become squares

⊔n
i=1X

⊔
∂out //

⊔
∂i

��

RO(m1) ⊔ · · · ⊔ RO(mn)

��
RO(n) // RO(m1 + · · ·+mn)

(2)

of spaces over O(n) × O(m1) × · · · × O(mn). All of the functions above are
required to be continuous, and the squares (2) are required to be fibrewise
pushouts. (The spaces written in (2) should all be regarded as spaces over
O(n) × O(m1) × · · · × O(mn) by pulling back along the appropriate constant,
projection or composition map.)

2.2 Examples of realizations

This subsection attempts to illustrate the definition of realization systems by
giving two simple examples in the case when O is the operad of little n-cubes.
The paper’s two main examples, which are the realizations for fD and C, are
presented in Sections 3 and 4 respectively.

Example 2.4 (The little cubes operad). Let Cn denote the little n-cubes op-
erad. Define a realization system R1Cn with boundaries Sn as follows. Given
x ∈ Cn(p), set |x| =

∨p
i=1 S

n.

• The incoming boundary maps ∂1, . . . , ∂p : S
n →

∨

Sn are the standard
insertions. The outgoing boundary map ∂out : S

n →
∨

Sn is the collapse
map collx induced by x.

• The symmetry map σ∗ : |x| → |xσ| is the map
∨

Sn →
∨

Sn that sends
the i-th cofactor to the (σ−1

i )-th cofactor.

• Given x ∈ Cn(p) and yi ∈ Cn(qi), the pasting square (1) is given by

⊔p
i=1 S

n

⊔
collyi //

��

⊔p
i=1

∨qi
j=1 S

n

��
∨p

i=1 S
n ∨

collyi

//
∨p

i=1

∨qi
j=1 S

n

where the vertical maps are the standard quotients.
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The axioms of Definition 2.2 hold trivially. The system is topologized by setting
R1Cn(p) = Cn(p)×

∨

Sn, and the conditions of Definition 2.3 are immediately
verified.

Example 2.5 (Little cubes operads again). Let Cn again denote the little n-
cubes operad. Define the realization system R2Cn with boundaries Sn−1, which
we regard as the boundary of the n-cube In, as follows. Given x ∈ Cn(p), define
|x| to be the complement in the big cube In of the interiors of the little cubes
of x.

• The incoming boundary maps ∂1, . . . , ∂p : S
n−1 → |x| are the inclusions

of the boundaries of the little cubes of x. The outgoing boundary map
∂out : S

n−1 → |x| is the inclusion of the boundary of the big cube.

• The symmetry map σ∗ : |x| → |xσ| identifies the two spaces as subsets of
the big cube.

• Given x ∈ Cn(p) and yi ∈ Cn(qi), the pasting square (1)

⊔n
i=1 S

n−1

⊔
∂out //

⊔
∂i

��

|y1| ⊔ · · · ⊔ |yn|

��
|x| // |γ(x; y1, . . . , yn)|

is given as follows. The bottom map is the inclusion of |x| into |γ(x; y1, . . . , yn)|
given by regarding both as subsets of the big cube In. The right-hand map
sends |yi| into |γ(x; y1, . . . , yn)| by applying xi : I

n → In, the i-th little
cube of x. This is a pushout diagram.

The axioms of Definition 2.2 are simple to verify. The system is topologized by
defining R2Cn(p) to be the subspace of Cn(p)× I

n whose fibre over x ∈ Cn(p)
is precisely |x| ⊂ In. The conditions of Definition 2.3 follow. (Compare with
the system RfD in Section 3.2.)

2.3 The mapping operad

Suppose now that we are given operads P and Q equipped with realization
systems RP and RQ, both with boundaries X . This subsection introduces the
mapping operad M associated to this data.

Definition 2.6. Fix n > 0. Then M(n) denotes the set of triples (a, c, f), where
a ∈ P(n), c ∈ Q(n) and f : |a| → |c| is a continuous map satisfying the boundary
conditions f ◦ ∂i = ∂i and f ◦ ∂out = ∂out.

Definition 2.7. The action of Σn onM(n) is defined by the formula (a, c, f)σ =
(aσ, cσ, σ∗ ◦f ◦σ∗−1), where σ∗ : |a| → |aσ| and σ∗ : |c| → |cσ| are the symmetry
maps.

Definition 2.8. Composition in M is defined by pasting functions in the fol-
lowing way. Given (a, c, f) ∈M(n) and (bi, di, gi) ∈M(mi) for i = 1, . . . , n, the
composite

γ ((a, c, f); (b1, d1, g1), . . . , (bn, dn, gn))

8



is the new triple

(γ(a; b1, . . . , bn), γ(c; d1, . . . , dn), γ(f ; g1, . . . , gn)) ,

where γ(f ; g1, . . . , gn) is the unique map making the cube

⊔

X //

��

FFFFF

FFFFF

⊔

|bi|
g1⊔···⊔gn

&&MM
MM

MM
M

��

⊔

X //

��

⊔

|di|

��

|a|

f ##FF
FF

FF
F

// |γ(a; b)|

γ(f ;g1,...,gn) &&M
M

M
M

|c| // |γ(c; d)|

commute. The front and rear faces of this cube are the pushout squares (1)
for c, d1, . . . , dn and a, b1, . . . , bn respectively, while the left hand and upper
faces come from the compatibility between pasting and boundary maps. Thus
a unique such γ(f ; g1, . . . , gn) exists.

To topologize M(n) we use another notion from fibrewise topology. Given
spaces U and V fibred over B, we write MapB(U, V ) for the set of pairs (b, f),
where b ∈ B is a point of the base and f : Ub → Vb is a map between the
fibres over that point. This set can be equipped with the fibrewise compact-
open topology, and we call the resulting space the fibrewise mapping space. See
Appendix A and the reference there.

The realization systems RP and RQ give us fibred spaces RP(n)→ P(n) and
RQ(n) → Q(n). Write π1 and π2 for the projections of P(n) × Q(n) onto its
factors. Then the fibrewise mapping space MapP(n)×Q(n)(π

∗
1RP(n), π

∗
2RQ(n))

consists of triples (a, c, f) where a ∈ P(n), c ∈ Q(n) and f : |a| → |c|. In
particular, it contains M(n) as a subset.

Definition 2.9. The space M(n) is topologized as a subspace of the fibrewise
mapping space MapP(n)×Q(n)(π

∗
1RP(n), π

∗
2RQ(n)).

Theorem 2.10. The collection M = {M(n)} is topological operad, and the
projections

P←−M −→ Q

are morphisms of operads.

Proposition 2.11. Suppose that for both RP and RQ the pasting squares (1)
are all homotopy pushouts, rather than just pushouts. Then the spaces

M≃(n) = {(a, c, f) ∈M(n) | f is a homotopy equivalence}

form a suboperad M≃ of M.

Proof of Proposition 2.11. That M≃(1) contains the unit element, and that M≃

is closed under the Σn action, follow from the unit and symmetry axioms re-
spectively. Since homotopy equivalences are preserved by homotopy pushouts,
it follows that if f and g1, . . . , gn are all homotopy equivalences, then so is
γ(f ; g1, . . . , gn). Thus M≃ is closed under composition.

9



Proof of Theorem 2.10. We begin by showing that M is an operad in sets. This
is a direct consequence of the axioms for a realization system presented in Defini-
tion 2.2. We will only show that composition is associative, the proof of the rest
being similar but simpler. Take elements (x, u, f) ∈ M(n), (yi, vi, gi) ∈ M(mi)
and (zji , w

j
i , h

j
i ) ∈M(lji ) for i = 1, . . . , n and j = 1, . . . ,mi. Write

A = |γ(γ(x, y); z)| = |γ(x; γ(y1; z1), . . . , γ(yn; zn))|

and
B = |γ(γ(u, v);w)| = |γ(u; γ(v1;w1), . . . , γ(vn;wn)|.

We must show that the two pasted maps

γ(γ(f, g);h) and γ(f ; γ(g1;h1), . . . , γ(gn;hn))

coincide. But both maps are characterized as the unique map making each
square

|x|
f //

��

|u|

��
A //___ B,

|yi|
gi //

��

|vi|

��
A //___ B,

|zji |
hj

i //

��

|wj
i |

��
A //____ B

commute. Here the vertical maps come from Axiom 6 of Definition 2.2. In
particular, the two pasted maps coincide.

Now we will prove that the composition mapM(n)×M(m1)×· · ·×M(mn)→
M(m1+· · ·+mn) is continuous. The proof that the permutation map σ : M(n)→
M(n) is continuous is similar.

We will use the following shorthand for spaces obtained from RP, and the
equivalent shorthand for spaces obtained from RQ.

1. PΠ denotes the product P(n)× P(m1)× · · · × P(mn).

2. RP⊔ denotes the space obtained by pulling back each of RP(n) andRP(mi)
to PΠ and then forming the disjoint union.

3. RP◦ denotes the pullback of RP(m1 + · · ·+mn) to PΠ.

4. ξP : RP⊔ → RP◦ denotes the map obtained from the pasting squares (2).

Note that ξP and ξQ are proper fibrewise surjections, since X is compact and
the square (2) is a fibrewise pushout. (The analogous claim need not hold for
ξQ.)

An element x of M(n)×M(m1)× · · · ×M(mn) can be regarded as a point
x1 of the product

MapP(n)×Q(n)(RP(n),RQ(n))×
∏

MapP(mi)×Q(mi)(RP(mi),RQ(mi)),

which maps continuously into MapPΠ×QΠ(RP⊔,RQ⊔), sending x1 to a point x2.
Now ξP and ξQ give continuous embeddings

MapPΠ×QΠ(RP⊔,RQ⊔)
ξQ∗
−−→ MapPΠ×QΠ(RP⊔,RQ◦)

ξ∗
P←−MapPΠ×QΠ(RP◦,RQ◦).

10



The image of x2 in the central space lifts to an element x3 of the right hand
space. Finally we obtain a continuous map

MapPΠ×QΠ(RP◦,RQ◦)→ MapP(
∑

mi)×Q(
∑

mi)(RP(
∑

mi),RQ(
∑

mi))

sending x3 to a point y. This y lies in M(m1 + · · ·+mn).
The assignment x 7→ y just described is nothing more than the composition

map, and the description makes its continuity evident. This completes the
proof.

3 Framed little discs and their realizations

This section recalls Getzler’s framed little discs operad fD and introduces its
realization system RfD.

3.1 Framed little discs

Definition 3.1 (The framed little discs operad [5]). Getzler’s framed little
discs operad fD has for its n-th space the collection fD(n) of embeddings
a :

⊔

D2 → D2 of n little discs into a single big disc. It is required that the
i-th component ai : D

2 → D2 of the embedding be given by a combination of
translation, rotation and rescaling.

The unit 1fD is the identity embedding D2 → D2. The action of Σn on
fD(n) is given by permuting the n little discs: the i-th disc of aσ is the σ(i)-th
disc of a. Composition in fD is given by composition of embeddings.

Example 3.2. A typical element a ∈ fD(3) is drawn below.

1
2

3

The dash on the i-th little disc indicates the image of the basepoint of S1,
which we call the local marked point. The bullet • indicates the basepoint on
the boundary of the big disc, which we call the global marked point.

3.2 Realizations of framed little discs

Definition 3.3 (Realizations of framed little discs). The realization system
RfD is defined as follows. Given a ∈ fD(n), the realization of a is the space
|a| ⊂ D2 obtained by deleting the interiors of the little discs from the big disc.

• The incoming boundary maps ∂1, . . . , ∂n : S
1 → |a| are given by ∂i =

ai|S
1. The outgoing boundary map ∂out : S

1 → |a| is given by the inclusion
S1 →֒ D2. In other words the i-th incoming boundary map is given by
the boundary of the i-th little disc, while the outgoing boundary map is
given by the boundary of the big disc.

• Given a ∈ fD(n) and σ ∈ Σn, the symmetry map σ∗ : |a| → |aσ| identifies
|a| and |aσ| as subsets of D2.

11



• Given a ∈ fD(n) and bi ∈ fD(mi) for i = 1, . . . , n, the pasting square

⊔n
i=1 S

1

⊔
∂out //

⊔
∂i

��

|b1| ⊔ · · · ⊔ |bn|

��
|a| // |γ(a; b1, . . . , bn)|

(3)

is given as follows. The lower map is the inclusion of |a| into |γ(a; b1, . . . , bn)|
given by regarding both as subsets of D2. The right hand map sends |bi|
into |γ(a; b1, . . . , bn)| by applying ai : D

2 → D2. In other words it sends
|bi| into the i-th little disc of a. This is a pushout square, and in fact a
homotopy pushout.

Example 3.4. The realization of the element a ∈ fD(3) from Example 3.2,
together with its boundary maps, is shown below.

⊔

∂i ∂out

Now take the following elements a, b1, b2.

a b1 b2

1

2
1 2

1

2

Then the pasting diagram (3) for γ(a; b1, b2) is depicted below:

Definition 3.5 (Topology on the realizations of framed little discs). For n > 0
we define RfD(n) to be the subspace of fD(n)×D2 whose fibre over a ∈ fD(n)
is precisely |a| ⊂ D2. It is equipped with the projection map ρn : RfD(n) →
fD(n). As a closed subspace of fD(n)×D2, it is a fibrewise compact Hausdorff
space over fD(n).

Proposition 3.6. The axioms of Definition 2.2 and the conditions of Defini-
tion 2.3 are satisfied by the realizations of framed little discs.

Proof. The axioms of Definition 2.2 follow from a lengthy but trivial verification.
The continuity required by Definition 2.3 follows immediately.
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4 Cacti and their realizations

This section introduces the cacti operad and its realization system. Cacti were
introduced by Voronov in [13]. Several variants have been introduced since then,
in particular by McClure-Smith [10], Kaufmann [8], and Salvatore [12]. We
begin in §4.1 with an informal introduction to cacti along the lines of Voronov’s
original definition. Then in §4.2 we recall in detail Salvatore’s variant of cacti,
which will be used in the rest of the paper. Finally in §4.3 we introduce the
realization system for cacti.

4.1 An introduction to cacti

This subsection gives an informal description of the cactus operad, along the
lines of Voronov’s original definition in [13]. We will not recall Voronov cacti in
detail, but hope to give the unfamiliar reader an idea of the theory.

Definition 4.1. A cactus with n lobes is a planar treelike configuration of
parameterized circles, of varying radii, labelled by 1, . . . , n, equipped with a
global marked point on one of the circles. The individual circles are called the
lobes of the cactus, and the basepoints on the lobes are called the local marked
points. See [13] and [3].

Thus a cactus consists of n labelled circles of positive radius identified at
finitely many intersection points. Planar means that the circles meeting at
each intersection point are equipped with a cyclic order. Treelike means that
the space obtained by filling in each circle with a disc is contractible.

The cactus operad has for its n-th term the collection of all cacti with n
lobes.

Example 4.2. Here is a typical cactus with 4 lobes.

1

2 3

4

The bullet • indicates the global marked point, while the dashes indicate the
local marked points.

Given cacti c and d, the composed cactus c ◦i d is defined by the following
pasting process. Rescale d so that its total length becomes the length of the
i-th lobe of c. Then c ◦i d is obtained from c and d by collapsing the i-th lobe
of c onto d using the pinch map S1 → d that sends the basepoint to the global
marked point and then proceeds around the ‘outside’ of the cactus.

4.2 Salvatore’s cacti operad

In this subsection we recall the variant of the cacti operad developed by Salvatore
in [12]. The operad was denoted there by fMS, but here we will call it C. It
is a suboperad of the co-endomorphism operad CoEnd(S1) of S1. We begin by
establishing some notation.
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Definition 4.3. 1. For n > 1 we define a space F(n) as follows. A point
x ∈ F(n) is a partition of S1 into n closed 1-manifolds Ij(x) with equal
length and piecewise disjoint interiors, such that there is no cyclically
ordered sequence z1, z2, z3, z4 with z1, z3 ∈ int Ij(X) and z2, z4 ∈ int Ik(x)
with j 6= k. Set F(0) = ∗.

2. Given x ∈ F(n) we define a map c(x) : S1 → (S1)n as follows. Given
j ∈ {1, . . . , n}, collapse each component of S1 \ Ij(x) to a point and rescale
the quotient in order to identify it with S1. This gives a based map
πj : S

1 → S1. Then c(x) is the product π1 × · · · × πn.

3. Write Mon(I, ∂I) for the space of nondecreasing maps I → I that preserve
∂I. Regard elements f ∈Mon(I, ∂I) as based maps f : S1 → S1.

4. Given z ∈ S1 write Lz : S
1 → S1 for translation by z.

The constructions above induce an embedding

c : F(n)×Mon(I, ∂I)× (S1)n → CoEnd(S1)(n)

that sends (x, f, z) to the composite (Lz1 × · · · × Lzn) ◦ c(x) × f .

Definition 4.4 (Salvatore’s cacti operad). C is defined to be the suboperad of
CoEnd(S1) whose n-th term is the image of the embedding c : F(n)×Mon(I, ∂I)×
(S1)n → CoEnd(S1)(n).

Note 4.5. Here is the connection between the operad C and the informal notion
of cacti given in the last subsection. Fix c ∈ C(n) and write c = c(x, f, z).

Consider the image c(S1) ⊂ (S1)n. It depends only on x and z, and can be
regarded as a Voronov cactus in which the lobes have equal length. For c(S1) is
a union of n parameterized circles. The j-th of these circles is simply c(Ij(x)).
This union of circles inherits a planar structure from the cyclic ordering of the
components of the Ij(x), and the condition on these cyclic orderings ensures
that this union of circles is treelike. The global marked point is given by c(∗).

Thus c = c(x, f, z) determines a cactus in which the lobes have equal length,
depending only on x and z. We regard f as a reparametrization of the pinch
map of this cactus; in the case when f has constant speed lj on Ij(x), we can
regard c as a cactus in which the j-th lobe has length lj .

Note 4.6. Salvatore describes the precise relationship between C and Voronov’s
original definition of cacti. In particular, Theorem 5.3.6 of [8] holds with C in
place of Voronov cacti.

Note 4.7. Finally we recall the natural cell decomposition {DX} of F(n).
Fix x ∈ F(n). Pull back the partition {Ij(x)} of S1 to a partition of [0, 1].

This partition is specified by boundary points 0 = x0 < x1 < · · · < xk = 1 and
a labelling X(x) = (X1(x), . . . Xk(x)) of the intervals [x0, x1], . . . , [xk−1, xk] by
elements from {1, . . . , n}.

The sequence X = X(x) of the last paragraph satisfies the following three
properties. First, all values 1, . . . , n appear. Second, adjacent terms are distinct.
Third, there is no subsequence of the form i, j, i, j with i 6= j. Every such
sequence X arises as X(x) for some element x ∈ F(n).

LetX be a sequence satisfying the three conditions above. Write DX ⊂ F(n)
for the subset consisting of those x for which X(x) is contained in X. Then DX
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is homeomorphic to the product
∏n

j=1 ∆
d(j), where d(j) + 1 is the number of

elements of X labelled by j. The homeomorphism sends x ∈ DX to the point

whose image in ∆d(j) records the lengths of the intervals labelled by j.

4.3 The realizations of cacti

Definition 4.8 (Realizations of cacti). The realization system RC is defined
as follows. Let c ∈ C(n) be a cactus with n lobes. The realization of c is the
topological space c(S1), which we denote by |c|.

• The i-th incoming boundary map ∂i : S
1 → |c| is defined as follows. Write

c = c(x, f, z). Then c(Ii(x)) ⊂ |c| has the form xi1 × · · · × S1 × · · · ×
xin for some lobe coordinate (xi1, . . . , x

i
i−1, x

i
i+1, . . . , x

i
n), and ∂i is y 7→

(xi1, . . . , x
i
i−1, y, x

i
i+1, . . . , x

i
n). The outgoing boundary map ∂out : S

1 → |c|
is given by c itself.

• Let c ∈ C(n) and let σ ∈ Σn. Then the homeomorphism σ∗ : |c| → |cσ| is
defined by σ∗(t1, . . . , tn) = (tσ1, . . . , tσn).

• Let c ∈ C(n) and di ∈ C(mi) for i = 1, . . . , n. Then there is a pushout
square

⊔n
i=1 S

1

⊔
∂out //

⊔
∂i

��

|d1| ⊔ · · · ⊔ |dn|

��
|c| // |γ(c; d1, . . . , dn)|.

(4)

The lower map sends |c| = c(S1) into |γ(c; d1, . . . , dn)| = (d1 × · · · ×
dn)c(S

1) via d1 × · · · × dn. The right hand map sends y ∈ |di| to

(d1(x
i
1), . . . , di−1(x

i
i−1), y, di+1(x

i
i+1), . . . , dn(x

i
n)).

Example 4.9. The next figures illustrate the incoming

⊔

∂i

and outgoing

∂out

boundary maps for the cactus of Example 4.2.

Definition 4.10 (Topology on the realizations of cacti). We define RC(n) to
be the space of pairs

RC(n) = {(c, z) ∈ C(n)× (S1)n | z ∈ c(S1)}.

The fibre of the projection map ρn : RC(n) → C(n) over c ∈ C(n) is naturally
identified with |c|. As a closed subspace of C(n)× (S1)n, it is fibrewise compact
and Hausdorff over C(n).
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It remains to show that the last two definitions do indeed endow C with a
realization system RC. This is given by the next proposition.

Proposition 4.11. 1. Diagram (4) is a pushout, and in fact a homotopy
pushout.

2. The realizations of cacti satisfy the conditions of Definition 2.2.

3. The topology on realizations of cacti satisfy the conditions of Definition 2.3.

Proof. For the first part, a simple inductive argument shows that it is sufficient
to prove the claim when all but one of the di is the unit element. To prove this
case it suffices to show that, given c ∈ C(n) and d ∈ C(m), the diagram

S1
∂out //

∂i

��

|d|

β

��
|c| α

// |c ◦i d|

is a pushout. This follows from the definitions and from the fact that ∂i is a
cofibration.

We now prove the second part. Axioms 1, 2, 3, 4 and 5 follow immedi-
ately from the definitions. Let us turn to axiom 6. Write Γ = γ(γ(x, y); z) =
γ(x; γ(yi; zi)). The compatibility of pasting and boundary maps means that the
pairs of maps

u1, u2 : |x| → |Γ|, v1, v2 : |yi| → |Γ|, w1, w2 : |z
j
i | → |Γ|

satisfy up ◦ ∂out = ∂out, vp ◦ ∂out = ∂i, and wp ◦ ∂k = ∂L+k, where L =

l11 + · · ·+ lm1

1 + · · ·+ l1i + · · ·+ lj−1
i . Since ∂out : S

1 → |x|, ∂out : S
1 → |yi| and

⊔

∂k :
⊔

S1 → |zji | are all surjections, it follows that the two members of each
pair of maps coincide.

Now we prove the final part. Continuity of ∂i : C(n) × S
1 → RC(n) follows

from the fact that the lobe coordinates of a cactus depend continuously on
the cactus. This can be proved using the cell decomposition of F(n) given in
Note 4.7. Continuity of ∂out : C(n) × S

1 → RC(n) and σ∗ : RC(n) → RC(n) is
immediate.

Note that
⊔

∂i : C(n) ×
⊔

S1 → RC(n) are continuous surjections between
fibrewise compact Hausdorff spaces. By Proposition A.5, to prove continuity of
the right-hand map of (2) it will suffice to show that the composite with

⊔

∂i is
continuous. But this follows from the compatibility of pasting with boundaries.
Similar reasoning shows that the lower map of (2) is continuous.

5 The operad E

In Sections 3 and 4 we saw that the framed little discs operad fD and the cacti
operad C admit realization systems RfD and RC with boundaries S1. These
systems both consist of fibrewise compact Hausdorff spaces. We may therefore
form the mapping operad M of Section 2 in the case P = fD, Q = C. This
is a topological operad, and since the pasting squares (1) for RfD and RC

are homotopy pushouts, it has a suboperad M≃ consisting of triples (a, c, f) in
which f is a homotopy equivalence.
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Definition 5.1. Set E = M≃. Thus E(n) is the space of triples (a, c, f), where
a ∈ fD(n), c ∈ C(n), and f : |a| → |c| is a homotopy equivalence satisfying
f ◦ ∂i = ∂i and f ◦ ∂out = ∂out.

An element (a, c, f) ∈ E(2) is depicted in the introduction. Theorem 2.10
immediately gives us the following result. With this in hand, to prove Theo-
rem A it remains to show that the projection maps π1 and π2 are weak homotopy
equivalences.

Proposition 5.2. E is a topological operad, and the projections

fD
π1←−−−−− E

π1−−−−−→ C

are morphisms of operads.

6 Algebras from topological groups

The aim of this paper is to compare the fD-algebra Ω2BG with the C-algebra
ΩG by constructing an intermediate E-algebra εG. This section introduces all
three algebras using the realization systems for fD and C, and proves Theo-
rem B, which states that the three are weakly equivalent as E-algebras.

We begin in §6.1 with Ω2BG. There is little to say in this case, but we
include it for emphasis. Then §6.2 discusses ΩG and §6.3 discusses εG. Finally
§6.4 gives some deferred proofs.

6.1 The fD-algebra Ω2BG

In order to demonstrate how realization systems on an operad can be used to
define algebras over that operad, we will briefly describe the fD-algebra Ω2BG.
Proofs are omitted. First note that, for a fixed a ∈ fD(n), there is a pushout
diagram

⊔n
i=1 S

1 �

� //

⊔
∂i

��

⊔n
i=1D

2

a

��
|a|

�

� // D2.

Lemma 6.1. Given a ∈ fD(n) and x1, . . . , xn ∈ Ω2BG, there is a unique map
ξ : D2 → BG with the following two properties.

1. Its restriction to |a| is constant.

2. Its restriction to the i-th cofactor of
⊔n

i=1D
2 is given by xi.

Definition 6.2. Define νn : fD(n)× (Ω2BG)n → Ω2BG by

νn(a;x1, . . . , xn) = ξ,

where ξ is the map of Lemma 6.1.

Proposition 6.3. The collection ν = {νn} makes Ω2BG into a fD-algebra.

17



6.2 The C-algebra ΩG

We now explain how to make ΩG into a C-algebra. This algebra structure was
first obtained by Salvatore in [12] using his proof of the topological cyclic Deligne
conjecture. We will describe it directly in terms of the realizations RC.

Notation 6.4. Let X be a space and let Y be a G-space. Given a continuous
map f : X → Y and an element g ∈ G, we write g · f : X → Y for the map that
sends x ∈ X to g · f(x). Such maps will be called left translates of f .

Lemma 6.5. Let c be a cactus with n lobes and let γ1, . . . , γn be elements of
ΩG. Then there is a unique map α : |c| → G satisfying:

1. α(•) = e, where • denotes the global marked point in |c|;

2. for each i = 1, . . . , n, the composite α ◦ ∂i : S
1 → G is a left translate of

γi.

Proof. The realization |c| is a treelike configuration of circles, so after relabelling
the lobes we may assume that ∂1(S

1) contains • and that each ∂i+1(S
1) meets

∂1(S
1)∪· · ·∪∂i(S

1) in a single point. There is a unique α1 : ∂1(S
1)→ G sending

• to e and such that α1 ◦ ∂1 is a left translate of γi. It has a unique extension
α2 : ∂1(S

1) ∪ ∂2(S
1)→ G for which α2 ◦ ∂2 is a left translate of γ2. Proceeding

in this way, the claim follows.

Definition 6.6. Define ωn : C(n)× (ΩG)n → ΩG by

ωn(c; γ1, . . . , γn) = α ◦ ∂out,

where α : |c| → G is the map of Lemma 6.5.

Proposition 6.7. The collection ω = {ωn} makes ΩG into a C-algebra.

The proof will be given in §6.4. The action ω encodes some natural properties
of ΩG. For example, given s ∈ S1, let cs ∈ C(1) denote the cactus in which
• = ∂1(s) and ∂out has constant speed. Then

ω1(c−,−) : S
1 × ΩG→ ΩG

is the circle action that sends (s, γ) to the loop t 7→ γ(s)−1 · γ(s + t). This
circle action was considered by Menichi in [11] and by Salvatore in [12]. Now let
cP ∈ C(2) denote the cactus in which two circles of radius 1/2 are joined at their
basepoint, and the global marked point lies on the first circle at its basepoint:
Then the map

ω2(cP ;−,−) : ΩG× ΩG→ ΩG

is the ordinary Pontrjagin product given by concatenating loops. More generally,
there is a natural inclusion of the little intervals operad into C, under which the
algebra structure ω pulls back to the standard E1-algebra structure on ΩG.
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6.3 The E-algebra εG

Now we will define the space εG. We will give it the structure of an E-algebra,
and show that it is weakly equivalent to both Ω2BG and ΩG as E-algebras.
The algebra structure on εG is an almost literal mixture of the existing algebra
structures on Ω2BG and ΩG.

Let EG→ BG be the universal principal G bundle. Fix a basepoint ∗ of EG
and use it to define a basepoint of BG and an inclusion ιG : G →֒ EG, g 7→ g · ∗.

Definition 6.8. Let εG be the space of maps φ : D2 → EG for which φ|S1

factors through ιG, and for which φ(∗) = ιG(e). There are projections

p1 : εG→ Ω2BG, p2 : εG→ ΩG,

where p1 is obtained by projecting from EG to BG, and p2 is defined by ιG ◦
p2(φ) = φ|S1 .

We will again make use of the pushout diagram

⊔n
i=1 S

1 �

� //

⊔
∂i

��

⊔n
i=1D

2

a

��
|a|

�

� // D2

(5)

determined by an element a ∈ fD(n).

Lemma 6.9. Given (a, c, f) ∈ E(n) and φ1, . . . , φn ∈ εG, there is a unique map
φ : D2 → EG with the following properties:

1. Its restriction to |a| factors through f : |a| → |c|.

2. Its restriction to the i-th cofactor of
⊔n

i=1D
2 is a left translate of φi.

3. Its value on ∗ ∈ D2 is ιG(e).

Note that ψ ∈ εG.

Proof. The conditions mean that ψ||a| must factor as ιG ◦ α ◦ f , where α is the
map obtained by applying Lemma 6.5 to c and p2(φ1), . . . , p2(φn). There is a
unique extension of this map to D2 satisfying the second condition.

Definition 6.10. Define εn : E(n)× (εG)n → εG by

εn ((a, c, f), (φ1, . . . , φn)) = ψ,

where ψ is the map of Lemma 6.9.

The following two propositions together prove Theorem B. Their proofs are
given in the next subsection.

Proposition 6.11. The collection ε = {εn} makes εG into a E-algebra.

Proposition 6.12. The projection maps p1 : εG → Ω2BG, p2 : εG → ΩG are
homotopy equivalences of E algebras.
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6.4 Proof of Propositions 6.7, 6.11 and 6.12

In this subsection we resume the practice of using underlines to indicate tuples
of elements. For example, given γi1, . . . , γ

i
mi

for each i = 1, . . . , n, we write γ for

γ11 , . . . , γ
n
mn

and we write γi for γi1, . . . , γ
i
mi

.

Proof of Proposition 6.7. Axioms 1, 2 and 3 of Definition 2.2 show that the
unit element 1C acts as the identity on ΩG, and that the equivariance property
ωn(cσ; γ1, . . . , γn) = ωn(c; γσ−11, . . . , γσ−1(n)) holds.

Now let us show that ω is associative. Let c ∈ C(n), di ∈ C(mi) and
γi1, . . . , γ

i
mi
∈ ΩG for i = 1, . . . , n. We must show that

ωm1+···+mn
(γ(c; d); γ) = ωn(c;ωmi

(di; γ
i)).

We can use Lemma 6.5 to obtain three different maps.

1. Let α : |γ(c; d1, . . . , dn)| → G denote the map obtained using γ(c; d1, . . . , dn)
and γ11 , . . . , γ

n
mn

.

2. Let β : |c| → G denote the map obtained using c and the ωmi
(di; γ

i
1, . . . , γ

i
mi

).

3. Let γi : |di| → G denote the map obtained using di and γ
i
1, . . . , γ

i
mi

.

We must show that α ◦ ∂out = β ◦ ∂out. We can find g1, . . . , gn ∈ G and two
commutative squares:

⊔

S1

⊔
∂out //

⊔
∂i

��

|d1| ⊔ · · · ⊔ |dn|

⊔
gi·γ

i

��
|c|

β
// G

⊔

S1

⊔
∂out //

⊔
∂i

��

|d1| ⊔ · · · ⊔ |dn|

µ

��
|c|

λ
// |γ(c; d1, . . . , dn)|

The first square comes from the definition of β. The second is a pasting square
(1), and in particular is a pushout. Comparing the squares we see that β
factors as α′ ◦λ for some α′ : |γ(c; d1, . . . , dn)| → G. The compatibility of λ and
µ with the boundary maps means that α′ in fact satisfies the properties that
characterize α, so that α′ = α. Thus β = α ◦ λ, and by the compatibility of λ
with the boundary maps we have β ◦ ∂out = α ◦ λ ◦ ∂out = α ◦ ∂out as required.

Let us show that ωn is continuous. Lemma 6.5 gives us a function

α : RC(n)× (ΩG)n → G

and it suffices to show that this is continuous. The map
⊔

∂i :
⊔

S1 × C(n) →
RC(n) is proper surjection of fibred spaces, so by Proposition A.5 it will suffice
to show that each composite α ◦ ∂i is continuous. This composite is given by
(t, c, γ1, . . . , γn) 7→ gi · γi(t) for some gi ∈ G. It will therefore suffice to show
that the assignments C(n) × (ΩG)n → G, (c, γ1, . . . , γn) 7→ gi are continuous.
These maps factor through a map F(n)× (ΩG)n → G, whose continuity can be
proved using the cell decomposition of F(n) given in Note 4.7.
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Proof of Proposition 6.11. To begin we must show that ε satisfies the unit,
equivariance and associativity rules. We will only prove associativity as the
other two properties can be proved in a similar but much simpler way. Take
(a, c, f) ∈ E(n) and (bi, di, gi) ∈ E(mi) for i = 1, . . . , n, and write their compos-
ite as (A,C, F ). Take φij ∈ εG for i = 1, . . . , n and j = 1, . . . ,mi. We must
show that

εm1+···+mn

(

(A,C, F );φ
)

= εn

(

(a, c, f); εmi

(

(bi, di, gi);φ
i
)

)

. (6)

Consider the following diagram of pushout squares.

⊔

i

⊔

j S
1

��

//
⊔

i

⊔

j D
2

��
⊔

i S
1 //

��

⊔

i |bi|
//

��

⊔

iD
2

��
|a| // |A| // D2

The upper square comes from (5) for the bi; the right hand two squares compose
to give (5) for A, and the lower two squares compose to give (5) for a; the left
hand square is the pasting square for A. Using this diagram we can characterise
the right hand side of (6) as the map ψ : D2 → EG that

1. when restricted to |a|, factors through f : |a| → |c|;

2. when restricted to |bi|, factors through gi : |bi| → |di|;

3. on the (i, j)-th cofactor D2 is a left translate of φij ;

4. sends ∗ to ιG(e).

The first two of these properties, together with the definition of F , show that
the restriction of ψ to |A| factors through F : |A| → |C|. This property, together
with with the third and fourth properties above, characterize the left hand side
of (6). Equality follows. Thus ε makes εG into a E-algebra in sets.

To show that ε makes εG into a E-algebra in the topological setting we will
show that εn : E(n)×(εG)

n → εG is continuous. To do this we will show that the
adjoint D2×E(n)× (εG)n → EG is continuous. Since the lower and right-hand
maps of diagram (5) give inclusions of closed subsets

⊔

D2×E(n) →֒ D2×E(n)
and π∗

1RfD(n) →֒ D2 × E(n), it suffices to show continuity of the restrictions

ξ :
⊔

D2 × E(n)× (εG)n → EG, η : π∗
1RfD(n)× (εG)n → EG.

For ξ this follows from continuity of the map ((a, c, f), (φ1, . . . , φn)) 7→ (g1, . . . , gn)
in the proof of Proposition 6.7. For η it follows from continuity of two maps

α : RC(n)× (ΩG)n → G, β : π∗
1RfD(n)→ RC(n).

Here β is given in the fibre over (a, c, f) by x 7→ f(x), and is continuous by
part 5 of Proposition A.8, while α was defined, and shown to be continuous, in
the proof of Proposition 6.7.
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Proof of Proposition 6.12. It is immediate that both p1 and p2 are E-algebra
morphisms. We must now show that both p1 and p2 are homotopy equivalences.

We first show that p1, p2 are fibrations. For p2 the homotopy lifting problem
is adjoint to an extension problem that can always be solved. For p1 the homo-
topy lifting problem is adjoint to the problem of finding a lift F in a diagram
of the form

X ×D2 × {0}
h̃ //

��

EG

��
X ×D2 × I

H̃

//
F

88r
r

r
r

r
r

BG

with the additional property that F |(X × ∗ × I) is constant with value ιG(e).
To solve this, first choose an arbitrary lift F ′. Write F ′|X ×∗× I = ιG ◦ f , and
then define F by F (x, d, s) = F ′(x, d, s) · f(x, s)−1.

It now suffices to show that π1 and π2 have contractible fibres. But p−1
1 (x)

is homeomorphic to the space of based maps D2 → G, while p−1
2 (γ) is the space

of maps D2 → EG whose restriction to S1 is ιG ◦ γ. These are contractible, by
contractibility of D2 and EG respectively.

7 Proof of Theorem A

This section gives the proof of Theorem A, stating certain results that will be
proved in the remaining sections of the paper. The theorem states that the
projections π1 : E → fD and π2 : E → C are weak homotopy equivalences of
operads. This means that for each n > 0, the maps π1 : E(n) → fD(n) and
π2 : E(n)→ C(n) are weak equivalences of spaces. To show this we will consider
the product

Π: E(n)→ fD(n)× C(n)

of π1 and π2. It would be ideal for us if Π were a fibration, but this is not the
case: a typical fibre is nonempty, but the fibre over a pair (a, c) can be empty
if the little discs of a meet the boundary of the big disc, for then the boundary
conditions can be overdetermined. This issue is easily remedied.

Definition 7.1. Let fD◦(n) ⊂ fD(n) consist of those elements whose little
discs do not meet the boundary of the big disc, and let E◦(n) = π−1

1 fD◦(n) ⊂
E(n).

Lemma 7.2. The inclusions fD◦(n) →֒ fD(n) and E◦(n) →֒ E(n) are homo-
topy equivalences.

Proof. Given a ∈ fD◦(n), write a1/2 for the element obtained by halving the
radii of the little discs of a. Write ρa : |a1/2| → |a| for the map that preserves
|a| ⊂ |a1/2| and that projects points inside a little disc of a to the boundary of
that little disc. Then the maps fD(n)→ fD◦(n), a 7→ a1/2 and E(n)→ E

◦(n),
(a, c, f) 7→ (a1/2, c, f ◦ ρa) are homotopy inverse to the inclusions above.

To prove Theorem A it will therefore suffice to prove that the restrictions
π1 : E

◦(n) → fD◦(n) and π2 : E
◦(n) → C(n) are weak equivalences. To do this

we now consider the map

Π: E◦(n)→ fD◦(n)× C(n),
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which has much better fibrewise properties than its predecessor.

Theorem C. Fix (a, c) ∈ fD◦(n) × C(n) and write Map∂(|a|, |c|) for the fibre
of E◦(n) over (a, c). Then there is a neighbourhood U of (a, c) over which we
can find a fibrewise homotopy equivalence

E
◦(n)|U ≃ U ×Map∂(|a|, |c|).

Thus each point of fD◦(n)×C(n) has arbitrarily small neighbourhoods over
which Π is a quasifibration. By Corollary 2.4 of [9], such maps are themselves
quasifibrations.

Corollary 7.3. The projection Π: E◦(n)→ fD◦(n)× C(n) is a quasifibration.

We will use the quasifibration Π to show that π1 and π2 are weak equiva-
lences. Write PRBn for the pure ribbon braid group. Then both fD◦(n) and
C(n) are Eilenberg-MacLane spaces K(PRBn; 1). (The relevant background is
recalled in §8.1 and §8.2.) It will therefore suffice to show that πi(E

◦(n)) is
trivial for i 6= 1, and that Π∗ : π1(E

◦(n))→ PRBn×PRBn identifies π1(E
◦(n))

with the diagonal subgroup of PRBn × PRBn.
Write Fn for a typical fibre of Π. For Π to be a quasifibration means that

Fn is weakly equivalent to the homotopy fibre of Π, or in other words that there
is a long exact sequence of homotopy groups:

· · · −→ πi(Fn) −→ πi(E
◦(n)) −→ πi(fD

◦(n)) × πi(C(n)) −→ · · · (7)

We will establish the criteria listed in the last paragraph by exploiting this long
exact sequence.

Proposition 7.4. There is a homotopy equivalence Fn → PRBn. In particular
Fn has contractible components.

It follows immediately from (7) that πi(E
◦(n)) is trivial for i > 1, and that

π1(E
◦(n)) and π0(E

◦(n)) are computed using an exact sequence

0→ π1(E
◦(n))

p
−→ PRBn × PRBn

q
−→ PRBn

r
−→ π0(E

◦(n))→ 0. (8)

There is an action of PRBn × PRBn on PRBn, and q is given by applying
this action to the constant element ∗. Exactness at the last two terms of the
sequence means that q−1(∗) is the image of p and r−1(∗) is the image of q. We
can therefore show that π0(E

◦(n)) = ∗ and that p identifies π1(E
◦(n)) with the

diagonal subgroup of PRBn × PRBn by proving the next proposition, which
completes the proof of Theorem A.

Proposition 7.5. The action of PRBn×PRBn on PRBn is given by (γ, δ)·φ =
δ · φ · γ−1.

The promised recollections on the homotopy type of fD◦(n) and C(n), to-
gether with the proof of Propositions 7.4 and 7.5, are given in §8.

Now let us discuss the proof of Theorem C. This theorem states that E◦(n)
is locally fibrewise homotopy equivalent to a product, or in other words, that
it is a homotopy fibre bundle. Recall that E◦(n) consists of maps from fibres
of RfD◦(n) to fibres of RC(n) satisfying certain boundary conditions. Our
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proof of Theorem C will follow from general results on spaces of maps satisfying
boundary conditions, together with a study of the local fibrewise structure of
RfD◦(n) and RC(n).

In Section 9 we consider pairs (X, fX) and (Y, fY ), where X and Y are
spaces and fX : A→ X and fY : A→ Y are maps from some fixed space A. We
then introduce two mapping spaces, one consisting of maps g : X → Y relative
to A, or in other words satisfying g ◦ fX = fY , and a second consisting of
maps g : X → Y homotopy-relative to A, which are equipped with homotopies
g◦fX ≃ fY . We show that under certain conditions the two mapping spaces are
homotopy equivalent, and that homotopy type of the space of homotopy-relative
maps does not change when we replace (X, fX) or (Y, fY ) with a homotopy
equivalent pair (Z, fZ).

The program outlined above extends without modification to the fibre-
wise setting, where we can consider the pairs (RfD◦(n), ∂) over fD◦(n) and
(RC(n), ∂) over C(n); here ∂ denotes the combined boundary map. The corre-
sponding relative mapping space is E◦(n), and it is homotopy equivalent to the
homotopy-relative mapping space E◦

h(n).
In Sections 10 and 11 we study the pairs (RfD◦(n), ∂) and (RC(n), ∂) re-

spectively. We show that, locally over fD◦(n) and C(n), these pairs are ho-
motopy equivalent to trivial fibred pairs of the form (|a| × fD◦(n), ∂ × Id) and
(|c| × C(n), ∂ × Id) respectively.

Finally, in Section 12 we combine the results of the preceding three sections
to prove Theorem C.

8 Computing the long exact sequence

This section is given to the proof of Propositions 7.4 and 7.5. Recall that these
propositions compute the homotopy exact sequence associated to the quasifibra-
tion Π: E◦(n) → fD◦(n) × C(n), and lead to the proof of Theorem A. In §8.1
and §8.2 we recall the pure ribbon braid group and its relationship to framed
discs and cacti. Then in §8.3 and §8.4 we prove the propositions.

8.1 The pure ribbon braid group

This subsection collects some facts about the pure ribbon braid group that will
be useful in the subsections to follow.

Recall, for example from [7], that E. Artin’s braid group Bn on n strands is
the group on generators σ1, . . . , σn−1 subject to the relations σiσj = σjσi for
|i − j| > 2 and σiσi+1σi = σi+1σiσi+1. There is a homomorphism Bn → Σn

sending σi to the transposition of i and i+ 1. Its kernel is the pure braid group
PBn, which has generators

αij = σj−1σj−2 · · ·σi+1σ
2
i σ

−1
i+1 · · ·σ

−1
j−2σ

−1
j−1

for 1 6 i < j 6 n. The pure ribbon braid group is the direct product PRBn =
PBn × Z

n. The generator of the i-th cyclic factor is written as ζi.
Let Fn denote the free group on generators x1, . . . , xn. There is an embed-

ding Bn →֒ Aut(Fn) sending σi to the transformation

xi 7→ xixi+1x
−1
i , xi+1 7→ xi, xl 7→ xl for l 6= i, i+ 1.
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This embedding identifies Bn with the subgroup consisting of those automor-
phisms f : Fn → Fn for which f(x1 · · ·xn) = x1 · · ·xn and for which there is a
permutation π of {1, . . . , n} so that each f(xi) is conjugate to xπ(i). The same
embedding identifies PBn with the analogous subgroup where the permutation
π is the identity map.

In later subsections we will use the following alternative description of the
pure ribbon braid group, which is more directly related to the topological situ-
ation at hand. Given w = (w1, . . . , wn) ∈ (Fn)

n let α(w) denote the homomor-
phism Fn → Fn that sends xi to wixiw

−1
i . Set

Wn = {w ∈ (Fn)
n | α(w) ∈ Aut(Fn), α(w)(x1 · · ·xn) = x1 · · ·xn}.

There is a bijection Λ: Wn

∼=
−→ PRBn. The first component of Λ(w) is α(w) ∈

PBn; the second component is (m1, . . . ,mn) ∈ Z
n, where mi is the sum of the

exponents of the letter xi in the word wi. The isomorphism Λ translates the
group structure on PRBn into the operation

(v1, . . . , vn) · (w1, . . . , wn) = (α(v)(w1)v1, . . . , α(v)(wn)vn).

8.2 Discs, cacti and the pure ribbon braid group

This subsection recalls how both fD(n) (or equivalently fD◦(n)) and C(n) are
Eilenberg-MacLane spaces K(PRBn, 1). We begin by choosing basepoints.

Definition 8.1. Let an ∈ fD◦(n) be an element whose little discs all have
the same (small) radius, are arranged horizontally across the big disc in order
1, . . . , n, and which are embedded without rotation, so that the local marked
point lies at the top of each little disc. For i = 1, . . . , n let li denote the line
segment in |an| passing from the basepoint • of the big disc to the basepoint
∂i(∗) of the i-th little disc.

an 1 n
l1 ··· ln

We will sometimes regard the li as paths li : [0, 1] → |an|, and sometimes as
subsets li ⊂ |an|. The fundamental group π1(|an|, •) can be identified with Fn;
the i-th generator xi is represented by the loop which travels along li, then
around the i-th circle and back down li.

Definition 8.2. Let cn denote the cactus in which all lobes have equal length
and meet at a unique point, and whose outgoing boundary ∂out : S

1 → |cn| has
constant speed. The intersection point coincides with the global marked point
and also the local marked point on each lobe. The lobes are cyclically ordered
n, . . . , 1 at the intersection point, and the global marked point is chosen to lie
on the n-th lobe. Thus the outgoing boundary map ∂out : S

1 → |c| traverses the
lobes n, n− 1, . . . , 1 in turn at constant speed.

cn n 1
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The fundamental group π1(|cn|, •) can be identified with the free group Fn on
generators x1, . . . , xn. Here xi is represented by the loop ∂i : S

1 → |c|.

It is well known that fD(n) (or fD◦(n)) is a K(PRBn, 1). For instance,
fD(n) is homotopy equivalent to the product of n circles with the configuration
space Conf(n,R2) of n ordered points in R

2, and Conf(n,R2) is a K(PBn, 1)
(see section 1.4.1 of [7], for example). The generator αij corresponds to the loop
based at an in which the i-th and j-th little discs are brought side by side beneath
the other little discs, and are then rotated around one another anticlockwise
before returning to their original position. Throughout this maneouver the
framing of the little discs does not change. The generator ζi corresponds to the
loop in which the framing of the i-th little disc is rotated through one full turn.

A result of R. Kaufmann [8, Proposition 3.3.19] states that C(n) is aK(PRBn, 1).
The generator αij corresponds to the loop based at cn in which the j-th lobe
travels across the (i + 1), . . . , (j − 1)-th lobes so that it is adjacent to the i-th
lobe; the i-th and j-th lobes then rotate around one another anticlockwise be-
fore the j-th retraces its steps to its original position. (This description of the
generator is taken from the proof of Kaufmann’s result quoted above. In order
to obtain this description we have reversed the path αi in the proof there; this
does not affect the outcome of that proposition, since the braid group admits
an automorphism inverting all of its standard generators.) The generator ζi
corresponds to the loop in which the parameterization of the i-th little disc is
rotated through one full turn.

8.3 The fibre of Π: E◦(n)→ fD◦(n)× C(n)

The purpose of this subsection is to prove Proposition 7.4, which describes the
homotopy type of the fibre of Π.

Definition 8.3. Let Fn denote the fibre of Π: E◦(n) → fD◦(n) × C(n) over
(an, cn). It is the space of homotopy equivalences f : |an| → |cn| such that
f ◦ ∂i = ∂i and f ◦ ∂out = ∂out, equipped with the compact-open topology.

Definition 8.4. Define a map Fn → Wn as follows. A point f ∈ Fn is sent to
(w1, . . . , wn), where wi ∈ Fn = π1(|cn|, •) is obtained by applying f to the line
segment li. The boundary conditions guarantee that the image of f ◦ li is a loop
in |cn|.

We will prove Proposition 7.4 by showing that this map Fn → Wn is a
homotopy equivalence. The proof is given in the next three lemmas.

Lemma 8.5. The fibre Fn has weakly contractible components.

Proof. It will suffice to prove that, for any f ∈ Fn, the loopspace Ωf (Fn) is
contractible. Note that Ωf (Fn) is the space of sections of the fibration Ωf |cn| →
|an| obtained by pulling back the free loopspace fibration Ω|cn| → L|cn| → |cn|
along f . Its fibre over x is Ωf(x)|cn|. We must show that the space of sections
of this fibration is contractible.

Since |cn| is a K(Fn, 1), Ωf |cn| is fibre homotopy equivalent to a covering
space with fibre π1(|cn|, f(x)) ∼= Fn over x. We must show that this covering
space admits a unique section. The covering space is determined by an action
of the fundamental group π1(|an|, •) of the base on the fibre π1(|cn|, •) over •.
The sections of the covering space correspond to the fixed points of this action.
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If φ ∈ Aut(Fn) is the automorphism determined by f , then the action of
π1(|an|, •) = Fn on π1(|cn|, •) = Fn is given by xi(ω) = φ(xi)ωφ(xi)

−1. Since φ
is an automorphism, ω is fixed by the action if and only if it commutes with every
element of Fn. The identity element is the unique element with this property,
and this completes the proof.

Lemma 8.6. The map Fn →Wn is surjective.

Proof. Write Jn ⊂ |an| for the union of the boundaries of the little discs with
the line segments li. Write Kn ⊂ |an| for the union of Jn with the boundary
of the big disc D2. Choose w = (w1, . . . , wn) ∈ Wn and represent each wi by a
based loop γi : I → |cn|. Let f : Jn → |cn| be the map that satisfies f ◦ ∂i = ∂i
for each i and that is given by γi on li. Now Jn is a strong deformation retract
of |an|, and so we may extend f to a map g : |an| → |cn|. This map satisfies
g ◦ ∂i = ∂i. Also, since w ∈ Wn it follows that g is a homotopy equivalence,
and that g ◦ ∂out is based homotopic to ∂out. Then we can form a homotopy
between g|Kn and a map Kn → |cn| that commutes with the ∂i and ∂out, and
that is given by the γi on li. Since Kn →֒ |an| is a cofibration, we may extend
the homotopy to one between g and some h : |an| → |cn|. By construction h is
an element of Fn and its image in Wn is exactly w.

Lemma 8.7. Let f1, f2 ∈ Fn. If the images of these elements in Wn coincide,
then they lie in the same component of Fn.

Proof. Let Kn ⊂ |an| be as in the preceding proof. Now f1 and f2 coincide on
the image of every boundary map and are homotopic rel. endpoints on each li.
Since Kn →֒ |an| is a cofibration, we may therefore apply a homotopy to f2,
through elements of Fn, until it coincides with f1 on all of Kn. Let us therefore
assume that f1 and f2 coincide on Kn.

We may now combine f1 and f2 to obtain a map f : |an|∪Kn
|an| → |cn|. Let

|an| denote the space obtained from |an|× I by identifying Kn× I with a single
copy of Kn. It has ‘boundary’ |an| ∪Kn

|an|. To produce a homotopy between
f1 and f2 it will suffice to extend f to all of |an|.

Choose an identification map D2 → |an| that is a bijection away from the
boundary S1. Then we obtain identification maps S2 → |an| ∪Kn

|an| and
B3 → |an|. To extend f to |an| it will suffice to extend the composite S2 →

|an| ∪Kn
|an|

f
−→ |cn| to B

3. But since |cn| is a K(Fn, 1) this is always possible.
This completes the proof.

8.4 The action of π1(fD
◦(n)× C(n)) on F

n

This subsection will give the proof of Proposition 7.5, which states that the
fundamental group PRBn × PRBn of fD◦(n)× C(n) acts on π0(Fn) ∼= PRBn

by the rule (γ, δ) · φ = δ · φ · γ−1. The proof consists of Lemma 8.8, where we
show that (γ, γ) ·1 = 1, and Lemma 8.9, where we show that (γ, 1) ·φ = φ ·γ−1.

In general, if F → E → B is a fibration, then the action of π1(B) on π0(F ) is
defined as follows. Take a loop γ in B and a point f in F . Then γ can be lifted
to a path in E with initial point f ∈ F and final point g ∈ F , and the effect
of [γ] on [f ] is given by [γ] · [f ] = [g]. If F → E → B is only a quasifibration
then the lifting process just described may not be possible. However, when it is
possible, then it still leads to a description of the action of π1(B) on π0(F ).
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Choose a basepoint fn ∈ Fn, where fn is any function sending each li to the
constant path.

Lemma 8.8. The action of Proposition 7.5 satisfies (γ, γ) · 1 = 1 for all γ ∈
PRBn.

Proof. It will suffice to prove this for γ = ζi and for γ = αij . Loops in fD
◦(n)

and C(n) representing these elements were described in §8.2.
Let us begin with the case γ = ζi. Let t 7→ an(t) and t 7→ cn(t) be the loops

in fD◦(n) and C(n) that represent ζi. Then t 7→ (an(t), cn(t), fn) determines a
loop in E◦(n) and our claim follows.

Now fix γ = αij and let t 7→ an(t), t 7→ cn(t) be the loops in fD◦(n) and
C(n) respectively that represent αij . Then for each t ∈ S1 we can find maps
fn(t) : |an(t)| → |cn(t)| such that t 7→ (an(t), cn(t), fn(t)) defines a loop in E◦(n).
For at all times t ∈ S1 we can find an oriented embedding of |cn(t)| into |an(t)|
that sends the basepoint to the basepoint, such that the image of the i-th lobe
separates the i-th little disc from the others, and such that the highest point
each lobe is its local marked point. Then the required fn(t) can be constructed
by projecting out from the centre of the i-th little disc onto the i-th lobe, and
inwards from the boundary of the big disc onto the cactus.

For example take n = 2, i = 1, j = 2. Then an(t) and cn(t) are depicted
here:

1 2
1

2
12

1

2

1 2

1 2

1

2
12

1

2

1 2

t = 0 0 < t < π t = π π < t < 2π t = 2π

And the family of embeddings |cn(t)| → |an(t)| is depicted here:

Lemma 8.9. The action of Proposition 7.5 satisfies (γ, 1) · φ = φ · γ−1 for all
γ ∈ PRBn.

Proof. We identify PRBn with Wn. Represent φ ∈ Wn by (an, cn, f) ∈ Fn.
Represent γ by a loop t 7→ an(t) in fD◦(n) based at an, so that (γ, 1) is
represented by t 7→ (an(t), cn). The representative of γ can be chosen so that
there is a continuous family of homeomorphisms hn(t) : |an| → |an(t)|, t ∈ [0, 1],
satisfying hn(t) ◦ ∂i = ∂i and hn(t) ◦ ∂out = ∂out for all t. Then we can form a
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path in E◦(n) given by t 7→ (an(t), cn, f ◦ hn(t)
−1). The endpoint of this path

is (an, cn, f ◦ hn(1)
−1) ∈ Fn.

We must show that f ◦ hn(1)
−1 ∈ Fn represents φ · γ−1. To hn(1) we assign

an element w = (w1, . . . , wn) ∈Wn as follows. The arc hn(1)(li) in |an| has the
same endpoints as li, and so is homotopic rel. endpoints to the concatenation
of a loop ωi based at • with the arc li. Then wi = [ωi]. Using the description
of the group operation on Wn, it follows that f ◦ hn(1)

−1 represents precisely
φ · w−1.

So we must show that w = γ. In fact the assignment hn(1) 7→ w is a
homomorphism from the group of boundary-fixing homeomorphisms of |an| into
Wn, and so it suffices to prove w = γ in the special cases γ = αij and γ = ζi.
In these cases the family of homeomorphisms hn(t) can be seen explicity, and
the identities w = γ follow.

9 Relative mapping spaces

This section begins our work towards a proof of Theorem C. Recall that Theo-
rem C describes the fibrewise homotopy type of E◦(n) locally over fD◦(n)×C(n).
Recall also that E◦(n) is a fibrewise mapping space, whose fibre over (a, c) con-
sists of homotopy equivalences f : |a| → |c| with the property that f ◦ ∂ = ∂.
Here we have written ∂ for the maps

∂out ⊔ ∂1 ⊔ · · · ⊔ ∂n :
⊔n

i=0 S
1 → |a|,

∂out ⊔ ∂1 ⊔ · · · ⊔ ∂n :
⊔n

i=0 S
1 → |c|.

In order to understand E◦(n), this section will study spaces of maps satisfying
a condition of the form f ◦ ∂ = ∂.

Fix a compact Hausdorff space A. We will consider spaces under A, by
which we mean pairs (X, fX) consisting of a compact Hausdorff space X and a
continuous map fX : A → X . There are no further assumptions on fX . Given
spaces (X, fX) and (Y, fY ) under A, we will consider spaces of maps g : X → Y
satisfying the strict condition g ◦ fX = fY , which we call maps relative to A,
and also maps g : X → Y equipped with a homotopy g ◦fX ≃ fY , which we call
maps homotopy-relative to A.

The section has two parts. The first part introduces what it means for two
spaces under A to be homotopy equivalent. The second part introduces two
mapping spaces between spaces under A, one space of maps relative to A, and
another space of maps homotopy-relative to A. We compare the two notions,
and we show that the homotopy type of the homotopy-relative mapping space
is preserved if one of the spaces under A is replaced by a homotopy-equivalent
space under A.

Note 9.1. Here we will prove non-fibrewise versions of all results. However, all
results immediately generalize to the setting of spaces fibred over B by replacing
‘compact’, ‘Hausdorff’ and ‘compact-open’ with their fibrewise analogues.

Notation 9.2. Homotopies will always be parameterized by [0, 1] = I, and
a homotopy H from f to g will be written H : f ⇒ g. Given homotopies
H1 : g0 ⇒ g1 andH2 : g1 ⇒ g2, we writeH2·H1 : g0 ⇒ g2 for their concatenation.
Given maps

A
k
−→ B

g,h
−−→ C

l
−→ D
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and a homotopy H : g ⇒ h, we write H ◦ k : g ◦ k⇒ h ◦ k and l ◦H : l ◦ g ⇒ l ◦h
and for the induced homotopies between the composites.

9.1 Homotopy equivalences of spaces under A

In this subsection we will study the following notion of homotopy equivalence
between spaces under A. It is somewhat nonstandard in the sense that, given
spaces (X, fX) and (Y, fY ) under A, we will consider maps g : X → Y that do
not necessarily satisfy g ◦ fX = fY , but only satisfy a homotopy version of the
condition. Nevertheless this is the notion best suited to our purposes.

Definition 9.3. A homotopy equivalence from (X, fX) to (Y, fY ) is a 6-tuple
(φ, ψ,G,H,K,L) consisting of maps

φ : X → Y, ψ : Y → X,

homotopies
G : ψ ◦ φ⇒ IdX , H : φ ◦ ψ ⇒ IdY ,

and homotopies
K : φ ◦ fX ⇒ fY , L : ψ ◦ fY ⇒ fX

such that the two homotopies L · (ψ ◦ K) and G ◦ fX from ψ ◦ φ ◦ fX to fX
are homotopic relative to their endpoints, and such that the two homotopies
K · (φ ◦ L) and H ◦ fY from φ ◦ ψ ◦ fY to fY are homotopic relative to their
endpoints. We write (X, fX) ≃ (Y, fY ) if there is a homotopy equivalence from
(X, fX) to (Y, fY ). See Lemma 9.5 below.

Example 9.4. 1. Let (X, fX) and (Y, fY ) be spaces under A. If X and
Y are homotopy equivalent relative to A, then (X, fX) and (Y, fY ) are
homotopy equivalent in the sense above.

2. If (X, fX) and (X, gX) are spaces under A with fX ≃ gX , then (X, fX)
and (X, gX) are homotopy equivalent.

3. For any c1, c2 ∈ C(n) the pairs (|c1|, ∂) and (|c2|, ∂) are homotopy equiv-
alent in the present sense, even though there are no maps between them
relative to A = S1 ⊔

⊔n
i=1 S

1. See Section 11.

Lemma 9.5. Homotopy equivalence is an equivalence relation on spaces under
A.

Proof. The relation is evidently reflexive and symmetric. If (φ, ψ,G,H,K,L) is
a homotopy equivalence from (X, fX) to (Y, fY ) and (φ′, ψ′, G′, H ′,K ′, L′) is a
homotopy equivalence from (Y, fY ) to (Z, fZ), then

(φ′φ, ψψ′, G · (ψG′φ), H ′ · (φ′Hψ′),K ′ · (φ′K), L · (ψL′))

is a homotopy equivalence from (X, fX) to (Z, fZ). Thus the relation is transi-
tive.

Lemma 9.6. Suppose given a space (X, fX) under A and a cofibrant embedding
i : T →֒ X of a contractible space. Let (X/T, fX/T ) be the space under A in which
fX/T is the composite of fX with X → X/T . Then (X, fX) and (X/T, fX/T )
are homotopy equivalent.
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Proof. Let f : I × X → X extend the identity map {0} × X → X and a null
homotopy I×T → T . Let φ : X → X/T be the collapse map and let ψ : X/T →
X be induced by f1 = f |{1}×X . Let G be the homotopy given by f . Let H be
the homotopy whose composite with φ is given by f ; this H exists because f(I×
T ) ⊂ T . LetK to be the constant homotopy and let L be the homotopy obtained
from G. Then (φ, ψ,G,H,K,L) is the required homotopy equivalence.

9.2 Spaces of maps between spaces under A

Now we introduce two mapping spaces between spaces under A.

Definition 9.7. Let (X, fX) and (Y, fY ) be spaces under A. Set

Mapf (X,Y ) = {g : X → Y | g ◦ fX = fY }

and
Maphf (X,Y ) = {(g,H) | g : X → Y, H : g ◦ fX ⇒ fY }.

These are topologized as subspaces of Map(X,Y ) and Map(X ∪fX A × I, Y )
respectively, both equipped with the compact-open topology. There is an inclu-
sion Mapf (X,Y ) →֒ Maphf (X,Y ) given by taking the constant homotopy.

Proposition 9.8. The inclusion Mapf (X,Y ) →֒ Maphf (X,Y ) is a homotopy
equivalence so long as for any space K the map fX × IdK : A × K → X × K
has the homotopy extension property. This restricts to a homotopy equivalence
between the subspaces consisting of those elements for which the map g is a
homotopy equivalence.

Proof. This is a standard result, but we give a proof here in order to indicate
just how the given assumptions are used.

SinceX and Y are compact Hausdorff, continuous maps (X∪fXA×I)×K →
Y are in bijection with continuous maps K → Map((X∪fX A×I), Y ). Thus the

evaluation map α : (X ∪fX A× I)×Maphf (X,Y )→ Y is continuous and extends

to a continuous map β : X× I×Maphf (X,Y )→ Y . By choosing an appropriate

retraction we can form a map γ : (A× I)× I ×Maphf (X,Y )→ Y such that

γ((a, t), 0,m) = α(a, t,m),

γ((a, 0), s,m) = α(a, s,m),

γ((a, t), 1,m) = α(a, 1,m),

and such that if m ∈ Mapf (X,Y ) then γ((a, t), s,m) = m(a) is independent of t

and s. Now β and γ combine to give a map ω : (X∪fXA×I)×I×Maphf (X,Y )→

Y that has an adjoint φ : I ×Maphf (X,Y )→ Maphf (X,Y ).

By construction, φ|{0} ×Maphf (X,Y ) is the identity; φ|{1} ×Maphf (X,Y )
has image contained in Mapf (X,Y ); and φ|I ×Mapf (X,Y ) has image con-

tained in Mapf (X,Y ). Thus φ|{1} ×Maphf (X,Y ) is the required homotopy
inverse.

The next result shows that the homotopy type of Maphf (X,Y ) depends only
on the homotopy equivalence class of (X, fX) and (Y, fY ).
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Proposition 9.9. Let (φ, ψ,G,H,K,L) be a homotopy equivalence from (Y, fY )
to (Ỹ , fỸ ). Then the two maps

Φ: Maphf (X,Y )→ Maphf (X, Ỹ ), Ψ: Maphf (X, Ỹ )→ Maphf (X,Y )

given by Φ(g, F ) = (φ ◦ g,K · (φ ◦ F )) and Ψ(g̃, F̃ ) = (ψ ◦ g̃, L · (ψ ◦ F̃ )) are
inverse homotopy equivalences. This restricts to a homotopy equivalence between
the subspaces consisting of homotopy equivalences. The analogous result holds
for homotopy equivalences from (X, fX) to (X̃, fX̃).

Proof. We will show that Ψ ◦ Φ ≃ Id. For Ψ ◦ Φ is the map

(g, F ) 7→ (ψ ◦ φ ◦ g, L · [(ψ ◦K) · (ψ ◦ φ ◦ F )]).

We have the following homotopies relative to endpoints:

L · [(ψ ◦K) · (ψ ◦ φ ◦ F )] ≃ [L · (ψ ◦K)] · (ψ ◦ φ ◦ F )

≃ (G ◦ fY ) · (ψ ◦ φ ◦ F )

≃ F · (G ◦ g ◦ fX).

The first of these is a reparametrization, the second comes from our assumption
on the two homotopies φ ◦ ψ ◦ fY ⇒ fY , and the third is obtained by using G
and F simultaneously. It follows that Ψ ◦ Φ is homotopic to

(g, F ) 7→ (ψ ◦ φ ◦ g, F · (G ◦ g ◦ fX)).

This is homotopic to the identity, as required. That Φ ◦ Ψ is homotopic to the
identity follows from the analogous argument, as does the second part of the
proposition.

10 The fibrewise structure of RfD◦(n)

Let

∂ :

n
⊔

i=0

S1 × fD◦(n)→ RfD◦(n)

denote the combined boundary map ∂out ⊔
⊔n

i=1 ∂i. In this section we will
study the fibrewise properties of RfD◦(n) over fD◦(n), relative to ∂, using
the language of Section 9. To be precise, we will work in the setting of spaces
fibred over fD◦(n) (and its open subsets), and in this setting we will consider
(RfD◦(n), ∂) as a space under

⊔n
i=0 S

1 × fD◦(n). We prove that each a ∈
fD◦(n) has a neighbourhood U over which (RfD◦(n), ∂) is isomorphic to (|a|×
fD◦(n), ∂ × Id). Moreover, we prove that (RfD◦(n), ∂) satisfies the hypothesis
of Proposition 9.8.

Proposition 10.1. 1. The combined boundary map ∂ extends to a fibrewise
open embedding

⊔n
i=0 S

1× [0, 1)× fD◦(n) →֒ RfD◦(n). In particular it is
a fibrewise cofibration.

2. RfD◦(n) → fD◦(n) is a fibre bundle. Moreover, local trivializations
RfD◦(n)|U ∼= U × |a| can be chosen compatible with the boundary maps.
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Proof. We will construct a fibrewise open embedding
⊔n

i=0 S
1×[0, 1)→ RfD◦(n)

extending ∂. The first claim follows.
Find a continuous function d : fD◦(n) → (0, 1) such that, for each a ∈

fD◦(n), the little discs of a can be dilated by a factor (1 + d(a)) yet still be
disjoint and lie within the interior of the disc of radius (1−d(a)). Extend the i-
th little disc of a to an affine linear map ai : R

2 → R
2. The required embedding

is then given in the fibre over a by (θ, r) 7→ [1−d(a)r]θ on the 0-th cofactor and
by (θ, r) 7→ ai([1 + d(a)r]θ) on the i-th cofactor, for i > 0.

We now turn to the second claim, beginning with a special case. Fix a ∈
fD◦(1). Let φ : S1 → S1 denote the framing of a. There is a homeomorphism
S1× [0, 1]→ |a| given by (θ, r) 7→ (1−r)∂1(θ)+rφ(θ). In a neighbourhood U of
a the map (θ, r) 7→ (1− r)∂1(θ) + rφ(θ)) is a homeomorphism S1 × [0, 1]→ |b|.
By combining the two homeomorphisms we obtain a trivialization of RfD◦(n)
over U .

Let a ∈ fD◦(n). Let A ⊂ fD◦(n) consist of those b for which each little
disc of b lies in the interior of the corresponding little disc of a. This is an open
subset of fD◦(n), and such open subsets cover fD◦(n). The required local
trivialization of RfD◦(n) near a can now be formed by restricting attention to
each little disc of a and applying the result for the case n = 1 given above.

11 The fibrewise structure of RC(n)

The last section studied the fibrewise properties of realizations of framed little
discs. In this section we turn to the analogous issue for cacti. Let

∂ :

n
⊔

i=0

S1 × C(n)→ RC(n)

denote the combined boundary map ∂out ⊔
⊔n

i=1 ∂i. We will study the fibrewise
properties of RC(n) over C(n), relative to ∂, using the language of Section 9.
To be precise, we will work in the setting of spaces fibred over C(n) (and its
open subsets), and in this setting we will consider (RC(n), ∂) as a space under
⊔n

i=0 S
1×C(n). Our result for cacti is much more involved than its counterpart

for framed little discs.

Proposition 11.1. Fix c ∈ C(n) and form the fibrewise spaces (RC(n), ∂) and
(|c| × C(n), ∂ × Id) under

⊔n
i=0 S

1× C(n). Then there is an open neighbourhood
U of |c| over which (RC(n), ∂) and (|c| ×C(n), ∂ × Id) are homotopy equivalent.

Corollary 11.2. RC(n)→ C(n) is a quasifibration.

Proof. In Proposition 11.1 the local existence of the maps φ and ψ, and the
homotopies G and H , show that RC(n) → C(n) is locally fibrewise homotopy
equivalent to a product. It is therefore locally a quasifibration. Since maps that
are locally quasifibrations are themselves quasifibrations, the claim follows.

11.1 Proof of Proposition 11.1

Fix c ∈ C(n). For each r ∈ {1, . . . , n} choose closed intervals Ir ⊂ Īr ⊂ S1

such that Ir lies in the interior of Īr, such that ∂r(Īr) does not meet the image
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of any incoming boundary maps besides ∂r, and such that ∂out(•) does not lie
in any Īr . Since the lobe coordinates of a cactus depend continuously on the
cactus, we may choose a neighbourhood U of c over which the above properties
of Ir ⊂ Īr still hold. Set P =

⊔

r ∂r(S
1 \ int(Ir)) ⊂ RC(n)|U .

Thus P is a fibrewise subspace of RC(n)|U whose fibre over d is a copy of
|d| with an interval removed from each lobe; in other words, each fibre is a tree.
The fibrewise quotient RC(n)/P is given in each fibre by the bouquet of circles
(
⊔

Ir)/(
⊔

∂Ir). It is therefore natural to expect that RC(n)|U → (RC(n)|U)/P
is a fibrewise homotopy equivalence with the product (

⊔

Ir)/(
⊔

∂Ir)× U . Our
proof of Proposition 11.1 will proceed along these lines.

Form the fibrewise spaces ((RC(n)|U)/P, ∂1) and ((|c|/Pc)× U, ∂2) under
⊔n

i=0 S
1 × U , where ∂1 and ∂2 are the composites

∂1 :
⊔n

i=0 S
1 × U

∂
−→ RC(n)|U → (RC(n)|U)/P,

∂2 :
⊔n

i=0 S
1 × U

∂×Id
−−−→ |c| × U → (|c|/Pc)× U.

We will construct three homotopy equivalences,

(RC(n)|U, ∂) ≃ ((RC(n)|U)/P, ∂1) ≃ ((|c|/Pc)× U, ∂2) ≃ (|c| × U, ∂) . (9)

Since homotopy equivalence is a transitive relation, this will suffice to prove the
proposition.

There are fibrewise pushout squares
⊔

r U × ∂Ir
//

��

P

��
⊔

r U × Ir
// RC(n)|U,

⊔

r U × ∂Ir
//

��

Pc × U

��
⊔

r U × Ir
// |c| × U.

(10)

In both cases the horizontal maps are the restrictions of
⊔n

r=1 ∂r and the right-
hand map is the inclusion. The left hand maps of these squares are cofibrations,
so the same is true for the right hand maps. We make the following claim:

1. P is fibrewise contractible.

From the claim and from Lemma 9.6 we obtain the first and last homotopy
equivalence of (9). It remains to find the middle homotopy equivalence. The
diagrams (10) also show that the fibrewise spaces (RC(n)|U)/P and (|c|/Pc)×U
are fibrewise isomorphic, and moreover the isomorphism is such that the triangle

⊔n
i=1 S

1 × U

∂2|

''PPPPPPPPPPP
∂1|

wwnnnnnnnnnnnn

(RC(n)|U)/P oo
∼=

// (|c|/Pc)× U

commutes. The triangle says nothing about the value of ∂1 and ∂2 on the first
cofactor of

⊔n
i=0 S

1 × U . Now we make a further claim.

2. The composites

S1 × U →֒
⊔n

i=0 S
1 × U

∂1−→(RC(n)|U)/P ∼= (|c|/Pc)× U,

S1 × U →֒
⊔n

i=0 S
1 × U

∂2−→(|c|/Pc)× U

are homotopic; here the first map is the inclusion of the 0-th cofactor.
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From this claim and from the commutative triangle it follows that ((RC(n)|U)/P, ∂1)
is isomorphic to ((|c|/Pc)× U, ∂

′
2), where ∂

′
2 is some map homotopic to ∂2, so

that ((|c|/Pc)× U, ∂
′
2) is itself homotopy equivalent to ((|c|/Pc)× U, ∂2). Thus

((RC(n)|U)/P, ∂1) is homotopy equivalent to ((|c|/Pc)× U, ∂2), as required.
It remains to prove our claims. The second claim states that two maps

S1 × U → (|c|/Pc) × U are homotopic. By construction, both are families
(parameterized by U) of based maps from S1 to a bouquet of circles, lying in
the same homotopy class. The claim follows since the space of based maps
S1 →

∨

S1 in a fixed homotopy class is contractible.
The first claim states that P is fibrewise contractible. Note that the fibres

of P are connected. For, given d ∈ U , any two points of |d| can be joined by
a path that does not pass through any of the Ir. Let us assume without loss
that each Ir ⊂ S

1 is equal to [1/2, 1] ⊂ S1. Then the lobe coordinates are maps
U → [0, 1/2]n−1 and the ∂r|Ir are maps [0, 1/2] → [0, 1/2]n. Rescaling [0, 1/2]
to [0, 1] we see that the fibred space P → U is a configuration of orthogonal
line segments in the sense described in the next section. The second claim then
follows from Proposition 11.3 below.

11.2 Configurations of orthogonal line segments

Let A be a topological space. Suppose we are given functions xi : A → R
n−1

for i = 1, . . . , n. Write these as xi = (xi1, . . . , x
i
i−1, x

i
i+1, . . . , x

i
n). We obtain

functions ψi : A× I → R
n given by

(a, t) 7→ (xi1(a), . . . , x
i
i−1(a), t, x

i
i+1(a), . . . , x

i
n(a)).

Assume that for each a ∈ A the space
⋃

i ψ
i({a} × I) is connected. Define

Q→ A to be the fibrewise space Q =
⊔

i ψ
i(A× I) ⊂ A×R

n. We refer to Q as
a configuration of orthogonal line segments in R

n.

Proposition 11.3. Q is fibrewise contractible.

Proof. Since Q obviously admits sections, it will suffice to show that it is fibre-
wise convex, or in other words that there is a fibrewise h : Q×A Q× [0, 1]→ Q
satisfying h((p, q), 0) = p and h((p, q), 1) = q.

For the beginning of this proof let us assume that A is a single point and
omit it from the notation.

Note that the i-th coordinates of the points where ψi[0, 1] meets other ψj [0, 1]
are exactly the xji .

We say that i ∈ {1, . . . , n} is a leaf if ψi[0, 1] meets exactly one other ψj [0, 1].
Leaves exist so long as n > 2. This is clear when n = 2, since Q is connected.
We prove the general case by induction. Let π : Rn−1 → R

n−2 be the map that
forgets the final coordinate. Then πx1, . . . , πxn−1 define a configuration of line
segments in R

n−1, and so have a leaf which without loss is (n − 1). Then the
x1n−1, . . . , x

n−2
n−1 coincide. So if (n − 1) is not a leaf then xnn−1 must differ from

the common value of the xin−1, and it follows that n is a leaf. In either case, a
leaf exists.

An adapted path γ : [0, 1]→ Q is one for which there is v > 0 and a decom-
position of [0, 1] into intervals [α, β] on which γ has the form t 7→ (xi1, . . . , t0 +
ǫivt, . . . , x

i
n) for some value of i, some t0, and some ǫi ∈ {±1} depending only

on i.
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Any two points x, y of Q can be joined by a unique adapted path. This is
clear when n = 1 and n = 2, and in general is proved by induction. For we
can assume that n is a leaf. The claim is then immediate if x and y both lie in
ψn[0, 1], and follows by induction if they both lie in

⋃

i6n−1 ψ
i[0, 1]. In the final

case assume without loss that x lies in ψn[0, 1] and that y lies in
⋃

i6n−1 ψ
i[0, 1].

Write x′ for the point where ψn[0, 1] meets
⋃

i6n−1 ψ
i[0, 1]. Then an adapted

path from x′ to y exists by induction, and can easily be modified to produce an
adapted path from x to y. Uniqueness is proved by a similar induction.

Now remove the restriction that A is a single point. By applying the results
just obtained in each fibre, we obtain a function h : Q ×A Q × [0, 1] → Q de-
termined by the fact that each h(x, y,−) is the adapted path from x to y. We
must show that it is continuous. For fixed i ∈ {1, . . . , n} the subset Ai of A on
which i is a leaf is closed, so it suffices to prove continuity over Ai. Continuity
over Ai follows from an argument similar to the construction of adapted paths.
This completes the proof.

12 Proof of Theorem C

We can now complete the proof of Theorem C. We continue to write ∂ for the
combined boundary map ∂out ⊔

⊔n
i=1 ∂i.

Definition 12.1. Let E◦
h(n) denote the space of quadruples (a, c, f,H) where

a ∈ fD◦(n), c ∈ C(n), f : |a| → |c| is a homotopy equivalence, andH :
⊔n

i=0 S
1×

[0, 1]→ |c| is a homotopy from f ◦ ∂ to ∂. We topologize E◦
h(n) as a subspace of

the fibrewise mapping space. Taking the constant homotopy gives an inclusion
E◦(n) →֒ E◦

h(n).

Fix a ∈ fD(n) and c ∈ C(n). Recall that Map∂(|a|, |c|) denotes the fibre
of E(n) over (a, c). In other words, it is the space of homotopy equivalences
f : |a| → |c| satisfying f ◦ ∂ = ∂.

Definition 12.2. Given a ∈ fD◦(n) and c ∈ C(n), let Maph∂(|a|, |c|) denote the
fibre of E◦(n) over (a, c). In other words, it is the space of pairs (f,H) with
f : |a| → |c| a homotopy equivalence and H : [0, 1]×

⊔n
i=0 S

1 → |c| a homotopy
from f ◦ ∂ to ∂. It is equipped with the compact open topology. Taking the
constant homotopy gives an inclusion Map∂(|a|, |c|) →֒ Maph∂(|a|, |c|).

The proof of Theorem A is completed by the following three propositions.

Proposition 12.3. The inclusion E◦(n) →֒ E◦
h(n) is a fibrewise homotopy-

equivalence of spaces over fD◦(n)× C(n).

Proposition 12.4. Every pair (a, c) ∈ fD◦(n)× C(n) has a neighbourhood W
over which there is a fibrewise homotopy equivalence

E
◦
h(n) ≃ Maph∂(|a|, |c|)×W.

Proposition 12.5. The inclusion Map∂(|a|, |c|) →֒ Maph∂(|a|, |c|) is a homotopy
equivalence.

Proof of Proposition 12.3. This is an application of the fibrewise version of
Proposition 9.8; the assumption holds by the first part of Proposition 10.1.

36



Proposition 12.5 is also proved by an application of Proposition 9.8.

Proof of Proposition 12.4. Let U be a neighbourhood of a over which (RfD◦(n), ∂)
and (|a| × fD◦(n), ∂ × Id) are homotopy equivalent as in Proposition 10.1, and
let V be a neighbourhood of c over which (RC(n), ∂) and (|c|×C(n), ∂× Id) are
homotopy equivalent, as in Proposition 11.1. Set W = U × V .

Write E′ for the space of quadruples ((b, d), f,H), where (b, d) ∈W , f : |a| →
|c| is a homotopy equivalence, and H : f ◦ ∂ ⇒ ∂ is a homotopy. Topologize E

′

as a subspace of the fibrewise mapping space. Proposition 9.9, together with
the previous paragraph, implies that E◦

h(n)|W is fibre homotopy equivalent to
E′. Part 8 of Proposition A.8 shows that E′ is fibrewise homeomorphic to the
space given in the statement. This completes the proof.

A Fibrewise topology

This appendix will recall some basic notions of fibrewise topology, and establish
some facts regarding the fibrewise mapping space. We refer almost entirely to
the book of James [6].

Definition A.1. Let B be a space. Then a fibred space or fibrewise space over
B is a space X with a map p : X → B called the projection. The fibre of X over
b ∈ B is Xb = p−1(b). A fibrewise map φ : X → Y between spaces fibred over
B is a map X → Y that commutes with the projections.

Definition A.2. Given a map f : A → B and a space X fibred over B, the
pullback f∗X is the fibred space f∗X → A given by X ×p,f A with its natural
projection. When A →֒ B is the inclusion of a subspace we will write the
pullback as XA or X |A.

Definition A.3. Given X,Y fibred over B, then X ⊔ Y and X ×B Y become
spaces fibred over B in the obvious way. The fibrewise pushout of a diagram
Z ← X → Y of spaces and maps fibred over B is the ordinary pushout Y ∪X Z,
regarded as a space fibred over B. A square

X //

��

Y

��
Z // W

of spaces and maps fibred over B is a fibrewise pushout square if the induced
fibrewise Y ∪X Z →W is a homeomorphism.

Definition A.4. The fibrewise space X is fibrewise compact if p : X → B is
proper, or in other words if p is closed and has compact fibres. It is fibrewise
Hausdorff if distinct points in the same fibre can be separated by open sets of
X ; this is always the case if X itself is Hausdorff.

Proposition A.5 ([6, 3.7]). Let X and Y be fibrewise compact Hausdorff spaces.
A continuous bijection φ : X → Y is in fact a homeomorphism. If φ : X → Y
is a continuous fibrewise surjection, then a fibrewise function ψ : Y → Z is
continuous if and only if the composite ψ ◦ φ is continuous.
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Corollary A.6. Suppose given a commutative square

X //

��

Y

��
Z // W

of fibrewise compact Hausdorff spaces fibred over B, and suppose that in each
fibre the square is a pushout. Then the square is a fibrewise pushout. Moreover,
a fibrewise function W → V is continuous if and only if the composites Y → V
and Z → V are continuous.

Definition A.7 ([6, p.63]). Let X and Y be spaces fibred over B. The fibre-
wise mapping space MapB(X,Y ) is the space of pairs (b, f), where b ∈ B and
f : Xb → Yb is continuous. It is equipped with the topology generated by basic
open sets (K,V ;W ). Here W is an open subset of B, K is a fibrewise compact
subspace of XW , and V is an open subspace of YW . Then (K,V ;W ) consists
of all pairs (b, f) for which b ∈ W and f(Kb) ⊂ Vb.

Proposition A.8 ([6]). Let B be a topological space and let X,Y, Z and X1, X2

be fibrewise compact Hausdorff spaces over B.

1. Let θ : X → Y and φ : Y → Z be fibrewise maps. Then there are fibrewise
maps

φ∗ : MapB(X,Y )→ MapB(X,Z), θ∗ : MapB(Y, Z)→ MapB(X,Z).

2. If θ above is a fibrewise surjection then θ∗ is an embedding.

3. The bijection

MapB(X1 ⊔X2, Y )→ MapB(X1, Y )×B MapB(X2, Y )

is a fibrewise homeomorphism.

4. Take a map F : A→ B. Then there is a continuous map

MapA(F
∗X,F ∗Y )→ MapB(X,Y )

sending (a, f) to (F (a), f).

5. A fibrewise map
h : X ×B Y → Z

is continuous if and only if its adjoint

ĥ : X → MapB(Y, Z)

is continuous.

6. Let C be a further space and regard X × C, Y × C as fibred over B × C.
Then the map

MapB(X,Y )× C → MapB×C(X × C, Y × C)

sending ((b, f), c) to ((b, c), f) is continuous.
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7. Let P and Q be topological spaces, with P compact Hausdorff. Then the
isomorphism of sets

MapB(B × P,B ×Q) ∼= B ×Map(P,Q)

is a homeomorphism.

Proof. All references in this proof are to [6]. Note that 3.22 and the comments
after 3.12 guarantee that a fibrewise compact fibrewise Hausdorff space is also
fibrewise locally compact and fibrewise regular. Then parts 1, 2, 3, 5 and 6
are found in p.69, 9.4, 9.6, 9.7 and 9.13 respectively. Part 4 is an immediate
consequence of the definitions.

For part 6 take a standard open set (K,V ;W ) in MapB×C(X × C, Y × C)
and an element ((b, f), c) of its preimage. We will find a neighbourhood of
((b, f), c) whose image is contained in (K,V ;W ). To do this we will reduce
(K,V ;W ) many times. By reducing W and V , assume that W =W1×W2 and
V = V1 ×W2; this can be done because K(b,c) is compact. Now using 3.14 and
reducing W1 if needed, find an open subset J of XW1

such that K(b,c) ⊂ J and

Jb ⊂ f
−1(V1), where J is fibrewise compact overW1. Thus KW1×W2

\J×W2 is
fibrewise compact overW1×W2 and in particular its image inW1×W2 is closed.
But this image does not contain (b, c), and so by reducing W1 and W2 we may
assume that KW1×W2

⊂ J ×W2 ⊂ J ×W2. Now the open set (J, V1;W1)×W2

contains ((b, f), c) and its image is contained in (K,V ;W ) as required.
For the final part, continuity of f : MapB(B × P,B ×Q)→ B ×Map(P,Q)

follows from part 6, and continuity of its inverse follows from part 7.
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