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Abstract

Poincare Polynomial of a Kac-Moody Lie algebra can be obtained by classifying the

Weyl orbit W (ρ) of its Weyl vector ρ. A remarkable fact for Affine Lie algebras is that the

number of elements of W (ρ) is finite at each and every depth level though totally it has

infinite number of elements. This allows us to look at W (ρ) as a manifold graded by depths

of its elements and hence a new kind of Poincare Polynomial is defined. We give these

polynomials for all Affine Kac-Moody Lie algebras, non-twisted or twisted. The remarkable

fact is however that, on the contrary to the ones which are classically defined,these new

kind of Poincare polynomials have modular properties, namely they all are expressed in

the form of eta-quotients. When one recalls Weyl-Kac character formula for irreducible

characters, it is natural to think that this modularity properties could be directly related

with Kac-Peterson theorem which says affine characters have modular properties.

Another point to emphasize is the relation between these modular Poincare Polynomi-

als and the Permutation Weights which we previously introduced for Finite and also Affine

Lie algebras. By the aid of permutation weights, we have shown that Weyl orbits of an

Affine Lie algebra are decomposed in the form of direct sum of Weyl orbits of its horizontal

Lie algebra and this new kind of Poincare Polynomials count exactly these permutation

weights at each and every level of weight depths.
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I. INTRODUCTION

We know that any affine Lie algebra ĜN is related with a finite Lie algebra GN which

is called its horizontal Lie algebra. Let λi’s and αi’s be respectively the fundamental

weigths and simple roots of horizontal Lie algebra GN where i = 1, 2 . . . , N . They are

determined by
2 κ(λi, αj)

κ(αi, αj)
≡ δi,j

where κ(, ) is symmetric scalar product which is known always to be exist via the relation

2 κ(αi, αj)

κ(αi, αj)
≡ (AN )i,j

where AN is the Cartan matrix of GN . We follow the book of Humphreys [1] for finite

and Kac [2] for Kac-Moody Lie algebras.

Let ÂN be the Cartan matrix and α0 the extra simple root of ÂN . Its dual λ0 is to

be introduced by hand via the relations

κ(λ0, λ0) = 0

κ(λ0, α0) = 1

due to the fact that ÂN is singular. Note also that

κ(λ0, αi) = 0 , i = 1, 2, . . . , N.

and hence the name horizontal for GN . Affine Lie algebras are also characterized by the

existence of a unique isotropic root δ defined by

δ =
N∑

µ=0

kµ αµ

where kµ’s are known to be Kac labels of ĜN . Let W
ĜN

be the weight lattice of ĜN .

For any element λ̂ ∈ ĜN , we know the following decomposition is always valid:

λ̂ = λ+ k λ0 −M δ (I.1)

where the level k is constant for the Weyl orbit W (λ̂) and the depth M is always

defined to take values

M = 0, 1, . . . ,∞.
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For any fixed value of M, let us now define WM (λ̂) to be the set of weights with the form

(I.1). It is known that the orders of these sets are always finite, that is

| WM (λ̂) |< ∞ (I.2)

though their completion and hence the order of W (λ̂) is infinite. In view of (I.2), we

suggest that W (λ̂) can be considered as a manifold graded by weight depths M and hence

a Poincare polynomial Q(ĜN ) is attributed by the following definition:

Q(ĜN ) ≡
∞∑

M=0

| WM (λ̂) | tM (I.3)

where t is taken to be an indeterminate here and also in the following. It is a priori clear

that these polynomials are quite different from Affine Poincare polynomials P (ĜN ) which

are known to be defined by

P (ĜN ) = P (GN )

N∏

i=1

1

1− tdi−1
. (I.4)

by Bott theorem [3]. In (I.4), P (GN ) is the Poincare polynomial and di’s are exponents

of GN .

As we have shown in another work[4], an explicit calculation of Poincare polynomials

of Hyperbolic Lie algebras can be carried out by classifying the Weyl orbit W (ρ) in terms

of lengths[5] of Weyl group elements. Such a calculation is extended in a direct way to a

classification in terms of weight depths M. For simply-laced affine Lie algebras,

ĜN = A
(1)
N , D

(1)
N , E

(1)
6 , E

(1)
7 , E

(1)
8

depicted in p.54 of [2], these calculations give the result

Q(ĜN ) =
| WGN

|

PN RN
(I.5)

where

PN =

N∏

i=1

∞∏

k=0

(1− qhk+di)

RN =
∞∏

k=0

∞∏

s=0

(1 + q2
s(2k+1)h∨

)(s+1)N

(I.6)



4

In above expressions, h and h∨ are coxeter and co-coxeter numbers of GN and | WGN
|

is the order of Weyl group WGN
of finite Lie algebra GN .

Although similar expressions could be obtained for a complete list of affine Lie alge-

bras, this will be presented in the next section in which we expose modular properties of

Q-Poincare polynomials defined in (I.3).

II. POINCARE POLYNOMIALS AS ETA-QUOTIENTS

There is quite vast litterature [6] on eta-quotients which are rational products of

Dedekind eta functions with several arguments. Their relation with finite groups is also

studied [7]. Let

ϕ(q) =

∞∏

i=1

(1− qi)

be Euler product and

η(τ) ≡ q1/24 ϕ(q)

Dedekind eta function where q = e2πiτ . An eta-quotient is defined [8] to be a function

f(τ) of the form

f(τ) ≡
d∏

i=1

η(siτ)
ri (II.1)

where {s1, s2, . . . , sd} is a finite set of positive integers and r1, r2, . . . , rd are arbitrary

integers. Let us denote the collection of integers r1, s1, r2, s2, . . . , rd, sd defining f(τ) by

the formal product

g = sr11 sr22 . . . srdd (II.2)

and write ηg(τ) for the corresponding eta-quotient (II.1).

What’s important here is to emphasize eta-products are in general meromorphic mod-

ular forms of weight k ≡ 1
2

∑d
i=1 ri and multiplier system for some congruence subgroup

of SL2(Z) . This study is however outside the scope of this paper so we will only give here

the complete list of Poincare series defined above in the notation of (II.2). To this end, we

define

Q(ĜN ) =| WGN
| q

1

24
φ(ĜN ) η

g(ĜN )
. (II.3)

The phase factors q
1

24
φ(ĜN ) which stem from the difference between definitions of Euler

product and η-function will also be given. Our results are given in the following Table-1

for non-twisted types in Kac’s table Aff 1 (p.54 of [2]) and in Table-2 for twisted types

of Table Aff 2 (p.55 of [2]):
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Table-1

g(A
(1)
N ) = (h∨)(N+1) 1−1 , φ(A

(1)
N ) = −(N + 1)h∨ + 1

g(B
(1)
N ) = (2h∨)1 (h∨)(N−1) 21 1−1 , φ(B

(1)
N ) = −(N + 1)h∨ − 1

g(C
(1)
N ) = (2h∨)(N−1) (h∨)1 21 1−1 , φ(C

(1)
N ) = −(N + 1)h∨ − 1

g(D
(1)
N ) = (h∨)(N+1) (

1

2
h∨)−1 21 1−1 , φ(D

(1)
N ) = −(N +

1

2
)h∨ − 1

g(G
(1)
2 ) = 121 6−1 41 31 21 1−1 , φ(G

(1)
2 ) = −(2 + 1) 6 + (6− 2)

g(F
(1)
4 ) = (18)2 92 6−1 31 21 1−1 , φ(F

(1)
4 ) = −(4 + 1)12 + (12− 4)

g(E
(1)
6 ) = 127 6−1 4−1 31 21 1−1 , φ(E

(1)
6 ) = −(6 + 1)12 + (12− 6)

g(E
(1)
7 ) = 188 9−1 6−1 31 21 1−1 , φ(E

(1)
7 ) = −(7 + 1)18 + (18− 7)

g(E
(1)
8 ) = 309 15−1 10−1 6−1 51 31 21 1−1 , φ(E

(1)
8 ) = −(8 + 1)30 + (30− 8)

Table-2

g(A
(2)
2 ) = 121 6−1 4−1 31 22 1−1 , φ(A

(2)
N ) = −8

g(A
(2)
2N) = (4h∨)1 (2h∨)(N−2) (h∨)1 4−1 22 1−1 , φ(A

(2)
2N ) = −(2N + 1)h∨ + 1

g(A
(2)
2N−1) = (2h∨)2 (h∨)(N−3) N1 21 1−1 , φ(A

(2)
2N−1) = −(N + 1)h∨ − (N + 1)

g(D
(2)
N+1) = (2h∨)N 4−1 22 1−1 , φ(D

(2)
N+1) = −2Nh∨ + 1

g(E
(2)
6 ) = 121 8−1 6−1 41 31 21 1−1 , φ(E

(2)
6 ) = −6

g(D
(3)
4 ) = 182 9−1 6−1 32 21 1−1 , φ(D

(3)
4 ) = −28

At first glance, the examples G
(1)
2 , F

(1)
4 , E

(1)
6 , E

(1)
7 , E

(1)
8 and D3

4 are interesting due to

a theorem [6] concerning modular forms for some congruence subgroups of SL2(Z) . We

leave however such a study in a subsequent paper.
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III. POINCARE POLYNOMIALS AND PERMUTATION WEIGHTS FOR

AFFINE LIE ALGEBRAS

We have defined Permutation Weights previously for finite Lie algebras [9] and also

Affine Lie algebras [10]. In these works, it is shown that permutation weights can be

calculated explicitly by the aid of a contructive corollary (p.7 of [10]).

Here, it is shown that the polynomials

Q(ĜN )

| WGN
|

(III.1)

count permutation weights at each and every depth level, as will be exemplified in what

follows. The present method provides a direct way to find permutation weights by explicit

calculation of affine Weyl group elements to which the permutation weights are obtained.

One could say that this is not generally so practical since it needs explicit calculations of

Weyl group elements. The present method is however presented here as an independent

investigation of the previous one.

All our Lie algebraic definitions are as in the sec.I. Let us first briefly remember our

previous definition and determination [10] of permutation weights. Let Λ̂+ and λ+ be

dominant weights of ĜN and GN respectively, W (Λ̂+) and W (λ+) be corresponding Weyl

orbits. We know that all the elements of W (Λ̂+) has the form (I.1) and among them the

permutation weights are defined by the following specific form:

λ+ + k λ0 −M δ , M = 1, 2, . . . . (III.2)

In (III.2), for each and every value of M, we define PM (Λ̂+) to be the set of permutation

weights of Λ̂+ and | PM (Λ̂+) | be its order. Let also note that (III.1) can always be

expressed in the following form:

Q(ĜN )

| WGN
|
=

∞∑

M=0

cM qM (III.3)

where cM ’s are positive integers, c0 = 1 and q is an indeterminate. One can show that

| PM (Λ̂+) | = cM , M = 1, 2, . . . (III.4)

And hence Q(ĜN ) states that all the elements λ+k λ0−M δ are belong to W (Λ̂+) where

λ ∈ W (λ+). In other words, if
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λ+ + k λ0 −M δ ∈ PM (Λ̂+)

is exist for any M, then one finds that

W (λ+) + k λ0 −M δ ∈ W (Λ̂+)

due to existence of Poincare series given in Table-1 and also Table-2. The existence of these

new kind of Poincare series is the existence of permutation weights. One can formally say

that this gives us an explicit way to decompose any Weyl orbit of an Affine Lie algebra as

a direct sum of Weyl orbits of its horizontal Lie algebra. This reflects our main point of

view to introduce permutation weights.

It is now useful to proceed in an example for which all our general framework is to be

reflected. Let us consider the simply laced, affine Kac-Moody Lie algebra E
(1)
6 with the

following Dynkin diagram:

From Table-1 of Sec.II, one finds that the similar of (III.3) is

Q(E
(1)
6 )

| WE6
|
= 1 + q + q2 + q3 + 2 q4 + 3 q5 + 3 q6 + 4 q7 + 6 q8 + 7 q9 + . . . (III.1)

In view of (III.3) and (III.4), the following Table-3 is trivial:

Table-3

M 1 2 3 4 5 6 7 8 9
cM 1 1 1 2 3 3 4 6 7
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Let W (E
(1)
6 ) be the Weyl group of E

(1)
6 . Then, all the elements which give us the

permutation weights numbered in above Table-3 are given explicitly as in the following:

Σ1,1 = σ0

Σ2,1 = σ0,6

Σ3,1 = σ0,6,3

Σ4,1 = σ0,6,3,2 , Σ4,2 = σ0,6,3,4

Σ5,1 = σ0,6,3,2,1 , Σ5,2 = σ0,6,3,2,4 , Σ5,3 = σ0,6,3,4,5

Σ6,1 = σ0,6,3,2,1,4 , Σ6,2 = σ0,6,3,2,4,3 , Σ6,3 = σ0,6,3,2,4,5

Σ7,1 = σ0,6,3,2,1,4,3 , Σ7,2 = σ0,6,3,2,1,4,5

Σ7,3 = σ0,6,3,2,4,3,5 , Σ7,4 = σ0,6,3,2,4,3,6

Σ8,1 = σ0,6,3,2,1,4,3,2 , Σ8,2 = σ0,6,3,2,1,4,3,5

Σ8,3 = σ0,6,3,2,1,4,3,6 , Σ8,4 = σ0,6,3,2,4,3,5,4

Σ8,5 = σ0,6,3,2,4,3,5,6 , Σ8,6 = σ0,6,3,2,4,3,6,0

Σ9,1 = σ0,6,3,2,1,4,3,2,5 , Σ9,2 = σ0,6,3,2,1,4,3,2,6,

Σ9,3 = σ0,6,3,2,1,4,3,5,4 , Σ9,4 = σ0,6,3,2,1,4,3,5,6,

Σ9,5 = σ0,6,3,2,1,4,3,6,0 , Σ9,6 = σ0,6,3,2,4,3,5,4,6,

Σ9,7 = σ0,6,3,2,4,3,5,6,0

We assume here that Weyl group elements are expressed in the form of

σµ1,µ2,...µk
≡ σµ1

σµ2
. . . σµk

where σµ’s are simple Weyl reflections which are defined to

be the Weyl group elements with respect to simple roots αµ of E
(1)
6 with µ = 0, 1, 2, . . .6.

On the left-hand side, actions of Weyl group elements are defined on E
(1)
6 weight lattice

by

ΣM,cM (Λ̂+) ≡ Λ̂+ + κ(Λ̂+, δ) λ0 −M δ.
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