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The algebraic structure of the universal complicial sets

Richard Steiner

Abstract. The nerve of a strict omega-category is a simplicial set with ad-
ditional structure, making it into a so-called complicial set, and strict omega-
categories are in fact equivalent to complicial sets. The nerve functor is rep-
resented by a sequence of strict omega-categories, called orientals, which are
associated to simplexes. In this paper we give a detailed algebraic description
of the morphisms between orientals. The aim is to describe complicial sets
algebraically, by operators and equational axioms.

1. Introduction

The orientals or oriented simplexes are a sequence of strict ω-categories

O0,O1, . . .

associated to simplexes. They were discovered by Street, who described them as
fundamental objects in nature [1]. A strict ω-category X has a nerve, consisting of
the sequence of morphism sets

Hom(O0, X),Hom(O1, X), . . . ;

Verity [2] has shown that the nerve functor makes the category of strict ω-categories
equivalent to a category of simplicial sets with additional structure, called complicial

sets.
By definition, a complicial set is a simplicial set with a distinguished class of

elements, called thin elements, subject to certain axioms; Verity’s theorem therefore
amounts to a description of strict ω-categories in combinatorial terms. There is an
analogous cubical theory [3] which gives a more algebraic description, in terms of
cubical sets with additional operations and equational axioms. This paper is part
of a programme aimed at producing a similar algebraic description for complicial
sets, using operations and equational axioms rather than distinguished subsets.

In this paper we consider the universal examples; in other words, we consider
the nerves of the orientals themselves. This is in fact a purely algebraic problem.
The category of orientals can be embedded in the category of chain complexes and
chain maps [4]: the objects are the chain complexes of the standard simplexes; the
morphisms are the augmentation-preserving chain maps taking standard basis ele-
ments to sums of standard basis elements. This gives a simple algebraic description
of the nerves of orientals, as subsets of graded abelian groups, but we really need
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2 RICHARD STEINER

an internal description independent of any supersets. We will therefore solve the
following problem: find an algebraic structure on graded sets, consisting of internal
operations and equational axioms, such that the nerve of On is freely generated by
its identity endomorphism ιn. The equational axioms which solve this problem will
be called complicial identities; they are listed in Definition 6.1.

The structure of the paper is as follows. In Section 2 we recall the description of
orientals in terms of chain maps. In Section 3 we describe the additional operations
(they were introduced with different notation and terminology in [4]). In Section 4
we show that the nerve of On is generated by ιn; this was also done in [4], but here
we give more precise details and in effect obtain canonical forms for the elements of
the nerve. In Section 5 we give some additional properties of the nerves, for later
use. In Section 6 we describe the complicial identities, and we show that they are
satisfied in the nerves of orientals. In Section 7 we describe certain consequences of
the complicial identities, and in Section 8 we prove the main theorem (Theorem 8.7),
showing that the nerve of On is the set with complicial identities freely generated
by ιn.

2. Orientals and chain complexes

From [4] we recall the description of the category of orientals in terms of chain
maps. For n = 0, 1, . . . let Z∆(n) be the cellular chain complex of the standard
n-simplex. We regard Z∆(n) as a free graded abelian group with a prescribed basis.
The basis elements, written in the form [a0, . . . , aq], correspond to the (q+1)-tuples
of integers a0, . . . , aq such that

0 ≤ a0 < a1 < . . . < aq ≤ n;

a basis element [a0, . . . , aq] is homogeneous of degree q. The boundary homomor-
phism ∂ : Z∆(n) → Z∆(n), which lowers degrees by 1, is given on basis elements
of positive degree by

∂[a0, . . . , aq] =

q
∑

i=0

(−1)i[a0, . . . , ai−1, ai+1, . . . , aq].

There is also an augmentation homomorphism ǫ : Z∆(n) → Z, which is given on
basis elements of degree 0 by

ǫ[a0] = 1,

and which vanishes on basis elements of positive degree.
We will write Z∆(m,n) for the abelian group consisting of the chain maps

from Z∆(m) to Z∆(n); thus a member of Z∆(m,n) is a degree-preserving abelian
group homomorphism f : Z∆(m) → Z∆(n) such that ∂f = f∂. We will also
write O(m,n) for the subset of Z∆(m,n) consisting of the chain maps f which
are augmentation-preserving (ǫf = ǫ) and which take basis elements to sums of
basis elements (if a is a basis element then f(a) = b1 + . . . + bk for some k ≥ 0
and for some basis elements b1, . . . , bk). It is clear that there is a category Z∆
with objects 0, 1, 2, . . . and with morphism sets Z∆(m,n), using ordinary function
composition. It is also clear that Z∆ has a subcategory O with objects 0, 1, 2, . . .
and with morphism sets O(m,n). This category O is the category of orientals.

For n = 0, 1, . . . let Z∆(−, n) be the graded abelian group consisting of the
groups

Z∆(0, n), Z∆(1, n), . . .
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and let O(−, n) be the graded set consisting of the subsets

O(0, n), O(1, n), . . . ,

so that O(−, n) is the nerve of the oriental On; we are interested in the structure
of O(−, n).

3. Operations in the nerves of orientals

In this section we construct three families of operations in O(−, n): face op-

erations, degeneracy operations and wedge operations. They will be restrictions of
operations in Z∆(−, n). The face and degeneracy operations come from the obvi-
ous simplicial set structure on Z∆(−, n), and we begin by recalling the definition
of a simplicial set.

Definition 3.1. A simplicial set X is a sequence of sets X0, X1, . . . together with
face operations

∂i : Xm → Xm−1 (m > 0, 0 ≤ i ≤ m)

and degeneracy operations

ǫi : Xm → Xm+1 (0 ≤ i ≤ m)

such that

∂i∂j = ∂j−1∂i (i < j),

∂iǫj = ǫj−1∂i (i < j),

∂iǫi = ∂i+1ǫi = id,

∂iǫj = ǫj∂i−1 (i > j + 1),

ǫiǫj = ǫj+1ǫi (i ≤ j).

We will now describe the face and degeneracy operations in Z∆(−, n) in terms
of basis elements. For these basis elements we use notations such as [b, c] or [b, i, c],
where b and c are suitable sequences of integers.

Definition 3.2. Let x be a chain map in Z∆(m,n).
For m > 0 and 0 ≤ i ≤ m, the face ∂ix is the chain map in Z∆(m− 1, n) given

on basis elements by

(∂ix)[b, c] = x[b, c′],

where the terms of b are less than i, the terms of c are greater than or equal to i,
and the terms of c′ are got from those of c by adding 1.

For 0 ≤ i ≤ m the degeneracy ǫix is the chain map in Z∆(m + 1, n) given on
basis elements by

(ǫix)[b, c] = x[b, c′′],

(ǫix)[b, i, c] = (ǫix)[b, i+ 1, c] = x[b, i, c′′],

(ǫix)[b, i, i+ 1, c] = 0,

where the terms of b are less than i, the terms of c are greater than i+ 1, and the
terms of c′′ are got from those of c by subtracting 1.

We get the following result.
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Proposition 3.3. The face and degeneracy operations

∂i : Z∆(m,n) → Z∆(m− 1, n), ǫi : Z∆(m,n) → Z∆(m+ 1, n)

are group homomorphisms making Z∆(−, n) into a simplicial set. They restrict to

operations

∂i : O(m,n) → O(m− 1, n), ǫi : O(m,n) → O(m+ 1, n)

making O(−, n) into a simplicial set.

Proof. It is clear that the operations in Z∆(−, n) are homomorphisms satis-
fying the simplicial identities. If x ∈ O(−, n), so that x is augmentation-preserving
and takes basis elements to sums of basis elements, then ∂ix and ǫix clearly belong
to O(−, n) as well. �

Degeneracies can be characterised as follows.

Proposition 3.4. Let x be a morphism in O(−, n). Then x is in the image of ǫi
if and only if xa = 0 for every basis element a including i and i+ 1.

Proof. By definition, if x is in the image of ǫi then x vanishes on every basis
element including i and i+ 1.

Conversely, suppose that x vanishes on every basis element including i and i+1.
Since x is a chain map,

x[b, i, c] = x[b, i+ 1, c]

for all basis elements of the form [b, i, i+ 1, c], and it follows that x = ǫi∂ix. �

Next we define the wedge operations.

Definition 3.5. Let m and i be integers with 0 ≤ i ≤ m− 1. If x and y are chain
maps in Z∆(m,n) such that ∂ix = ∂i+1y, then the wedge x ∧i y is the chain map
in Z∆(m + 1, n) given by

x ∧i y = ǫi+1x− ǫ2i ∂i+1y + ǫiy.

In terms of basis elements, if a does not include i then (x ∧i y)a = (ǫiy)a, if
a does not include i+ 2 then (x ∧i y)a = (ǫi+1x)a, and

(x ∧i y)[b, i, i+ 2, c] = (ǫi+1x+ ǫiy)[b, i, i+ 2, c],

(x ∧i y)[b, i, i+ 1, i+ 2, c] = 0.

Geometrically, if x and y are regarded as functions on the m-simplex then x∧i y

acts on a point of the (m+ 1)-simplex in the following way: project the point onto
the union of the faces opposite vertex i and vertex i + 2; apply y if the projection
is in the face opposite i; apply x if the projection is in the face opposite i+ 2.

We get the following results.

Proposition 3.6. If x ∧i y is defined in Z∆(−, n) then

∂i(x ∧i y) = y, ∂i+2(x ∧i y) = x.

Proof. This is clear from the definition. �

Proposition 3.7. Let x and y be morphisms in O(m,n) such that ∂ix = ∂i+1y.

Then x ∧i y is a morphism in O(m+ 1, n).
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Proof. Given that x and y are augmentation-preserving and that they take
basis elements to sums of basis elements, we must show that x ∧i y has the same
properties. This is straightforward. �

Proposition 3.8. Let z be a morphism in O(m+1, n), and let i be an integer with

0 ≤ i ≤ m− 1. Then the following are equivalent.

(1) There are morphisms x, y in O(m,n) with ∂ix = ∂i+1y such that z = x∧i y.

(2) There are chain maps u, v in Z∆(m,n) such that z = ǫiu+ ǫi+1v.

(3) One has za = 0 for every basis element a including i, i+ 1, i+ 2.

Proof. We show that (1) ⇒ (2) ⇒ (3) ⇒ (1).
If z = x ∧i y then z has the form ǫiu+ ǫi+1v by definition.
If z = ǫiu + ǫi+1v then clearly za = 0 for every basis element a including

i, i+ 1, i+ 2.
Suppose that za = 0 for every basis element a including i, i+ 1, i+ 2. Let

x = ∂i+2z, y = ∂iz.

It follows from Proposition 3.3 that x and y are morphisms in O(m,n) and that
∂ix = ∂i+1y; the wedge x ∧i y therefore exists. The morphisms z and x ∧i y then
agree on basis elements not including i, on basis elements not including i+ 2, and
on basis elements including i, i+ 1, i+ 2. Since z and x ∧i y are chain maps, they
must also agree on basis elements including i and i + 2 but not i + 1. Therefore
z = x ∧i y.

This completes the proof. �

4. Canonical forms

Let ιn be the identity morphism in O(n, n). In this section we show that the
elements of O(−, n) can be expressed in terms of ιn by using the face, degeneracy
and wedge operations. In effect we find canonical forms for the morphisms in
O(−, n) (see Theorem 4.11). The argument is based on the following result.

Theorem 4.1. Let x be a morphism in O(m,n). Then there are integers x0, . . . , xm

with 0 ≤ x0 ≤ x1 ≤ . . . ≤ xm ≤ n such that

x[0] = [x0], . . . , x[m] = [xm].

If a is a basis element in Z∆(m) of the form [s, a1, . . . , aq−1, t] then xa is a sum of

basis elements [b0, . . . , bq] with

xs ≤ b0 < b1 < . . . < bq ≤ xt.

Proof. Let [i] be a zero-dimensional basis element in Z∆(m). Then x[i] is
a sum of zero-dimensional basis elements in Z∆(n), and this sum has exactly one
term because x is augmentation-preserving. Therefore x[i] = [xi] for some integer xi

with 0 ≤ xi ≤ n.
For 0 < i ≤ m we have

∂x[i− 1, i] = x∂[i− 1, i] = x([i]− [i− 1]) = [xi]− [xi−1].

But x[i− 1, i] is a sum of basis elements [j, k], so ∂x[i− 1, i] is a sum of expressions
[k]− [j] with j < k. Therefore xi−1 ≤ xi.

Let a be a basis element of the form [s, a1, . . . , aq]; we will show by induction
on q that xa is a sum of basis elements [b0, . . . , bq] with xs ≤ b0. The result
is clear when q = 0, and is trivial when xa = 0. From now on, suppose that
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q > 0 and xa 6= 0, so that xa is a non-empty sum of basis elements of positive
dimension. Let [k0, . . . , kq] be a term in this sum such that k0 is as small as
possible and, subject to this condition, such that k1 is as large as possible. Then
the basis element [k0, k2, . . . , kq] has a negative coefficient in ∂xa because there is
no possibility of cancellation. Since ∂xa = x∂a, it follows that [k0, k2, . . . , kq] is a
term in x[s, a1, . . . , ai−1, ai+1, . . . , aq] for some odd value of i, and it then follows
from the inductive hypothesis that xs ≤ k0. Since k0 is minimal, xa is a sum of
basis elements [b0, . . . , bq] with xs ≤ b0.

Similarly, if a is a basis element of the form [a0, . . . , aq−1, t], then xa is a sum
of basis elements [b0, . . . , bq] with bq ≤ xt.

This completes the proof. �

The canonical forms for morphisms in O(−, n) will depend on parameters called
terminus, rank and corank, which are defined as follows.

Definition 4.2. Let x be a morphism in O(m,n). Then the terminus of x, denoted
terminusx, is the integer t such that x[m] = [t]; the rank of x, denoted rankx, is the
number of zero-dimensional basis elements [a] in Z∆(m) such that x[a] 6= x[m]; the
corank of x, denoted corankx, is the number of zero-dimensional basis elements [a]
in Z∆(m) such that a < m and x[a] = x[m].

From Theorem 4.1 we immediately draw the following conclusion.

Proposition 4.3. Let x be a morphism in O(m,n) with terminus t, rank r and

corank s. Then t, r and s are nonnegative integers such that t ≤ n and r+ s = m.

We will find the canonical forms by an induction on terminus. The passage
to morphisms of terminus t from morphisms of lower terminus is based on a cone
construction, as follows.

Definition 4.4. Let x be a morphism in O(m,n) with terminus less than t. Then
the t-cone on x is the morphism ρtx in O(m + 1, n) given on basis elements as
follows: (ρtx)[m+ 1] = [t]; if

x[a] =
∑

b

xab[b]

then

(ρtx)[a] =
∑

b

xab[b], (ρtx)[a,m+ 1] =
∑

b

xab[b, t].

It is easy to see that ρtx as defined here really is a morphism in O(m + 1, n),
with terminus t and corank zero. It is also easy to verify the following result.

Proposition 4.5. Let St−1 be the subset of O(−, n) consisting of the morphisms

with terminus less than t. Then St−1 is closed under the face, degeneracy and wedge

operations. The t-cone construction

ρt : St−1 → O(−, n)

commutes with the operations in St−1, and

ρt∂
n−t+1
t ιn = ∂n−t

t+1 ιn.
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We will use Proposition 4.5 as part of an induction on terminus. To complete
the argument, we will show that arbitrary morphisms with terminus at most t can
be expressed in terms of ∂n−t

t+1 ιn and of t-cones.
Let x be a morphism in O(m,n) with terminus t and rank r; we will construct

an associated morphism γx in O(r, n) with terminus t, rank r and corank zero.
Note that, by Theorem 4.1, if a = [a0, . . . , aq] is a basis element in Z∆(m) with
aq < r, then xa is a sum of basis elements [b0, . . . , bq] with bq < t. We deduce that
there is a chain map

γx : Z∆(r) → Z∆(n)

given on basis elements as follows: (γx)[r] = [t]; for r > 0, if [a] is a basis element
for Z∆(r − 1) and if

x[a, r] =
∑

b

(x′

ab[b] + x′′

ab[b, t])

with the sum running over basis elements [b] for Z∆(t− 1), then

(γx)[a] =
∑

b

x′′

ab[b], (γx)[a, r] =
∑

b

x′′

ab[b, t].

It is easy to see that γx has the following properties.

Proposition 4.6. Let x be a morphism in O(−, n) with terminus t and rank r.

Then γx is a morphism in O(r, n) with terminus t, rank r and corank zero. If r = 0
then γx = ∂t

0∂
n−t
t+1 ιn; if r > 0 then γx is a t-cone.

Given a morphism x in O(−, n) with terminus t, rank r and corank s, we now
construct further chain maps as follows: let

βx : Z∆(r + s) → Z∆(n)

be given by

βx = ǫsrγx;

for 0 ≤ p < r let

αpx : Z∆(p+ s+ 1) → Z∆(n)

be given by

αpx = ∂
r−p−1

p+1 (x − βx) + ǫp∂
r−p
p+1βx.

Example 4.7. Let x be a morphism in O(r, n) which is equal to ∂t
0∂

n−t
t+1 ιn or is a

t-cone. Then rankx = r, corankx = 0, βx = γx = x, and

αpx = ǫp∂
r−p
p+1x (0 ≤ p < r).

In general we get the following result.

Proposition 4.8. Let x be a morphism in O(−, n) with terminus t, rank r and

corank s. If s = 0 and 0 ≤ p < r then αpx is a morphism in O(p + s + 1, n)
with terminus less than t. If s > 0 and 0 ≤ p < r then αpx is a morphism in

O(p+ s+ 1, n) with terminus t and corank s− 1.

Proof. It is clear that αpx is an augmentation-preserving chain map from
Z∆(p+ s+1) to Z∆(n). To show that αpx is a morphism in O, we must show that
αpx takes each basis element a to a sum of basis elements.

Suppose that a does not have a term p+1. Then (αpx)a = (∂r−p−1

p+1 x)a because

(∂r−p−1

p+1 βx)a = (ǫp∂
r−p
p+1βx)a, and it follows that (αpx)a is a sum of basis elements.
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Suppose that a has a term p + 1 and a term greater than p + 1. Then
(∂r−p−1

p+1 βx)a = 0, because βx has the form ǫsrγx, and it again follows that (αpx)a is
a sum of basis elements.

Suppose that a = [a, p+ 1]. Then (∂r−p−1

p+1 βx)a is the sum of the terms of the

form [b, t] in (∂r−p−1

p+1 x)a, so {∂r−p−1

p+1 (x− βx)}a is the sum of the remaining terms

in (∂r−p−1

p+1 x)a, and it again follows that (αpx)a is a sum of basis elements.

This shows that (αpx)a is a sum of basis elements in all cases; therefore αpx is
a morphism in O(p+ s+ 1, n).

We will now consider the terminus and corank of αpx. For p+2 ≤ i ≤ p+s+1
it follows from the calculations above and from Proposition 4.3 that

(αp)[i] = (∂r−p−1

p+1 x)[i] = x[r + i− p− 1] = [t];

on the other hand,

(αpx)[p+ 1] = (x− βx)[r] + (βx)[p] = [t]− [t] + (βx)[p] = (γx)[p] 6= [t].

If s = 0 it now follows that αpx has terminus less than t; if s > 0 it follows that
αpx has terminus t and corank s− 1.

This completes the proof. �

We will express a morphism x in terms of the morphisms αpx and γx by using
the following notation.

Notation 4.9. In a set with operations ∂i and ∧i we write

u( ∧k v) = u ∧k v,

regarding ( ∧k v) as an operator which acts on the right, and for l ≥ 1 we write

u ∧l
k v = u( ∧k ∂

l−1
k+1

v)( ∧k ∂
l−2
k+1

v) . . . ( ∧k ∂k+1v)( ∧k v).

We also write
(u ∧l

k )v = u ∧l
k v,

regarding (u ∧l
k ) as an operator which acts on the left, and for r ≥ 0 we write

Λr(ur−1, . . . , u0, v) = ∂r(ur−1 ∧
1
r−1 )∂r−1(ur−2 ∧

2
r−2 ) . . . ∂1(u0 ∧

r
0 )v.

Note in particular that Λ0(v) = v.

In O(−, n) an induction based on Definition 3.5 gives the following result.

Proposition 4.10. If u and v are morphisms in O(−, n) and if ∂ku = ∂l
k+1v, then

u ∧l
k v is defined and

u ∧l
k v = ǫlk+1u− ǫl+1

k ∂l
k+1v + ǫkv.

The canonical form is now as follows.

Theorem 4.11. Let x be a morphism in O(−, n) with rank r and with corank s.

Then

x = Λr(αr−1x, . . . , α0x, ǫ
s
rγx).

Proof. Recall that

αpx = ∂
r−p−1

p+1 (x − βx) + ǫp∂
r−p
p+1βx,

where βx = ǫsrγx. For 0 ≤ p ≤ r, let

vp = ǫr−p
p ∂r−p

p (x− βx) + βx,
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so that, in particular, vr = x. It suffices to show that

v0 = ǫsrγx,

vp+1 = ∂p+1(αpx ∧r−p
p vp) (0 ≤ p < r);

we proceed as follows.
The morphisms ∂r

0x and ∂r
0βx are morphisms in O(s, n) such that

(∂r
0x)[0] = (∂r

0x)[s] = [t], (∂r
0βx)[0] = (∂r

0βx)[s] = [t].

By Theorem 4.1, these two morphisms both annihilate all basis elements of positive
dimension; therefore ∂r

0x = ∂r
0βx. It follows that v0 = βx = ǫsrγx.

For 0 ≤ p < r it is straightforward to verify that ∂pαpx = ∂
r−p
p+1vp and that

vp+1 = ∂p+1(ǫ
r−p
p+1αpx− ǫr−p+1

p ∂
r−p
p+1vp + ǫpvp);

therefore vp+1 = ∂p+1(αpx ∧r−p
p vp).

This completes the proof. �

We can now prove the main result.

Theorem 4.12. Every morphism in O(−, n) can be expressed in terms of ιn by

using the face, degeneracy and wedge operations.

Proof. Let St be the set of morphisms with terminus at most t. We will show
inductively that St is generated by ∂n−t

t+1 ιn; the case t = n will then give the result.
It follows from Theorem 4.11, Proposition 4.6 and Proposition 4.8 that St has

a set of generators consisting of the morphism ∂t
0∂

n−t
t+1 ιn, the t-cones, and the mor-

phisms in St−1; it therefore suffices to show that these generators are expressible
in terms of ∂n−t

t+1 ιn.
For t = 0 the result holds because the only generator is ∂n

1 ιn.
For t > 0, suppose as an inductive hypothesis that St−1 is generated by

∂n−t+1
t ιn. It is evident that ∂

t
0∂

n−t
t+1 ιn can be expressed in terms of ∂n−t

t+1 ιn. It follows
from the inductive hypothesis and Proposition 4.5 that t-cones can be expressed in
terms of ∂n−t

t+1 ιn. It also follows from the inductive hypothesis that the morphisms

in St−1 can be expressed in terms of ∂n−t
t+1 ιn, because ∂n−t+1

t ιn = ∂t∂
n−t
t+1 ιn.

This completes the proof. �

5. Further properties of the nerves of orientals

We have shown in Theorem 4.12 that O(−, n) is generated by ιn. In the later
sections of this paper we will find identities determining the structure of O(−, n)
completely. Here we obtain some additional results needed in those sections.

First we give some formulae for faces.

Proposition 5.1. Let x be a morphism in O(−, n) with rank r, and let ∂ix be a

face with 0 ≤ i < r. Then

γ∂ix = ∂iγx,

αp∂ix = αpx (0 ≤ p < i),

αp∂ix = ∂iαp+1x (i ≤ p < r − 1).
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Proof. Let the terminus of x be t and the corank be s. It follows from
Proposition 4.3 that ∂ix has terminus t, rank r − 1 and corank s. It is clear from
the construction that γ∂ix = ∂iγx, it follows that

β∂ix = ǫsr−1γ∂ix = ǫsr−1∂iγx = ∂iǫ
s
rγx = ∂iβx,

and for 0 ≤ p < r − 1 it follows that

αp∂ix = ∂
r−p−2

p+1 (∂ix− ∂iβx) + ǫp∂
r−p−1

p+1 ∂iβx.

If now 0 ≤ p < i then

αp∂ix = ∂
r−p−1

p+1 (x− βx) + ǫp∂
r−p
p+1βx = αpx;

if i ≤ p < r − 1 then

αp∂ix = ∂i∂
r−p−2

p+2 (x− βx) + ∂iǫp+1∂
r−p−1

p+2 βx = ∂iαp+1x.

�

Next we consider the image set of the wedge operation ∧i, which is denoted
im∧i.

Proposition 5.2. Let x be a morphism of rank r in O(−, n).
If x ∈ im∧i with i ≤ r− 3 then γx ∈ im∧i, and αpx ∈ im∧i for i+2 ≤ p < r.

If x ∈ im∧r−2 then γx ∈ im ǫr−2 and αr−1x ∈ im∧r−2.

If x ∈ im∧r−1 then αr−1x ∈ im∧r−1.

If x ∈ im∧i with r ≤ i then αpx ∈ im∧i−r+p+1 for 0 ≤ p < r.

Proof. Let the corank of x be s, so that

αpx = ∂
r−p−1

p+1 x− ∂
r−p−1

p+1 ǫsrγx+ ǫp∂
r−p
p+1ǫ

s
rγx,

and recall from Proposition 3.8 that a morphism is in im∧i if and only if it anni-
hilates all basis elements including i, i+ 1, i+ 2.

Suppose that x ∈ im∧i with i ≤ r − 3. Then γx annihilates basis elements
including i, i+1, i+2 because x annihilates basis elements including i, i+1, i+2, r;
therefore γx ∈ im∧i. For i + 2 ≤ p < r it follows that ∂

r−p−1

p+1 x, ∂r−p−1

p+1 ǫsrγx and

ǫp∂
r−p
p+1ǫ

s
rγx annihilate all basis elements including i, i+1, i+2, and it then follows

that αpx ∈ im∧i.
Suppose that x ∈ im∧r−2. In this case γx annihilates all basis elements in-

cluding r− 2, r− 1 because x annihilates all basis elements including r− 2, r− 1, r;
hence, by Proposition 3.4, γx ∈ im ǫr−2. As in the previous case, αr−1x ∈ im∧r−2.

Suppose that x ∈ im∧r−1. Then s ≥ 1, so that ǫsrγx and ǫr−1∂rǫ
s
rγx are in

im∧r−1. As before, it follows that αr−1x ∈ im∧r−1.
Finally, suppose that x ∈ im∧i with r ≤ i, and suppose that 0 ≤ p < r. Then

i ≤ r + s − 2, so ∂
r−p−1

p+1 x, ∂
r−p−1

p+1 ǫsrγx and ǫp∂
r−p
p+1ǫ

s
rγx are all in im∧i−r+p+1;

therefore αpx ∈ im∧i−r+p+1. �

We finish this section by giving bounds for the termini and coranks of the
morphisms in expressions of the form Λr(ur−1, . . . , u0, v).
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Proposition 5.3. Let Λr(ur−1, . . . , u0, v) be an expression defined in O(−, n), and
let

v0 = v,

vp+1 = ∂p+1(up ∧
r−p
p vp) (0 ≤ p < r),

wp = up ∧
r−p
p vp (0 ≤ p < r).

Then the morphisms vp and wp all have the same terminus as v. If rank v ≥ r then

the morphisms vp and wp all have the same corank as v.

Proof. By definition, vp+1 = ∂p+1wp. From Proposition 3.6 we see that
∂pwp = vp. For i ≥ r it follows that

vr[i− 1] = wr−1[i] = vr−1[i− 1] = . . . = w0[i] = v0[i− 1] = v[i− 1];

in particular it follows that the morphisms vp and wp all have the same terminus
as v. Let this common terminus be t. If rank v ≥ r, then v[r− 1] 6= [t], from which
it follows that vp and wp have the same corank as v. �

6. Complicial identities

In this section we define sets with complicial identities; they will be simplicial
sets with wedge operations subject to certain axioms. We will then show that the
simplicial sets O(−, n) satisfy these axioms.

Definition 6.1. A set with complicial identities is a simplicial set X , together with
wedges

x ∧i y ∈ Xm+1,

defined when x, y ∈ Xm and ∂ix = ∂i+1y, such that the following axioms hold.
(1) If x ∧i y is defined with x, y ∈ Xm, then

∂j(x ∧i y) = ∂jx ∧i−1 ∂jy (0 ≤ j < i),

∂i(x ∧i y) = y,

∂i+2(x ∧i y) = x,

∂j(x ∧i y) = ∂j−1x ∧i ∂j−1y (i+ 3 ≤ j ≤ m+ 1).

(2) If x ∈ Xm and 0 ≤ i < m then

ǫix = ǫi∂i+1x ∧i x, ǫi+1x = x ∧i ǫi∂ix.

(3) If A is of the form b ∧i (y ∧i z) then

A = (∂i+2b ∧i y) ∧i+1 ∂i+1A.

(4) If A is of the form (x ∧i y) ∧i+1 c then

A = ∂i+2A ∧i (y ∧i ∂ic).

(5) The equality

[x ∧i ∂i+1(y ∧i z)] ∧i (y ∧i z) = (x ∧i y) ∧i+1 [∂i+1(x ∧i y) ∧i z]

holds whenever either side is defined.
(6) Let A be an element of the form ∂i+2[(x ∧i+1 y) ∧i+1 (y ∧i z)]; then the

equality
A ∧i (w ∧i+1 ∂iA) = (∂i+3A ∧i w) ∧i+2 A

holds whenever either side is defined.
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(7) If i ≤ j − 3 then the equality

(x ∧i y) ∧j (z ∧i w) = (x ∧j−1 z) ∧i (y ∧j−1 w)

holds whenever either side is defined.
A morphism of sets with complicial identities f : X → Y is a sequence of

functions f : Xm → Ym commuting with the face, degeneracy and wedge operations.

Remark 6.2. There is some redundancy in these axioms. Indeed, the degeneracy
operations on elements of positive dimension are redundant because of axiom (2).
For similar reasons, one can omit some of the simplicial identities, retaining only
∂i∂j = ∂j−1∂i (for i < j) and ∂iǫi = ∂i+1ǫi = id.

Remark 6.3. Axiom (3) could be written simply as an equality

b ∧i (y ∧i z) = (∂i+2b ∧i y) ∧i+1 ∂i+1[b ∧i (y ∧i z)],

required when either side is defined. A similar remark applies to axioms (4) and (6).

Remark 6.4. Note that axiom (1) does not give a formula for ∂i+1(x ∧i y). In a
sense, the operation ∧i exists in order to construct the operation

(x, y) 7→ ∂i+1(x ∧i y).

By using axioms (1), (2) and (5), one can show that this binary operation is as-
sociative and that it makes the m-dimensional elements into the morphisms of a
category. The objects are the (m− 1)-dimensional elements, the source and target
of a morphism x are ∂ix and ∂i+1x, and the identity of an object a is ǫia.

Remark 6.5. I intend to show in a future paper that sets with complicial identities
are equivalent to the complicial sets used by Verity in [2].

We will now show that the axioms of Definition 6.1 apply to orientals.

Proposition 6.6. The graded sets O(−, n) are sets with complicial identities.

Proof. From Section 3 we know that O(−, n) is a simplicial set and that it
has wedge operations with the correct domains and codomains.

It is straightforward to verify axiom (1).
Next we verify axiom (5). The existence of the expression on one side is equiv-

alent to the existence of the expression on the other, because the existence of either
expression is equivalent to the truth of the equalities

∂ix = ∂i+1y, ∂iy = ∂i+1z.

Also, if the two expression do exist, they have the same value, namely

ǫi+3ǫi+2x− ǫ3i ∂i+1y + ǫi+3ǫiy − ǫ3i ∂i+1z + ǫi+1ǫiz.

The remaining axioms all say that expressions of certain forms are equal to
wedges. They can be proved by using Proposition 3.8, which says that an element
of O(−, n) is in the image of ∧i if and only if it is in im ǫi + im ǫi+1. For example,
suppose that the expression on the left of axiom (6) is defined, and let

B = A ∧i (w ∧i+1 ∂iA).

We find that B ∈ im ǫi+2 + im ǫi+3; therefore B has the form B′ ∧i+2 B
′′. Using

axiom (1) we then find that

B′ = ∂i+4B = ∂i+3A ∧i ∂i+3(w ∧i+1 ∂iA) = ∂i+3A ∧i w,

B′′ = ∂i+2B = A;
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therefore B = (∂i+3A ∧i w) ∧i+2 A.
This completes the proof. �

7. Consequences of the complicial identities

We have shown in Theorem 4.12 that O(−, n) is generated by the identity
morphism ιn. In Section 8 we will show that O(−, n) is freely generated by ιn
subject to the complicial identities of Definition 6.1; in other words, we will show
that the identities determine the entire structure. In order to do this, we now
consider consequences of the identities in general.

First we consider the expressions u ∧l
k v (see Notation 4.9). The domains of

definition and most of the faces are as follows.

Proposition 7.1. An expression u∧l
k v in a set with complicial identities exists if

and only if ∂ku = ∂l
k+1v. If the expression does exist, then

∂i(u ∧l
k v) = ∂iu ∧l

k−1 ∂iv (i < k),

∂k(u ∧l
k v) = v,

∂k+2(u ∧1
k v) = u,

∂i+1(u ∧l
k v) = u ∧l−1

k ∂iv (l > 1, k < i ≤ k + l),

∂i+1(u ∧l
k v) = ∂i−l+1u ∧l

k ∂iv (k + l < i).

Proof. We have x ∧k y defined if and only if ∂kx = ∂k+1y, and we have
∂k(x ∧k y) = y when x ∧k y is defined; therefore u ∧l

k v is defined if and only
if ∂ku = ∂l

k+1v. The formulae for the faces are proved by induction on l, using
Definition 6.1(1) when l = 1 and using the formula

u ∧l
k v = (u ∧l−1

k ∂k+1v) ∧k v

when l > 1. �

For the expressions Λr(ur−1, . . . , u0, v) the domains of definition are as follows.

Proposition 7.2. An expression Λr(ur−1, . . . , u0, v) exists in a set with complicial

identities if and only

∂pup = Λp(up−1, . . . , u0, ∂
r−p
p+1v)

for 0 ≤ p < r.

Proof. For 0 ≤ p ≤ r let

vp = ∂p(up−1 ∧
r−p+1

p−1 )∂p−1(up−2 ∧
r−p+2

p−2 ) . . . ∂1(u0 ∧
r
0 )v,

so that Λr(ur−1, . . . , u0, v) = vr. For 0 ≤ p < r, by Proposition 7.1, vp+1 exists if

and only if ∂pup = ∂
r−p
p+1vp; it therefore suffices to show that

∂
r−p
p+1vp = Λp(up−1, . . . , u0, ∂

r−p
p+1v).

But for 0 < q ≤ p it follows from Proposition 7.1 that

∂
r−p
p+1∂q(uq−1 ∧

r−q+1

q−1 ) = ∂q∂
r−p
p+2(uq−1 ∧

r−q+1

q−1 ) = ∂q(uq−1 ∧
p−q+1

q−1 )∂r−p
p+1 ,

and this gives the result. �

Nest we compute the faces of these expressions.
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Proposition 7.3. In a set with complicial identities the following equalities are

valid whenever their left sides are defined:

∂iΛ
r(ur−1, . . . , u0, v) = Λr−1(∂iur−1, . . . , ∂iui+1, ui−1, . . . , u0, ∂iv) (i < r),

∂0Λ
0(v) = ∂0v,

∂rΛ
r(ur−1, . . . , u0, v) = ∂rur−1 (r > 0),

∂iΛ
r(ur−1, . . . , u0, v) = Λr(∂iur−1, ∂i−1ur−2, . . . , ∂i−r+1u0, ∂iv) (i > r).

Proof. Suppose first that i < r. Using Proposition 7.1, for r ≥ p > i + 1 we
get

∂i∂p(up−1 ∧
r−p+1

p−1 ) = ∂p−1∂i(up−1 ∧
r−p+1

p−1 ) = ∂p−1(∂iup−1 ∧
r−p+1

p−2 )∂i,

we then get

∂i∂i+1(ui ∧
r−i
i ) = ∂i∂i(ui ∧

r−i
i ) = ∂i,

and for i ≥ p > 0 we get

∂i∂p(up−1 ∧
r−p+1

p−1 ) = ∂p∂i+1(up−1 ∧
r−p+1

p−1 ) = ∂p(up−1 ∧
r−p
p−1 )∂i;

therefore

∂iΛ
r(ur−1, . . . , u0, v) = Λr−1(∂iur−1, . . . , ∂iui+1, ui−1, . . . , u0, ∂iv).

It is obvious that ∂0Λ
0(v) = ∂0v, because Λ0(v) = v.

For r > 0 the equality ∂rΛ
r(ur−1, . . . , u0, v) = ∂rur−1 is immediate from Propo-

sition 7.1.
Finally, suppose that i > r. For r ≥ p > 0 it follows from Proposition 7.1 that

∂i∂p(up−1 ∧
r−p+1

p−1 ) = ∂p∂i+1(up−1 ∧
r−p+1

p−1 ) = ∂p(∂i−r+pup−1 ∧
r−p+1

p−1 )∂i;

therefore

∂iΛ
r(ur−1, . . . , u0, v) = Λr(∂iur−1, ∂i−1ur−2, . . . , ∂i−r+1u0, ∂iv).

�

Next we give a collapsing result.

Proposition 7.4. If x is an element of dimension at least r in a set with complicial

identities, then

x = Λr(ǫr−1∂rx, ǫr−2∂
2
r−1x, . . . , ǫ0∂

r
1x, x).

Proof. Repeated applications of Definition 6.1(2) show that for 0 ≤ p < r we
have

∂p+1(ǫp∂
r−p
p+1x ∧r−p

p x) = ∂p+1ǫpx = x.

The result follows. �

In the rest of this section, we aim to find conditions implying that elements of
the form Λr(ur−1, . . . , u0, v) are wedges.

Proposition 7.5. Let u ∧k v be a wedge in a set with complicial identities. If

i = k − 1 or i = k and if u, v ∈ im∧i then ∂k+1(u ∧k v) ∈ im∧i.
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Proof. Suppose that u = u′ ∧k−1 u
′′ and v = v′ ∧k−1 v

′′. The existence of the
wedge u ∧k v implies that v′ = ∂k+1v = ∂ku = ∂k(u

′ ∧k−1 u
′′); therefore

u ∧k v = (u′ ∧k−1 u
′′) ∧k [∂k(u

′ ∧k−1 u
′′) ∧k−1 v

′′].

It now follows from Definition 6.1(5) that

∂k+1(u ∧k v) = u′ ∧k−1 ∂k(u
′′ ∧k−1 v

′′).

If u = u′∧ku
′′ and v = v′∧kv

′′, then it similarly follows that u′′ = ∂k+1(v
′∧kv

′′)
and that

∂k+1(u ∧k v) = ∂k+1(u
′ ∧k v

′) ∧k v
′′.

�

Proposition 7.6. In a set with complicial identities, let A be an element of the

form x∧i+1 y or y∧i z or ∂i+2[(x∧i+1 y)∧i+1 (y
′ ∧i z)]. Then elements of the form

A ∧i (w ∧i+1 v) are in im∧i+2, and elements of the form (u ∧i w) ∧i+2 A are in

im∧i.

Proof. Note first that A must be m-dimensional with 0 ≤ i ≤ m− 3, because
of the existence of A ∧i (w ∧i+1 v) or of (u ∧i w) ∧i+2 A.

Suppose that B = A ∧i (w ∧i+1 v); then ∂iA = ∂i+1(w ∧i+1 v) = v, so

B = A ∧i (w ∧i+1 ∂iA).

Because of Definition 6.1(6), it suffices to show that A is of the form

∂i+2[(x ∧i+1 y) ∧i+1 (y ∧i z)],

and we do this as follows: if A = x ∧i+1 y then

A = ∂i+2ǫi+2A

= ∂i+2(A ∧i+1 ǫi+1∂i+1A)

= ∂i+2(A ∧i+1 ǫi+1y)

= ∂i+2[(x ∧i+1 y) ∧i+1 (y ∧i ǫi∂iy)];

if A = y ∧i z then similarly

A = ∂i+2[(ǫi+1∂i+2y ∧i+1 y) ∧i+1 (y ∧i z)];

if A = ∂i+2[(x∧i+1 y)∧i+1 (y
′ ∧i z)] then y = ∂i+1(x∧i+1 y) = ∂i+2(y

′ ∧i z) = y′, so

A = ∂i+2[(x ∧i+1 y) ∧i+1 (y ∧i z)].

The argument for elements of the form (u ∧i w) ∧i+2 A is similar. �

Proposition 7.7. In a set with complicial identities, if r ≥ i+ 3 then

ǫr(x ∧i y) = ǫr−1x ∧i ǫr−1y

whenever x ∧i y is defined.

Proof. The proof is by induction on r. We use Definition 6.1(1) and (2)
repeatedly.

In the case r = i+ 3 we have

ǫi+3(x ∧i y) = (x ∧i y) ∧i+2 ǫi+2∂i+2(x ∧i y)

= (x ∧i y) ∧i+2 ǫi+2x

= (x ∧i y) ∧i+2 (x ∧i+1 ǫi+1∂i+1x).
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It follows from Proposition 7.6 that ǫi+3(x∧i y) is in im∧i, and it then follows that

ǫi+3(x ∧i y) = ∂i+2ǫi+3(x ∧i y) ∧i ∂iǫi+3(x ∧i y)

= ǫi+2∂i+2(x ∧i y) ∧i ǫi+2∂i(x ∧i y)

= ǫi+2x ∧i ǫi+2y.

For r > i+3 it follows from the inductive hypothesis and Definition 6.1(7) that

ǫr(x ∧i y) = (x ∧i y) ∧r−1 ǫr−1∂r−1(x ∧i y)

= (x ∧i y) ∧r−1 ǫr−1(∂r−2x ∧i ∂r−2y)

= (x ∧i y) ∧r−1 (ǫr−2∂r−2x ∧i ǫr−2∂r−2y)

= (x ∧r−2 ǫr−2∂r−2x) ∧i (y ∧r−2 ǫr−2∂r−2y)

= ǫr−1x ∧i ǫr−1y.

This completes the proof. �

Proposition 7.8. In a set with complicial identities, an element of the form

(u ∧i u
′) ∧k (v ∧i v

′)

is in im∧i for i ≤ k and is in im∧i+1 for i ≥ k − 1.

Proof. For i = k − 1 and for i = k the results are trivial or are contained
in Definition 6.1(3) and (4); for i = k − 2 and for i = k + 1 the results follow
from Proposition 7.6; for i ≤ k − 3 and for i ≥ k + 2 the results are contained in
Definition 6.1(7). �

Proposition 7.9. In a set with complicial identities, an element of the form

∂i+3[u ∧l
i+2 ∂i+2(u

′ ∧l+1
i+1 v)]

is in im∧i if u and v are in im∧i.

Proof. Let

z = u ∧l
i+2 ∂i+2(u

′ ∧l+1
i+1 v).

Because of Definition 6.1(1), it suffices to show that z ∈ im∧i. We will do this by
induction on l.

Let

A = ∂i+2(u
′ ∧l+1

i+1 v)

and let

u′′ =

{

u (l = 1),

u ∧l−1
i+2 ∂i+3A (l > 1),

so that

z = u′′ ∧i+2 A.

Note that

A = ∂i+2[(u
′ ∧l

i+1 ∂i+2v) ∧i+1 v]

with u′ ∧l
i+1 ∂i+2v ∈ im∧i+1 by the definition of ∧l

i+1 and with v ∈ im∧i by
hypothesis. By Proposition 7.6, to show that z ∈ im∧i it suffices to show that
u′′ ∈ im∧i.

Suppose that l = 1. Then u′′ = u, so u′′ ∈ im∧i by hypothesis.
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Suppose that l > 1. Using Proposition 7.1 we get

u′′ = u ∧l−1
i+2 ∂i+3A

= u ∧l−1
i+2 ∂i+2∂i+4(u

′ ∧l+1
i+1 v)

= u ∧l−1
i+2 ∂i+2(u

′ ∧l
i+1 ∂i+3v).

Since v ∈ im∧i, it follows from Definition 6.1(1) that ∂i+3v ∈ im∧i, and it then
follows from the inductive hypothesis that u′′ ∈ im∧i.

This completes the proof. �

Proposition 7.10. In a set with complicial identities, let v′ be an element of the

form ∂k+1(u ∧l
k v) with v ∈ im∧i. Then v′ ∈ im∧i whenever one of the following

sets of conditions is satisfied:

(1) i ≤ k − 2 and u ∈ im∧i;
(2) k ≤ i < k + l and l ≥ 2;
(3) k + l ≤ i and u ∈ im∧i−l+1.

Proof. Let u0 = u, and for 0 < j ≤ l let

uj = uj−1 ∧k ∂
l−j
k+1

v;

we must show in each case that ∂k+1ul ∈ im∧i.
(1) Since v ∈ im∧i with i ≤ k − 2, it follows from Definition 6.1(1) that

∂
l−j
k+1

v ∈ im∧i for 0 ≤ j < l. Since u0 ∈ im∧i, it follows from Proposition 7.8 that
u1, . . . , ul ∈ im∧i, and it then follows from Definition 6.1(1) that ∂k+1ul ∈ im∧i.

(2) Suppose first that i = k; we must show that

∂k+1(ul−1 ∧k v) ∈ im∧k.

But ul−1 ∈ im∧k because l ≥ 2, and v ∈ im∧k because i = k, so the result follows
from Proposition 7.5.

Now suppose that k < i < k + l. We have uk+l−i ∈ im∧k because i < k + l,

and we have ∂i−k−1

k+1
v ∈ im∧k+1 by Definition 6.1(1); therefore uk+l−i+1 ∈ im∧k+2

by Proposition 7.6. We also have ∂i−k−2

k+1
v ∈ im∧k+2 by Definition 6.1(1), so

uk+l−i+2 ∈ im∧k+3 by Proposition 7.8. By repeating the use of Proposition 7.8,
we eventually get ul ∈ im∧i+1. Definition 6.1(1) now gives us ∂k+1ul ∈ im∧i.

(3) In this case u0 ∈ im∧i−l+1 by hypothesis and ∂l−1

k+1
v ∈ im∧i−l+1 by Def-

inition 6.1(1); therefore u1 ∈ im∧i−l+2 by Proposition 7.8. In the same way
u2 ∈ im∧i−l+3, and so on. Eventually we get ul ∈ im∧i+1. As before, Defini-
tion 6.1(1) now gives us ∂k+1ul ∈ im∧i. �

We conclude with a result converse to Proposition 5.2.

Proposition 7.11. Let x be an element of the form

x = Λr(ur−1, . . . , u0, ǫ
s
rw)

in a set with complicial identities.

If i ≤ r − 3, if w ∈ im∧i, and if up ∈ im∧i for i+ 2 ≤ p < r, then x ∈ im∧i.

If w ∈ im ǫr−2 and ur−1 ∈ im∧r−2 then x ∈ im∧r−2.

If s ≥ 1 and ur−1 ∈ im∧r−1 then x ∈ im∧r−1.

If r ≤ i ≤ r + s− 2, and if up ∈ im∧i−r+p+1 for 0 ≤ p < r, then x ∈ im∧i.
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Proof. Let v0 = ǫsrw, and for 0 ≤ p < r let

vp+1 = ∂p+1(up ∧
r−p
p vp);

thus x = vr. We claim that vp ∈ im∧i for 0 ≤ p ≤ r, except possibly for cases with
i ≤ r − 3 and p = i+ 2.

First we suppose that i ≤ r − 3, that w ∈ im∧i, and that up ∈ im∧i for
i+ 2 ≤ p < r. We have v0 ∈ im∧i by Proposition 7.7, and we get

v1 ∈ im∧i, . . . , vi+1 ∈ im∧i

by repeated applications of Proposition 7.10(2). We now have

vi+3 = ∂i+3[ui+2 ∧
r−i−2
i+2 ∂i+2(ui+1 ∧

r−i−1
i+1 vi+1)]

with ui+2 and vi+1 in im∧i, so vi+3 ∈ im∧i by Proposition 7.9. Since up ∈ im∧i

for i + 3 ≤ p < r, repeated applications of Proposition 7.10(1) now show that the
elements

vi+4, vi+5, . . . , vr

are in im∧i.
Next we suppose that w ∈ im ǫr−2 and ur−1 ∈ im∧r−2. We have v0 ∈ im ǫr−2

because ǫsrǫr−2 = ǫr−2ǫ
s
r−1; hence, by Definition 6.1(2), v0 ∈ im∧r−2. As in the

previous case, we get

v1 ∈ im∧r−2, . . . , vr−1 ∈ im∧r−2.

Since vr = ∂r(ur−1 ∧r−1 vr−1) and since ur−1 ∈ im∧r−2, it follows from Proposi-
tion 7.5 that vr ∈ im∧r−2.

Next we suppose that s ≥ 1 and ur−1 ∈ im∧r−1. Then v0 ∈ im ǫr, and it
follows from Definition 6.1(2) that v0 ∈ im∧r−1. The rest of the argument is as in
the previous case.

Finally we suppose that r ≤ i ≤ r + s − 2 and that up ∈ im∧i−r+p+1 for
0 ≤ p < r. We get v0 = ǫi+1ǫ

s−1
r w; therefore v0 ∈ im∧i by Definition 6.1(2). We

then get
v1 ∈ im∧i, . . . , vr ∈ im∧i

by repeated applications of Proposition 7.10(3).
This completes the proof. �

8. Freeness

We have shown that O(−, n) is a set with complicial identities generated by
the identity morphism ιn (see Proposition 6.6 and Theorem 4.12). We will now
show that O(−, n) is freely generated by ιn; that is to say, given an n-dimensional
element u in a set with complicial identities U , we will show that there is a unique
morphism f : O(−, n) → U with fιn = u.

We will construct morphisms on O(−, n) by combining suitable functions on
subsets of O(−, n). The functions concerned are called partial morphisms, and are
defined as follows.

Definition 8.1. Let S be a subset of a set with complicial identities, let U be a
set with complicial identities, and let k be a nonnegative integer. Then a partial

morphism of degree k from S to U is a function f : S → U which increases degrees
by k and which satisfies the following conditions.

(1) If x is an m-dimensional member of S with m > 0 and if 0 ≤ i ≤ m, then
∂ix ∈ S and f∂ix = ∂ifx.
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(2) If x is a 1-dimensional member of S and x ∈ im ǫ0 then fx ∈ im ǫ0.
(3) If x ∈ S and x ∈ im∧i then fx ∈ im∧i.

Partial morphisms have all the good properties that one might expect.

Proposition 8.2. Let f : S → U be a partial morphism and let x be a member

of S.

(1) If x = ǫiy for some y, then y ∈ S and fx = ǫify.

(2) If x = y ∧i z for some y and z, then y, z ∈ S and fx = fy ∧i fz.

Proof. We prove these statements in reverse order.
(2) Suppose that x = y ∧i z. Then y = ∂i+2x and z = ∂ix by Definition 6.1(1);

therefore y, z ∈ S. Since also fx ∈ im∧i, it then follows that

fx = ∂i+2fx ∧i ∂ifx = f∂i+2x ∧i f∂ix = fy ∧i fz.

(1) Suppose that x = ǫiy. Then y = ∂ix, so that y ∈ S. We will now prove
that fx = ǫify by induction on the dimension of x.

Suppose that x = ǫ0y and x is 1-dimensional. Then fx ∈ im ǫ0, and it follows
that

fx = ǫ0∂0fx = ǫ0f∂0x = ǫ0fy.

Suppose that x = ǫ0y and that the dimension of x is greater than 1. Then
x = ǫ0∂1y ∧0 y by Definition 6.1(2). From the inductive hypothesis and from what
we have already proved, it now follows that

fx = fǫ0∂1y ∧0 fy = ǫ0f∂1y ∧0 y = ǫ0∂1fy ∧0 fy = ǫ0fy.

Finally suppose that x = ǫiy with i > 0. Then x = y ∧i−1 ǫi−1∂i−1y by
Definition 6.1(2), and it follows as in the previous case that fx = ǫify.

This completes the proof. �

For partial morphisms on subsets of O(−, n) we deduce the following result.

Proposition 8.3. Let f be a partial morphism on a subset S of O(−, n), let

x = Λr(ur−1, . . . , u0, v)

be defined in O(−, n), let the terminus of v be t, and let the corank of v be s.

Suppose that S contains all morphisms with terminus t; alternatively, suppose that

rank v ≥ r and that S contains all morphisms with terminus t and corank s. Then

the morphisms x, ur−1, . . . , u0, v are members of S, and

fx = Λr(fur−1, . . . , fu0, fv).

Proof. This follows from Propositions 5.3 and 8.2. �

We will construct partial morphisms on subsets of O(−, n) by recursion on
terminus and corank. For t ≥ 0 let St be the subset of O(−, n) consisting of the
morphisms of terminus at most t. For t ≥ 0 and s ≥ −1 let Ss

t be the subset of
O(−, n) consisting of the following morphisms: the morphisms with terminus less
than t; the morphism ∂t

0∂
n−t
t+1 ιn; the t-cones, in the case that t > 0; the morphisms

with terminus t and with corank at most s. We now proceed as follows.

Lemma 8.4. Let u be an element in a set with complicial identities U . Then there

is a partial morphism f : S−1
0 → U such that f∂n

1 ιn = u.
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Proof. The only morphism in S−1
0 is the zero-dimensional morphism ∂n

1 ιn.

The condition f∂n
1 ιn = u therefore defines a function f : S−1

0 → U , and this function
is trivially a partial morphism. �

Lemma 8.5. For t > 0, let F : St−1 → U be a partial morphism of degree k > 0.
Then there is a partial morphism f : S−1

t → U of degree k− 1 such that f∂n−t
t+1 ιn =

F∂n−t+1
t ιn.

Proof. We define a function f : S−1
t → U as follows: if x is a member of

O(m,n) with terminus less than t, then

fx = ∂m+1Fx;

if x = ∂t
0∂

n−t
t+1 ιn then

fx = ∂t
0F∂n−t+1

t ιn;

if x is a t-cone in O(m + 1, n) then ∂m+1x has terminus less than t, and we make
the definition

fx = F∂m+1x.

It is clear that f increases degrees by k − 1 and that

f∂n−t
t+1 ιn = F∂t∂

n−t
t+1 ιn = F∂n−t+1

t ιn;

it therefore remains to verify conditions (1)–(3) of Definition 8.1.
(1) Let ∂ix be a face of an m-dimensional member of St−1, so that m > 0 and

0 ≤ i ≤ m. Then ∂ix is an (m−1)-dimensional member of St−1, so that ∂ix ∈ S−1
t ,

and

f∂ix = ∂mF∂ix = ∂m∂iFx = ∂i∂m+1Fx = ∂ifx.

The zero-dimensional morphism ∂t
0∂

n−t
t+1 ιn does not have any faces.

Let x be a 1-dimensional t-cone, and consider the face ∂0x. This is the zero-
dimensional morphism ∂t

0∂
n−1
t+1 ιn; therefore ∂0x ∈ S−1

t and f∂0x = ∂t
0F∂n−t+1

t ιn.
The zero-dimensional morphism ∂1xmust have the form [0] 7→ [j] with 0 ≤ j ≤ t−1,

and it can be expressed as ∂j
0∂

t−j−1

j+1 ∂n−t+1
t ιn. Therefore

∂0fx = ∂0F∂1x = ∂0∂
j
0∂

t−j−1

j+1 F∂n−t+1
t ιn = ∂t

0F∂n−t+1
t ιn,

and it follows that f∂0x = ∂0fx.
Let ∂ix be a face of an (m + 1)-dimensional t-cone such that m > 0 and

0 ≤ i ≤ m. Then ∂ix is an m-dimensional t-cone, so that ∂ix ∈ S−1
t and

f∂ix = F∂m∂ix = F∂i∂m+1x = ∂iF∂m+1x = ∂ifx.

Finally, let x be an (m + 1)-dimensional t-cone with m ≥ 0 and consider the
face ∂m+1x. This is an m-dimensional member of St−1; therefore ∂m+1x ∈ S−1

t and

f∂m+1x = ∂m+1F∂m+1x = ∂m+1fx.

(2) Let x be a 1-dimensional member of S−1
t lying in the image of ǫ0. Then

x ∈ St−1, so that fx = ∂2Fx, and we also have x = ǫ0∂0x. It now follows from
Proposition 8.2 that fx ∈ im ǫ0, because

fx = ∂2Fǫ0∂0x = ∂2ǫ0F∂0x = ǫ0∂1F∂0x.

(3) Let x be an m-dimensional member of St−1 lying in the image of ∧i. Then
fx = ∂m+1Fx. We also have x = ∂i+2x ∧i ∂ix by Definition 6.1(1), and we must
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have 0 ≤ i ≤ m− 2. It now follows from Proposition 8.2 and Definition 6.1(1) that
fx ∈ im∧i, because

fx = ∂m+1F (∂i+2x ∧i ∂ix) = ∂m+1(F∂i+2x ∧i F∂ix) = ∂mF∂i+2x ∧i ∂mF∂ix.

The zero-dimensional morphism ∂t
0∂

n−t
t+1 ιn cannot belong to the image of a

wedge operation.
Let x be an (m + 1)-dimensional t-cone, and suppose that x ∈ im∧i with

0 ≤ i ≤ m− 2. Then fx ∈ im∧i as before, because

fx = F∂m+1(∂i+2x ∧i ∂ix) = F (∂m∂i+2x ∧i ∂m∂ix) = F∂m∂i+2x ∧i F∂m∂ix.

Finally, suppose that x is an (m + 1)-dimensional t-cone lying in the image
of ∧m−1. We must have x = ǫm−1∂m−1x (see Propositions 3.8 and 3.4). It now
follows from Proposition 8.2 and Definition 6.1(2) that fx ∈ im∧m−1, because

fx = F∂m+1ǫm−1∂m−1x = Fǫm−1∂m∂m−1x = ǫm−1F∂m∂m−1x.

This completes the proof. �

Lemma 8.6. For t ≥ 0 and s ≥ 0, if f is a partial morphism on Ss−1
t , then there

is a partial morphism f ′ on Ss
t which is an extension of f .

Proof. Let x be a morphism in Ss
t with terminus less than t or with terminus t

and corank less than s; then x belongs to Ss−1
t and we make the definition

f ′x = fx.

Now let x be a morphism with terminus t and corank s, and let the rank of x
be r. According to Theorem 4.11, x has a canonical form given by

x = Λr(αr−1x, . . . , α0x, ǫ
s
rγx).

According to Propositions 4.8 and 4.6, the morphisms αpx and γx are members

of Ss−1
t , and we will obtain f ′x by applying f to each of these morphisms.
In order to show that this is possible, we use Proposition 7.2. For 0 ≤ p < r it

follows from this proposition and from the existence of the canonical form that

∂pαpx = Λp(αp−1x, . . . , α0x, ∂
r−p
p+1ǫ

s
rγx).

If s = 0 then the argument ∂r−p
p+1ǫ

s
rγx has terminus less than t; if s > 0 then it has

terminus t, rank p+1 and corank s−1; in both cases, it follows from Proposition 8.3
that

∂pfαpx = f∂pαpx = Λp(fαp−1x, . . . , fα0x, f∂
r−p
p+1ǫ

s
rγx).

If now s = 0 then

f∂
r−p
p+1ǫ

s
rγx = f∂

r−p
p+1γx = ∂

r−p
p+1fγx = ∂

r−p
p+1ǫ

s
rγx;

if s > 0 then ǫs−1
r γx ∈ Ss−1

t and we get

f∂
r−p
p+1ǫ

s
rγx = f∂

r−p−1

p+1 ǫs−1
r γx = ∂

r−p−1

p+1 ǫs−1
r fγx = ∂

r−p
p+1ǫ

s
rfγx;

in any case we get

∂pfαpx = Λp(fαp−1x, . . . , fα0x, ∂
r−p
p+1ǫ

s
rfγx).

Because of Proposition 7.2, we can now define f ′x by the formula

f ′x = Λr(fαr−1x, . . . , fα0x, ǫ
s
rfγx).

We will now show that f ′ is an extension of f . For s > 0 there is nothing to
do, because there are no morphisms of terminus t and corank s in Ss−1

t . In the
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case s = 1 we must show that f ′x = fx when x = ∂t
0∂

n−t+1
t+1 ιn or x is a t-cone. To

do this, let the rank of x be r. It then follows from Example 4.7 that

f ′x = Λr(fǫr−1∂rx, . . . , fǫ0∂
r
1x, fx),

it follows from Proposition 8.2 that

f ′x = Λr(ǫr−1∂rfx, . . . , ǫ0∂
r
1fx, fx),

and it follows from Proposition 7.4 that f ′x = fx as required.
It remains to show that f ′ is a partial morphism by verifying the conditions

of Definition 8.1. It clearly suffices to consider morphisms with terminus t and
corank s, and we argue as follows.

(1) Let x be a morphism with terminus t, with corank s and with rank r, and
consider a face ∂ix with 0 ≤ i < r. In this case ∂ix has terminus t, corank s and
rank r − 1, so that ∂ix ∈ Ss

t and it follows from Proposition 5.1 that

f ′∂ix = Λr−1(f∂iαr−1x, . . . , f∂iαi+1x, fαi−1x, . . . , fα0x, ǫ
s
r−1f∂iγx).

Since f∂iαpx = ∂ifαpx for i < p < r and since

ǫsr−1f∂iγx = ǫsr−1∂ifγx = ∂iǫ
s
rfγx,

it now follows from Proposition 7.3 that

f ′∂ix = ∂iΛ
r(fαr−1x, . . . , fα0x, ǫ

s
rfγx) = ∂if

′x.

Now let x be a morphism with terminus t, with corank s and with rank zero,
and consider the face ∂0x. This exists only in cases with s > 0. It has terminus t,
corank s − 1 and rank zero, and it therefore belongs to Ss−1

t . It follows that
∂0x ∈ Ss

t . It also follows from Theorem 4.11 and Proposition 7.3 that

f ′∂0x = f∂0x = f∂0Λ
0(ǫs0γx) = f∂0ǫ

s
0γx = fǫs−1

0 γx = ǫs−1
0 fγx

and that

∂0f
′x = ∂0Λ

0(ǫs0fγx) = ∂0ǫ
s
0fγx = ǫs−1

0 fγx;

therefore f ′∂0x = ∂0f
′x.

Now let x be a morphism with terminus t, with corank s, and with rank r > 0,
and consider the face ∂rx. If s = 0 then ∂rx has terminus less than t; if s > 0 then
∂rx has terminus t and corank s − 1; in both cases, ∂rx ∈ Ss−1

t . It follows that
∂rx ∈ Ss

t . It also follows from Theorem 4.11 and Proposition 7.3 that

f ′∂rx = f∂rx = f∂rΛ
r(αr−1x, . . . , α0x, ǫ

s
rγx) = f∂rαr−1x = ∂rfαr−1x

and

∂rf
′x = ∂rΛ

r(fαr−1x, . . . , fα0x, ǫ
s
rfγx) = ∂rfαr−1x;

therefore f ′∂rx = ∂rf
′x.

Finally, let x be a morphism with terminus t, with corank s, and with rank r,
and consider ∂ix for r < i ≤ r + s. In this case ∂ix has terminus t and corank
s − 1, so that ∂ix ∈ Ss−1

t ; therefore ∂ix ∈ Ss
t . It now follows from Theorem 4.11

and Proposition 7.3 that

f ′∂ix = f∂ix

= f∂iΛ
r(αr−1x, . . . , α0x, ǫ

s
rγx)

= fΛr(∂iαr−1x, . . . , ∂i−r+1α0x, ∂iǫ
s
rγx)

= fΛr(∂iαr−1x, . . . , ∂i−r+1α0x, ǫ
s−1
r γx).
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Here ǫs−1
r γx has terminus t, rank r and corank s−1, so it follows from Propositions

8.3 and 8.2 that

f ′∂ix = Λr(f∂iαr−1x, . . . , f∂i−r+1α0x, fǫ
s−1
r γx)

= Λr(∂ifαr−1x, . . . , ∂i−r+1fα0x, ǫ
s−1
r fγx).

On the other hand, it follows from Proposition 7.3 that

∂if
′x = Λr(∂ifαr−1x, . . . , ∂i−r+1fα0x, ∂iǫ

s
rfγx)

= Λr(∂ifαr−1x, . . . , ∂i−r+1fα0x, ǫ
s−1
r fγx);

therefore f ′∂ix = ∂if
′x.

(2) Suppose that x is a 1-dimensional morphism with terminus t and positive
corank s lying in the image of ǫ0. This can occur only in the case that s = 1, and
the rank of x must be zero; therefore f ′x = Λ0(ǫ0fγx) = ǫ0fγx. It follows that f

′x

is in the image of ǫ0.
(3) Suppose that x is a morphism with terminus t and corank s lying in the

image of ∧i. Let the rank of x be r, so that 0 ≤ i ≤ r + s − 2. It follows from
Proposition 5.2 that certain morphisms αpx are in certain sets im∧j , and it may
also follow that γx is in im∧i or im ǫi, The images fαpx and fγx then satisfy the
same conditions, and it follows from Proposition 7.11 that f ′x ∈ im∧i.

This completes the proof. �

From Lemmas 8.4–8.6 we get the main result.

Theorem 8.7. For n ≥ 0, the graded set O(−, n) is the set with complicial iden-

tities freely generated by the identity morphism ιn in O(n, n).

Proof. First, by Proposition 6.6, O(−, n) is a set with complicial identities.
Now let u be an n-dimensional element in a set with complicial identities U .

We must show that there is a unique morphism from O(−, n) to U sending ιn to u.
We construct a suitable morphism as follows. By Lemma 8.4 there is a partial

morphism on S−1
0 sending ∂n

1 ιn to u; by repeated applications of Lemma 8.6, there
is a partial morphism on the entire set S0 sending ∂n

1 ιn to u; by Lemma 8.5, there
is a partial morphism on S−1

1 sending ∂n−1
2 ιn to u; by Lemma 8.6 there is a partial

morphism on the entire set S1 sending ∂n−1
2 ιn to u; etc. Eventually we obtain a

partial morphism f : O(−, n) → U such that fιn = u. By Proposition 8.2, f is in
fact a morphism of sets with complicial identities. Since, according to Theorem 4.12,
O(−, n) is generated by ιn, it follows that f is the only morphism from O(−, n)
to U with fιn = u.

This completes the proof. �
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