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|. INTRODUCTION

Abstract—Recently, Guo and Xia introduced low complexity
decoders called Partial Interference Cancellation (PIC) ad
PIC with Successive Interference Cancellation (PIC-SIC)which
include the Zero Forcing (ZF) and ZF-SIC receivers as specia
cases, for point-to-point MIMO channels. In this paper, we fiow
that PIC and PIC-SIC decoders are capable of achieving the flu
cooperative diversity available in wireless relay network. We give
sufficient conditions for a Distributed Space-Time Block Cale
(DSTBC) to achieve full diversity with PIC and PIC-SIC decockers
and construct a new class of DSTBCs with low complexity full-
diversity PIC-SIC decoding. We also show that almost all knan
full-diversity PIC/PIC-SIC decodable codes constructeddr point-
to-point MIMO channels can be used as full-diversity PIC/PIC-
SIC decodable DSTBCs in relay networks. The proposed DSTBCs
with low complexity, full-diversity PIC/PIC-SIC decoding achieve
higher rates (in complex symbols per channel use) than the
multigroup ML decodable DSTBCs available in the literature.
Simulation results show that the proposed codes have bettdyit
error rate performance than the best known low complexity,
full-diversity DSTBCs.

This assumption is more practical than assuming CSI at the
relays, since it reduces the burden on the relays, which may
be other users in the network.

A DSTBC is said to bgj-group maximum-likelihood (ML)
decodable if the K information symbols can be partitioned
into g groups,g > 1, such that each group of symbols can
be ML decoded independent of the symbols of the other
groups. If the maximum number of symbols in any group
is A, then the code is also said to bereal symbol or %
complex symbol ML decodable. Since the decoding complexity
is determined by), DSTBCs with small\ and largeg
are desirable. In(J4], single-real symbol ML decodable-full
diversity DSTBCs called Distributed Orthogonal Space-§im
Block codes were constructed with rate at the for
any number of relay® > 2. In [5], single-real ML decodable
DSTBCs with rate% were constructed for any number of
relays N using real orthogonal designk][6]. 1a][7], single
complex symbol ML decodable DSTBCs were constructed for

Spatial diversity in wireless channels helps mitigate theny number of relays/. The rate these codes is upper bounded
negative effects of fading. In systems where the termindby ﬁ . In [8], 4-group ML decodable DSTBCs with rate
can not have multiple transmit/receive antennas due toesp%cwere constructed for any number of relaysusing matrix
considerations, such as wireless sensor networks or @ellulepresentations of Extended Clifford Algebras. All the esd

networks for mobile phones, spatial diversity calledbp-

discussed in this paragraph rely on optimal decoding inrorde

erative diversity can be achieved by using the antennas &b tap full cooperative diversity.
other users (relays) in the network to aid the communicationin [9], PIC and PIC-SIC decoders were introduced for
of messages from a single sourcé [1], [2]. The amplify-andecoding STBCs for point-to-point MIMO channels. A PIC

forward (AF) protocol is widely studied and is more pradticadecoder partitions the information symbols of the code into
since it involves simpler processing at the relays thanrothmultiple groups. A PIC receiver decodes each group of sym-
cooperative protocols. I [3], a two phase cooperativequmit bols independently of other groups. In order to decode a
based on AF was given. In this scheme, the source transnpiggticular group of symbols, a PIC decoder first implements a
information to the relays in the first phase. Each of the ielalinear filter to eliminate the interference from symbols ih a
linearly processes the signal that it receives in the firgisph other groups and then decodes all the symbols of the current
and transmits the processed signal to the destination in ti@up jointly. A PIC-SIC receiver uses successive interiee
second phase. The destination effectively sees a Space-Toancellation along with PIC decoding. X is the maximum
Block Code (STBC) being transmitted by the relays. Since thiumber of symbols in any group, we say that the PIC or PIC-
code has been generated by the relays in a distributed fash®IC decoder performs-real symbol PIC or PIC-S C decoding

it is called aDistributed STBC (DSTBC). If the number of respectively. When = 1, the PIC (PIC-SIC) decoder reduces
independent real information symbols in the DSTBCHs to ZF (ZF-SIC) decoder. A criterion for an STBC, in point-to-
then the rate of the DSTBC iR = % complex symbols per point MIMO channel, to achieve full-diversity with PIC and
channel use (cspcu), whef@ is the combined duration of PIC-SIC decoding were given in[LO[, [11]. Since the complex
the first and second phases. For practical significance, ititig of PIC/PIC-SIC implementation depends anone would
desirable that the DSTBC be of high rate and have a Ildike the code to have a full-diversity PIC/PIC-SIC decoding
complexity, full-diversity decoding algorithm. In this jpar, we algorithm with full-diversity. Code constructions for pito-
consider the situation where the relay nodes have no chanpeint MIMO channels with full-diversity and low complexity
state information (CSI), while the destination has full CSPIC/PIC-SIC decoding were given inl [9], 110, [12], [13].41L
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and with ZF/ZF-SIC decoding were given in [15], [16]. - 91,\
The contributions and organization of this paper are as
follows.

f1
o For a two phase AF based cooperative protocol, we /
give sufficient conditions for a DSTBC to achieve full U
cooperative diversity when PIC and PIC-SIC decoders are
used at the destination. As a special case, we also obtain
full-diversity criteria for ZF and ZF-SIC decoding at the
destination. In particular, we show that for /é-relay
network, where the relays and the source are equipped 0 Sun, Destination
with 1 antenna and the destination is equipped wth

antennas, a diversity aV (1 — % is achievable
when Np = 1 and a diversity ofN is achievable when Fig. 1. Relay network model
Np > 1 with PIC/PIC-SIC decoding (Sectidnlill).

o It is shown that PIC/PIC-SIC decoding is capable of
achieving the full cooperative diversity offered by théNotation: For a complex matrixi the transpose, the conjugate
wireless relay network. Since the PIC and PIC-SIC d&nd the conjugate-transpose are denoteddbyA* and A”
coders are of low complexity, the proposed full-diversityespectively.||A||r is the Frobenius norm of the matrit.
criteria enable us to construct DSTBCs with high ratek, is the n x n identity matrix, 0 is the all zero matrix of
and low decoding complexity, while achieving full coop-appropriate dimension, 1{-} is the indicator function and
erative diversity (SectiofJIl). i = +/—1. The cardinality of a sef" is denoted by|T'|. The

« We construct a new class of full-diversityreal symbol complement of a sel' with respect to a universal sét is
PIC-SIC decodable DSTBCs for all even number dienoted byl*“, whenevelU is clear from context. For a square
relaysN with N > 2X, A > 1, with rates arbitrarily close matrix A, det(A) is the determinant off and7'r(A) is the
to 37 cspcu. The new single real symbol decodabksace of A. For a complex matrixA, Ar. and Ay, denote
codes have rates close %owhile the single real symbol its real and imaginary parts respectively. Vectorizatidnao
ML decodable codes in the literature have rate at tigatrix A is denoted byvec(A) and the expectation operator
most 2 for N > 6 and 2 for 2 < N < 6. The new IS denoted byE(.).
single complex symbol decodable codes have rate close

to 2 while the single complex symbol ML decodable Il. SYSTEM MODEL

codes in the literature have rate at the mgstspcu e consider a wireless relay network wiffi + 2 nodes:
(Sectior \-A). _ o _ a source node]N relay nodes and a destination node. The

« We show that a family of codes given in[11] in the congqrce and the relay nodes are equipped with single antennas
text of point-to-point MIMO channels can be used as fullyng the destination ha;, antennas as shown in FIg. 1. This
diversity PIC-SIC decodable DSTBCs. This family iny4qe| captures the scenario corresponding to the uplink of
cludes)-real symboIAdecodabIe codesforall> A >1 4 cellular system or a wireless local area network (WLAN).
with rates close toy7y. However, for the same amountye consider an AF cooperative protocol in this paper in
of delay and), these codes have lower rates than thghich each transmission cycle is composed of two phases:
new codes proposed in Section IV-A. We also show thatpsadcast phase of duratidh and a cooperation phase of
almost all known full-diversity PIC/PIC-SIC decodableyyrationTs,. During the broadcast phase, the source transmits
codes constructed for point-to-point MIMO channels cap, 5| the relays. In the cooperation phase, the relays gsce
be used as full-diversity PIC/PIC-SIC decodable DSTBGge signal received in the broadcast phase and transmit it to
(Section [V-B). o the destination. The channel gain from the source tojthe

« We show that the proposed full-diversity DSTBC?eIay is f;, j = 1,...,N. The channel gain from thet"

achieve higher rates when compared with the multigroq@|ay to thel" receive antenna at the destinationgis, for
ML decodable DSTBCs of same decoding complexity —1,....Nandl = 1,....Np. We make the fol’lowing

available in the literature (Tabl@ I in Sectibd V summazgqmptions in our model: (i) All the nodes have half-duplex
rizes the comparison of the proposed codes in this pap@jnsiraint, (ii) the channel gaing, j = 1,...,N, andg,,,

with other low complexity DSTBCs). Moreover, simula-; _ ; N 71 Np are assumed to be independent

tion results show that the new PIC-SIC decodable COdj@’r?cularly symmetric complex Gaussian random variableh wi
have a better bit error rate performance than the b

: ro mean and unit variance and with coherence interval of
known multigroup ML decodable DSTBCs (Sectioh V).qyration at least;, + 75, (iii) the relay nodes have no channel
The system model is explained in Sectloh Il. Some of thatate information and the destination has the knowledgéd! of a
open problems related to PIC/PIC-SIC decoding in wireleshannel gaing;, g;; and (iv) the transmissions from the relay
relay networks are discussed in Secfion VI. nodes to the destination are synchronized at symbol level.

Source fn

-

N Relays Np Antennas



Let the source transmit with power; P and each of the Letwvec(A) denote the vectorization of a matrikand for any
relays transmit with power, P. The real numbers,,m > 0 random vector. The noise vectoec(U) is zero mean circu-
are chosen such that, T} + moRT> = T1 + T». Thus the larly symmetric complex Gaussian. The following propasiti
average transmission power used by the networR.itn each givesI”, the covariance matrix ofec(U).

transmission cycle, the source transmifsreal information Cia Ciz2 -+ Cing
symbols,z;, i = 1,..., K. The source is equipped with a . Ca1 Coo -+ Canp
finite subsetd c RX called thesignal set and K complex ~ Proposition 1: LetI” = : - : ,
vectors {v1,...,vg} C C™1, that are linearly independent c ' c ' c
over R. The information vector: = [z1,...,2x]7 assumes Np,l ~Np2 " “Np,Np

where the submatrice€’;, ;, € CT>*T> 1 <y,ly < Np.
values fromA. hen e have ly,l2 < l1,l2 < Np
e 1

During the broadcast phase, the source synthesizes -{h

vector z = Zfil z;v; € CT' and transmitsy/7; Pz to all P & . o o

the relays. The signal set and the vectors; are chosenin ~ Chii. = Pl Zgg‘,llgj,zszBj + 1{ly = 2},

such a way thak (||z||%) = Ti. The vector received by the i=1

ji" relay isr; = fjvmPz+wv;, j = 1,...,N. Here,v; is  for 1 < 1,1, < Np.

the additive white Gaussian noise vector at jie relay and Proof: Let 1 <1Iy,lo < Np, then Cj, , = E (u, uf?).

. . =12 = ' s 2

it has zero mean and covariantg . Expanding with the help of({4) and using the fact that the
In the cooperation phase, thg" relay transmits a lin- Gayssian vectors;, j = 1,...,N, andw;, [ = 1,...,Np

early processed version of either; or rj. The subset are of zero mean and mutually independent we héye;,
S C{1,...,N} denotes the set of indices of the relays that

process . Let for any indexed set oN matrices or vectors N N P _ _

J _ ) _ —E 2 * By oHBH H
{C1,...,Cn}, C;=C7 if j€§, andC; =C; else. The — Z Z P+ 1930195,02 20 Vi Vi B W w,
j* relay is equipped with a matri3; € C2*Ti In the =l

7T2P % — _ —
9j1,l gjg,lgle E (U.ﬁ UH) B.;_ZI

cooperation phase, thé" relay transmits; = |/ 255 By _ 3 :
7T1P +1 72

7T17T2P2 —- = 7T2P n=tae=t H

. o
The matricesB; are chosen in such a way that the average>'"Y Ighe fact that E (v),v;) = 1{j1 = j2}Ir, and
energy transmitted by each of the relays during the coop&rlwnwi,) =1{li =l2}Ir,, we get the desired result.

ation phase isto P. The signal received by th&" antenna, ) K o u
I=1,...,Np, at the destination during cooperation phase is SiNc€ z = >_i_, ziv;, it is clear that each entry of the
Y= Z{V_ gjati +w codeword matrixX = [Byz Baz--- Byz] is a linear combi-

= nation of the information symbols;, i = 1,..., K. Thus,

N | rimo P2 P there exist matricesd; ¢ C>*V 4 = 1,..., K, such that

17217 —=— ™2 5 K :

= 95,1 fj mP+1 lB.jZ+ \/ TPl 19.7',133‘”.7' +w;.  the codewordX = > i1 xiA;. The matrices4; are called

j=1 ! ! linear dispersion or weight matrices. The finite set of matrices
. " . . K ;

Here, w; is the additive circularly symmetric complex GausC = {>i=; #idil[z1,...,2x]" € A} is the DSTBC. The rate

sian noise at th&" receiver. It has zero mean and covarianc®f the DSTBCC in cspcu isR = 72(T1§T2), and in bits per
Ir,. TheT x Np received matrixt” = [y; y2---yn,,] Satis- channel use (bpcu) i%. Note that each column of the

fies codeword matrixX in is either a linear combination of
my o P2 the vectorz or its conjugatez*. Such designs are said to be
Y = ——XH+U, 1) . : : . . .
mP+1 conjugatelinear [8]. Not all linear designs are conjugate linear.

In this paper, we only consider DSTBCs that are obtainable

where : ; .
from conjugate linear designs.

X = [Biz Byz---Byz| € CT2XN 2)
IIl. PARTIAL INTERFERENCECANCELLATION DECODING
AND FULL-DIVERSITY CRITERION

is the codeword matrix,

H=Fg 3) In this section we first give the method of PIC and PIC-
is the channel matrix with” = diag(fi,..., fn) and the SIC decoding a DSTBC. We then give sufficient conditions
(4,1)t" entry of the matrixg € CV*N beingg;,. The matrix for a conjugate linear DSTBC to yield full diversity under
U € CT2*No s the total noise seen by the receiver. If w®IC, PIC-SIC, ZF and ZF-SIC decoding. We then show that
denote the columns df by u;, [ =1,..., Np, then we have if a DSTBC satisfies the proposed design criteria and if a

subset of relay nodes in the network fail, then the residual

N

w = E ,/ﬂg.lgv. + wy. (4) diversity gain from the remaining relay nodes is guaranteed
/ 771P+1 75 7% . . .
j=1 This ensures resistance towards relay node failures.



A. PIC decoding of DSTBCs « Step 1: Decode thg!” vector of information symbols as

Consider_ a DST_B_C inK real symbols. A grouping i1, = arg minzzkeAzkHPIkyk — Pr,Gr,x1,||%
scheme [9] is a partitionZ,...,Z, of the set{1,..., K}, (10)
where 7, are called groups. There is a correspond- , Step 2: Assign
ing partition of the information symbols intoy vec-
tors, where fork = 1,...,g, the k' vector of infor- Yk+1 = yr — G121, (11)
mation symbols iszz, = [:cik,l,;cim,...,xik)‘zk‘]T, where
T = {ikJ,ik,g, o 7ik,\Ik\} with 1 < igo << ik,|l'k|-

Let the ¢ groups of information symbols be encoded inde-
pendently of each other, i.e., the DSTBC

and then assigh := k + 1.
o Step 3: Ifk > ¢, stop. Else, go to Step 1.

When rotated lattice constellations are used for encoding
the information symbol vectors, sphere decoders$ [17] can be

} - used to implemenf{9) an@ {110).
, 5

K
C= v Ajler, € Az, k=1,...,¢
{Z g g B. Full-diversity criteria

i=1

for some finite subsetsly, c R, k=1,...,¢. Let T ={i1,....ir} _ be' any non-empty subset
For a complex matrix A let of {1,...,K} with i3 <ip<---<ip. For any

~ T T o g u=|u wz]T € R, defineXz(u) = 7 w4, . For

vec(A) = [vec(Age)’ vec(Arm)']'. The received matrix” Ly Uz ' z j=1 Wil

any set of vectorsd, let AA = {a; — az|ar, a2 € A}.

in (@) can be rewritten as et e ,
Theorem 1. Full-diversity under PIC decoding: PIC de-

2 K coding of the DSTBCC in (@) with the grouping scheme
y' = vec(Y) = :11;251 > wmivee(AH) + vee(U) 7,,...,Z, achieves a diversity of
_ ot D), . Nﬁl—%) it Np =1 and
e NIt Np >1,
where if the following condition is satisfied for every =1,...,¢:
= for everya, € AAz, \ {0} and everyu € RIZl, the rank of
G = | 2 [pee(ALH) - vee(Ag H)] € RENoTXE - (Xg, (ay) + Xz¢ (u)) is N.

mP+1 Proof: Proof is given in Appendix A. [ |

- , . (6)_ Theorem 2: Full-diversity under PIC-SIC decoding: PIC-
andw = [z1,z2,...,ox]". Let I be the covariance matrix g gecoding of the DSTBC in () with the grouping scheme

of vec(U) as given in Propositio]1. Then, it is known;

e . X . ,...,Z, achieves a diversity of
that vec(U) is a real Gaussian vector with zero mean and

covariance « N gl - %) if Np =1 and
1T T, e Nif Np>1,
2 U Re if the following condition is satisfied for everfy =1,...,¢:

for everya, € AAz, \ {0} and everyu € RI*+l, the rank of
(sz (ar) + Xi'k (u)) is N.
y=T"2y =Gz +n, (8) Proof: Proof is given in Appendix B. n
) ) _ The class of PIC and PIC-SIC decoders contains the ZF and
where,G =T'"2G’ andn = I'"2vec(U) is a zero mean real ZF-SIC decoders as special cases. When each real sympbol

Consider

Gaussian vector with covariandey, 7 - i=1,...,K,forms agroup by itself, the PIC decoder reduces
Let G =[g1 g2---gK], where g;, i = 1,...,K, are tothe ZF decoder and the PIC-SIC decoder reduces to the ZF-

the column vectors ofG. For any nonempty subsetSIC decoder.

T={ir,...,qz} CH{1,..., K}, with iy <ip <--- <ig, Corollary 1: Full-diversity under ZF and ZF-SC decoding:

let Gz = [gi, 9i, - 9iz). Let V7, be the column space of theThe DSTBCC in (B) achieves a diversity of
matrix Gz; an(isz be the matrix that projects a vector onto o N (1- lo%(lolgP)) if Np =1 and
the subspac#’;,, the orthogonal complement of the subspace NN >°-‘11
2 ~ . D ’
Vz,.. Also, IetIk~: UeskZe, Vz,, be the column space of the . . . .
matrix Gz and Pz, be the matrix that projects a vector ont 'th ZF.decodlng and ZF}<S|C decgdlng with any or-
oo dering, if the rank of > ;" ,u;A; is N for every
the subspacé’Ik . . w=[us,... uK]T c RK \ {0}_Z
The PIC decoding of the DSTBC is performed as Proof: It is straightforward to show that the criteria of
Theoremg$ 1l anfl]2 are satisfied for the grouping scheme cor-
responding to ZF and ZF-SIC decoders under the hypothesis
The PIC-SIC decoding of the DSTBC is performed as givesf this theorem. [ ]
by the following algorithm. The decoder is initialized with In [3], diversity analysis of DSTBCs in relay networks with
k=1andy; =y. optimal, i.e., ML, decoding was given. It was shown(ih [3]ttha

iz, =arg ming, ea, ||Pr.y — Pr,Gz, 7 |5 (9)



via proper design of DSTBCs a diversity &f (1 - zo%z;gp) Proof: We give the proof for the case when the destination

when Np = 1 and a diversity of N when Np > 1 can employs a PIC decoder. The proof for PIC-SIC decoder is
be achieved via ML decoding when the number of transngimilar. Let the grouping scheme Ui, ...,Z,. The DSTBC
antennas at the source is From TheoremE]l1 arid 2, we sedor the modified network satisfies
that the same diversities can be achieved by employing less K
complex PIC and PIC-SIC decoders at the receivers when C = {inAHka €Az, k= 1,._.79}7
the DSTBC is appropriately designed. Thus, there is no loss i—1
in terms of the achievable diversity while switching the ML ) ) K
decoder at the destination to PIC/PIC-SIC decoders as lsng/lich is obtained from the desigk’ =3 ,_, x;4;. Also,
the DSTBC is designed to satisfy the criteria in Theor&insf@" every k =1,...,g the following is true: for every
and2. We thus say that the DSTBCs satisfying the conditiofis € A4z, \ {0} and everyu € RI%, we have that the
in Theorem&11 and 2 achiefi|-diversity under PIC and PIC- rank of Xz, (ay) + Xz¢(u) is N. The N columns of the
SIC decoding respectively. matrix Xz, (ay) + Xz¢(u) are Imearly_ independent ovet.
The criteria in TheoremEl1 arid 2 are the same as thBUS: thelV —a columns of the matrixXz, (ax) + Xz (u),
criteria given in [11] for an STBC to achieve full-diversity formed by dropping the: columns fromXz, (ax) + Xz (u),
a point-to-point MIMO channel with PIC/PIC-SIC decoding@'® @lso linearly independent. Hence, for evéry-1,...,g
Further, these are equivalent to the criteria giver(in [@0][ the following is true: for everys, € AAz, \ {0} and every
for achieving full-diversity in a point-to-point MIMO charel. « € RZi, we have that the rank aX7, (ay) + X7 (u) is
Thus, all known full-diversity codes designed for the paimt N — a. Thus, from Theorerhl1, the DSTBC achieves full-
point MIMO channel, that are available in the literature an@iversity in the modified network witv' — a relays and PIC
are conjugate linear can be used as DSTBCs to achieve f@fcoding. u
diversity in a relay network. Propositior 2 also tells us that new full-diversity DSTBCs
Example 1: Overlapped Alamouti Codes: These codes were for relgy networks withV —q relays can be obtained by simply
constructed in[[I6] for point-to-point MIMO channels withdropping any set of. columns from a known full-diversity
any number of transmit antennas. These codes are conjuda®s BC for a network withN' relays. The rate of the new
linear and are known to achieve full-diversity with ZF an@0de and the old code are identical, both in cspcu and bpcu.
ZF-SIC decoding in point-to-point MIMO channels. Hence,
these codes can be employed in relay networks and they givév' A NEW CLASS OFDSTBCS WITH FULL-DIVERSITY
full-diversity with ZF and ZF-SIC decoding at the destioati PIC/PIC-SICDECODING

In this section, we construct a new class of DSTBCs with
C. Resistance to relay node failures full-diversity PIC/PIC-SIC decoding for all even number of
kfl_elays]\f and number of symbols per decoding grougt %
. : o _ i .. These codes can achieve rates uﬁq cspcu for anyN. This
with N relays and which satisfies the full-diversity condﬂmr&lass of codes includes a family of codes framl[11], codes

in Theorem[]L or Th_eorgrEI 2. Suppoa_enumber of relay ;, [14] and the4 antenna code of [12]. We then show that
nodes stop participating in the cooperative protocol, fone another family of codes given in [L1] for any > 1 and

a€{l,...,N}. This may happen when the nodes leave thfg N can be used as DSTBCs with full-diversity PIC/PIC-

n]?:[[\r/]vork %r arth\;vnched off. ﬁ\lso, l?t _thet_des_tlntitlon be_ BVag|c decoding. These codes too can achieve rates
:) € hodes T?1 areﬂ::urlrjesn_rééar |C|pat13|n?h|nd etf:ootpmra_\ and they include a class of codes in1[13] and thantenna
ransmission. fhen, the seen Dy the destinalion 1S ., 4e of [12] as special cases. We also show that the Toeplitz

the codeC with the a columns corresponding to the failed des[[I5] can be used as DSTBCs with full-diversity ZF and
relay nodes dropped from each codeword matrix. One wo -SIC decoding

like the new DSTBQ seen by the destination to provide full-
diversity in the relay network withV — a relays. This ensures o A new class of codes

that good error performance is maintained in the network wit

minimum protocol overhead when a subset of relay nodes stotd'et the number of relay nj\(f)deisf be even and the number
participating. Fori = 1,..., K, let A, be theTy x (N —q) ©f Symbols per group < 5. Codes for odd number of

matrix formed by dropping the columns corresponding to relays can be obtained by deleting appropriate number of
the failed relay nodes from the matri; columns from the new codes constructed for even values of

Proposition 2: Let C satisfy the full-diversity criterion of X+ L€t7 =1 be an integer and, = IV + 2(n — 1). Number
TheorentlL (Theoreifl 2) and let the destination be employ®H8rOUPSy = 4n ath number of real symbol = 4r.. For
with a PIC (PIC-SIC) decoder. Then the new DSTBGseen " — L,....g, the k™ group is
by the re_c_eive_r When a set aof rela_\y nodes,l_g_a < N, _ T ={(k—DA+1,(k—DA+2,...,kA}, (12)
stop participating in the cooperative transmission, piesi
full-diversity with PIC (PIC-SIC) decoding for the modifiedi.e., the first A symbols form the first group, the second
network with N — a relays. symbols form the second group and so on. The symbgls

Consider a DSTBC, as in [%), designed for a relay networ



i =1,..., K, are encoded independently using a regular PAW > 2. With A\ = 2, we get single-complex symbol (double-

constellation. Fok =1, ..., g, define real symbol) decodable codes with rates close§- téor any
- even number of relayd’ > 4.
ST, = [S(-1at1s - o smA]T = Qg Proposition 3: The new DSTBCs of this subsection, along

whereQ € RV is a full-diversity rotation matrix [18],T19]. with the group_ing schemd{l12), achieve full-diversity with
Forl<m<nandl <<\, defineA(m,¢) as in [I3), at P!C-SIC decoding. _ .
the top of this next page. Note that(m, ¢) is an Alamouti Proof: We will prove the result for the first group, i.e,
block in real symbolss s, —ayx e, S(am—3)rtr S(am—2)r+e k = 1. Using a similar argument _fo_r each = 2,9,
and s (4, —1)ape- FOrA < £ < Nandl < m < n, A(m,¢) We can show that the I_DSTBC satisfies the hypothe3|_s of
is recursively given byA(m, £) = A(m, ¢ — \). The proposed Theoren® for the grouping schenie](12) and hence achieves
DSTBC is full diversity with PIC-SIC decoding. The\ coordinates of

the rotated information symbol vecter, act as one of the

(AL 1) 0 0 7 4 real symbols in each of thé' Alamouti blocks A(1,1),
A2,1) AL,2) 0 A(1,2),... A1, &). SinceQ is a full-diversity rotation for the
A(2,2) . 0 integer lattice, for any:z, € AAz, \ {0}, each of the\ coor-
dinates ofsz, is non-zero. Hence, each of the matriégs, 1),
A %) A(1,2),...A(1, %) is of full-rank. The determinant of the
A2, D) submatrix of Xz, (2z,) + X3, (u) for anyu € R ~* consist-

, (14) ingNof the first N rows and all theV columns is the product
[1,Z, det(A(1,1)) # 0. Hence, the matriXz, (2z,) + Xz (u)

Aln,1) : . : is of rank N for anyu € RE—*, [ ]

Proposition 4: For n = 1,2, the new DSTBCs of this

0 A(n,2) subsection along with the grouping scherd (12) achieve full
: : ) : diversity with PIC decoding.
) 0 — An, %)_ Proof: The proof of this proposition is similar to the proof
] ] of Propositio B, but uses the result of Theofgim 1 instead of
where eacl0 is a2 x 2 all zero matrix. Theoren® -
_ T ™T ’
Let D = [A(lv@ ’%(2’@"':;’?(”’@2 ]A zfor L= S Proposition 5: The subclass of the new DSTBCs of this

X and letD = [D{,D;,...,Dy]" € C*"**2, The matrix

i |  blocks. placed bel h h subsection corresponding to = 1 yield full diversity with
D containsnA Alamouti blocks, placed one below the ot €7E and ZE-SIC decoding at the destination.

Because of the Alamouti structure, the second colummof ) .
: : . Proof: The class of codes withA = 1 sat-
is composed of complex variables that are conjugates of th N
. . - ) sty A(m,1)=A(m,2)=---=A(m,5) =D, for each
complex variables, & is, appearing in the first column db. : 2
. . m=1,...,n. It is enough to show that the DSTBCs corre-
Further, the first column oD contains all the2nA complex . . o )
. L : ponding to\ = 1 satisfy the criterion of Corollafyl1. Consider
symbolss, + is, appearing in the desigh {14). Note that al e .
. N —anyu € R* \ {0}. The symbol vectorsz, = Quz,. Since
the entries appearing in the odd columnslaf (14) are cordain .
. : L =1, we have@Q = [1] ands; = u; for i = 1,..., K.
in the first column ofD and all the entries in the even column . . .
. . he matricesD,,,, m = 1,...,n are Alamouti matrices and
of (I4) are contained in the second columniafif we choose . ) . ;
- as the first column oD then theit® column of the desian SMCe at least ong;, i = 1,..., K is non-zero, there exists an
' J 9 le{l,...,n} such thatD,, =0 form =1,...,1—1 and

‘érz XIQ’E,{' .S.ijri:ifla_rlly fr?: E)he :c;(lﬁrrﬁzsf%dr %Z;oi som;eVBéaen D; # 0. Note that any non-zero Alamouti matrix is full-ranked
) Y, heJ P R and thusdet(D;) # 0. Thus, the firstt — 1 block diagonals

be expressed a®;:* for some B; € C™*2"*, Thus, the : :
) . ] ; - . of the matrix [I%) are all zeros and tH#& block diagonal
design [TH) is conjugate linear affd = 2n) is the length of is composed ofD;, which is full-ranked. The determinant of

the vectorz that the source transmits to the relays during tl}% :
: . e submatrix of [(I4) composed of all th€ columns and

BT . . .
broadcast phase. The rate of the DSTEC (14) is N consecutive rows starting from thel + 1) row is block

K 2nA upper triangular and has determinaat(D,;)" # 0. Thus the
R = = . .
2Ty +Te) 2nA+N+2(n—1) rank of X (u) is N. This completes the proof. [
B The new class of codes includes the family of codes given
TN+ % cspeu in [21], [14] in the context of point-to-point MIMO channeta

a special case. The codes n][11],][14] are exactly the subset
By increasing, rates arbitrarily close tg% can be achieved. of the new codes corresponding o= % When N = 4
However, increasing also increases the delay parametErs andn = 2, we get thed antenna code reported in[12] in the
andTs. context of point-to-point MIMO channel as special case.s hu
For A = 1, we get single-real symbol decodable codes witthe codes in[[12]/[14] can be used as DSTBCs to achieve full-
rates arbitrarily close tc% for any even number of relaysdiversity in relay channels.



Alm, 0) = S(m—a)A+£ T IS @Um—3)2+£  S(am—-2)2+0 T 1S(am—1)r+0| (13)
’ —S(am—2)a+t T IS Am—1)A+t  S(Am—a)r+e — IS(dm—3)A+t

B. A family of codes from [[11] T, = nA. The rate of the DSTBC is

In [11]], a family of codes were constructed which give full- R= K _ nA
diversity with PIC-SIC decoding when used in a point-tofoi 2(I1+1T2) nA+N+n-1
MIMO channel. We now show that these codes can be used _ cspeu
as DSTBCs and they give full-diversity in a rely network also A+1+ %

Let number of relays in the network be any integér> 1
and the number of real symbols per groups. N. Letn > 1
be an integer. The number of groups= 2n and the number
of real symbols in the design & = 2n\. Let thek group,
k=1,...,g, be

By increasingn, rates close toﬁ can be achieved. The
codes of this subsection have lower rates than the codes of
SectionIV-A for identical delayl; + T>. However, the class

of DSTBCs of this subsection include codes for all values

of A=1,...,N and any N > 1, whereas the codes in
i - N
T = {(h— DA+ 1,(k—1A+2, ... kA, (15) ]Svectlonljﬂ are only forA = 1,..., 5 and even values of

i.e., the firstA symbols form the first group, the second In [L1], in the context of STBCs for point-to-point MIMO
annels, it was shown that the class of codes of this sub-

symbols form the second group and so on. The real symbSE

e i=1 K, are encoded independently of each othsection satisfies the criterion in Theoréin 2 and the subclass

- - ' f codes corresponding ta = 1,2 satisfy the criterion in
using a regular PAM constellation. Fér=1, ..., g, define 0 ’ . .
9 g e Theorem[lL. Thus, the class of DSTBCs of this subsection

give full-diversity with PIC-SIC decoding under the grongi
scheme [(I5) and the subclass of codes corresponding to

where Q € R*** s a full-diversity rotation matrix. Define ™ = 1, 2 give full-diversity under PIC decoding with grouping

a set of doubly indexed variables,,,, 1 <m <n and schemel]]]_S). _ o
1< /<N as follows. Form = 1,...,nand/ = 1,..., The family of DSTBCs of this subsection include a class of

defiN€ vy ¢ = S(am—2)rst + i82m_1)re- FOLM = 1,....n codes from[[1B] with a lower complexity grouping scheme [11]
andf = \+1,..., N, define the variables,, ; recursively as (corresponding toA = N) and the Toeplitz Codes [15]
Ut = Um.o—x. The VECLOT 1, m.a, . . O ~]7 encodes (corresponding to\ = 1) as special cases. Fo¥ = 2 and
the two symbol vectorsz, _, andzz, . The code proposed = 2_, we get_the‘z antenna code given EﬂlZ] in the context
in [11] is of point-to-point MIMO channels as special case.
Proposition 6: The Toeplitz codes give full-diversity as

T
ST, = [S(k—1)x+1, Skt = Qg

[v1.1 0 0 0 7 DSTBCs when a ZF or ZF-SIC receiver is used at the
Va1 V12 0 0 destination.
vzl V22 U3 0 Proof: The Toeplitz codes correspond to the case 1,
. €., Um1 =Uma =" =0UyN =wy,foreachm=1,... n.
It is enough to show that the Toeplitz codes satisfy the
V1N hypothesis of Corollar{]1. In order to prove the hypothesis
N (16) o
) of Corollary[d, it is enough to show that for any set of values
Un1 Un—12 0ottt [w,...,w,]T € C™\ {0}, the resulting matrix[(16) is full-
0 Vn o : ranked. Sincéws, ..., w,]” is a non-zero vector, there exists
' anl € {1,...,n} such thatw,, =0form=1,...,l—1 and
: w; # 0. Thus, the firsf—1 diagonal layers of{16) are zero and
L 0 0 0 - vpN] all the entries of thé'” diagonal are non-zero. This implies
. L that the resulting matrix has linearly independent coluanms
It is clear that7, = N + n — 1. All the entries in the hence is full-ranked. -
design [(IB) are of the form s, )4 +ism-1are A 10561 it was shown that the Toeplitz codes yield full
no conjugates of these variables appear in the design. ldWersity with a ZF or MMSE receiver wheiV, = 1.
tm = [Um.1,Um.2, -, Um )T, m =1,...,n and let the vector

Propositio b says that the Toeplitz codes give full divtgrigir

H __ [+T 4T T H
transmitted by the source be= [t ¢, ---{,]". Since z any Np > 1 with ZF and ZF-SIC decoding at the destination.
contains all the complex symbolgs,,, —2yx+¢ + iS(2m—1)r+¢

that appear in the desigii{16), there exist matriégs ¢ V. COMPARISON WITHMULITGROUP ML DECODABLE

CT2xnA 5 = 1,...,N, such that the desigri_{16) equals FULL-DIVERSITY DSTBGCs

[Biz Boz--- Byz]. Thus, [Ib) is a conjugate linear design. In this section, we first compare the rates achievable by the
The length of the vector transmitted by the source isfull-diversity PIC/PIC-SIC decodable codes of Secfioh I\thw



that of the multigroup ML decodable full-diversity DSTBCs .

available in the literature. It is shown that, the proposedes e Proposed scheme: ZF-SIC decoded |
in Section[IV achieve higher rates than the multigroup M = — £ — Srinath et al.: ML decoded ]
decodable codes of same decoding complexities. The hig! o] 2~

rates achieved by the proposed codes can lead to better
Error Rate (BER) performance. In the second half of th
section, we compare the BER performance of the new codes 102k
Sectior TV-A with multigroup ML decodable DSTBCs of same
decoding complexity for a few specific network configurasion
The simulation results show that the new codes have a be
BER performance than the known low decoding complexit
DSTBCs in the literature.

Bit error rate

A. Comparison of achievable rates

The decoding complexity of a multigroup ML decoding 10'50 . m = - = > =
DSTBC or a PIC/PIC-SIC decodable DSTBC is determined t Average transmission power used in the network P, in dB

the number of real symbols per decoding grolplf a sphere

decoder is used at the destination to decode the DSTBC, the;; »  gER performance a bpcu forA = 1, N = 8 and N = 1
dimension of the sphere decoding algorithm will be equal.to

Thus, it is desirable that a DSTBC have a higtand a low\.

Further, two DSTBCs having the same value\dfave similar 10 ; e
decoding complexity. Tablg | summarizes the comparison ‘ T Droposed scheme: PICSIC decoded)]
the proposed codes in this paper with other low complexi
DSTBCs available in the literature.

(i) A = 1: Single real symbol ML decodable DSTBCs calle(
Distributed Orthogonal Space-Time Block Codes (DOSTBC
were constructed in_[4] for any number of relayys> 2. The
rate of these codes is upper boundedﬁ'ﬁ cspcu. As the
number of relays increases, the rate decreases rapidl$],In
single real symbol ML decodable DSTBCs were constructt
for any number of relay®V with rate% cspcu. The new codes
of SectionTV-A and the codes in Sectibn TV-B correspondin
to A = 1 can achieve rates upt%) cspcu, which is twice the
maximum rate reported in the literature so far for singld re
symbol decodable full-diversity DSTBCs. 10°L—— i i . i i ; i i h

.. . 0 2 4 6 8 10 12 14 16 18 20

(if) A = 2: Single complex (double real) symbol ML decod: Average transmission power used in the network P, in dB
able codes for any number of relayé > 4 with rate at the
mostﬁ cspcu were constructed inl[7]. The single _complex Fig. 3. BER performance a bpcu forA = 2, N — 6 and Np — 4
symbol PIC-SIC decodable codes of Secfioh IV achieve rates
upto% cspceu irrespective of the number of relays. The codes
in [7] have rates less thah cspcu and the rate decreases wit% and hence have higher rate than the codes ih [23] for all
increase in the number of relay nodes. N > 1 number of relays.

(iii) A = & In [8], 4-group ML decodable DSTBCs were For same value of\ and equal delayl} + T, the new
constructed for any number of relayé = 2m, m > 1, with  codes in Sectiof IV-A have higher rate than the codes from
rate 7 cspcu. The number of real symbols per ML decodingection[TV-B. However, the codes in Sectibn 1V-A are only
group is§. For\ = &, the codes in SectiofisTVIA aidIMB for 1 < A < &, whereas the codes in Sectibi 1V-B are for
can achieve rates arbitrarily closeﬁé’—Q. Thus, the new codes1 < X\ < N.
have higher rate than the codes ﬁ [8] when the number of _
relays N > 2. For N = 2, the code in SectioR IV3A with B. Simulation Results
n =1 andX = 1 gives a rate of; cspcu and this code is For all the codes we use the power allocation = 1
same as the Alamouti code[21]. andm, = . This is the optimal power allocation when the

(iv) A = N: Using commuting set of matrices from Divisiondestination uses an ML decoder to decode a DSTBC [3].
Algebras [22],2-group ML decodable, raté DSTBCs with We first compare the performance of the new single real
A = N were constructed in_[23] for even number of relaysymbol PIC-SIC decodable, i.e., ZF-SIC decodable code of
N. The codes in Sectidn TVIB with = N achieve rates upto SectiorTV-A with the single real symbol ML decodable code

Bit error rate




TABLE |
COMPARISON OF FULL-DIVERSITY, LOW DECODING COMPLEXITYDSTBCs

DOSTBCs | Srinath et. al| Harshan et. al.| Rajan et. al.| Kiran et. al Codes in Codes in

2] 5] [8] 23] Sec[IV-A | SedIV-B
Number of relays,N >2 >1 >4 2m,m>1 | 2m,m>1 | 2m,m > 1 >1
Real symbols per groupy 1 1 2 ¥ N <3 <N
Rate, & =2y i (e } : 2 | o=

Full-diversity decoding method ML ML ML ML ML PIC-SIC PIC-SIC

T Upper bound on achievable ratgSupremum of achievable rates.

of Srinath et. al[[b] for number of relayd = 8 and number « What are the optimal power allocation facters and s
of antennas at the destinatiosip = 1. The new code has for PIC/PIC-SIC decoding?
parameterss = 3, A =1 andR = % cspcu. The real symbols « In this paper, we have considered relay networks that are

are encoded using regul&PAM. The code from[[5] has rate coherent (destination has full channel state information)
% cspcu and the symbols are encoded using rediid?AM. and synchronous (transmissions from relays to destination
Both the DSTBCs have an information rate ®fbpcu and are synchronized at symbol level). Finding a full-diversit

Gray mapping is used to map bits to symbols for both codes. criterion and constructing high-rate, full-diversity DST
The new code is ZF-SIC decoded whereas the code from [5] BCs with low PIC/PIC-SIC decoding complexity for
is ML decoded. The BER performance is shown in [Elg. 2. It asynchronous and non-coherent relay networks is an
is seen that the new code performs considerably better than interesting direction for future work.
the code in[[5]. At a BER ofl0—* the new code beats the
code from [5] by aboub dB. )

The comparison of performance of single complex decod- This work was supported partly by the DRDO-IISc program
able code given by Harshan et. dl] [7] with the new code R Advanced Research in Mathematical Engineering through
Section[IV-A for N = 6 relays andNp = 4 antennas at the @ research grant,.and partly by the INAE Chair Professorship
destination is shown in Figl 3. The new code has parametéfgnt to B. S. Rajan.
A=2n=2andR = i cspcu. The symbols are encoded APPENDIX A
using regular-PAM. The code from[[[7] has a rate éfcspcu
and the symbols are encoded pairwise using rotéte@AM
constellation. Both the DSTBCs have an information rate of For any two square matrice$ and B of same dimension,
2 bpcu and Gray mapping is used in both the cases to niée notationd < B implies thatB — A is a positive semidefi-
information bits to symbols. The new code is PIC-SIC decod@ite (PSD) matrix. Lets = max {||B;||%| j = 1,..., N} and
whereas the code from][7] is ML decoded. From Fib. 3, we = T,Np + 2722 Z;V:l S N2 19502 We use the following
see that the new code performs better than the code frbm [Floposition to prove Theoren] 1.

V1. DISCUSSION Proposition 7: The covariance matrix afec(U), T satisfies

In this paper, we have derived full-diversity criteria for aF = aIQTzND'- . : o
’ Proof: Since I' is a covariance matrix, it is a PSD

DSTBC to achieve full diversity with PIC/PIC-SIC decodinqpatrix and hence has a complete set of eigenvalues,,If
performed at the destination for a wireless relay network_ 9T, N, are the eigenvalues df, then we ha\il,e'
with single antenna at the_source and the_ relays. We hetvej ?ziND AT = Tr(D)I. From [7), Tr(T) = Tr(Iy,).
also proposed DSTBCs with low complexity PIC/PIC'SICf\Iote that IV is itself a covariance matrix and hence is
decoders that achieve higher rates and perform better Hmnl'g|

. ! . . ermitian. Thus, all of its diagonal entries are real and
best known low complexity DSTBCs available in the I'ter&turhence T+, ) = Tr(I"). From Propositiori]l, we have:
The following questions remain open. ' 3 ' ’ '

Tr(T) =>4 Tr(Cy), whereCy; is given in Propositiofil1.
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PROOF OFTHEOREM[]

o What is the full diversity criterion for PIC/PIC-SIC Thus, 7r(T)
decoding in the case of relay networks in which all the '
nodes are employed with multiple antennas? Np P o

« What is the criterion to maximize the coding gain when = Z Pl Z |9j1[*Tr(B; B]") + T»
the destination performs PIC/PIC-SIC decoding? =1 J=1

o What is the full diversity criterion for PIC/PIC-SIC P LIz SR
decoding for multihop relay networks with amplify and =Pl > 19,lPlIB; 1% + ToNp
forward cooperation? ! j=11=1

« In this paper, the full-diversity criterion was derived pnl TP N Np )
for conjugate linear DSTBCs. Does this condition hold < Pl ZZ l9j1"8+T2Np = o

for a general DSTBC? j=11=1



The desired result follows. B Since Pz, is the projection onto the subspace which is

Consider the use of in (B) as an STBC for the point- orthogonal to the subspace spanned by the column vectors
to-point MIMO channel withN transmit antennas andp of Gz,, 1 < ¢ < g and/ # k, we have thatPr, Gz, = 0 for
receive antennas, 1<¢<gandf+#k. Thus,

Yviivo = \/ﬁXH + W. (17) 9
] ) ] ] Pr,y = Z Pr, Gz,x7, + Pr,n = P;, G, 21, + Pr,n.
Here,Yyrvo is theT x Np received matrix X is theT x N —

codeword matrix,H is the N x Np channel gain matrixjV’ .
is theT x Np noise matrix ancg is the transmit power. The The PIC decode{]9) is

received matrix can be vectorized as arg ming, ca, ||Pr.y — Pr,Gr, i1, ||%
k k ©

K . ~ 2
_ __ = 7 Pr, G Pr,n— P, G
ymivo = vee(Yarrmo) = E xiy/pAiH + vec(W) o ml,nzzk eAr, 1P, Gz, oz, + fkn o Ikgxzk I
i=1 =arg Mingr cAz, ||PIk Gz, (ka - IIk) + PIanF'

_ / "
= G'z +vec(W), The Gaussian noise vectar is white and has zero mean.

where, Since Pz, is the projection ontd/;:, the noise vector, n
__ __ has no components in the subsp and the component
G' = Vplvee(AH) - vec(Ax H)] = [91 g2~ gx]. (18) Pr,n along the subspacez- isa?White Gaussian noise
and is similar to [(). For any nonempty subsewith zero mean and unit covariance. The difference signal
Z="{i,....iiz} C{1,...,K}, with iy <ip <---<ij, vector Pr,Gz, (v7, —iz,) also lies in the subspack;: .
let G = [g), gi,---gl,]. Fork = 1,....g, let V/ be the Thus, the probability that the PIC decoder will decide indiav
column space of the matri&’,. and P;, be the matrix that of Zz, when the symbokz, is transmitted, given the channel
. ke n . . - ~ o ||Pz, Gz, axl||F
projects a vector onto the subspack *. realization H, is PEP(zz, — 7z, |H) = Q (f)
Theorem 3 ([[20]): If the following two conditions hold: ~ whereQ(-) is the Gaussian tail function angd. = zz, — zz, .
1) for any X;,XoeC and X;# X, we have Using the Chernoff bound on th@ function, we have
rank(X; — Xs) is N and ||Pr, Gz, x| 2
2) for every k=1,...,9, every H=#0 and every PEP(zz, — 27, |H) < exp (%F) . (20)
ar € AAz, \ {0}, we haveG7, ax ¢ V7,
then, there exists a real number> 0 such that, for any In order to derive a lower bound of\Pr, Gz, ax|%,
k=1,...,9,anya; € AAz, \{0} and any channel realizationwe want to express’z, and Gz, in terms of Pz and
H # 0, we have||P; G, ail|3 > cpl|HI|%. G . Let A= I~ denote the square root df—!. Since
The results of Theoreé3are independent of the statisticsiofand I'~! are PSD and symmetricA can be chosen to
the channelH or the noiselV. The matrixG’ in Theoren{B be the unique PSD symmetric square root Iof' [24].
is ider_1tica| to the matrix!]G), which arises dgring the PIGrom Proposition]7, we havel > %IQTZND_ Let ng
decoding of the DSTBC in a relay network with\' relays be a matrix whose columns form an orthonormal basis of
andNp antennas at the destination, whes- %. Hence, V; and Q7 be a matrix whose columns form an or-

the result of Theorerﬁl3 can be useo_l .to prove diversity resulfgnormal basis of/L. Thus, Pr, = Qz, (Q% sz)—l Q7T
for the relay network if the two conditions in the theorem CU Sy — (Q’TkQ’ )71 T Also f(;r any vel::-
satisfied. Now, the criterion in the hypothesis of Theotdm 1~ Ié RIEND " haveI||k1.3 | " 1Qz.l[» and
is same as the criterion given iA_J11] for the STRCto P _ 10" olle. Sinced — AI(k;’ f;._ | Lk tth
achieve full-diversity in the point-to-point MIMO chann@7) 1Pz, vllp =[|Q7,vl[r. SinceG = AG, itis clear tha

with PIC decoding under the grouping schemg ..., Z,. Gz, = AG/zka (21)
Further, it is shown in[[11] that this criterion is equivaten

to the sufficient condition given in Theoref 3. Thus, foRndVz, = AV7, = {Avlv € V7 }.

anyk = 1,...,g, anya, € AAz, \ {0} and any channel Proposition 8: For each k=1,...,9, we have
realization [B)H + 0 of the relay network[{l) , we have: Vz, = A~ 'Vzl.

P 9 9 Proof: We have,
1Pz, Gz, akl|p > cpl|H||F, (19) . o i /
wherep = mm2l” Vi, = (AVz, )" ={w|w" Av =0 Vv € V7, }

T P41 _ T ONT. /
Let k € {1,...,9}. We are interested in deriving an = {wl(A"w) v =0Vvv e Vg }.

upper bound on the pairwise error probability during Pl@eplacingA”w = Aw by u, we have,
decoding[(®) of thé:'* symbol vectorr, . the received vector

y in (B) satisfies: Vi ={A v =0Yv eV}
= A HuuTv =0V e Vi } = A—lvz’j.

g
y=Gr+n= Gz, x1, + n. .
kz::l e This completes the proof. [ |



From Propositio18, it is clear thafIJ; is spanned by the In Theorem 4 of[[B] an upper bound for a more general

column vectors of the matrixl—ngc. Thus, expression is given. The result inl [3] for the special c&S (2
" 1 - is as follows.
= AT'QY (Q’IkA_l A‘lQ’I:Z) Qr A Theorem 4 ([[3]): For largeP, the pairwise error probabil-
o oy 1 . ity @23) can be upper bounded byP~¢, wherec, is a positive
=A7Qg, (Q%kA Q/Ik) Q/IkA : (22)  real number and
Proposition 9: For any k=1,... and any . d=N <(1 — %) if Np =1 and
ar € AAz, \ {0}, we have||szszak||F M- e d=Nif Np > 1.

Proof: Consider|| Pz, Gz, ax|[f. = aj, GT, Pf, Pr, Gz, a. This completes the proof of Theordrh 1.
USIng m) anduzz) we getPIk GIkak”F

= a;}FG/ITk QI;C (sz A~ QI;C) sz G;jk ay

1
_ / A72 T\ ™2 G/ 2
||1(sz QIk) QIk ZkakHF Let _ 1{ND— 1}N (1 log(logP)) +1{ND > 1}N
H !
Since A = —=Tor, Ny, an]d the rows of)7, are orthonormal, 5 P(-) denote the probability of an event. Fer=1, ..., g,
we have(Q, A72QF) 2 = ﬁ(Q/Ing;)—% - ﬁ[_ Thus, let E; denote the event that thg'" information symbol
vector zz, is erroneously decoded by the PIC-SIC decoder.
We want to prove thaP(E; U--- U E,) < coP~?, for large

APPENDIXB
PROOF OFTHEOREM[2

||PIkGIkak||2F

> ||\/—1sz arl|3 = ||Q’Zk(¥’zkak||fD P and for some positive real numbes. Fork = 1,...,g,
||H||2 we have
2 CP F
=E||P£kG/zkak||F> o P(Ey) =P(ELESN---NES_ P(ESN---NES_ )
The last step follows from{(19). This completes the promf. +P(EL|ELU---UE,_1)P(E1U---UEr_1)
Using the bound from Propositi¢n 9 with {20) we get <P(ERESN---NES ) 14+1-P(EyU---UE;_)
) cpllHII% =
PEP(ez, — ) < cap (- ). <P(BLEfN--NE{ )+ Y P(B).  (24)
k'=1

From [3), we have|H|2 = SV »2( e »2) The
© Sl = 25=1 1/l =1 |g]’_l| ) It is enough to show tha®(Ey|ES N - - NEf ) < cp P74
squared absolute values of the channel gajifig® and ¢, _ 1,...,g and some set of posmve real numbers .

2
lgj1|> are all independent of each other and are exponentﬁ{en from m) it can be shown using recursion that
random varlables with unit mean. Let = Zl 1|gjl|2

for j = ,N. Then, the random variableff;|*t;,
j = ND are independent of each other. Further,
exp M =TI, e:cp( M) Since|f;|? is ex-
ponenually dlstr|buted with unit mean, for ary> 0, we have

(e:vp( s|fj|?)) = t45, forj =1,..., N. Thus, the average
pairwise error probabilityPEP (27, — Z7,)

g
P(EYU---UEy) <Y P(Ex) < coP™",
k=1

for some ¢y > 0. We now derive the upper bound for
P(Ex|E{N---NE;_;), the probability of erroneously de-
coding thek*" symbol vector when all the previous symbol
vectors have been decoded correctly. .

! 1 H !
<t (enp CepllHIENY c ﬂexp eplfit N Let G’ be as defined |rﬂ18).. II:df = 1,~.I. g, let Vi bg
= " da " da e column space of the matr@ik and Pz, be the matrix

=t that projects a vector onto the subspz’@%.
N

1 cpt; Theorem 5 ([10]): If the following two conditions hold:
=E HW =E H(H'H) ' 1) for any X;,X,e€C and X;#X, we have
j=tn o e =t rank(X, — X») is N and
Substituting the values fop and o as p = ’;ﬁ’;ﬁff and 2) for every k=1,...,9, every Hzé/() and every
a=T,Np+ L2250 t;, we getl + %2t ar € AAz, \ {0}, we haveGZ ax ¢ V7,
2 then, there exists a real number> 0 such that, for any
14+ cmma P _ k=1,...,g,anya, € AAz \{0} and any channel realization
4 [(mP + )TeNp + fraP YN tj,} H +# 0, we have:||P}, G, ax|[2 > cp||H|[2.

) _ T The criterion in the hypothesis of Theorenmh 2 is same
For large P, m P + 1~ m P. Using this approximation and 5q the criterion given in[[11] for the STBC to achieve

on further simplification, we geREP (zz, — 7z, ) full-diversity in the point-to-point MIMO channe[{17) wit
N e P . -1 PIC-SIC decoding under the grouping schefig...,Z,
<E H [1 2 o J = ] . (23) Further, it is shown in[[11] that this criterion is equivaien
j=1 AT2Np 1 + ST NS Zj/:ltj/ to the sufficient condition given in Theorel 5. Thus, for



anyk = 1,...,g9, anyar € AAz, \ {0} and any channel [4]
realization [(B) # # 0 of the relay networ2k|]1), we have:
1P, Gl anll3- > cpl| HI[}, wherep = Zmslr. 5
Consider thek!" iteration in the PIC-SIC decoding algo-
rithm given in Sectior III=A in the situation where all the
previous symbol vectorsz,,...,zz,_, have been decoded [g]
correctly. Due to the successive interference cancetigib,
the signaly;, will only have a noisy version of the contributions 7]
from symbol vectorsez, , ..., zz,, i.e.,
8
p (8]
Y = Z Gr,x1, +n.
t=k [l
Since PI,C is the projection onto the subspace which is 10]

orthogonal to the subspace spanned by the column vectors

of Gz,, k < ¢ < g, we have thatP;, Gz, =0 for k < ¢ < g.

Thus, [11]

~ g ~ ~ ~ ~

szyk = Z PZkGngIg =+ szn = sz szfL‘Ik =+ szn.
=k

The PIC-SIC decoder in the!" iteration is

(12]

. ~ ~ - [13]
arg MiNg; e Az, ||PIk Yk — PIk GIkka ||F

=arg minizk €Az, ||PIk szxzk + szn - PIk sz‘%zk ||%‘

=arg minizk €Az, ||PIk sz (‘Tzk - ‘/Z.Ik) + sznH% (141

Using an argument similar to the proof of Theordmh 1,

the probability that the PIC-SIC decoder will decide;s;

in favor of zz, when the symbolxzz, is transmitted,
given the channel realization/, can be shown to be

PEP(xz, — iz, |H,ESN---NE;_;) = Q g,”PIkGIW”FQé [16]
whereay, = z7, — 7, . Using the Chernoff bound on t
function, we have [17]
_ D 2
PEP(xz, — 2z, |H,EiN---NE;_;) < exp <M> . 18]

Using an argument similar to the proof of Theorgm 1, it can

be shown that [19]
. 15 cp| | H| |7 [20]
|Pr, Gz, ak|[7 > EHPikGlzkakH% > TF,
and then the average pairwise error probability,

PEP(zz, — Z7,|EfN---NEf_;) can be shown to be
upper bounded by, P~¢ for someb, > 0. This completes

the proof. [22]
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