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The algebraic structure of the universal complicial sets

Richard Steiner

ABSTRACT. The nerve of a strict omega-category is a simplicial set with ad-
ditional structure, making it into a so-called complicial set, and strict omega-
categories are in fact equivalent to complicial sets. The nerve functor is rep-
resented by a sequence of strict omega-categories, called orientals, which are
associated to simplexes. In this paper we give a detailed algebraic description
of the morphisms between orientals. The aim is to describe complicial sets
algebraically, by operators and equational axioms.

1. Introduction

The orientals or oriented simplexes are a sequence of strict w-categories
0,04, . ..

associated to simplexes. They were discovered by Street, who described them as
fundamental objects in nature [I]. A strict w-category X has a nerve, consisting of
the sequence of morphism sets

Hom(Oy, X),Hom(O4, X),...;

Verity [2] has shown that the nerve functor makes the category of strict w-categories
equivalent to a category of simplicial sets with additional structure, called complicial
sets.

By definition, a complicial set is a simplicial set with a distinguished class of
elements, called thin elements, subject to certain axioms; Verity’s theorem therefore
amounts to a description of strict w-categories in combinatorial terms. There is an
analogous cubical theory [3] which gives a more algebraic description, in terms of
cubical sets with additional operations and equational axioms. This paper is part
of a programme aimed at producing a similar algebraic description for complicial
sets, using operations and equational axioms rather than distinguished subsets.

In this paper we consider the universal examples; in other words, we consider
the nerves of the orientals themselves. This is in fact a purely algebraic problem.
The category of orientals can be embedded in the category of chain complexes and
chain maps [4]: the objects are the chain complexes of the standard simplexes; the
morphisms are the augmentation-preserving chain maps taking standard basis ele-
ments to sums of standard basis elements. This gives a simple algebraic description
of the nerves of orientals, as subsets of graded abelian groups, but we really need
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an internal description independent of any supersets. We will therefore solve the
following problem: find an algebraic structure on graded sets, consisting of internal
operations and equational axioms, such that the nerve of O, is freely generated by
its identity endomorphism ¢,,. The equational axioms which solve this problem will
be called complicial identities; they are listed in Definition

The structure of the paper is as follows. In Section[Zwe recall the description of
orientals in terms of chain maps. In SectionBlwe describe the additional operations
(they were introduced with different notation and terminology in [4]). In Section [l
we show that the nerve of O,, is generated by ¢,,; this was also done in [4], but here
we give more precise details and in effect obtain canonical forms for the elements of
the nerve. In Section [l we give some additional properties of the nerves, for later
use. In Section [0l we describe the complicial identities, and we show that they are
satisfied in the nerves of orientals. In Section[7] we describe certain consequences of
the complicial identities, and in Section[8we prove the main theorem (Theorem[87),
showing that the nerve of O, is the set with complicial identities freely generated
by tn,.

2. Orientals and chain complexes

From [4] we recall the description of the category of orientals in terms of chain
maps. For n = 0,1,... let ZA(n) be the cellular chain complex of the standard
n-simplex. We regard ZA(n) as a free graded abelian group with a prescribed basis.
The basis elements, written in the form [ao, .. ., aq], correspond to the (g+1)-tuples
of integers aq, ..., aq such that

0<ag<a1 <...<aq<m

a basis element [ao,...,aq] is homogeneous of degree ¢q. The boundary homomor-
phism 9: ZA(n) — ZA(n), which lowers degrees by 1, is given on basis elements
of positive degree by
q
8[a0, ey aq] = Z(—l)l[ao, ey @1, Q541 ,aq].
i=0
There is also an augmentation homomorphism e: ZA(n) — Z, which is given on
basis elements of degree 0 by
E[CLQ] = 1,
and which vanishes on basis elements of positive degree.

We will write ZA(m,n) for the abelian group cousisting of the chain maps
from ZA(m) to ZA(n); thus a member of ZA(m, n) is a degree-preserving abelian
group homomorphism f: ZA(m) — ZA(n) such that 9f = f0. We will also
write O(m,n) for the subset of ZA(m,n) consisting of the chain maps f which
are augmentation-preserving (ef = €) and which take basis elements to sums of
basis elements (if a is a basis element then f(a) = by + ... + by for some k > 0
and for some basis elements by,...,b;). It is clear that there is a category ZA
with objects 0,1,2,... and with morphism sets ZA(m,n), using ordinary function
composition. It is also clear that ZA has a subcategory O with objects 0,1,2, ...
and with morphism sets O(m,n). This category O is the category of orientals.

For n = 0,1,... let ZA(—,n) be the graded abelian group consisting of the
groups

ZA(0,n), ZA(1,n), ...
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and let O(—,n) be the graded set consisting of the subsets
00,n), O(1,n), ...,

so that O(—,n) is the nerve of the oriental O,,; we are interested in the structure
of O(—,n).

3. Operations in the nerves of orientals

In this section we construct three families of operations in O(—,n): face op-
erations, degeneracy operations and wedge operations. They will be restrictions of
operations in ZA(—,n). The face and degeneracy operations come from the obvi-
ous simplicial set structure on ZA(—,n), and we begin by recalling the definition
of a simplicial set.

Definition 3.1. A simplicial set X is a sequence of sets X, X1,... together with
face operations
O0i: Xm — Xon_1 (m>0,0§z§m)

and degeneracy operations
EiIXm—>Xm+1 (nggm)
such that
61-6j = 8j_18i (Z < j),
&-ej = Ej_lai (Z < ]),
81'61' = i+1€i = ld7
&-ej :e]ﬁi_l (Z >j+1),
€€ = €416 (Z S ])
We will now describe the face and degeneracy operations in ZA(—,n) in terms

of basis elements. For these basis elements we use notations such as [b, ¢] or [b, i, c],
where b and c are suitable sequences of integers.

Definition 3.2. Let x be a chain map in ZA(m,n).
For m > 0 and 0 < i < m, the face 9;x is the chain map in ZA(m — 1,n) given
on basis elements by
(0;z)[b, c] = z[b, ],

where the terms of b are less than 4, the terms of ¢ are greater than or equal to i,
and the terms of ¢’ are got from those of ¢ by adding 1.

For 0 < i < m the degeneracy e;x is the chain map in ZA(m + 1,n) given on
basis elements by

(€x)[b, c] = x[b,c"],
(e;x)[b,i,c] = (e;x)[b,i+1,¢c] = z[b,i,c"],
(e;x)[b,i,i+ 1,c] =0,

where the terms of b are less than 4, the terms of ¢ are greater than 7 + 1, and the
terms of ¢” are got from those of ¢ by subtracting 1.

We get the following result.
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Proposition 3.3. The face and degeneracy operations
0i: ZA(m,n) = ZA(m —1,n), €:ZA(m,n) = ZA(m +1,n)

are group homomorphisms making ZA(—,n) into a simplicial set. They restrict to
operations

0;: O(m,n) = O(m—1,n), €:0(m,n)—O(m+1,n)
making O(—,n) into a simplicial set.
PROOF. It is clear that the operations in ZA(—,n) are homomorphisms satis-
fying the simplicial identities. If z € O(—,n), so that = is augmentation-preserving

and takes basis elements to sums of basis elements, then 9;x and €;x clearly belong
to O(—,n) as well. O

Degeneracies can be characterised as follows.

Proposition 3.4. Let x be a morphism in O(—,n). Then x is in the image of ¢;
if and only if xa = 0 for every basis element a including i and i+ 1.

PROOF. By definition, if z is in the image of ¢; then x vanishes on every basis
element including ¢ and 7 + 1.

Conversely, suppose that x vanishes on every basis element including ¢ and ¢+1.
Since x is a chain map,

z[b,i,c] = z[b,i + 1,c]

for all basis elements of the form [b,7,7 + 1, ¢|, and it follows that x = ¢;0;xz. O

Next we define the wedge operations.

Definition 3.5. Let m and ¢ be integers with 0 <¢ < m — 1. If z and y are chain
maps in ZA(m,n) such that 9;x = 911y, then the wedge x A; y is the chain map
in ZA(m + 1,n) given by
TN Y= €41T — e?@Hly + €Y.
In terms of basis elements, if a does not include i then (xz A; y)a = (&y)a, if
a does not include 7 + 2 then (z A; y)a = (€;417)a, and

(N y)[b,ii+2,¢] = (6,12 + €y)[b,i,i + 2, ¢,
(x N y)byii+ 1,44+ 2,¢] =0.

Geometrically, if z and y are regarded as functions on the m-simplex then zA;y
acts on a point of the (m + 1)-simplex in the following way: project the point onto
the union of the faces opposite vertex ¢ and vertex i + 2; apply y if the projection
is in the face opposite i; apply z if the projection is in the face opposite i + 2.

We get the following results.

Proposition 3.6. If x A; y is defined in ZA(—,n) then
di(x Niy) =y, Oia(zNiy) = .
PRrROOF. This is clear from the definition. O

Proposition 3.7. Let x and y be morphisms in O(m,n) such that 0;x = 0;41y.
Then x A; y is a morphism in O(m + 1,n).
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ProoOF. Given that z and y are augmentation-preserving and that they take
basis elements to sums of basis elements, we must show that x A; y has the same
properties. This is straightforward. (I

Proposition 3.8. Let z be a morphism in O(m+1,n), and let i be an integer with
0<i<m—1. Then the following are equivalent.
(1) There are morphisms z,y in O(m,n) with 0;x = 0,41y such that z = x\;y.
(2) There are chain maps u,v in ZA(m,n) such that z = €;u + €;41v.
(3) One has za =0 for every basis element a including i,i+ 1,7+ 2.

PROOF. We show that (1) = (2) = (3) = (1).
If z = 2 A; y then z has the form €;u + €;41v by definition.
If z = €;u + €;41v then clearly za = 0 for every basis element a including
Qi+ 1,0+ 2.
Suppose that za = 0 for every basis element a including 4,7 4+ 1,7 + 2. Let
T = 0ipoz, Y= 0;z.

It follows from Proposition that = and y are morphisms in O(m,n) and that
0;x = O;41y; the wedge x A; y therefore exists. The morphisms z and z A; y then
agree on basis elements not including 4, on basis elements not including ¢ + 2, and
on basis elements including 4,7 + 1,7 4+ 2. Since z and = A; y are chain maps, they
must also agree on basis elements including ¢ and 7 4+ 2 but not ¢ + 1. Therefore
z2=T /N y.

This completes the proof. O

4. Canonical forms

Let ¢, be the identity morphism in O(n,n). In this section we show that the
elements of O(—,n) can be expressed in terms of ¢, by using the face, degeneracy
and wedge operations. In effect we find canonical forms for the morphisms in
O(—,n) (see Theorem [TT]). The argument is based on the following result.

Theorem 4.1. Let x be a morphism in O(m,n). Then there are integers g, . .., Tm,
with 0 < zog <z <...< 2z, <n such that

z[0] = [xo], ..., z[m] = [zm]-
If a is a basis element in ZA(m) of the form [s,aq,...,aq-1,t] then xa is a sum of
basis elements [bo, ..., by| with

To <byp<by <...<bg <z

PROOF. Let [i] be a zero-dimensional basis element in ZA(m). Then z[i] is
a sum of zero-dimensional basis elements in ZA(n), and this sum has exactly one
term because x is augmentation-preserving. Therefore z[i] = [x;] for some integer z;
with 0 < x; < n.

For 0 < i < m we have

Oxfi — 1,4] = 20 — 1,i] = x([i] — [i — 1)) = [x;] — [zi=1]-

But z[i — 1, 4] is a sum of basis elements [j, k], so dz[i — 1, ] is a sum of expressions
[k] — [j] with j < k. Therefore z;_1 < ;.

Let a be a basis element of the form [s, a1, ..., aq]; we will show by induction

on ¢ that za is a sum of basis elements [bg,...,b,] with x5 < by. The result
is clear when ¢ = 0, and is trivial when xa = 0. From now on, suppose that
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q > 0 and za # 0, so that za is a non-empty sum of basis elements of positive
dimension. Let [ko,...,kq] be a term in this sum such that k¢ is as small as
possible and, subject to this condition, such that ki is as large as possible. Then
the basis element [k, k2, . .., k4] has a negative coeflicient in dza because there is
no possibility of cancellation. Since dza = xda, it follows that [ko, k2, ..., k] is a
term in z[s,a1,...,Gi—1,Qit1,...,0q] for some odd value of i, and it then follows
from the inductive hypothesis that =5 < ky. Since kg is minimal, za is a sum of
basis elements [bg, ..., by] with x5 < by.

Similarly, if a is a basis element of the form [ag, ..., a4—1,], then za is a sum
of basis elements [bg, .. .,b,] with b, < ;.

This completes the proof. (I

The canonical forms for morphisms in O(—, n) will depend on parameters called
terminus, rank and corank, which are defined as follows.

Definition 4.2. Let z be a morphism in O(m,n). Then the terminus of x, denoted
terminus z, is the integer ¢ such that z[m] = [t]; the rank of x, denoted rank z, is the
number of zero-dimensional basis elements [a] in ZA(m) such that z[a] # x[m]; the
corank of z, denoted corank x, is the number of zero-dimensional basis elements [a]
in ZA(m) such that a < m and z[a] = x[m)].

From Theorem (.1l we immediately draw the following conclusion.

Proposition 4.3. Let x be a morphism in O(m,n) with terminus t, rank r and
corank s. Then t, r and s are nonnegative integers such thatt <n and r +s = m.

We will find the canonical forms by an induction on terminus. The passage
to morphisms of terminus ¢ from morphisms of lower terminus is based on a cone
construction, as follows.

Definition 4.4. Let z be a morphism in O(m,n) with terminus less than ¢. Then
the t-cone on z is the morphism px in O(m + 1,n) given on basis elements as

follows: (pix)[m + 1] = [t]; if
= Zab[b]
b

then
(pr2)| Zxab (prx)[a, m + 1] Zxab [b,].

It is easy to see that p;x as defined here really is a morphism in O(m + 1,n),
with terminus ¢ and corank zero. It is also easy to verify the following result.

Proposition 4.5. Let S;_1 be the subset of O(—,n) consisting of the morphisms
with terminus less thant. Then Si_1 is closed under the face, degeneracy and wedge
operations. The t-cone construction

pi: Si—1 — O(—,n)
commutes with the operations in Sy_1, and

—t+l,
O} =0/ .
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We will use Proposition [£.5] as part of an induction on terminus. To complete
the argument, we will show that arbitrary morphisms with terminus at most ¢ can
be expressed in terms of 9;'1't, and of t-cones.

Let z be a morphism in O(m,n) with terminus ¢ and rank r; we will construct
an associated morphism vz in O(r,n) with terminus ¢, rank r and corank zero.
Note that, by Theorem 1] if a = [ao,...,aq] is a basis element in ZA(m) with
aq < r, then za is a sum of basis elements [by, . .., b,] with b, < t. We deduce that
there is a chain map

yx: ZA(r) = ZA(n)
given on basis elements as follows: (yz)[r] = [t]; for » > 0, if [a] is a basis element
for ZA(r — 1) and if
zla,r] = ) (zhp[b] + 2 [b, 1))
b
with the sum running over basis elements [b] for ZA(t — 1), then

(ya)la] =Y wdu[bl,  (vz)la,r] =Y wiy[b, 1.
b b

It is easy to see that vz has the following properties.

Proposition 4.6. Let x be a morphism in O(—,n) with terminus t and rank .
Then vz is a morphism in O(r,n) with terminus t, rank r and corank zero. If r =0
then yx = 838;’_;1%”; if r > 0 then yx is a t-cone.

Given a morphism z in O(—,n) with terminus ¢, rank r and corank s, we now
construct further chain maps as follows: let

Bx: ZA(r 4+ s) — ZA(n)
be given by
Br = ea
for 0 <p<rlet
apz: ZA(p+ s+ 1) = ZA(n)
be given by
apr = (’“);;f_l(x — Bx) + €,0,, 1 Bz.
Example 4.7. Let = be a morphism in O(r,n) which is equal to 9§9;' 't or is a
t-cone. Then rankx = r, corankx = 0, fx = yxr = x, and

apr = €,0) jr (0<p<r).
In general we get the following result.

Proposition 4.8. Let x be a morphism in O(—,n) with terminus t, rank r and
corank s. If s = 0 and 0 < p < r then a,z is a morphism in O(p + s + 1,n)
with terminus less than t. If s > 0 and 0 < p < r then o,z is a morphism in
O(p+ s + 1,n) with terminus t and corank s — 1.

Proor. It is clear that o, is an augmentation-preserving chain map from
ZA(p+s+1) to ZA(n). To show that o,z is a morphism in O, we must show that
apx takes each basis element a to a sum of basis elements.

P

Suppose that a does not have a term p+1. Then (apx)a = (8;;171:1:)a because

(Bglf_lﬁx)a = (ep0, 11 Bx)a, and it follows that (a,r)a is a sum of basis elements.
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Suppose that a has a term p + 1 and a term greater than p + 1. Then

(8;;71”71&1:)@ = 0, because Sz has the form ez, and it again follows that (a,x)a is

a sum of basis elements.

Suppose that a = [a,p + 1]. Then (8;;f_1ﬁ:1c)a is the sum of the terms of the
form [b,t] in (8;;{’7133)@ $0 {8;;71”71(3: — Bx)}a is the sum of the remaining terms
in (6;;{7_1:10)@, and it again follows that (a,z)a is a sum of basis elements.

This shows that (a,z)a is a sum of basis elements in all cases; therefore ajz is
a morphism in O(p + s+ 1,n).

We will now consider the terminus and corank of apa. For p+2 <i <p+s+1
it follows from the calculations above and from Proposition that

(ap)lil = (O 1 o)) = alr +i—p—1] = [t];
on the other hand,
(pa)[p +1] = (z = Ba)[r] + (Bx)[p] = [t] = [t] + (B2)[p] = (va)[p] # [1]-
If s = 0 it now follows that c,z has terminus less than ¢; if s > 0 it follows that

oy, has terminus ¢ and corank s — 1.
This completes the proof. (|

We will express a morphism z in terms of the morphisms o,z and vz by using
the following notation.

Notation 4.9. In a set with operations 9; and A; we write
u( Agv) =uAg v,
regarding ( Ax v) as an operator which acts on the right, and for I > 1 we write
u A v =u( Ap 0 0)(Ak 01230) - (Ak Okg1v)( Ak v).
We also write
(u AL Yo =u A v,
regarding (u Al ) as an operator which acts on the left, and for r > 0 we write
A (U1, 10, 0) = Op(Up—1 ALy )Or—1(ur—o A2_5 ) ... 01 (uo A v.

Note in particular that A%(v) = v.

In O(—,n) an induction based on Definition gives the following result.
Proposition 4.10. If u and v are morphisms in O(—,n) and if Oyu = 8,l€+lv, then
U /\fC v is defined and

u /\f’c v = efﬁ_lu — efjla,lg_,_lv + €x0.

The canonical form is now as follows.

Theorem 4.11. Let x be a morphism in O(—,n) with rank r and with corank s.
Then
x=A(a,—12,..., 002, €,7T).
PROOF. Recall that
apr = O 1 (@ — Br) + 6,0, 1 B,
where Sz = elvyx. For 0 < p <r, let

vy =€, 0, P(x — pr) + B,
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so that, in particular, v, = x. It suffices to show that
Vo = €4YT,
Upt1 = Opy1(opr Ay P vp) (0 < p <r);

we proceed as follows.
The morphisms 9y and 9f Sz are morphisms in O(s, n) such that

(G52)[0] = (Fpx)[s] = [t], (95 B)[0] = (FpBx)[s] = [t]-

By Theorem [£.1], these two morphisms both annihilate all basis elements of positive
dimension; therefore ofx = 9y Bx. It follows that vo = Bz = elvyx.
For 0 < p < r it is straightforward to verify that d,a,r = 9, {v, and that
Upt1 = Opr1(€, i opr — € p+18;+1vp + epp);
therefore vy, 11 = Opt1(apz AP vp).
This completes the proof. ([

We can now prove the main result.

Theorem 4.12. Every morphism in O(—,n) can be expressed in terms of i, by
using the face, degeneracy and wedge operations.

PROOF. Let S; be the set of morphisms with terminus at most ¢. We will show
inductively that S; is generated by 8t"+1tbn; the case t = n will then give the result.

It follows from Theorem 11l Proposition [ and Proposition [£.8 that S; has
a set of generators consisting of the morphism 940;" ‘o t1,,, the t-cones, and the mor-
phisms in Sy_1; it therefore suffices to show that these generators are expressible
in terms of 9, tp.

For t = 0 the result holds because the only generator is 07 iy,.

For t > 0, suppose as an inductive hypothesis that S;_; is generated by
9y~ Tt is evident that 950} "¢, can be expressed in terms of 9;' ‘¢, It follows
from the inductive hypothesis and Proposition [4.5] that ¢-cones can be expressed in
terms of 6{:_71%. It also follows from the inductive hypothesis that the morphisms
in S;_1 can be expressed in terms of 6{5;1%”, because 8f7t+1bn = (’%Btnﬂt

This completes the proof. ([l

5. Further properties of the nerves of orientals

We have shown in Theorem that O(—,n) is generated by ¢,,. In the later
sections of this paper we will find identities determining the structure of O(—,n)
completely. Here we obtain some additional results needed in those sections.

First we give some formulae for faces.

Proposition 5.1. Let x be a morphism in O(—,n) with rank r, and let 0;x be a
face with 0 < ¢ <r. Then

~O;x = Oy,

apdiz = apr (0 <p<i),

apdix = Oiopriz (1 <p<r—1).
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PROOF. Let the terminus of x be ¢ and the corank be s. It follows from
Proposition [£.3] that d;x has terminus ¢, rank » — 1 and corank s. It is clear from
the construction that v0;x = 9;yx, it follows that

BOix = € _1y0;x = €, _10;yx = Os¢,yx = 0;fx,
and for 0 < p < r — 1 it follows that
apOiz = 00 V720w — 0 Bx) + 6,0, 7 0.

If now 0 < p < i then

—p—1 _
apdir = 9,7 (x — Br) + 6,0, 7 Br = apw;

ifi <p<r—1then
Ozpaifb = 818;;572(5E - ﬂfb) + 8¢6p+18;;§71ﬂx = 81'04p+1$.

O

Next we consider the image set of the wedge operation A;, which is denoted
imA;.

Proposition 5.2. Let x be a morphism of rank r in O(—,n).
If v € im Ay with ¢ < r —3 then yx € iIm A, and apx € imA; fori+2 <p <r.
If x € im A,_o then yx € imeé,_o and qp—_1x € im Ap_s.
If v € im A,._1 then a,_1x € Im Ap_q.
If v € im Ay with r <@ then apx € IMAj_pipy1 for 0 <p <.

PROOF. Let the corank of = be s, so that

apr = O w — O e + 0 ey,
and recall from Proposition [3.§ that a morphism is in im A; if and only if it anni-
hilates all basis elements including i,7 4+ 1,7 + 2.

Suppose that € im A; with ¢ < r — 3. Then 2 annihilates basis elements
including 4,4+ 1,7+ 2 because = annihilates basis elements including i,7+ 1,7+ 2, r;
therefore yx € im A;. For i +2 < p < r it follows that 8;;{)_196, 8;;{7_16,5_7:10 and
€p0, 1€y annihilate all basis elements including 4,4 + 1, + 2, and it then follows
that o,z € im A;.

Suppose that z € im A,_5. In this case vz annihilates all basis elements in-
cluding r — 2,7 — 1 because x annihilates all basis elements including r —2,r — 1, 7;
hence, by Proposition 3.4, vz € ime,_5. As in the previous case, a,._1x € im A, _».

Suppose that z € imA,_;. Then s > 1, so that €;yx and e,_10,€)vx are in
imA,_1. As before, it follows that o,_12 € Im A, _1.

Finally, suppose that = € im A; with r < ¢, and suppose that 0 < p < r. Then
i <r+s—2 s0 8;;{’71:1:, 8;;f716§7x and €,0, Tepyz are all in imAj—pypi1;
therefore apx € im Aj—pipy1. [l

We finish this section by giving bounds for the termini and coranks of the
morphisms in expressions of the form A" (u,_1, ..., ug,v).
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Proposition 5.3. Let A"(u,—1,...,ug,v) be an expression defined in O(—,n), and
let

Vo =0,
Upt1 = Op+1(up /\;T;p vp) (0<p<r),
wy =up Ay P, (0<p<r).

Then the morphisms v, and wy, all have the same terminus as v. If rankv > r then
the morphisms v, and w, all have the same corank as v.

PROOF. By definition, vpt1 = Opt1w,. From Proposition we see that
Opwp = vp. For i > r it follows that

vt = 1] = we_1fi] = vp_1fi — 1] = ... = wg[i] = voli — 1] = v[i — 1];

in particular it follows that the morphisms v, and w,, all have the same terminus
as v. Let this common terminus be ¢. If rankv > r, then v[r — 1] # [t], from which
it follows that v, and w, have the same corank as v. 0

6. Complicial identities

In this section we define sets with complicial identities; they will be simplicial
sets with wedge operations subject to certain axioms. We will then show that the
simplicial sets O(—,n) satisfy these axioms.

Definition 6.1. A set with complicial identities is a simplicial set X, together with
wedges
TN Y € Xmt1,

defined when z,y € X,, and 0;x = 0;11y, such that the following axioms hold.
(1) If z A, y is defined with z,y € X, then

di(x Niy) =05 Nie1 05y (0 < j <),
di(x Niy) =,
diva(x Niy) =,
Oi(xNiy) =0j—1xz N 0j—1y (1+3<j<m+1).
(2) If z € X,, and 0 < i < m then
6T = €041 \; T, €412 =T N\; €0;T.
(3) If A is of the form b A; (y A; z) then
A = (0420 N y) Nig1 i1 A.
(4) If A is of the form (x A; y) Ai41 ¢ then
A= 0i42A N (y N Oic).
(5) The equality
[ Ni Div1(y Ni 2)] Ni (Y Ai 2) = (@ Ai y) Nis [Oia (T A y) Ai 2]
holds whenever either side is defined.
(6) Let A be an element of the form d;q2[(x Ait1 y) Aigr1 (y Ai 2)]; then the
equality
AN (W N1 0;A) = (0i43A N w) N2 A
holds whenever either side is defined.
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(7) If i < j — 3 then the equality
(@ Aiy) Aj (2 Niw) = (T Aj1 2) Ai (Y Aj—1 w)
holds whenever either side is defined.

A morphism of sets with complicial identities f: X — Y is a sequence of
functions f: X,,, — Y, commuting with the face, degeneracy and wedge operations.

Remark 6.2. There is some redundancy in these axioms. Indeed, the degeneracy
operations on elements of positive dimension are redundant because of axiom (2).
For similar reasons, one can omit some of the simplicial identities, retaining only
81'(%‘ = (%;181' (fOI‘ 1 < j) and 0;¢; = 1€, = id.

Remark 6.3. Axiom (3) could be written simply as an equality
bAi (Y Ni z) = (Digab Ai y) Niga Diga[b Ai (y Ni 2)),
required when either side is defined. A similar remark applies to axioms (4) and (6).

Remark 6.4. Note that axiom (1) does not give a formula for 9;+1(z A; y). In a
sense, the operation A; exists in order to construct the operation
(2,y) = Oipa(z Ai y).

By using axioms (1), (2) and (5), one can show that this binary operation is as-
sociative and that it makes the m-dimensional elements into the morphisms of a
category. The objects are the (m — 1)-dimensional elements, the source and target
of a morphism z are 9;x and 0;11x, and the identity of an object a is €;a.

Remark 6.5. I intend to show in a future paper that sets with complicial identities
are equivalent to the complicial sets used by Verity in [2].

We will now show that the axioms of Definition 6.1l apply to orientals.
Proposition 6.6. The graded sets O(—,n) are sets with complicial identities.

PRrROOF. From Section [l we know that O(—,n) is a simplicial set and that it
has wedge operations with the correct domains and codomains.

It is straightforward to verify axiom (1).

Next we verify axiom (5). The existence of the expression on one side is equiv-
alent to the existence of the expression on the other, because the existence of either
expression is equivalent to the truth of the equalities

(%I = 8¢+1y, 8zy = 8i+1z.
Also, if the two expression do exist, they have the same value, namely
€i43€i12T — €041y + €436y — €041 + €i41€2.

The remaining axioms all say that expressions of certain forms are equal to
wedges. They can be proved by using Proposition B8 which says that an element
of O(—,n) is in the image of A; if and only if it is in im¢; 4+ im €;4;1. For example,
suppose that the expression on the left of axiom (6) is defined, and let

B=AN, (w Nit1 (9114)
We find that B € ime; 2 + im €, 3; therefore B has the form B’ A;4 o B”. Using
axiom (1) we then find that
BI = 1‘+4B = 81'+3A /\i 81-+3(w /\i+1 8114) = 8¢+3A /\1' w,
BH = 8i+2B = A,
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therefore B = (81-+3A Ni U}) /\i+2 A.
This completes the proof. (|

7. Consequences of the complicial identities

We have shown in Theorem that O(—,n) is generated by the identity
morphism ¢,. In Section [§] we will show that O(—,n) is freely generated by ¢,
subject to the complicial identities of Definition [6.1} in other words, we will show
that the identities determine the entire structure. In order to do this, we now
consider consequences of the identities in general.

First we consider the expressions u AL v (see Notation 0). The domains of
definition and most of the faces are as follows.

Proposition 7.1. An expression u /\fIC v in a set with complicial identities exists if
and only if Opu = 8,l€+lv. If the expression does exist, then

Di(u A v) =0un,_ o (i <k),

O (u Al v) = v,

Onro(u AL v) = u,

Dipr(u N v) =unt o (I>1, k<i<k+1),
Dip1(u AL v) =0, unk 0o (k+1<i).

PrOOF. We have = Ap y defined if and only if Oy = Ok11y, and we have
Ok(z A y) = y when x Ay y is defined; therefore u AL v is defined if and only
if Opu = 0L, 4+1v- The formulae for the faces are proved by induction on [, using
Definition [6.I(1) when | = 1 and using the formula

n /\fC v=(u /\f,;l Ok+10) A v

when [ > 1. (]
For the expressions A" (u,_1, ..., up,v) the domains of definition are as follows.
Proposition 7.2. An expression A"(uy—_1,...,u0,v) exists in a set with complicial
identities if and only
Opup = AP (up_1,...,u0,0, 1v)

foro<p<r.
ProOOF. For 0 < p <rlet
vp = Op(tp—1 Ap YT )p_1 (up—a ALY 1 (ug AG Y,
so that A" (ur—1,...,u0,v) = v,. For 0 <p < r, by Proposition [[1] v,11 exists if

and only if O,u, = Bp 1 0p; it therefore suffices to show that

i tVp = AP (up_y, ..o 0,0, {0).
But for 0 < ¢ < p it follows from Proposition [ 1] that

- +1 +1 +1
1Z+]108 (ug— 1/\T (11 )= aap+2(uq 1/\T (11 ) = 0q(uq— 1/\p (11 ) p+f7

and this gives the result. ([

Nest we compute the faces of these expressions.
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Proposition 7.3. In a set with complicial identities the following equalities are
valid whenever their left sides are defined:
0N (U1, ... u0,v) = NN Osup_1, ..., Oy, Ui—1, ..., up,00) (i <),
oA’ (v) = Do,
O N (Up—1,...,u0,0) = Opur—1 (r >0),
OGN (up—1,...,u0,v) = A" (Qjtty—1,0i—1Up—2, ..., Dimpr1uo, Ojv) (i > 7).

PROOF. Suppose first that ¢ < r. Using Proposition [[1] for r > p > i+ 1 we
get

0i0p (up—1 Ny 8T ) = 0p10i(up—1 ALY ) = 01 (Biup—y A5 )0

we then get
81'81'+1(’UJ1' /\;_i ) = 8181(’(14 /\;_i ) = 81
and for i > p > 0 we get

0i0p(up—1 Ny 8 ) = 0p0i1 (up—1 AL ) = 0y (up—y ALY )03

p—1
therefore
81'AT(UT,1, ..., U, 1)) = Ar_l([)iur,l, ey &uiﬂ, Uj—1,y---,UQ, 81’0)
It is obvious that 9yA°(v) = dyv, because A% (v) = v.
For r > 0 the equality 0, A" (ur—1, ..., up,v) = Ortp—1 is immediate from Propo-
sition [Z.11

Finally, suppose that ¢ > r. For r > p > 0 it follows from Proposition [I1] that

0i0p(up—1 /\;T)le_l ) = 0p0it1(up—1 /\;:11)-’_1 ) = Op(Oi—rtpUp—1 /\;T)le_l )0i;

therefore

OiN"(Ur—1, ..., u0,v) = A"(Djttp—1,0i—1Upr_2, . .., Di—p41U0, V).

Next we give a collapsing result.

Proposition 7.4. If x is an element of dimension at least r in a set with complicial
identities, then

s 2 e
x=AN(e_10rz, €207 1z, ..., 0]z, ).

PROOF. Repeated applications of Definition [6.1)(2) show that for 0 < p < r we
have
Opr1(ep0, T2 NP 1) = Oprar6pw = .

The result follows. O

In the rest of this section, we aim to find conditions implying that elements of
the form A" (up—1,...,up,v) are wedges.

Proposition 7.5. Let u Ax v be a wedge in a set with complicial identities. If
i=k—1ori=k and if u,v € im A; then Jpt1(u Ak v) € Im A;.
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PROOF. Suppose that v = v’ Ag_1 u” and v = v/ Ap_1 v”. The existence of the
wedge u Ak v implies that v/ = 110 = Oku = I (u' Ap—1 u”); therefore

uNpv = (u Ap_1u”) Ag [0k (0 Ag_q u'") Ag_q 0]
It now follows from Definition [61I5) that
8k+1(u Nk ’U) = Ng_1 8k(u” Ng_1 v”).
If u = v/ Apw” and v = v Agv”, then it similarly follows that u” = 011 (v Akv"”)
and that
8k+1(u Nk 1)) = 8k+1(ul Nk ’U/) Nk v,
O
Proposition 7.6. In a set with complicial identities, let A be an element of the
form x Nix1y or yA; z or Oipa[(x Aip1 y) Niv1 (¥ Ai 2)]. Then elements of the form
AN (w Ajy1 ) are in im Ao, and elements of the form (u A; w) Nir2 A are in

PROOF. Note first that A must be m-dimensional with 0 < i < m — 3, because
of the existence of A A; (w Aj41 v) or of (u A; w) Ajya2 A.
Suppose that B = A A; (w Ajy1 v); then ;A = 0,41 (w Aj41 v) = v, SO

B = AN; (wAiy1 0A).
Because of Definition [6.1K6), it suffices to show that A is of the form
Div2[( Ni1y) Nig1 (Y Ai 2)],
and we do this as follows: if A =x A;11 y then
A= ai+2€i+2A

= 0iy2(A Nit1 €410i11A)

= 0iy2(A Nig1 €i11Y)

= Oi2[(z Niv1 y) Niv1 (Y Ni €0iy)];
if A=y A; z then similarly

A = 0ipa[(€i+10i42Y Nix1 Y) Nig1 (¥ Ni 2)];

if A= 0ita[(xNix1y) Nix1 (Y Ai2)] then y = Oip1(zAig1y) = Oiga(y' Niz) =y, s0

A= Oia[(m Niv1 y) Nitr (Y Ni 2)]-

The argument for elements of the form (u A; w) Ajy2 A is similar. O
Proposition 7.7. In a set with complicial identities, if > i + 3 then
(TN Y) = €12 Ni €21y

whenever x N\; y is defined.

ProOOF. The proof is by induction on r. We use Definition [6.I(1) and (2)
repeatedly.
In the case r =i + 3 we have
€i+3(T Ni y) = (@ Ai y) Nigz €i420i2(x Ni y)
= (T Ai Y) Nig2 €ig2T
= (z Ni y) Nig2 (@ Nig1 €410i412).
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It follows from Proposition [(16] that €;43(x A; y) is in im A;, and it then follows that
€ir3(T Ni y) = Oip2€irs(z As y) Ni Oiiys(T N y)
= €i+20i+2(T Ni y) Ni €i420i(T A y)
= €i4+2% N\ €4-2Y.
For r > i+ 3 it follows from the inductive hypothesis and Definition [6.1)(7) that
er(xNiy) = (N y) Ar—1 €r—10p 1 (2 Ai y)
= (@ Aiy) Ar—1 €r—1(0r—22 A Or—2y)
= (x Aiy) Ar—1 (€r—20r—22 Aj €20, _2Y)
= (x Np—2 €r—20r—2%) Ni (Y Nr—2 €r—20r_2Y)
= €r—1T N\j €r—1Y.

This completes the proof. O

Proposition 7.8. In a set with complicial identities, an element of the form
(uw A u') Ak (v A0
is in im A; for 1 < k and is in im Ay fori >k — 1.

PROOF. For ¢ = k — 1 and for ¢ = k the results are trivial or are contained
in Definition [61I(3) and (4); for ¢ = k — 2 and for ¢ = k + 1 the results follow
from Proposition [7.6} for i < k — 3 and for ¢ > k + 2 the results are contained in
Definition [6I(7). O
Proposition 7.9. In a set with complicial identities, an element of the form

81'4_3[’11 /\é+2 6i+2 (’U,I /\lzjri ’U)]
is in im A; if u and v are in im A;.

PRrOOF. Let
_ l 7 Al+1
Z2 =1 Njyg Oiga(u’ N1 0).
Because of Definition [61)1), it suffices to show that z € im A;. We will do this by
induction on I.

Let
A= 0;yo(u /\iﬂ v)
and let
uNiip 0ipzA (1> 1),
so that
z=u" N2 A.
Note that

A= 0ipa[(u by, ipav) Aig ]
with ' /\ﬁJrl Oi42v € imA;41 by the definition of /\lile and with v € im A; by
hypothesis. By Proposition [[.6] to show that z € im A; it suffices to show that
u'’ €imA;.
Suppose that [ = 1. Then v’ = u, so v’ € im A; by hypothesis.
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Suppose that [ > 1. Using Proposition [[.I] we get
u’ =uN} 0ipsA
= u AT} 0420144 (W/ AT 0)
= u Ny Qo (u Ay Bigav).

Since v € im A, it follows from Definition [B.I(1) that 9;43v € im A;, and it then
follows from the inductive hypothesis that u” € im A;.
This completes the proof. (|

Proposition 7.10. In a set with complicial identities, let v' be an element of the
form Opi1(u AL v) with v € im A;. Then v’ € im A; whenever one of the following
sets of conditions is satisfied:

(1) i <k—2 and u € im A;

2)k<i<k+!landl > 2;

B)k+1<iandu€imA;_;i1.

PROOF. Let ug = u, and for 0 < j <1 let
"
Uj = Uj—1 Nk 8k+]lv;

we must show in each case that Op1u; € iIm A;.

(1) Since v € imA; with ¢ < k — 2, it follows from Definition [G.I(1) that
8,2?111 €imA; for 0 < 5 < I. Since ug € im A, it follows from Proposition [T.§] that
Ui, ..., u €1imA;, and it then follows from Definition [6.1(1) that Ok41u; € im A;.

(2) Suppose first that i = k; we must show that

8k+1(ul,1 Nk U) € im Ag.

But u;_1 € im A because [ > 2, and v € im Ay because i = k, so the result follows
from Proposition

Now suppose that k£ < ¢ < k + 1. We have ugy;—; € im A because ¢ < k + [,
and we have 8,2;’;711) € im Ag41 by Definition [6.1(1); therefore ug4i—i+1 € im Agy2
by Proposition We also have 8,2;’;721) € im Ag42 by Definition 6.I(1), so
Ugti—it+2 € im Ag4s by Proposition By repeating the use of Proposition [7.8]
we eventually get u; € im A;41. Definition [6.1)(1) now gives us dy1u; € im A;.

(3) In this case ug € im A;—;+1 by hypothesis and 8,1;1111 € im A;_;41 by Def-
inition [61K(1); therefore uq € imA;_;4o by Proposition [.8 In the same way
ug € imA;_;y3, and so on. Eventually we get u; € imA;11. As before, Defini-
tion [6.I1) now gives us Jgt1u; € im A;. O

We conclude with a result converse to Proposition
Proposition 7.11. Let x be an element of the form
x=A(up_1,...,uq, € w)

in a set with complicial identities.
Ifi <r =3, ifweimA;, and if up, € imA; for i +2 <p <r, then z € im A;.
If w € ime,_o and ur—1 € iMmA,_o then x € im A,_s.
If s> 1 and up—1 € imA,_1 then x € im Ap—1.
Ifr<i<r+4+s—2, and ifup, € imAj_rqpp1 for 0 < p <r, then x € im A;.
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PROOF. Let vg = €jw, and for 0 <p < r let

Upt1 = Opy1(up A7 vp);
thus = v,. We claim that v, € im A; for 0 < p < r, except possibly for cases with
i<r—3andp=1+2.
First we suppose that ¢ < r — 3, that w € imA;, and that u, € imA; for
i+ 2 < p<r. We have vg € im A; by Proposition [[.7] and we get

vy €EImMA;, ..., Vi41 €IMA;

by repeated applications of Proposition [[.T0(2). We now have

2 i1
Uitz = Oigsiva ANiis ~ Oip2(Uit1 AL Vig1)]

with u;yo and v;y; in im A4, so v;4+3 € im A; by Proposition Since up, € imA;
for i +3 < p < r, repeated applications of Proposition [[.I0(1) now show that the
elements
Vi+4yVi455+ ., Up

are in im A;.

Next we suppose that w € ime,_s and u,—1 € im A,._2. We have vg € ime,_o
because efe,_o = €._2€¢5_1; hence, by Definition G.1(2), vg € im A,_2. As in the
previous case, we get

vy EIMAr_g, ..., Up_1 € IMA;_o.

Since v, = Op(Up—1 Ar—1 vr—1) and since u,_1 € im A,_a, it follows from Proposi-
tion that v, € iIm A,_o.

Next we suppose that s > 1 and u,_1 € imA,_;. Then vy € ime,, and it
follows from Definition [6.1(2) that vy € im A,_1. The rest of the argument is as in
the previous case.

Finally we suppose that » < ¢ < r 4+ s — 2 and that u, € imA;_,1p41 for
0<p<r. Wegetuvy= €16 w; therefore vyg € im A; by Definition [6.1)(2). We
then get

v €EIMA;, ..., v €IMA;
by repeated applications of Proposition [T.T0(3).
This completes the proof. ([

8. Freeness

We have shown that O(—,n) is a set with complicial identities generated by
the identity morphism ¢, (see Proposition and Theorem A12). We will now
show that O(—,n) is freely generated by ¢,; that is to say, given an n-dimensional
element u in a set with complicial identities U, we will show that there is a unique
morphism f: O(—,n) — U with fi, = u.

We will construct morphisms on O(—,n) by combining suitable functions on
subsets of O(—,n). The functions concerned are called partial morphisms, and are
defined as follows.

Definition 8.1. Let S be a subset of a set with complicial identities, let U be a
set with complicial identities, and let k£ be a nonnegative integer. Then a partial
morphism of degree k from S to U is a function f: .S — U which increases degrees
by k and which satisfies the following conditions.

(1) If = is an m-dimensional member of S with m > 0 and if 0 < ¢ < m, then

Oix € S and fo;x = 0; fx.
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(2) If x is a 1-dimensional member of S and x € im ¢y then fx € im €.
(3) If x € S and x € im A; then fx € im A;.

Partial morphisms have all the good properties that one might expect.

Proposition 8.2. Let f: S — U be a partial morphism and let x be a member
of S.

(1) If x = €;y for some y, theny € S and fx = ¢ fy.

(2) If =y N\; z for some y and z, then y,z € S and fx = fyN; fz.

ProoOF. We prove these statements in reverse order.
(2) Suppose that © = y A; z. Then y = 9,422 and z = d;a by Definition [GI)(1);
therefore y, z € S. Since also fz € im A,;, it then follows that

fr=0iofx N\ Oifx = fOi0x Ny fOix = fyN; [z.

(1) Suppose that = €;y. Then y = 9;z, so that y € S. We will now prove
that fx = ¢; fy by induction on the dimension of x.

Suppose that x = €py and x is 1-dimensional. Then fz € im ¢y, and it follows
that

fr=edofz =eofOox = € fy.
Suppose that © = ¢py and that the dimension of = is greater than 1. Then
x = €001y Ao y by Definition [6.1(2). From the inductive hypothesis and from what
we have already proved, it now follows that
fx = feodry No fy =€ fOr1y Noy = €od1fy No fy=eofy.

Finally suppose that z = ¢y with ¢ > 0. Then x = y Aji—1 €,-10;,—1y by
Definition [6I(2), and it follows as in the previous case that fx = ¢€; fy.
This completes the proof. (I

For partial morphisms on subsets of O(—,n) we deduce the following result.
Proposition 8.3. Let f be a partial morphism on a subset S of O(—,n), let
x=A(up_1,...,up,v)

be defined in O(—,n), let the terminus of v be t, and let the corank of v be s.
Suppose that S contains all morphisms with terminus t; alternatively, suppose that
rankv > r and that S contains all morphisms with terminus t and corank s. Then

the morphisms T, u,_1,...,uq,v are members of S, and
fx=A"(fur_1,..., fuo, fv).
Proor. This follows from Propositions and O

We will construct partial morphisms on subsets of O(—,n) by recursion on
terminus and corank. For ¢ > 0 let S; be the subset of O(—,n) consisting of the
morphisms of terminus at most ¢. For ¢ > 0 and s > —1 let S} be the subset of
O(—,n) consisting of the following morphisms: the morphisms with terminus less
than ¢; the morphism 838;:(1%”; the t-cones, in the case that ¢ > 0; the morphisms
with terminus ¢ and with corank at most s. We now proceed as follows.

Lemma 8.4. Let u be an element in a set with complicial identities U. Then there
is a partial morphism f: S’gl — U such that fO'ty, = u.
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Proor. The only morphism in S; 1'is the zero-dimensional morphism Of'tn.
The condition f07't, = u therefore defines a function f: Sy ! — U, and this function
is trivially a partial morphism. (I

Lemma 8.5. Fort >0, let F: S;_1 — U be a partial morphism of degree k > 0.
Then there is a partial morphism f: St_l — U of degree k — 1 such that faf;tbn =
For—ty,.

ProoF. We define a function f: S;' — U as follows: if  is a member of
O(m,n) with terminus less than ¢, then

fr = Omy1Fa;
if x = 868&_1’5% then
fr=05Fop iy
if x is a t-cone in O(m + 1,n) then Op,+12 has terminus less than ¢, and we make

the definition
fr =FOpn41x.

It is clear that f increases degrees by £ — 1 and that
[0 = FOO; Ty = FOF

it therefore remains to verify conditions (1)—(3) of Definition [B11
(1) Let 0;z be a face of an m-dimensional member of S;_1, so that m > 0 and
0 <4 < m. Then 9;z is an (m — 1)-dimensional member of S;_1, so that 9;x € S;l,
and
f@l:v = 8mF81:v = 8m6iF:v = 8i6m+1F:v = &fx

The zero-dimensional morphism 9$9;' ¢, does not have any faces.

Let = be a 1-dimensional t-cone, and consider the face dyz. This is the zero-
dimensional morphism 99, ;' t,; therefore dyz € S; " and fdyz = O§F O, "+ e,
The zero-dimensional morphism 9z must have the form [0] — [j] with 0 < j <¢—1,

and it can be expressed as 888;;]1_1(’9?_”1%. Therefore

Oofr =0gFoix = Boﬁgﬁﬁli_lFaf_t“Ln = gLFar Y,

and it follows that foyx = Oy fz.
Let 0,z be a face of an (m + 1)-dimensional ¢-cone such that m > 0 and
0 < i <m. Then 9;x is an m-dimensional ¢t-cone, so that 0;z € S{l and

Finally, let  be an (m + 1)-dimensional ¢-cone with m > 0 and consider the
face Op412. This is an m-dimensional member of S;_1; therefore Op, 412 € S, Land

f8m+1:1: = 8m+1F8m+1x = 8m+1f:t.

(2) Let « be a 1-dimensional member of S; * lying in the image of ;. Then
x € S;_1, so that fr = 0,Fz, and we also have © = ¢gdpx. It now follows from
Proposition B2 that fz € im ¢y, because

f,T = 82F6060:v = 8250F80:c = anlFaox.

(3) Let « be an m-dimensional member of S;_ lying in the image of A;. Then
fx = Omi1Fx. We also have © = 0,122 A; 0;x by Definition [6.1)1), and we must
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have 0 < i < m — 2. It now follows from Proposition 2] and Definition [6.I(1) that
fr € im A;, because

fr= 8m+1F(8i+2x Ni 895) = 8m+1(F8i+2x Ni F@Vr) = 8mF8i+2:E N; O FO;x.

The zero-dimensional morphism 99;" T ‘1, cannot belong to the image of a
wedge operation.

Let = be an (m + 1)-dimensional ¢-cone, and suppose that x € im A; with
0<i<m—2. Then fx € im A; as before, because

f{E = F8m+1(81'+2$ Ni 8113) = F(8m8i+23: Ni 8m81$) = F8m8i+2x Ni Famaﬂ?
Finally, suppose that x is an (m + 1)-dimensional ¢-cone lying in the image
of App—1. We must have = €,,-10m—12 (see Propositions B8 and B4). It now
follows from Proposition B2 and Definition [6.1(2) that fz € im A,,—1, because
f.I = F8m+1em,18m,1x = Fem,lam[)m,lx = Emleamamflx.
This completes the proof. O

Lemma 8.6. Fort >0 and s > 0, if f is a partial morphism on Sts_l, then there
is a partial morphism f’ on S} which is an extension of f.

PRrooOF. Let x be a morphism in S; with terminus less than ¢ or with terminus ¢
and corank less than s; then x belongs to Sf~' and we make the definition

flz = fx.
Now let = be a morphism with terminus ¢ and corank s, and let the rank of z
be r. According to Theorem .11l x has a canonical form given by
x=A(a,_1z,..., 00, €,9T).

According to Propositions .8 and E.6 the morphisms a,z and vz are members
of S} ~1, and we will obtain f’z by applying f to each of these morphisms.

In order to show that this is possible, we use Proposition [[.2l For 0 < p < r it
follows from this proposition and from the existence of the canonical form that

— r—p s
Opapr = AP (ap_12,..., a0z, 0, T epy).

If s = 0 then the argument 0] Je;yx has terminus less than ¢; if s > 0 then it has
terminus ¢, rank p+1 and corank s—1; in both cases, it follows from Proposition[R.3]
that

Opfapr = fOpapr = AP(fay a1z, ..., faoz, fO, 1€ reT).
If now s = 0 then

Tps

f ;+;1D f‘ﬂ)/x - f +1’Y(E - p+1f'-)/'r - p+1 € YL3
if s >0 then €2~ 'yz € S§~! and we get

TP s r—p—1 _s—1 _ plsl
f8p+1 €YT = f8p+1 € YT = p+1 f’YI— p+1 Tfﬂ)/x

in any case we get
Opfopr = AP (foprm,. .., faoz, 0, Ve fy).
Because of Proposition [7.2] we can now define f’z by the formula
flx = AT(fOéT_l.’II, ERE faoxa Ef‘f’yl')

We will now show that f’ is an extension of f. For s > 0 there is nothing to
do, because there are no morphisms of terminus ¢ and corank s in S; ~1. In the



22 RICHARD STEINER

case s = 1 we must show that f'z = fz when z = 949, "*'1,, or x is a t-cone. To
do this, let the rank of z be r. It then follows from Example [£.7] that

f/l' = AT(fGT—laTxa ey feoafffa fl'),
it follows from Proposition that

f/l' = AT(ET—lanxu e 7€OaIf‘T7 f‘r)u

and it follows from Proposition [[4 that f'x = fx as required.

It remains to show that f’ is a partial morphism by verifying the conditions
of Definition Bl It clearly suffices to consider morphisms with terminus ¢ and
corank s, and we argue as follows.

(1) Let & be a morphism with terminus ¢, with corank s and with rank r, and
consider a face 0;x with 0 < ¢ < r. In this case 0;x has terminus ¢, corank s and
rank r — 1, so that 9;z € S; and it follows from Proposition (.1] that

o = Ar_l(faiar,lx, v Oz, fayax, ..., fagm, €5_q fOyT).

Since fO0;apx = 0; fapx for i < p < r and since
€y fOve = €0, fy = die fAa,
it now follows from Proposition that
f0ix = 0N (far_1z,. .., fapz, € fyx) = O f x.

Now let « be a morphism with terminus ¢, with corank s and with rank zero,
and consider the face Ogz. This exists only in cases with s > 0. It has terminus ¢,
corank s — 1 and rank zero, and it therefore belongs to Si~'. It follows that
dox € Si. Tt also follows from Theorem 1Tl and Proposition [T.3] that

f'Oox = foor = fOOA’(e§yx) = foveiyr = fei tyr = €5 fyx
and that
Oof'x = QoA*(c frye) = Doci fra = e " fyas
therefore f'Opx = 0y f'x.

Now let & be a morphism with terminus ¢, with corank s, and with rank r > 0,
and consider the face 9,z. If s = 0 then 0,z has terminus less than ¢; if s > 0 then
Oz has terminus ¢ and corank s — 1; in both cases, 0,z € S’f_l. It follows that
Orx € S;. Tt also follows from Theorem AT and Proposition that

flarx = fOrx = farAT(Oér—LTu <o, QT 678«'75[:) = fOrap_12 = O far 17
and
O f'e =0, N (far_1m,. .., fagm, €5 fyx) = Op fap_1;
therefore f'0.x = 0, f'x.

Finally, let  be a morphism with terminus ¢, with corank s, and with rank r,
and consider 0;x for r < ¢ < r 4+ s. In this case 0;x has terminus ¢ and corank
s — 1, so that 9,z € S{~'; therefore 9;z € S;. Tt now follows from Theorem ETT]
and Proposition that

f’&-x = f&:z;
= fON (a1, ..., oz, €oy)
= fA"(Oior—12, ..., Oipy100, DiE;7T)

= fA"(Qiar—1,. .., 0i—rir100, ei_lvx).
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Here ¢~ 1yz has terminus ¢, rank r and corank s — 1, so it follows from Propositions
and that

foix = N (fOir 1, ..., fOi_ri1c00T, f€5 1)
= A"(0;far_1x,. .., 0i_ry1faox, €7 fym).
On the other hand, it follows from Proposition that
Oif't =N (0ifar—1z,...,0i—ri1faom, Oi€s fyT)
= A"(0ifap_1z,...,0iry1foaom, €7 fya);

therefore f'0;x = 0, f'x.

(2) Suppose that z is a 1-dimensional morphism with terminus ¢ and positive
corank s lying in the image of €p. This can occur only in the case that s = 1, and
the rank of z must be zero; therefore f'z = A%(eo fyx) = €0 fyz. It follows that f'z
is in the image of €.

(3) Suppose that x is a morphism with terminus ¢ and corank s lying in the
image of A;. Let the rank of x be 7, so that 0 < i < r 4+ s — 2. It follows from
Proposition that certain morphisms o,z are in certain sets im A;, and it may
also follow that vz is in im A; or ime;, The images fo,r and fyz then satisfy the
same conditions, and it follows from Proposition [[.11] that f'z € im A;.

This completes the proof. 0

From Lemmas [B.4HR.6] we get the main result.

Theorem 8.7. For n > 0, the graded set O(—,n) is the set with complicial iden-
tities freely generated by the identity morphism i, in O(n,n).

PRrROOF. First, by Proposition [6.6] O(—,n) is a set with complicial identities.

Now let u be an n-dimensional element in a set with complicial identities U.
We must show that there is a unique morphism from O(—, n) to U sending ¢,, to u.

We construct a suitable morphism as follows. By Lemma [R4] there is a partial
morphism on S ! sending Oy, to u; by repeated applications of Lemma 8.0 there
is a partial morphism on the entire set Sy sending 07'¢,, to u; by Lemma [RH, there
is a partial morphism on Sfl sending 8371% to u; by Lemma [B.6] there is a partial
morphism on the entire set S; sending Bg_an to u; etc. Eventually we obtain a
partial morphism f: O(—,n) — U such that fi, = u. By Proposition B2 f is in
fact a morphism of sets with complicial identities. Since, according to Theorem[4.12]
O(—,n) is generated by iy, it follows that f is the only morphism from O(—,n)
to U with fu, = u.

This completes the proof. ([l
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