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We give a representation of the solution for a stochastic linear
equation of the form Xt = Yt +

∫
(0,t]

Xs− dZs where Z is a càdlàg

semimartingale and Y is a càdlàg adapted process with bounded vari-
ation on finite intervals. As an application we study the case where
Y and −Z are nondecreasing, jointly have stationary increments and
the jumps of −Z are bounded by 1. Special cases of this process are
shot-noise processes, growth collapse (additive increase, multiplica-
tive decrease) processes and clearing processes. When Y and Z are,
in addition, independent Lévy processes, the resulting X is called a
generalized Ornstein–Uhlenbeck process.

1. Introduction. In this paper we show that when Z is a càdlàg adapted
semimartingale and Y is càdlàg adapted and with bounded variation on
compact intervals, then the unique càdlàg adapted solution of Xt = Yt +
∫

(0,t]Xs− dZs is given via the representation Xt =
∫

[0,t]Uu,t dYu where Uu,t

is defined by formula (2) below. This form seems to be new and we note
that the integral with respect to Y is defined path-wise while the integral
in the integral equation can be a stochastic integral. Of course when Y is
a semimartingale, one cannot expect such a representation of the solution
since {Uu,t|0≤ u≤ t} is not adapted as a process indexed by u.

We discuss an application to the case where Y and −Z are nondecreasing
processes jointly having stationary increments and subsequently specialize to
cases where one or both also have independent increments (Lévy processes).
This model is a generalization of both the shot-noise process as well as
a growth–collapse process (e.g., see, [7, 11, 16] and references therein) or
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2 O. KELLA AND M. YOR

more generally an additive increase and multiplicative decrease process. The
later have been used as models for the TCP window size in communication
networks.

We note that Jacod ([8], Theorem 6.8, page 194) and Yoeurp and Yor
[21] give a complete solution for the case where the integrator is a semi-
martingale and the driving process is càdlàg, Jaschke [9] gives a derivation
for the case where the integrator does not have jumps of size −1, and Protter
([20], Theorems 52 and 53, pages 322–323) treats the case with a continuous
integrator.

The literature related to generalized Ornstein–Uhlenbeck processes and
their applications which are directly related to some of the special cases of
the applications that we consider is huge and growing exponentially fast. We
refer the reader to [1–6, 14, 15, 17–19, 22] and further references therein.

2. Main result. With respect to some standard (right continuous aug-
mented) filtration, let Y = {Yt|t ≥ 0} and Z = {Zt|t ≥ 0} be two adapted
càdlàg processes. Denote Z0− = 0, and for t > 0, Zt− = lims↑tZs. Set ∆Zt =
Zt − Zt− when Z is of bounded variation on compact intervals (BV); set
Zc
t = Zt −

∑

0≤s≤t∆Zs and similarly for any other càdlàg process consid-
ered in this paper.

Theorem 1. Assume Y and Z are càdlàg and adapted, Y is BV and Z
is a semimartingale. Then the unique càdlàg adapted solution to the equation
Xt = Yt +

∫

(0,t]Xs− dZs is

Xt =

∫

[0,t]
Uu,t dYu,(1)

where

Uu,t =











eZt−Zu−(1/2)([Z,Z]ct−[Z,Z]cu)

×
∏

u<s≤t

(1 +∆Zs)e
−∆Zs , 0≤ u < t,

1, 0≤ u= t

(2)

and [Z,Z] is the quadratic variation process associated with Z. When Z is
BV then (2) reduces to

Uu,t =







eZ
c
t−Zc

u

∏

u<s≤t

(1 +∆Zs), 0≤ u < t,

1, 0≤ u= t,

(3)

where Zc is the continuous part of Z as defined earlier (rather than the
continuous martingale part of Z as is customary in stochastic calculus).
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Proof. Note that with T0 = 0 and for n≥ 1, Tn = inf{t > Tn−1|∆Zt =
−1}, then for Tn < u≤ t < Tn+1

UTn,t

UTn,u−
= Uu,t(1 +∆Zu),

UTn,t

UTn,u
= Uu,t.(4)

Also, since Y is a BV process, the covariation process [Y,Z] is given via
[Y,Z]t =

∑

0≤s≤t∆Ys∆Zs. If one follows the solution in equation (6.9) in
Theorem (6.8) on page 194 of [8], then for Tn ≤ t < Tn+1 we have that

Xt = UTn,t

(

∆YTn +

∫

(Tn,t]
U−1
Tn,u−

dYu −

∫

(Tn,t]
U−1
Tn,u

d[Y,Z]u

)

= UTn,t∆YTn +

∫

(Tn,t]
Uu,t(1 +∆Zu)dYu −

∑

Tn<u≤t

Uu,t∆Yu∆Zu(5)

=

∫

[Tn,t]
Uu,t dYu,

where the second equality is justified since the first integral on the right-hand
side of the first equality is a path-wise Stieltjes integral, and the second is a
sum which is also defined path-wise. If Y was a general semimartingale, then
interchanging UTn,t with the integral sign like this would not be justified as
the resulting integrand would no longer be adapted. Clearly if n ≥ 1, then
Uu,t = 0 for u < Tn, and thus

Xt =

∫

[0,t]
Uu,t dYu.(6)

Since this holds for all n, the proof for the more general case is complete.
For the case where Z is BV, it is evident that [Z,Z]c = 0, and it is easy to
check that

∑

u<s≤t∆Zs is convergent (actually, absolutely convergent), and
hence the result follows. �

Of course one may also define the counting process,

Nt =
∑

0<s≤t

1{∆Zs=−1},(7)

which is a.s. finite for all t≥ 0 and right-continuous (possibly a.s. identically
zero or terminating), and write

Xt =

∫

[TNt
,t]
Uu,t dYu.(8)

It is worth while to note that for the case where Z is also a BV process,
there is a more direct proof involving (path-wise) Stieltjes integration which
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can be taught in a classroom as follows. Write Z =A−B, where A and B are
right-continuous and nondecreasing and have no jump points in common.
Write Ad

t =At−Ac
t =
∑

0<s≤tmax(∆Zs,0) and similarly for B. Observe that

by right continuity ∆At, ∆Bt, A
d
t −A0 and Bd

t −B0 all converge to zero as
t ↓ 0. In particular, for every t for which −1 ≤∆Bs (≤ 0) for 0 < s ≤ t, we
have that

1 +Ad
t −A0 ≤

∏

0<s≤t

(1 +∆As)≤ eA
d
t−A0(9)

and

1+Bd
t −B0 ≤

∏

0<s≤t

(1 +∆Bs)≤ eB
d
t −B0(10)

which implies that

∏

0<s≤t

(1 +∆Zs) =

(

∏

0<s≤t

(1 +∆As)

)(

∏

0<s≤t

(1 +∆Bs)

)

→ 1(11)

as t ↓ 0.
Now note that with Ct = eZ

c
t and Dt =

∏

0<s≤t(1+∆Zs), ordinary (Stielt-
jes) integration by parts yields

Ut ≡CtDt =C0+D0++

∫

(0,t]
Ds− dCs+

∫

(0,t]
Cs− dDs+

∑

0<s≤t

∆Cs∆Ds,

(12)
and it is easy to check that the continuity of C and the fact that dCt =Ct dZ

c
t

imply that

Ut = 1+

∫

(0,t]
Us− dZs.(13)

With this formula established, it is clear that if we denote Uu,t as in (3),
then in an identical way to which (13) was obtained we have (path-wise)
that

Uu,t = 1+

∫

(u,t]
Uu,s− dZs(14)

for all 0≤ u≤ t.
Now, ifXt =

∫

[0,t]Us,t dYs, thenXt− =
∫

[0,t)Us,t− dYs and thus
∫

(0,t]Xs− dZs

is given by
∫

(0,t]

∫

[0,s)
Uu,s− dYu dZs =

∫

[0,t)

∫

(u,t]
Uu,s− dZs dYu

(15)

=

∫

[0,t)
(Uu,t − 1)dYu,
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but since Ut,t = 1 we can include t in the domain of integration without
changing the value which gives

∫

(0,t]
Xs− dZs =

∫

[0,t]
(Uu,t − 1)dYu =Xt − Yt(16)

as required.

3. Applications. Assume that Y and Z are right-continuous and nonde-
creasing jointly having stationary increments in the strong sense that the
law of θs(Y,Z) is independent of s where

θs(Y (t),Z(t)) = (Y (t+ s)− Y (s),Z(t+ s)−Z(s)).(17)

It is standard to (uniquely) extend (Y,Z) to be a double sided process having
stationary increments, that is, that t ∈R rather than t≥ 0, thus we assume
it at the outset. Finally we assume that Z has jumps bounded by 1. Without
loss of generality let us assume that Y0 = Z0 = 0, otherwise we perform what
follows for Y − Y0 and Z − Z0 which also have stationary increments. We
consider the unique process X defined via Xt =X0 + Yt −

∫

(0,t]Xs− dZs for

t≥ 0 where X0 is almost surely finite; the unique solution of which is

Xt =X0e
−Zc

t

∏

0<s≤t

(1−∆Zs) +

∫

(0,t]
e−(Zc

t−Zc
u)
∏

u<s≤t

(1−∆Zs)dYu,(18)

where an empty product (when u= t or when t= 0 on the right) is defined
to be 1.

Special cases of such processes are the shot-noise processes in which Zt =
rt and Y are compound Poisson, growth collapse or additive increase multi-
plicative decrease (AIMD) processes in which Yt = rt and usually Z = qNλ

where Nλ is a Poisson process with rate λ, and 0< q < 1, as well as clearing
processes where Z is a Poisson process or, more generally, a renewal counting
process (see, e.g., [10, 12]).

Consider the nondecreasing processes

Jt =Zc
t −

∑

0<s≤t

log(1−∆Zs)1{∆Zs<1},(19)

and Nt =
∑

0<s≤t 1{∆Zs=1}. Then it is clear that Y,J,N jointly have station-
ary increments (in the strong sense), and from (18) we have

Xt =X0e
−Jt1{Nt=0} +

∫

(0,t]
e−(Jt−Js)1{Nt−Ns=0} dYs.(20)

If
∫

(−∞,0] e
Js dYs is a.s. finite (recalling that for s ≤ 0, Js ≤ J0 = 0), then

setting X∗
t =

∫

(−∞,t] e
−(Jt−Js)1{Nt−Ns=0} dYs it is clear that X∗ is a station-

ary process. Moreover, if, in addition, either limt→∞Nt ≥ 1 a.s. (equiva-
lently, T1 = inf{t|∆Zt = 1} is a.s. finite) or Jt → ∞ a.s. as t → ∞, then
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|X∗
t −Xt| → 0 a.s. as t→∞, and thus for any a.s. finite initial X0, a limit-

ing distribution exists which is distributed like X∗
0 .

In fact, when X0 is independent of (Y,Z), then shifting by −t, noting
that θ−tJs = Js−t − J−t (so that θ−tJt = 0) and similarly for N and Y , it is
clear that Xt has the same distribution as

X0e
J−t1{N−t=0} +

∫

(0,t]
eJs−t1{Ns−t=0} dYs−t

(21)

=X0e
J−t1{N−t=0} +

∫

(−t,0]
eJs1{Ns=0} dYs.

In particular, this implies that when X0 = 0, then Xt is stochastically in-
creasing in t≥ 0.

Let us summarize our findings as follows.

Theorem 2. If
∫

(−∞,0] e
Js dYs <∞ a.s., and either T1 <∞ a.s. or Jt →

∞ a.s. as t→∞, then X has the unique stationary version

X∗
t =

∫

(−∞,t]
e−(Jt−Js)1{Nt−Ns=0} dYs,(22)

and for every initial a.s. finite X0, Xt converges in distribution to X∗
0 . More-

over, when X0 = 0 a.s., then Xt is stochastically increasing in t≥ 0.

We note that when (Y,Z) also have independent increments so that they
form a Lévy process, then the negative of the time reversed process is a
left-continuous version of the forward process, and thus in this case [when
X0 is independent of (Y,Z)], Xt is also distributed like

X0e
−Jt1{Nt=0} +

∫

(0,t]
e−Js1{Ns=0} dYs(23)

which is also the consequence of the usual time reversal argument for Lévy
processes. In what follows we will consider special cases of this structure.

We observe that in the general case N is a simple (i.e., a.s. ∆Nt ∈ {0,1}
for all t) counting process associated with a time stationary point process.
Special cases of such processes are Poisson processes and delayed renewal
processes where the delay has the stationary excess lifetime distribution as-
sociated with the subsequent i.i.d. inter-renewal times. We will consider this
special case a bit later.

3.1. EXt for independent X0, Y , Z. Since Y has stationary increments,
it follows that EYt =EY1t. From (21) we have that when EY1 and EX0 are
finite, then for t≥ 0,

EXt =EX0EeJ−t1{N−t=0} +EY1

∫ 0

−t
EeJs1{Ns=0} ds,(24)
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and since for s≤ 0, we have that Js =−(J0 − Js) is distributed like −J−s =
−(J−s − J0), and similarly for N , we have that

EXt =EX0Ee−Jt1{Nt=0} +EY1

∫ t

0
Ee−Js1{Ns=0} ds.(25)

3.2. EXt for independent X0, Y , Z with Lévy Z. Here Z is a subordina-
tor with Laplace–Stieltjes exponent −ηz(α) = logEe−αZ1 where, for α≥ 0,

ηz(α) = czα+

∫

(0,1]
(1− e−αx)νz(dx)(26)

with cz ≥ 0 and
∫

(0,1] xνz(dx)<∞. Since the jumps of Z are bounded above

by 1, then νz((1,∞)) = 0.
In this case Zc

t = czt, N is a Poisson process with rate λ= νz{1} which is
independent of the subordinator,

Jt = czt−
∑

0<s≤t

log(1−∆Zs)1{∆Zs<1};(27)

the Lévy measure of which, call it νj , is defined via νj((a, b]) = νz((1 −
e−a,1− e−b]) for 0< a< b<∞ and with exponent

ηj(α) = czα+

∫

(0,∞)
(1− e−αx)νj(dx)

(28)

= czα+

∫

(0,1)
(1− (1− x)α)νz(dx),

so that for α> 0,

ηj(α) + λ= czα+

∫

(0,1]
(1− (1− x)α)νz(dx).(29)

We note that
∫

(0,∞)
min(x,1)νj(dx) =

∫

(0,1)
min(− log(1− x),1)νz(dx),(30)

and since − log(1− x)≤ x
1−x ≤ xe for 0 < x≤ 1− e−1, the right-hand side

is dominated above by e
∫

(0,1) xνz(dx)<∞, so that νj is indeed the proper

Lévy measure of a subordinator. Now, for this case, Ee−Js = e−ηj(1)s where

ηj(1) = cz +

∫

(0,1)
(1− (1− x)1)νz(dx)

(31)

= cz +

∫

(0,1)
xνz(dx) = η′z(0)− λ
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recalling λ = νz{1}. Therefore, Ee−Js1{Ns=0} = e−(η′z(0)−λ)se−λs = e−η′z(0)s

so that in this case, since η′z(0) = cz +
∫

(0,1] xνz(dx) =EZ1, (25) becomes

EXt =EX0e
−EZ1t +

EY1

EZ1
(1− e−EZ1t).(32)

Recall that here Y need not have independent increments.

3.3. Independent X0, Y , Z with Lévy Y . Since for every 0 = t0 < t1 <
· · ·< tn = t the independence between Y and Z and hence the independence
of Y and J , yield

E

[

exp

(

−α

n
∑

i=1

e−Jti−11{Nti−1=0}(Yti − Yti−1)

)

∣

∣

∣
Z

]

(33)

=

n
∏

i=1

exp(−ηy(αe
−Jti−11{Nti−1=0})(ti − ti−1)).

It thus follows, as in equation (5.9) of [13] for the more general multivariate
case and in Proposition 1 of [19] for the case where Y and Z are compound
Poisson, that

E

[

exp

(

−α

∫

(0,t]
e−Js1{Ns=0} dYs

)

∣

∣

∣
Z

]

(34)

= exp

(

−

∫ t

0
ηy(αe

−Js1{Ns=0})ds

)

.

This implies, as in Theorem 5.1 of [13], that the conditional distribution of
∫

(0,t] e
−Js1{Ns=0} dYs given Z is infinitely divisible, as on the right-hand side,

−ηy/n is also a Laplace–Stieltjes exponent of a subordinator.
Equation (34), with ξ0(α) =Ee−αX0 , a∧ b=min(a, b), and recalling

T1 = inf{t|∆Zt = 1}= inf{t|Nt > 0}(35)

yields

Ee−αXt = Eξ0(αe
−Jt1{Nt=0}) exp

(

−

∫ t

0
ηy(αe

−Js)1{Ns=0} ds

)

= Eξ0(αe
−Jt) exp

(

−

∫ t

0
ηy(αe

−Js)ds

)

1{T1>t}(36)

+E exp

(

−

∫ T1

0
ηy(αe

−Js)ds

)

1{T1≤t}.
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Clearly, when either T1 <∞ a.s. or Jt →∞ a.s. as t→∞, then

lim
t→∞

Ee−αXt =E exp

(

−

∫ T1

0
ηy(αe

−Js)ds

)

.(37)

We now observe that if N and J are independent, as for instance in the case
where Z is a subordinator, and N is the counting process associated with a
time stationary version of a renewal process the latter having inter-renewal
time distribution F having a finite mean µ, then it is well known that N
is a delayed renewal process in which the times between the (i− 1)th and
ith jumps are distributed F for i≥ 2 and the time until the first jump (i.e.,
the delay) has a distribution with density fe(t) = (1− F (t))/µ. Therefore,
in this case,

E exp

(

−

∫ T1

0
ηy(αe

−Js)ds

)

=

∫ ∞

0
E exp

(

−

∫ t

0
ηy(αe

−Js)ds

)

fe(t)dt.

(38)
Differentiating the right-hand side of the first equality in (36) once and

setting α= 0 gives (25) as expected, while for the case where X0 = 0 a.s.,
differentiating twice and setting α= 0 yields

EX2
t = (η′y(0))

2E

(
∫ t

0
e−Js1{Ns=0} ds

)2

−η′′y(0)E

∫ t

0
e−2Js1{Ns=0} ds.(39)

3.4. EX2
t for independent Y , Z with Lévy Y,Z and X0 = 0. We note

that for every β > 0, E
∫ t
0 e

−βJs1{Ns=0} ds=
1−e−(ηj (β)+λ)t

ηj(β)+λ , where λ= νz{1}.

Also, note that since Nu ≤Ns for u≤ s,
(
∫ t

0
e−Js1{Ns=0} ds

)2

= 2

∫ t

0

∫ s

0
e−Js−Ju1{Ns=0} duds

(40)

= 2

∫ t

0

∫ s

0
e−(Js−Ju)e−2Ju1{Ns=0} duds,

and therefore (using Fubini and the stationary independent increments prop-
erty of J), the expected value of the left-hand side is

2

∫ t

0

∫ s

0
e−(ηj (1)+λ)(s−u)e−(ηj(2)+λ)u duds

(41)

= 2
(1− e−(ηj (1)+λ)t)/(ηj(1) + λ)− (1− e−(ηj (2)+λ)t)/(ηj(2) + λ)

ηj(2)− ηj(1)
.

Finally, we observe that for every positive integer n, we obtain [recall (29)]

ηj(n) + λ= czn+

∫

(0,1]
(1− (1− x)n)νz(dx)
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(42)

= czn+
n
∑

k=1

(

n
k

)

(−1)k−1

∫

(0,1]
xkνz(dx),

and since, η
(0)
z (0) = ηz(0) = 0, η′z(0) = cz +

∫

(0,1) xνz(dx) and η
(k)
z (0) =

(−1)k−1
∫

(0,1] x
kνz(dx), for k ≥ 2, it holds that

ηj(n) + λ=
n
∑

k=0

(

n
k

)

η(k)z (0).(43)

In particular ηj(1) + λ= η′z(0) = cz +
∫

(0,1] xν(dx) and ηj(2) + λ= 2η′z(0) +

η′′z (0), so that ηj(2)− ηj(1) = η′z(0) + η′′z (0).
To summarize, when EX0 = 0, we have

EX2
t = 2(η′y(0))

2

× ((1− e−η′z(0)t)/η′z(0)− (1− e−(2η′z(0)+η′′z (0))t)/(2η′z(0) + η′′z (0)))
(44)

/(η′z(0) + η′′z (0))

− η′′y (0)
1− e−(2η′z(0)+η′′z (0))t

2η′z(0) + η′′z (0)

which converges to

2(η′y(0))
2 − η′z(0)η

′′
y (0)

η′z(0)(2η
′
z(0) + η′′z (0))

=
(η′y(0)/η

′
z(0))

2 − η′′y (0)/(2η
′
z(0))

1 + η′′z (0)/(2η
′
z(0))

(45)

as t→∞. We note that as νz(1,∞) = 0, then clearly whenever either cz > 0
or νz(0,1) 6= 0 (i.e., Z −N is not identically zero), it holds that

η′z(0) = cz +

∫

(0,1]
xνz(dx)>

∫

(0,1]
x2νz(dx) =−η′′z (0).(46)

3.5. Lévy Z, linear Y and X0 = x. It is of interest to consider the special
case where Yt = rt for some r > 0 and X0 = x for some x ≥ 0. For the
case where Z is compound Poisson this model becomes the growth–collapse
process from [16] where the computation of transient moments turns out to
be especially tractable. Since

Xt

r
=

x

r
+ t−

∫

(0,t]

Xs−

r
dZs(47)

we may without loss of generality assume that r = 1. Recall (23). Following
the ideas in the proof of Proposition 3.1 of [4], we first write for a≥ 0 and
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b≥ 1,

Ee−aJt

(
∫ t

0
e−Js ds

)b

= bEe−aJt

∫ t

0

(
∫ t

u
e−Js ds

)b−1

e−Ju du

= b

∫ t

0
Ee−a(Jt−Ju)

(
∫ t

u
e−(Js−Ju) ds

)b−1

e−(a+b)Ju du(48)

= b

∫ t

0
e−ηj (a+b)uEe−aJt−u

(
∫ t−u

0
e−Js ds

)b−1

.

Thus, if T ∼ exp(θ) for some θ > 0 and is independent of Z, then since
the conditional distribution of T − u given T > u is the same as that of T
(memoryless property), it readily follows that

Ee−aJT

(
∫ T

0
e−Js ds

)b

=
b

ηj(a+ b) + θ
Ee−aJT

(
∫ T

0
e−Js ds

)b−1

.(49)

For a= 0 we have that, since T1 ∧ T ∼ exp(λ+ θ) and
∫ T
0 e−Js1{Ns=0} ds=

∫ T1∧T
0 e−Js ds,

E

(
∫ T

0
e−Js1{Ns=0} ds

)b

=
b

ηj(b) + λ+ θ
E

(
∫ T

0
e−Js1{Ns=0} ds

)b−1

.(50)

For a > 0 we have, from the fact that T1 ∧T is independent of 1{T1>T}, that

Ee−aJT 1{NT=0}

(
∫ T

0
e−Js1{Ns=0} ds

)b

=Ee−aJT1∧T 1{T1>T}

(
∫ T1∧T

0
e−Js ds

)b

(51)

=
θ

λ+ θ
Ee−aJT1∧T

(
∫ T1∧T

0
e−Js ds

)b

and thus

Ee−aJT 1{NT=0}

(
∫ T

0
e−Js1{Ns=0} ds

)b

=Ee−aJT 1{NT=0}

(
∫ T

0
e−Js ds

)b

(52)

=
b

ηj(a+ b) + λ+ θ
Ee−aJT 1{NT=0}

(
∫ T

0
e−Js ds

)b−1

.

Clearly, when b= 0 and a > 0 we have that

Ee−aJT 1{NT=0} = e−(ηj(a)+λ)T =
θ

ηj(a) + λ+ θ
.(53)
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Now

EXn
T = E

(

xe−JT 1{NT=0} +

∫ T

0
e−Js1{Ns=0} ds

)n

=
n
∑

k=1

(

n
k

)

xkEe−kJT 1{NT=0}

(
∫ T

0
e−Js ds

)n−k

(54)

+E

(
∫ T

0
e−Js1{Ns=0} ds

)n

,

and denoting [recall (43)]

µi = ηj(i) + λ= czi+

∫

(0,1]
(1− (1− x)i)νz(dx) =

i
∑

k=0

(

i
k

)

η(k)z (0),(55)

it follows from (50), (52), (53) and (54), with some manipulations, that

EXn
T =

n!
∏n

i=1 µi

(

n
∑

k=1

xk
∏k

i=1 µi

k!

(

n
∏

i=k+1

µi

µi + θ
−

n
∏

i=k

µi

µi + θ

)

(56)

+

n
∏

i=1

µi

µi + θ

)

,

where an empty product is defined to be 1. Finally, noting that EXn
T =

∫∞
0 e−θt dEXn

t it follows that if {Ei|i≥ 1} are i.i.d. random variables with
distribution exp(1), then Ei/µi ∼ exp(µi). It is well known and easy to check
that

n
∏

i=k

µi

µi + θ
=

∫ ∞

0
e−θt dP

[

n
∑

i=k

Ei

µi
≤ t

]

;(57)

hence, for 1≤ k ≤ n,
n
∏

i=k+1

µi

µi + θ
−

n
∏

i=k

µi

µi + θ
=

∫ ∞

0
e−θt dP

[

n
∑

i=k+1

Ei

µi
≤ t <

n
∑

i=k

Ei

µi

]

,(58)

and thus we have the following somewhat curious result.

Theorem 3. Let pij(t) be the transition matrix function of a pure death
process D = {Dt|t≥ 0} with death rates µi, i≥ 1 (0 is absorbing). Then

EXn
t =

n!
∏n

i=1 µi

(

pn0(t) +
n
∑

k=1

xk
∏k

i=1 µi

k!
pnk(t)

)

(59)

=
n!

∏n
i=1 µi

E

[

Dt
∏

i=1

xµi

i

∣

∣

∣
D0 = n

]

,
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where an empty product is 1.

In particular, when x= 0, then

EXn
t =

n!
∏n

i=1 µi
pn0(t)

= n!

∫

· · ·

∫

∑n
i=1 xi≤t

x1,...,xn≥0

exp

(

−

n
∑

i=1

µixi

)

dx1 · · · dxn(60)

= n!tn
∫

· · ·

∫

∑n
i=1 xi≤1

x1,...,xn≥0

exp

(

−t

n
∑

i=1

µixi

)

dx1 · · · dxn.

In fact, one may also give a finite simple algorithm with which to compute
EXn

t . For the sake of brevity we do it only for the case x= 0. This can be
done similarly to the Brownian motion in the proof of Theorem 1 on page 31
of [22] or, equivalently, directly from (60) as follows. Set f0 = 0 and for n≥ 1
and 0< a1 < a2 < · · ·< an, let

fn(a1, . . . , an) =

∫

· · ·

∫

∑n
i=1 xi≤1

x1,...,xn≥0

exp

(

−

n
∑

i=1

aixi

)

dx1 · · · dxn

=

∫

· · ·

∫

∑n
i=2 xi≤1

x2,...,xn≥0

(
∫ 1−

∑n
i=2 xi

0
e−a1x1 dx1

)

(61)

× exp

(

−

n
∑

i=2

aixi

)

dx2 · · · dxn

=
fn−1(a2, . . . , an)− e−a1fn−1(a2 − a1, . . . , an − a1)

a1
.

Alternatively, if we denote g0 = 1, and for n≥ 1 and b1, . . . , bn > 0,

gn(b1, . . . , bn) = fn(b1, b1 + b2, . . . , b1 + · · ·+ bn).(62)

Then

gn(b1, . . . , bn) =
gn−1(b1 + b2, b3, . . . , bn)− e−b1gn−1(b2, b3, . . . , bn)

b1
.(63)
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From the above, it is also clear (see also [22], Theorem 1, page 31 for the
case of a Brownian motion) that, in fact,

EXn
t = tnn!fn(µ1t, . . . , µnt)

(64)
= tnn!gn(µ1t, (µ2 − µ1)t, . . . , (µn − µn−1)t)

is a linear combination of exponentials. An algorithm for computing the coef-
ficients of this linear combination is equivalent to the above simple algorithm
which involves only a finite number of additions and multiplications.

We emphasize that the fact that Theorem 3 holds for all n≥ 1, and the
algorithm for the computation of moments, also valid for all n≥ 1, is special
for the case where Z is a nonzero subordinator. This is true since this is
the only case where ηj(n) is finite, strictly positive for all n≥ 1 and strictly
increasing.
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