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I. I NTRODUCTION

Abstract—Recently, Guo and Xia introduced low complexity
decoders called Partial Interference Cancellation (PIC) and
PIC with Successive Interference Cancellation (PIC-SIC),which
include the Zero Forcing (ZF) and ZF-SIC receivers as special
cases, for point-to-point MIMO channels. In this paper, we show
that PIC and PIC-SIC decoders are capable of achieving the full
cooperative diversity available in wireless relay networks. We give
sufficient conditions for a Distributed Space-Time Block Code
(DSTBC) to achieve full diversity with PIC and PIC-SIC decoders
and construct a new class of DSTBCs with low complexity full-
diversity PIC-SIC decoding. We also show that almost all known
full-diversity PIC/PIC-SIC decodable codes constructed for point-
to-point MIMO channels can be used as full-diversity PIC/PIC-
SIC decodable DSTBCs in relay networks. The proposed DSTBCs
with low complexity, full-diversity PIC/PIC-SIC decoding achieve
higher rates (in complex symbols per channel use) than the
multigroup ML decodable DSTBCs available in the literature.
Simulation results show that the proposed codes have betterbit
error rate performance than the best known low complexity,
full-diversity DSTBCs.

Spatial diversity in wireless channels helps mitigate the
negative effects of fading. In systems where the terminals
can not have multiple transmit/receive antennas due to space
considerations, such as wireless sensor networks or cellular
networks for mobile phones, spatial diversity calledcoop-
erative diversity can be achieved by using the antennas of
other users (relays) in the network to aid the communication
of messages from a single source [1], [2]. The amplify-and-
forward (AF) protocol is widely studied and is more practical
since it involves simpler processing at the relays than other
cooperative protocols. In [3], a two phase cooperative protocol
based on AF was given. In this scheme, the source transmits
information to the relays in the first phase. Each of the relays
linearly processes the signal that it receives in the first phase
and transmits the processed signal to the destination in the
second phase. The destination effectively sees a Space-Time
Block Code (STBC) being transmitted by the relays. Since this
code has been generated by the relays in a distributed fashion,
it is called aDistributed STBC (DSTBC). If the number of
independent real information symbols in the DSTBC isK,
then the rate of the DSTBC isR = K

2T complex symbols per
channel use (cspcu), whereT is the combined duration of
the first and second phases. For practical significance, it is
desirable that the DSTBC be of high rate and have a low
complexity, full-diversity decoding algorithm. In this paper, we
consider the situation where the relay nodes have no channel
state information (CSI), while the destination has full CSI.

This assumption is more practical than assuming CSI at the
relays, since it reduces the burden on the relays, which may
be other users in the network.

A DSTBC is said to beg-group maximum-likelihood (ML)
decodable if the K information symbols can be partitioned
into g groups,g > 1, such that each group of symbols can
be ML decoded independent of the symbols of the other
groups. If the maximum number of symbols in any group
is λ, then the code is also said to beλ-real symbol or λ

2 -
complex symbol ML decodable. Since the decoding complexity
is determined byλ, DSTBCs with smallλ and largeg
are desirable. In [4], single-real symbol ML decodable full-
diversity DSTBCs called Distributed Orthogonal Space-Time
Block codes were constructed with rate at the most2

2+N
for

any number of relaysN ≥ 2. In [5], single-real ML decodable
DSTBCs with rate 1

4 were constructed for any number of
relays N using real orthogonal designs [6]. In [7], single
complex symbol ML decodable DSTBCs were constructed for
any number of relaysN . The rate these codes is upper bounded
by 4

4+N
. In [8], 4-group ML decodable DSTBCs with rate

1
2 were constructed for any number of relaysN using matrix
representations of Extended Clifford Algebras. All the codes
discussed in this paragraph rely on optimal decoding in order
to tap full cooperative diversity.

In [9], PIC and PIC-SIC decoders were introduced for
decoding STBCs for point-to-point MIMO channels. A PIC
decoder partitions the information symbols of the code into
multiple groups. A PIC receiver decodes each group of sym-
bols independently of other groups. In order to decode a
particular group of symbols, a PIC decoder first implements a
linear filter to eliminate the interference from symbols in all
other groups and then decodes all the symbols of the current
group jointly. A PIC-SIC receiver uses successive interference
cancellation along with PIC decoding. Ifλ is the maximum
number of symbols in any group, we say that the PIC or PIC-
SIC decoder performsλ-real symbol PIC or PIC-SIC decoding
respectively. Whenλ = 1, the PIC (PIC-SIC) decoder reduces
to ZF (ZF-SIC) decoder. A criterion for an STBC, in point-to-
point MIMO channel, to achieve full-diversity with PIC and
PIC-SIC decoding were given in [10], [11]. Since the complex-
ity of PIC/PIC-SIC implementation depends onλ, one would
like the code to have a full-diversity PIC/PIC-SIC decoding
algorithm with full-diversity. Code constructions for point-to-
point MIMO channels with full-diversity and low complexity
PIC/PIC-SIC decoding were given in [9], [11], [12], [13], [14]
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and with ZF/ZF-SIC decoding were given in [15], [16].
The contributions and organization of this paper are as

follows.

• For a two phase AF based cooperative protocol, we
give sufficient conditions for a DSTBC to achieve full
cooperative diversity when PIC and PIC-SIC decoders are
used at the destination. As a special case, we also obtain
full-diversity criteria for ZF and ZF-SIC decoding at the
destination. In particular, we show that for aN -relay
network, where the relays and the source are equipped
with 1 antenna and the destination is equipped withND

antennas, a diversity ofN
(
1− log(logP )

logP

)
is achievable

whenND = 1 and a diversity ofN is achievable when
ND > 1 with PIC/PIC-SIC decoding (Section III).

• It is shown that PIC/PIC-SIC decoding is capable of
achieving the full cooperative diversity offered by the
wireless relay network. Since the PIC and PIC-SIC de-
coders are of low complexity, the proposed full-diversity
criteria enable us to construct DSTBCs with high rates
and low decoding complexity, while achieving full coop-
erative diversity (Section III).

• We construct a new class of full-diversityλ-real symbol
PIC-SIC decodable DSTBCs for all even number of
relaysN with N ≥ 2λ, λ ≥ 1, with rates arbitrarily close
to λ

λ+1 cspcu. The new single real symbol decodable
codes have rates close to12 while the single real symbol
ML decodable codes in the literature have rate at the
most 1

4 for N ≥ 6 and 2
5 for 2 < N < 6. The new

single complex symbol decodable codes have rate close
to 2

3 while the single complex symbol ML decodable
codes in the literature have rate at the most1

2 cspcu
(Section IV-A).

• We show that a family of codes given in [11] in the con-
text of point-to-point MIMO channels can be used as full-
diversity PIC-SIC decodable DSTBCs. This family in-
cludesλ-real symbol decodable codes for allN ≥ λ ≥ 1
with rates close to λ

λ+1 . However, for the same amount
of delay andλ, these codes have lower rates than the
new codes proposed in Section IV-A. We also show that
almost all known full-diversity PIC/PIC-SIC decodable
codes constructed for point-to-point MIMO channels can
be used as full-diversity PIC/PIC-SIC decodable DSTBCs
(Section IV-B).

• We show that the proposed full-diversity DSTBCs
achieve higher rates when compared with the multigroup
ML decodable DSTBCs of same decoding complexity
available in the literature (Table I in Section V summa-
rizes the comparison of the proposed codes in this paper
with other low complexity DSTBCs). Moreover, simula-
tion results show that the new PIC-SIC decodable codes
have a better bit error rate performance than the best
known multigroup ML decodable DSTBCs (Section V).

The system model is explained in Section II. Some of the
open problems related to PIC/PIC-SIC decoding in wireless
relay networks are discussed in Section VI.
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Fig. 1. Relay network model

Notation: For a complex matrixA the transpose, the conjugate
and the conjugate-transpose are denoted byAT ,A∗ andAH

respectively.||A||F is the Frobenius norm of the matrixA.
In is the n × n identity matrix,0 is the all zero matrix of
appropriate dimension, 1{·} is the indicator function and
i =

√
−1. The cardinality of a setΓ is denoted by|Γ|. The

complement of a setΓ with respect to a universal setU is
denoted byΓc, wheneverU is clear from context. For a square
matrix A, det(A) is the determinant ofA andTr(A) is the
trace ofA. For a complex matrixA, ARe andAIm denote
its real and imaginary parts respectively. Vectorization of a
matrix A is denoted byvec(A) and the expectation operator
is denoted byE(·).

II. SYSTEM MODEL

We consider a wireless relay network withN + 2 nodes:
a source node,N relay nodes and a destination node. The
source and the relay nodes are equipped with single antennas
and the destination hasND antennas as shown in Fig. 1. This
model captures the scenario corresponding to the uplink of
a cellular system or a wireless local area network (WLAN).
We consider an AF cooperative protocol in this paper in
which each transmission cycle is composed of two phases:
a broadcast phase of durationT1 and a cooperation phase of
durationT2. During the broadcast phase, the source transmits
to all the relays. In the cooperation phase, the relays process
the signal received in the broadcast phase and transmit it to
the destination. The channel gain from the source to thejth

relay is fj , j = 1, . . . , N . The channel gain from thejth

relay to thelth receive antenna at the destination isgj,l, for
j = 1, . . . , N and l = 1, . . . , ND. We make the following
assumptions in our model: (i) All the nodes have half-duplex
constraint, (ii) the channel gainsfj , j = 1, . . . , N , andgj,l,
j = 1, . . . , N , l = 1, . . . , ND are assumed to be independent
circularly symmetric complex Gaussian random variables with
zero mean and unit variance and with coherence interval of
duration at leastT1+T2, (iii) the relay nodes have no channel
state information and the destination has the knowledge of all
channel gainsfj , gj,l and (iv) the transmissions from the relay
nodes to the destination are synchronized at symbol level.



Let the source transmit with powerπ1P and each of the
relays transmit with powerπ2P . The real numbersπ1, π2 > 0
are chosen such thatπ1T1 + π2RT2 = T1 + T2. Thus the
average transmission power used by the network isP . In each
transmission cycle, the source transmitsK real information
symbols,xi, i = 1, . . . ,K. The source is equipped with a
finite subsetA ⊂ RK called thesignal set andK complex
vectors{ν1, . . . , νK} ⊂ CT1 , that are linearly independent
over R. The information vectorx = [x1, . . . , xK ]T assumes
values fromA.

During the broadcast phase, the source synthesizes the
vector z =

∑K

i=1 xiνi ∈ CT1 and transmits
√
π1Pz to all

the relays. The signal setA and the vectorsνi are chosen in
such a way thatE

(
||z||2F

)
= T1. The vector received by the

jth relay is rj = fj
√
π1Pz + vj , j = 1, . . . , N . Here,vj is

the additive white Gaussian noise vector at thejth relay and
it has zero mean and covarianceIT1

.
In the cooperation phase, thejth relay transmits a lin-

early processed version of eitherrj or r∗j . The subset
S ⊂ {1, . . . , N} denotes the set of indices of the relays that
processr∗j . Let for any indexed set ofN matrices or vectors
{C1, . . . , CN}, Cj = C∗

j if j ∈ S, and Cj = Cj else. The
jth relay is equipped with a matrixBj ∈ CT2×T1 . In the

cooperation phase, thejth relay transmitstj =
√

π2P
π1P+1Bjrj

=

√
π1π2P 2

π1P + 1
f jBjz +

√
π2P

π1P + 1
Bjvj .

The matricesBj are chosen in such a way that the average
energy transmitted by each of the relays during the cooper-
ation phase isπ2P . The signal received by thelth antenna,
l = 1, . . . , ND, at the destination during cooperation phase is
yl =

∑N

j=1 gj,ltj + wl

=
N∑

j=1


gj,lfj

√
π1π2P 2

π1P + 1
Bjz +

√
π2P

π1P + 1
gj,lBjvj


+ wl.

Here,wl is the additive circularly symmetric complex Gaus-
sian noise at thelth receiver. It has zero mean and covariance
IT2

. TheT ×ND received matrixY = [y1 y2 · · · yND
] satis-

fies

Y =

√
π1π2P 2

π1P + 1
XH + U, (1)

where
X = [B1z B2z · · ·BNz] ∈ C

T2×N (2)

is the codeword matrix,

H = FG (3)

is the channel matrix withF = diag(f1, . . . , fN) and the
(j, l)th entry of the matrixG ∈ CN×ND beinggj,l. The matrix
U ∈ CT2×ND is the total noise seen by the receiver. If we
denote the columns ofU by ul, l = 1, . . . , ND, then we have

ul =

N∑

j=1

√
π2P

π1P + 1
gj,lBjvj + wl. (4)

Let vec(A) denote the vectorization of a matrixA and for any
random vector. The noise vectorvec(U) is zero mean circu-
larly symmetric complex Gaussian. The following proposition
givesΓ′, the covariance matrix ofvec(U).

Proposition 1: LetΓ′ =




C1,1 C1,2 · · · C1,ND

C2,1 C2,2 · · · C2,ND

...
...

. . .
...

CND,1 CND ,2 · · · CND,ND


,

where the submatricesCl1,l2 ∈ CT2×T2 , 1 ≤ l1, l2 ≤ ND.
Then we have,

Cl1,l2 =
π2P

π1P + 1

N∑

j=1

gj,l1g
∗
j,l2

B̄jB̄
H
j + 1{l1 = l2}IT2

,

for 1 ≤ l1, l2 ≤ ND.
Proof: Let 1 ≤ l1, l2 ≤ ND, then Cl1,l2 = E

(
ul1u

H
l2

)
.

Expanding with the help of (4) and using the fact that the
Gaussian vectorsvj , j = 1, . . . , N , andwl, l = 1, . . . , ND

are of zero mean and mutually independent we have,Cl1,l2

= E





N∑

j1=1

N∑

j2=1

π2P

π1P + 1
gj1,l1g

∗
j2,l2

B̄j1 v̄j1 v̄
H
j2
B̄H

j2
+ wl1w

H
l2





=

N∑

j1=1

N∑

j2=1

π2P

π1P + 1
gj1,l1g

∗
j2,l2

B̄j1E
(
v̄j1 v̄

H
j2

)
B̄H

j2

+ E
(
wl1w

H
l2

)
.

Using the fact that E
(
v̄j1 v̄

H
j2

)
= 1{j1 = j2}IT1

and
E
(
wl1w

H
l2

)
= 1{l1 = l2}IT2

, we get the desired result.

Since z =
∑K

i=1 xiνi, it is clear that each entry of the
codeword matrixX = [B1z B2z · · ·BNz] is a linear combi-
nation of the information symbolsxi, i = 1, . . . ,K. Thus,
there exist matricesAi ∈ CT2×N , i = 1, . . . ,K, such that
the codewordX =

∑K

i=1 xiAi. The matricesAi are called
linear dispersion or weight matrices. The finite set of matrices
C = {∑K

i=1 xiAi|[x1, . . . , xK ]T ∈ A} is the DSTBC. The rate
of the DSTBCC in cspcu isR = K

2(T1+T2)
, and in bits per

channel use (bpcu) islog2|A|
T1+T2

. Note that each column of the
codeword matrixX in (2) is either a linear combination of
the vectorz or its conjugatez∗. Such designs are said to be
conjugate linear [8]. Not all linear designs are conjugate linear.
In this paper, we only consider DSTBCs that are obtainable
from conjugate linear designs.

III. PARTIAL INTERFERENCECANCELLATION DECODING

AND FULL -DIVERSITY CRITERION

In this section we first give the method of PIC and PIC-
SIC decoding a DSTBC. We then give sufficient conditions
for a conjugate linear DSTBC to yield full diversity under
PIC, PIC-SIC, ZF and ZF-SIC decoding. We then show that
if a DSTBC satisfies the proposed design criteria and if a
subset of relay nodes in the network fail, then the residual
diversity gain from the remaining relay nodes is guaranteed.
This ensures resistance towards relay node failures.



A. PIC decoding of DSTBCs

Consider a DSTBC inK real symbols. A grouping
scheme [9] is a partition I1, . . . , Ig of the set{1, . . . ,K},
where Ik are called groups. There is a correspond-
ing partition of the information symbols intog vec-
tors, where for k = 1, . . . , g, the kth vector of infor-
mation symbols isxIk

= [xik,1
, xik,2

, . . . , xik,|Ik|
]T , where

Ik = {ik,1, ik,2, . . . , ik,|Ik|} with ik,1 < ik,2 < · · · < ik,|Ik|.
Let the g groups of information symbols be encoded inde-
pendently of each other, i.e., the DSTBC

C =

{
K∑

i=1

xiAi|xIk
∈ AIk

, k = 1, . . . , g

}
, (5)

for some finite subsetsAIk
⊂ R

|Ik|, k = 1, . . . , g.
For a complex matrix A, let

ṽec(A) = [vec(ARe)
T vec(AIm)T ]T . The received matrixY

in (1) can be rewritten as

y′ = ṽec(Y ) =

√
π1π2P 2

π1P + 1

K∑

i=1

xiṽec(AiH) + ṽec(U)

= G′x+ ṽec(U),

where

G′ =

√
π1π2P 2

π1P + 1
[ṽec(A1H) · · · ṽec(AKH)] ∈ R

2NDT2×K ,

(6)
and x = [x1, x2, . . . , xK ]T . Let Γ′ be the covariance matrix
of vec(U) as given in Proposition 1. Then, it is known
that ṽec(U) is a real Gaussian vector with zero mean and
covariance

Γ =
1

2

[
Γ′
Re −Γ′

Im

Γ′
Im Γ′

Re

]
. (7)

Consider

y = Γ− 1

2 y′ = Gx+ n, (8)

where,G = Γ− 1

2G′ andn = Γ− 1

2 ṽec(U) is a zero mean real
Gaussian vector with covarianceI2NDT2

.
Let G = [g1 g2 · · · gK ], where gi, i = 1, . . . ,K, are

the column vectors ofG. For any nonempty subset
I = {i1, . . . , i|I|} ⊂ {1, . . . ,K}, with i1 < i2 < · · · < i|I|,
let GI = [gi1 gi2 · · · giI ]. Let VIk

be the column space of the
matrix GIc

k
andPIk

be the matrix that projects a vector onto
the subspaceV ⊥

Ik
, the orthogonal complement of the subspace

VIk
. Also, let Ĩk = ∪ℓ>kIℓ, ṼIk

be the column space of the
matrix GĨk

andP̃Ik
be the matrix that projects a vector onto

the subspacẽV ⊥
Ik

The PIC decoding of the DSTBC is performed as

x̂Ik
= arg minxIk

∈AIk
||PIk

y − PIk
GIk

xIk
||2F . (9)

The PIC-SIC decoding of the DSTBC is performed as given
by the following algorithm. The decoder is initialized with
k = 1 andy1 = y.

• Step 1: Decode thekth vector of information symbols as

x̂Ik
:= arg minxIk

∈AIk
||P̃Ik

yk − P̃Ik
GIk

xIk
||2F .

(10)
• Step 2: Assign

yk+1 := yk −GIk
x̂Ik

(11)

and then assignk := k + 1.
• Step 3: Ifk > g, stop. Else, go to Step 1.

When rotated lattice constellations are used for encoding
the information symbol vectors, sphere decoders [17] can be
used to implement (9) and (10).

B. Full-diversity criteria

Let I = {i1, . . . , i|Γ|} be any non-empty subset
of {1, . . . ,K} with i1 < i2 < · · · < i|Γ|. For any
u = [u1, . . . , u|I|]

T ∈ R|I|, defineXI(u) =
∑|I|

j=1 uiAij . For
any set of vectorsA, let ∆A = {a1 − a2|a1, a2 ∈ A}.

Theorem 1: Full-diversity under PIC decoding: PIC de-
coding of the DSTBCC in (5) with the grouping scheme
I1, . . . , Ig achieves a diversity of

• N
(
1− log(logP )

logP

)
if ND = 1 and

• N if ND > 1,

if the following condition is satisfied for everyk = 1, . . . , g:
for everyak ∈ ∆AIk

\ {0} and everyu ∈ R|Ic
k|, the rank of(

XIk
(ak) +XIc

k
(u)

)
is N .

Proof: Proof is given in Appendix A.
Theorem 2: Full-diversity under PIC-SIC decoding: PIC-

SIC decoding of the DSTBCC in (5) with the grouping scheme
I1, . . . , Ig achieves a diversity of

• N
(
1− log(logP )

logP

)
if ND = 1 and

• N if ND > 1,

if the following condition is satisfied for everyk = 1, . . . , g:
for everyak ∈ ∆AIk

\ {0} and everyu ∈ R|Ĩk|, the rank of(
XIk

(ak) +XĨk
(u)

)
is N .

Proof: Proof is given in Appendix B.
The class of PIC and PIC-SIC decoders contains the ZF and

ZF-SIC decoders as special cases. When each real symbolxi,
i = 1, . . . ,K, forms a group by itself, the PIC decoder reduces
to the ZF decoder and the PIC-SIC decoder reduces to the ZF-
SIC decoder.

Corollary 1: Full-diversity under ZF and ZF-SIC decoding:
The DSTBCC in (5) achieves a diversity of

• N
(
1− log(logP )

logP

)
if ND = 1 and

• N if ND > 1,

with ZF decoding and ZF-SIC decoding with any or-
dering, if the rank of

∑K
i=1 uiAi is N for every

u = [u1, . . . , uK ]T ∈ RK \ {0}.
Proof: It is straightforward to show that the criteria of

Theorems 1 and 2 are satisfied for the grouping scheme cor-
responding to ZF and ZF-SIC decoders under the hypothesis
of this theorem.

In [3], diversity analysis of DSTBCs in relay networks with
optimal, i.e., ML, decoding was given. It was shown in [3] that



via proper design of DSTBCs a diversity ofN
(
1− log(logP )

logP

)

when ND = 1 and a diversity ofN when ND > 1 can
be achieved via ML decoding when the number of transmit
antennas at the source is1. From Theorems 1 and 2, we see
that the same diversities can be achieved by employing less
complex PIC and PIC-SIC decoders at the receivers when
the DSTBC is appropriately designed. Thus, there is no loss
in terms of the achievable diversity while switching the ML
decoder at the destination to PIC/PIC-SIC decoders as long as
the DSTBC is designed to satisfy the criteria in Theorems 1
and 2. We thus say that the DSTBCs satisfying the conditions
in Theorems 1 and 2 achievefull-diversity under PIC and PIC-
SIC decoding respectively.

The criteria in Theorems 1 and 2 are the same as the
criteria given in [11] for an STBC to achieve full-diversityin
a point-to-point MIMO channel with PIC/PIC-SIC decoding.
Further, these are equivalent to the criteria given in [9], [10]
for achieving full-diversity in a point-to-point MIMO channel.
Thus, all known full-diversity codes designed for the point-to-
point MIMO channel, that are available in the literature and
are conjugate linear can be used as DSTBCs to achieve full-
diversity in a relay network.

Example 1: Overlapped Alamouti Codes: These codes were
constructed in [16] for point-to-point MIMO channels with
any number of transmit antennas. These codes are conjugate
linear and are known to achieve full-diversity with ZF and
ZF-SIC decoding in point-to-point MIMO channels. Hence,
these codes can be employed in relay networks and they give
full-diversity with ZF and ZF-SIC decoding at the destination.

C. Resistance to relay node failures

Consider a DSTBCC, as in (5), designed for a relay network
with N relays and which satisfies the full-diversity condition
in Theorem 1 or Theorem 2. Supposea number of relay
nodes stop participating in the cooperative protocol, for some
a ∈ {1, . . . , N}. This may happen when the nodes leave the
network or are switched off. Also, let the destination be aware
of the nodes that are currently participating in the cooperative
transmission. Then, the DSTBCC′ seen by the destination is
the codeC with the a columns corresponding to the failed
relay nodes dropped from each codeword matrix. One would
like the new DSTBCC seen by the destination to provide full-
diversity in the relay network withN −a relays. This ensures
that good error performance is maintained in the network with
minimum protocol overhead when a subset of relay nodes stop
participating. Fori = 1, . . . ,K, let A′

i be theT2 × (N − a)
matrix formed by dropping thea columns corresponding to
the failed relay nodes from the matrixAi.

Proposition 2: Let C satisfy the full-diversity criterion of
Theorem 1 (Theorem 2) and let the destination be employed
with a PIC (PIC-SIC) decoder. Then the new DSTBCC′, seen
by the receiver when a set ofa relay nodes,1 ≤ a ≤ N ,
stop participating in the cooperative transmission, provides
full-diversity with PIC (PIC-SIC) decoding for the modified
network withN − a relays.

Proof: We give the proof for the case when the destination
employs a PIC decoder. The proof for PIC-SIC decoder is
similar. Let the grouping scheme beI1, . . . , Ig. The DSTBC
for the modified network satisfies

C′ =

{
K∑

i=1

xiA
′
i|xIk

∈ AIk
, k = 1, . . . , g

}
,

which is obtained from the designX′ =
∑K

i=1 xiA
′
i. Also,

for every k = 1, . . . , g the following is true: for every
ak ∈ ∆AIk

\ {0} and everyu ∈ R|Ic
k|, we have that the

rank of XIk
(ak) +XIc

k
(u) is N . The N columns of the

matrix XIk
(ak) +XIc

k
(u) are linearly independent overC.

Thus, theN − a columns of the matrixX ′
Ik
(ak) +X ′

Ic
k
(u),

formed by dropping thea columns fromXIk
(ak) +XIc

k
(u),

are also linearly independent. Hence, for everyk = 1, . . . , g
the following is true: for everyak ∈ ∆AIk

\ {0} and every
u ∈ R|Ic

k|, we have that the rank ofX ′
Ik
(ak) +X ′

Ic
k
(u) is

N − a. Thus, from Theorem 1, the DSTBCC′ achieves full-
diversity in the modified network withN − a relays and PIC
decoding.

Proposition 2 also tells us that new full-diversity DSTBCs
for relay networks withN−a relays can be obtained by simply
dropping any set ofa columns from a known full-diversity
DSTBC for a network withN relays. The rate of the new
code and the old code are identical, both in cspcu and bpcu.

IV. A NEW CLASS OFDSTBCS WITH FULL-DIVERSITY

PIC/PIC-SICDECODING

In this section, we construct a new class of DSTBCs with
full-diversity PIC/PIC-SIC decoding for all even number of
relaysN and number of symbols per decoding groupλ ≤ N

2 .
These codes can achieve rates uptoλ

λ+1 cspcu for anyN . This
class of codes includes a family of codes from [11], codes
in [14] and the4 antenna code of [12]. We then show that
another family of codes given in [11] for anyN ≥ 1 and
λ ≤ N can be used as DSTBCs with full-diversity PIC/PIC-
SIC decoding. These codes too can achieve rates uptoλ

λ+1
and they include a class of codes in [13] and the2 antenna
code of [12] as special cases. We also show that the Toeplitz
Codes [15] can be used as DSTBCs with full-diversity ZF and
ZF-SIC decoding.

A. A new class of codes

Let the number of relay nodesN be even and the number
of symbols per group,λ ≤ N

2 . Codes for odd number of
relays can be obtained by deleting appropriate number of
columns from the new codes constructed for even values of
N . Let n ≥ 1 be an integer andT2 = N + 2(n− 1). Number
of groupsg = 4n and number of real symbolsK = 4nλ. For
k = 1, . . . , g, thekth group is

Ik = {(k − 1)λ+ 1, (k − 1)λ+ 2, . . . , kλ}, (12)

i.e., the firstλ symbols form the first group, the secondλ
symbols form the second group and so on. The symbolsxi,



i = 1, . . . ,K, are encoded independently using a regular PAM
constellation. Fork = 1, . . . , g, define

sIk
= [s(k−1)λ+1, . . . , skλ]

T = QxIk
,

whereQ ∈ Rλ×λ is a full-diversity rotation matrix [18], [19].
For 1 ≤ m ≤ n and1 ≤ ℓ ≤ λ, defineA(m, ℓ) as in (13), at
the top of this next page. Note thatA(m, ℓ) is an Alamouti
block in real symbolss(4m−4)λ+ℓ, s(4m−3)λ+ℓ, s(4m−2)λ+ℓ

and s(4m−1)λ+ℓ. For λ < ℓ < N
2 and 1 ≤ m ≤ n, A(m, ℓ)

is recursively given byA(m, ℓ) = A(m, ℓ− λ). The proposed
DSTBC is




A(1, 1) 0 · · · 0

A(2, 1) A(1, 2) · · · 0

... A(2, 2)
. . . 0

...
...

. . . A(1, N
2 )

...
... · · · A(2, N

2 )
...

... · · ·
...

A(n, 1)
... · · ·

...

0 A(n, 2) · · ·
...

...
...

. . .
...

0 0 · · · A(n, N
2 )




, (14)

where each0 is a 2× 2 all zero matrix.
Let Dℓ = [A(1, ℓ)T ,A(2, ℓ), . . . ,A(n, ℓ)T ]T for 1 ≤ ℓ ≤

λ and letD = [DT
1 , D

T
2 , . . . , D

T
λ ]

T ∈ C2nλ×2. The matrix
D containsnλ Alamouti blocks, placed one below the other.
Because of the Alamouti structure, the second column ofD
is composed of complex variables that are conjugates of the
complex variablessp ± isq appearing in the first column ofD.
Further, the first column ofD contains all the2nλ complex
symbolssp ± isq appearing in the design (14). Note that all
the entries appearing in the odd columns of (14) are contained
in the first column ofD and all the entries in the even columns
of (14) are contained in the second column ofD. If we choose
z as the first column ofD, then thejth column of the design
j = 1, 3, . . . , N − 1, can be expressed asBjz for someBj ∈
CT2×2nλ. Similarly, thejth column for j = 2, 4, . . . , N can
be expressed asB∗

j z
∗ for someBj ∈ C

T2×2nλ. Thus, the
design (14) is conjugate linear andT1 = 2nλ is the length of
the vectorz that the source transmits to the relays during the
broadcast phase. The rate of the DSTBC (14) is

R =
K

2(T1 + T2)
=

2nλ

2nλ+N + 2(n− 1)

=
λ

λ+ 1 + N−2
2n

cspcu.

By increasingn, rates arbitrarily close toλ
λ+1 can be achieved.

However, increasingn also increases the delay parametersT1

andT2.
For λ = 1, we get single-real symbol decodable codes with

rates arbitrarily close to12 for any even number of relays

N ≥ 2. With λ = 2, we get single-complex symbol (double-
real symbol) decodable codes with rates close to2

3 for any
even number of relaysN ≥ 4.

Proposition 3: The new DSTBCs of this subsection, along
with the grouping scheme (12), achieve full-diversity with
PIC-SIC decoding.

Proof: We will prove the result for the first group, i.e,
k = 1. Using a similar argument for eachk = 2, . . . , g,
we can show that the DSTBC satisfies the hypothesis of
Theorem 2 for the grouping scheme (12) and hence achieves
full diversity with PIC-SIC decoding. Theλ coordinates of
the rotated information symbol vectorsI1

act as one of the
4 real symbols in each of theN2 Alamouti blocksA(1, 1),
A(1, 2),. . . ,A(1, N2 ). SinceQ is a full-diversity rotation for the
integer lattice, for anyxI1

∈ ∆AIk
\ {0}, each of theλ coor-

dinates ofsI1
is non-zero. Hence, each of the matricesA(1, 1),

A(1, 2),. . . ,A(1, N2 ) is of full-rank. The determinant of the
submatrix ofXI1

(zI1
) +XĨ1

(u) for anyu ∈ RK−λ consist-
ing of the firstN rows and all theN columns is the product∏N

2

l=1 det(A(1, l)) 6= 0. Hence, the matrixXI1
(zI1

) +XĨ1
(u)

is of rankN for anyu ∈ RK−λ.
Proposition 4: For n = 1, 2, the new DSTBCs of this

subsection along with the grouping scheme (12) achieve full-
diversity with PIC decoding.

Proof: The proof of this proposition is similar to the proof
of Proposition 3, but uses the result of Theorem 1 instead of
Theorem 2.

Proposition 5: The subclass of the new DSTBCs of this
subsection corresponding toλ = 1 yield full diversity with
ZF and ZF-SIC decoding at the destination.

Proof: The class of codes withλ = 1 sat-
isfy A(m, 1) = A(m, 2) = · · · = A(m, N

2 ) = Dm for each
m = 1, . . . , n. It is enough to show that the DSTBCs corre-
sponding toλ = 1 satisfy the criterion of Corollary 1. Consider
any u ∈ RK \ {0}. The symbol vectorssIk

= QuIk
. Since

λ = 1, we haveQ = [1] and si = ui for i = 1, . . . ,K.
The matricesDm, m = 1, . . . , n are Alamouti matrices and
since at least onesi, i = 1, . . . ,K is non-zero, there exists an
l ∈ {1, . . . , n} such thatDm = 0 for m = 1, . . . , l − 1 and
Dl 6= 0. Note that any non-zero Alamouti matrix is full-ranked
and thusdet(Dl) 6= 0. Thus, the firstl − 1 block diagonals
of the matrix (14) are all zeros and thelth block diagonal
is composed ofDl, which is full-ranked. The determinant of
the submatrix of (14) composed of all theN columns and
N consecutive rows starting from the(2l+ 1)th row is block
upper triangular and has determinantdet(Dl)

N 6= 0. Thus the
rank ofX(u) is N . This completes the proof.

The new class of codes includes the family of codes given
in [11], [14] in the context of point-to-point MIMO channel as
a special case. The codes in [11], [14] are exactly the subset
of the new codes corresponding toλ = N

2 . When N = 4
andn = 2, we get the4 antenna code reported in [12] in the
context of point-to-point MIMO channel as special case. Thus,
the codes in [12], [14] can be used as DSTBCs to achieve full-
diversity in relay channels.



A(m, ℓ) =

[
s(4m−4)λ+ℓ + is(4m−3)λ+ℓ s(4m−2)λ+ℓ + is(4m−1)λ+ℓ

−s(4m−2)λ+ℓ + is(4m−1)λ+ℓ s(4m−4)λ+ℓ − is(4m−3)λ+ℓ

]
. (13)

B. A family of codes from [11]

In [11], a family of codes were constructed which give full-
diversity with PIC-SIC decoding when used in a point-to-point
MIMO channel. We now show that these codes can be used
as DSTBCs and they give full-diversity in a rely network also.

Let number of relays in the network be any integerN ≥ 1
and the number of real symbols per groupsλ ≤ N . Let n ≥ 1
be an integer. The number of groupsg = 2n and the number
of real symbols in the design isK = 2nλ. Let thekth group,
k = 1, . . . , g, be

Ik = {(k − 1)λ+ 1, (k − 1)λ+ 2, . . . , kλ}, (15)

i.e., the firstλ symbols form the first group, the secondλ
symbols form the second group and so on. The real symbols
xi, i = 1, . . . ,K, are encoded independently of each other
using a regular PAM constellation. Fork = 1, . . . , g, define

sIk
= [s(k−1)λ+1, . . . , skλ]

T = QxIk
,

where Q ∈ Rλ×λ is a full-diversity rotation matrix. Define
a set of doubly indexed variablesvm,ℓ, 1 ≤ m ≤ n and
1 ≤ ℓ ≤ N as follows. Form = 1, . . . , n and ℓ = 1, . . . , λ,
definevm,ℓ = s(2m−2)λ+ℓ + is(2m−1)λ+ℓ. For m = 1, . . . , n
andℓ = λ+1, . . . , N , define the variablesvm,ℓ recursively as
vm,ℓ = vm,ℓ−λ. The vector [vm,1, vm,2, . . . , vm,N ]T encodes
the two symbol vectorsxI2m−1

andxI2m
. The code proposed

in [11] is




v1,1 0 0 · · · 0
v2,1 v1,2 0 · · · 0
v3,1 v2,2 v1,3 · · · 0

...
...

...
. . .

...
...

...
... · · · v1,N

vn,1 vn−1,2 · · · · · ·
...

0 vn,2 · · · · · ·
...

...
...

... · · ·
...

0 0 0 · · · vn,N




. (16)

It is clear thatT2 = N + n − 1. All the entries in the
design (16) are of the forms(2m−2)λ+ℓ + is(2m−1)λ+ℓ and
no conjugates of these variables appear in the design. Let
tm = [vm,1, vm,2, . . . , vm,λ]

T , m = 1, . . . , n and let the vector
transmitted by the source bez = [tT1 tT2 · · · tλ]T . Since z
contains all the complex symbolss(2m−2)λ+ℓ + is(2m−1)λ+ℓ

that appear in the design (16), there exist matricesBj ∈
CT2×nλ, j = 1, . . . , N , such that the design (16) equals
[B1z B2z · · ·BNz]. Thus, (16) is a conjugate linear design.

The length of the vectorz transmitted by the source is

T1 = nλ. The rate of the DSTBC is

R =
K

2(T1 + T2)
=

nλ

nλ+N + n− 1

=
λ

λ+ 1 + N−1
n

cspcu.

By increasingn, rates close to λ
λ+1 can be achieved. The

codes of this subsection have lower rates than the codes of
Section IV-A for identical delayT1 + T2. However, the class
of DSTBCs of this subsection include codes for all values
of λ = 1, . . . , N and anyN ≥ 1, whereas the codes in
Section IV-A are only forλ = 1, . . . , N

2 and even values of
N .

In [11], in the context of STBCs for point-to-point MIMO
channels, it was shown that the class of codes of this sub-
section satisfies the criterion in Theorem 2 and the subclass
of codes corresponding ton = 1, 2 satisfy the criterion in
Theorem 1. Thus, the class of DSTBCs of this subsection
give full-diversity with PIC-SIC decoding under the grouping
scheme (15) and the subclass of codes corresponding to
n = 1, 2 give full-diversity under PIC decoding with grouping
scheme (15).

The family of DSTBCs of this subsection include a class of
codes from [13] with a lower complexity grouping scheme [11]
(corresponding toλ = N ) and the Toeplitz Codes [15]
(corresponding toλ = 1) as special cases. ForN = 2 and
n = 2, we get the2 antenna code given in [12] in the context
of point-to-point MIMO channels as special case.

Proposition 6: The Toeplitz codes give full-diversity as
DSTBCs when a ZF or ZF-SIC receiver is used at the
destination.

Proof: The Toeplitz codes correspond to the caseλ = 1,
i.e.,vm,1 = vm,2 = · · · = vm,N = wm for eachm = 1, . . . , n.
It is enough to show that the Toeplitz codes satisfy the
hypothesis of Corollary 1. In order to prove the hypothesis
of Corollary 1, it is enough to show that for any set of values
[w1, . . . , wn]

T ∈ Cn \ {0}, the resulting matrix (16) is full-
ranked. Since[w1, . . . , wn]

T is a non-zero vector, there exists
an l ∈ {1, . . . , n} such thatwm = 0 for m = 1, . . . , l− 1 and
wl 6= 0. Thus, the firstl−1 diagonal layers of (16) are zero and
all the entries of thelth diagonal are non-zero. This implies
that the resulting matrix has linearly independent columnsand
hence is full-ranked.

In [20], it was shown that the Toeplitz codes yield full
diversity with a ZF or MMSE receiver whenND = 1.
Proposition 6 says that the Toeplitz codes give full diversity for
anyND ≥ 1 with ZF and ZF-SIC decoding at the destination.

V. COMPARISON WITH MULITGROUP ML DECODABLE

FULL-DIVERSITY DSTBCS

In this section, we first compare the rates achievable by the
full-diversity PIC/PIC-SIC decodable codes of Section IV with



that of the multigroup ML decodable full-diversity DSTBCs
available in the literature. It is shown that, the proposed codes
in Section IV achieve higher rates than the multigroup ML
decodable codes of same decoding complexities. The higher
rates achieved by the proposed codes can lead to better Bit
Error Rate (BER) performance. In the second half of this
section, we compare the BER performance of the new codes of
Section IV-A with multigroup ML decodable DSTBCs of same
decoding complexity for a few specific network configurations.
The simulation results show that the new codes have a better
BER performance than the known low decoding complexity
DSTBCs in the literature.

A. Comparison of achievable rates

The decoding complexity of a multigroup ML decoding
DSTBC or a PIC/PIC-SIC decodable DSTBC is determined by
the number of real symbols per decoding group,λ. If a sphere
decoder is used at the destination to decode the DSTBC, the
dimension of the sphere decoding algorithm will be equal toλ.
Thus, it is desirable that a DSTBC have a highR and a lowλ.
Further, two DSTBCs having the same value ofλ have similar
decoding complexity. Table I summarizes the comparison of
the proposed codes in this paper with other low complexity
DSTBCs available in the literature.

(i) λ = 1: Single real symbol ML decodable DSTBCs called
Distributed Orthogonal Space-Time Block Codes (DOSTBCs)
were constructed in [4] for any number of relaysN ≥ 2. The
rate of these codes is upper bounded by22+N

cspcu. As the
number of relays increases, the rate decreases rapidly. In [5],
single real symbol ML decodable DSTBCs were constructed
for any number of relaysN with rate 1

4 cspcu. The new codes
of Section IV-A and the codes in Section IV-B corresponding
to λ = 1 can achieve rates upto12 cspcu, which is twice the
maximum rate reported in the literature so far for single real
symbol decodable full-diversity DSTBCs.

(ii) λ = 2: Single complex (double real) symbol ML decod-
able codes for any number of relaysN ≥ 4 with rate at the
most 4

4+N
cspcu were constructed in [7]. The single complex

symbol PIC-SIC decodable codes of Section IV achieve rates
upto 2

3 cspcu irrespective of the number of relays. The codes
in [7] have rates less than12 cspcu and the rate decreases with
increase in the number of relay nodes.

(iii) λ = N
2 : In [8], 4-group ML decodable DSTBCs were

constructed for any number of relaysN = 2m, m ≥ 1, with
rate 1

2 cspcu. The number of real symbols per ML decoding
group isN

2 . Forλ = N
2 , the codes in Sections IV-A and IV-B

can achieve rates arbitrarily close toN
N+2 . Thus, the new codes

have higher rate than the codes in [8] when the number of
relaysN > 2. For N = 2, the code in Section IV-A with
n = 1 and λ = 1 gives a rate of12 cspcu and this code is
same as the Alamouti code [21].

(iv) λ = N : Using commuting set of matrices from Division
Algebras [22],2-group ML decodable, rate12 DSTBCs with
λ = N were constructed in [23] for even number of relays
N . The codes in Section IV-B withλ = N achieve rates upto
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Fig. 2. BER performance at2 bpcu forλ = 1, N = 8 andND = 1
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Fig. 3. BER performance at2 bpcu forλ = 2, N = 6 andND = 4

N
N+1 and hence have higher rate than the codes in [23] for all
N > 1 number of relays.

For same value ofλ and equal delayT1 + T2, the new
codes in Section IV-A have higher rate than the codes from
Section IV-B. However, the codes in Section IV-A are only
for 1 ≤ λ ≤ N

2 , whereas the codes in Section IV-B are for
1 ≤ λ ≤ N .

B. Simulation Results

For all the codes we use the power allocationπ1 = 1
andπ2 = 1

R
. This is the optimal power allocation when the

destination uses an ML decoder to decode a DSTBC [3].
We first compare the performance of the new single real
symbol PIC-SIC decodable, i.e., ZF-SIC decodable code of
Section IV-A with the single real symbol ML decodable code



TABLE I
COMPARISON OF FULL-DIVERSITY, LOW DECODING COMPLEXITYDSTBCS

DOSTBCs Srinath et. al Harshan et. al. Rajan et. al. Kiran et. al Codes in Codes in

[4] [5] [7] [8] [23] Sec. IV-A Sec.IV-B

Number of relays,N ≥ 2 ≥ 1 ≥ 4 2m, m ≥ 1 2m, m ≥ 1 2m, m ≥ 1 ≥ 1

Real symbols per group,λ 1 1 2
N

2
N ≤ N

2
≤ N

Rate,R 2

2+N

† 1

4

4

4+N

† 1

2

1

2

λ

λ+1

‡ λ

λ+1

‡

Full-diversity decoding method ML ML ML ML ML PIC-SIC PIC-SIC
† Upper bound on achievable rate.‡Supremum of achievable rates.

of Srinath et. al [5] for number of relaysN = 8 and number
of antennas at the destinationND = 1. The new code has
parametersn = 3, λ = 1 andR = 1

3 cspcu. The real symbols
are encoded using regular8-PAM. The code from [5] has rate
1
4 cspcu and the symbols are encoded using regular16-PAM.
Both the DSTBCs have an information rate of2 bpcu and
Gray mapping is used to map bits to symbols for both codes.
The new code is ZF-SIC decoded whereas the code from [5]
is ML decoded. The BER performance is shown in Fig. 2. It
is seen that the new code performs considerably better than
the code in [5]. At a BER of10−4 the new code beats the
code from [5] by about5 dB.

The comparison of performance of single complex decod-
able code given by Harshan et. al. [7] with the new code in
Section IV-A forN = 6 relays andND = 4 antennas at the
destination is shown in Fig. 3. The new code has parameters
λ = 2, n = 2 andR = 1

2 cspcu. The symbols are encoded
using regular4-PAM. The code from [7] has a rate of13 cspcu
and the symbols are encoded pairwise using rotated64-QAM
constellation. Both the DSTBCs have an information rate of
2 bpcu and Gray mapping is used in both the cases to map
information bits to symbols. The new code is PIC-SIC decoded
whereas the code from [7] is ML decoded. From Fig. 3, we
see that the new code performs better than the code from [7].

VI. D ISCUSSION

In this paper, we have derived full-diversity criteria for a
DSTBC to achieve full diversity with PIC/PIC-SIC decoding
performed at the destination for a wireless relay network
with single antenna at the source and the relays. We have
also proposed DSTBCs with low complexity PIC/PIC-SIC
decoders that achieve higher rates and perform better than the
best known low complexity DSTBCs available in the literature.
The following questions remain open.

• What is the full diversity criterion for PIC/PIC-SIC
decoding in the case of relay networks in which all the
nodes are employed with multiple antennas?

• What is the criterion to maximize the coding gain when
the destination performs PIC/PIC-SIC decoding?

• What is the full diversity criterion for PIC/PIC-SIC
decoding for multihop relay networks with amplify and
forward cooperation?

• In this paper, the full-diversity criterion was derived only
for conjugate linear DSTBCs. Does this condition hold
for a general DSTBC?

• What are the optimal power allocation factorsπ1 andπ2

for PIC/PIC-SIC decoding?
• In this paper, we have considered relay networks that are

coherent (destination has full channel state information)
and synchronous (transmissions from relays to destination
are synchronized at symbol level). Finding a full-diversity
criterion and constructing high-rate, full-diversity DST-
BCs with low PIC/PIC-SIC decoding complexity for
asynchronous and non-coherent relay networks is an
interesting direction for future work.
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APPENDIX A

PROOF OFTHEOREM 1

For any two square matricesA andB of same dimension,
the notationA � B implies thatB −A is a positive semidefi-
nite (PSD) matrix. Letβ = max

{
||B̄j ||2F | j = 1, . . . , N

}
and

α = T2ND + βπ2P
π1P+1

∑N

j=1

∑ND

l=1 |gj,l|2. We use the following
proposition to prove Theorem 1.

Proposition 7: The covariance matrix of̃vec(U), Γ satisfies
Γ � αI2T2ND

.
Proof: Since Γ is a covariance matrix, it is a PSD

matrix and hence has a complete set of eigenvalues. Ifλi,
i = 1, . . . , 2T2ND, are the eigenvalues ofΓ, then we have:
Γ � ∑2T2ND

i=1 λiI = Tr(Γ)I. From (7), Tr(Γ) = Tr(Γ′
Re).

Note that Γ′ is itself a covariance matrix and hence is
Hermitian. Thus, all of its diagonal entries are real and
hence,Tr(Γ′

Re) = Tr(Γ′). From Proposition 1, we have:
Tr(Γ) =

∑ND

l=1 Tr(Cl,l), whereCl,l is given in Proposition 1.
Thus,Tr(Γ)

=

ND∑

l=1


 π2P

π1P + 1

N∑

j=1

|gj,l|2Tr(B̄jB̄
H
j ) + T2




=
π2P

π1P + 1

N∑

j=1

ND∑

l=1

|gj,l|2||B̄j ||2F + T2ND

≤ π2P

π1P + 1

N∑

j=1

ND∑

l=1

|gj,l|2β + T2ND = α.



The desired result follows.
Consider the use ofC in (5) as an STBC for the point-

to-point MIMO channel withN transmit antennas andND

receive antennas,

YMIMO =
√
ρXH +W. (17)

Here,YMIMO is theT ×ND received matrix,X is theT ×N
codeword matrix,H is theN ×ND channel gain matrix,W
is theT ×ND noise matrix andρ is the transmit power. The
received matrix can be vectorized as

yMIMO = ṽec(YMIMO) =

K∑

i=1

xi

√
ρAiH + ṽec(W )

= G′x+ ṽec(W ),

where,

G′ =
√
ρ[ṽec(A1H) · · · ṽec(AKH)] = [g′1 g′2 · · · g′K ], (18)

and is similar to (6). For any nonempty subset
I = {i1, . . . , i|I|} ⊂ {1, . . . ,K}, with i1 < i2 < · · · < i|I|,
let G′

I = [g′i1 g′i2 · · · g′iI ]. For k = 1, . . . , g, let V ′
Ik

be the
column space of the matrixG′

Ic
k

andP ′
Ik

be the matrix that

projects a vector onto the subspaceV ′
Ik

⊥.
Theorem 3 ([10]): If the following two conditions hold:
1) for any X1, X2 ∈ C and X1 6= X2 we have

rank(X1 −X2) is N and
2) for every k = 1, . . . , g, every H 6= 0 and every

ak ∈ ∆AIk
\ {0}, we haveG′

Ik
ak /∈ V ′

Ik
,

then, there exists a real numberc > 0 such that, for any
k = 1, . . . , g, anyak ∈ ∆AIk

\{0} and any channel realization
H 6= 0, we have:||P ′

Ik
G′

Ik
ak||2F > cρ||H ||2F .

The results of Theorem 3 are independent of the statistics of
the channelH or the noiseW . The matrixG′ in Theorem 3
is identical to the matrix (6), which arises during the PIC
decoding of the DSTBCC in a relay network withN relays
andND antennas at the destination, whenρ = π1π2P

2

π1P+1 . Hence,
the result of Theorem 3 can be used to prove diversity results
for the relay network if the two conditions in the theorem are
satisfied. Now, the criterion in the hypothesis of Theorem 1
is same as the criterion given in [11] for the STBCC to
achieve full-diversity in the point-to-point MIMO channel(17)
with PIC decoding under the grouping schemeI1, . . . , Ig.
Further, it is shown in [11] that this criterion is equivalent
to the sufficient condition given in Theorem 3. Thus, for
any k = 1, . . . , g, any ak ∈ ∆AIk

\ {0} and any channel
realization (3)H 6= 0 of the relay network (1) , we have:

||P ′
Ik
G′

Ik
ak||2F > cρ||H ||2F , (19)

whereρ = π1π2P
2

π1P+1 .
Let k ∈ {1, . . . , g}. We are interested in deriving an

upper bound on the pairwise error probability during PIC
decoding (9) of thekth symbol vectorxIk

. the received vector
y in (8) satisfies:

y = Gx+ n =

g∑

k=1

GIk
xIk

+ n.

Since PIk
is the projection onto the subspace which is

orthogonal to the subspace spanned by the column vectors
of GIℓ

, 1 ≤ ℓ ≤ g and ℓ 6= k, we have thatPIk
GIℓ

= 0 for
1 ≤ ℓ ≤ g andℓ 6= k. Thus,

PIk
y =

g∑

ℓ=1

PIk
GIℓ

xIℓ
+ PIk

n = PIk
GIk

xIk
+ PIk

n.

The PIC decoder (9) is

arg minx̃Ik
∈AIk

||PIk
y − PIk

GIk
x̃Ik

||2F
= arg minx̃Ik

∈AIk
||PIk

GIk
xIk

+ PIk
n− PIk

GIk
x̃Ik

||2F
= arg minx̃Ik

∈AIk
||PIk

GIk
(xIk

− x̃Ik
) + PIk

n||2F .

The Gaussian noise vectorn is white and has zero mean.
SincePIk

is the projection ontoV ⊥
Ik

, the noise vectorPIk
n

has no components in the subspaceVIk
and the component

of PIk
n along the subspaceV ⊥

Ik
is a white Gaussian noise

with zero mean and unit covariance. The difference signal
vector PIk

GIk
(xIk

− x̃Ik
) also lies in the subspaceV ⊥

Ik
.

Thus, the probability that the PIC decoder will decide in favor
of x̃Ik

when the symbolxIk
is transmitted, given the channel

realizationH , is PEP(xIk
→ x̃Ik

|H) = Q
(

||PIk
GIk

ak||F
2

)
,

whereQ(·) is the Gaussian tail function andak = xIk
− x̃Ik

.
Using the Chernoff bound on theQ function, we have

PEP(xIk
→ x̃Ik

|H) ≤ exp

(−||PIk
GIk

ak||2F
4

)
. (20)

In order to derive a lower bound on||PIk
GIk

ak||2F ,
we want to expressPIk

and GIk
in terms of P ′

Ik
and

G′
Ik

. Let A = Γ− 1

2 denote the square root ofΓ−1. Since
Γ and Γ−1 are PSD and symmetric,A can be chosen to
be the unique PSD symmetric square root ofΓ−1 [24].
From Proposition 7, we haveA � 1√

α
I2T2ND

. Let QT
Ik

be a matrix whose columns form an orthonormal basis of
V ⊥
Ik

and Q′T
Ik

be a matrix whose columns form an or-

thonormal basis ofV ′⊥
Ik

. Thus,PIk
= QIk

(
QT

Ik
QIk

)−1
QT

Ik

and P ′
Ik

= Q′
Ik

(
Q′T

Ik
Q′

Ik

)−1
Q′T

Ik
. Also, for any vec-

tor v ∈ R
2T2ND , we have ||PIk

v||F = ||QIk
v||F and

||P ′
Ik
v||F = ||Q′

Ik
v||F . SinceG = AG′, it is clear that

GIk
= AG′

Ik
, (21)

andVIk
= AV ′

Ik
= {Av|v ∈ V ′

Ik
}.

Proposition 8: For each k = 1, . . . , g, we have
V ⊥
Ik

= A−1V ′⊥
Ik

.
Proof: We have,

V ⊥
Ik

= (AV ′
Ik
)⊥ = {w|wTAv = 0 ∀v ∈ V ′

Ik
}

= {w|(ATw)T v = 0 ∀v ∈ V ′
Ik
}.

ReplacingATw = Aw by u, we have,

V ⊥
Ik

= {A−1u|uT v = 0 ∀v ∈ V ′
Ik
}

= A−1{u|uTv = 0 ∀v ∈ V ′
Ik
} = A−1V ′⊥

Ik
.

This completes the proof.



From Proposition 8, it is clear thatV ⊥
Ik

is spanned by the
column vectors of the matrixA−1Q′T

Ik
. Thus,

PIk
= A−1Q′T

Ik

(
Q′

Ik
A−1TA−1Q′T

Ik

)−1

Q′
Ik
A−1T

= A−1Q′T
Ik

(
Q′

Ik
A−2Q′T

Ik

)−1
Q′

Ik
A−1. (22)

Proposition 9: For any k = 1, . . . , g and any
ak ∈ ∆AIk

\ {0}, we have:||PIk
GIk

ak||2F >
cρ||H||2F

α
.

Proof: Consider||PIk
GIk

ak||2F = aTkG
T
Ik
PT
Ik
PIk

GIk
ak.

Using (21) and (22), we get||PIk
GIk

ak||2F
= aTkG

′T
Ik
Q′T

Ik

(
Q′

Ik
A−2Q′T

Ik

)−1
Q′

Ik
G′

Ik
ak

= ||
(
Q′

Ik
A−2Q′T

Ik

)− 1

2 Q′
Ik
G′

Ik
ak||2F

SinceA � 1√
α
I2T2ND

and the rows ofQ′
Ik

are orthonormal,

we have
(
Q′

Ik
A−2Q′T

Ik

)− 1

2 � 1√
α
(Q′

Ik
Q′T

Ik
)−

1

2 = 1√
α
I. Thus,

||PIk
GIk

ak||2F

≥ || 1√
α
IQ′

Ik
G′

Ik
ak||2F =

1

α
||Q′

Ik
G′

Ik
ak||2F

=
1

α
||P ′

Ik
G′

Ik
ak||2F >

cρ||H ||2F
α

.

The last step follows from (19). This completes the proof.
Using the bound from Proposition 9 with (20) we get

PEP(xIk
→ x̃Ik

|H) ≤ exp

(
−cρ||H ||2F

4α

)
.

From (3), we have||H ||2F =
∑N

j=1 |fj|2
(∑ND

l=1 |gj,l|2
)

. The

squared absolute values of the channel gains|fj |2 and
|gj,l|2 are all independent of each other and are exponential
random variables with unit mean. Lettj =

∑ND

l=1 |gj,l|2,
for j = 1, . . . , N . Then, the random variables|fj |2tj ,
j = 1, . . . , ND are independent of each other. Further,
exp

(
− cρ||H||2F

4α

)
=

∏N
j=1 exp

(
− cρ|fj |2tj

4α

)
. Since|fj|2 is ex-

ponentially distributed with unit mean, for anys > 0, we have
E(exp

(
−s|fj|2

)
) = 1

1+s
, for j = 1, . . . , N . Thus, the average

pairwise error probabilityPEP(xIk
→ x̃Ik

)

≤ E

(
exp

(
−cρ||H ||2F

4α

))
= E




N∏

j=1

exp

(
−cρ|fj|2tj

4α

)


= E




N∏

j=1

1

1 +
cρtj
4α


 = E




N∏

j=1

(
1 +

cρtj
4α

)−1

 .

Substituting the values forρ and α as ρ = π1π2P
2

π1P+1 and

α = T2ND + βπ2P
π1P+1

∑N
j′=1 tj′ , we get1 + cρtj

4α

= 1+
cπ1π2P

2tj

4
[
(π1P + 1)T2ND + βπ2P

∑N

j′=1 tj′
] .

For largeP , π1P + 1 ≈ π1P . Using this approximation and
on further simplification, we getPEP(xIk

→ x̃Ik
)

≤ E




N∏

j=1

[
1 +

cπ2P

4T2ND

tj

1 + βπ2

π2T2ND

∑N

j′=1 tj′

]−1

 . (23)

In Theorem 4 of [3] an upper bound for a more general
expression is given. The result in [3] for the special case (23)
is as follows.

Theorem 4 ([3]): For largeP , the pairwise error probabil-
ity (23) can be upper bounded byc0P−d, wherec0 is a positive
real number and

• d = N
(
1− log(logP )

logP

)
if ND = 1 and

• d = N if ND > 1.

This completes the proof of Theorem 1.

APPENDIX B

PROOF OFTHEOREM 2

Let d = 1{ND = 1}N
(
1− log(logP )

logP

)
+ 1{ND > 1}N

andP(·) denote the probability of an event. Fork = 1, . . . , g,
let Ek denote the event that thekth information symbol
vector xIk

is erroneously decoded by the PIC-SIC decoder.
We want to prove thatP(E1 ∪ · · · ∪ Eg) ≤ c0P

−d, for large
P and for some positive real numberc0. For k = 1, . . . , g,
we have

P(Ek) = P(Ek|Ec
1 ∩ · · · ∩ Ec

k−1)P(E
c
1 ∩ · · · ∩ Ec

k−1)

+ P(Ek|E1 ∪ · · · ∪Ek−1)P(E1 ∪ · · · ∪ Ek−1)

≤ P(Ek|Ec
1 ∩ · · · ∩ Ec

k−1) · 1 + 1 · P(E1 ∪ · · · ∪ Ek−1)

≤ P(Ek|Ec
1 ∩ · · · ∩ Ec

k−1) +

k−1∑

k′=1

P(Ek′ ). (24)

It is enough to show thatP(Ek|Ec
1 ∩ · · · ∩ Ec

k−1) ≤ ckP
−d

for k = 1, . . . , g and some set of positive real numbers{ck}.
Then, from (24), it can be shown using recursion that

P(E1 ∪ · · · ∪ Eg) ≤
g∑

k=1

P(Ek) ≤ c0P
−d,

for some c0 > 0. We now derive the upper bound for
P(Ek|Ec

1 ∩ · · · ∩ Ec
k−1), the probability of erroneously de-

coding thekth symbol vector when all the previous symbol
vectors have been decoded correctly.

Let G′ be as defined in (18). Fork = 1, . . . , g, let Ṽ ′
Ik

be
the column space of the matrixG′

Ĩk
and P̃ ′

Ik
be the matrix

that projects a vector onto the subspaceṼ ′⊥
Ik

.
Theorem 5 ([10]): If the following two conditions hold:

1) for any X1, X2 ∈ C and X1 6= X2 we have
rank(X1 −X2) is N and

2) for every k = 1, . . . , g, every H 6= 0 and every
ak ∈ ∆AIk

\ {0}, we haveG′
Ĩk
ak /∈ Ṽ ′

Ik
,

then, there exists a real numberc > 0 such that, for any
k = 1, . . . , g, anyak ∈ ∆AIk

\{0} and any channel realization
H 6= 0, we have:||P̃ ′

Ik
G′

Ik
ak||2F > cρ||H ||2F .

The criterion in the hypothesis of Theorem 2 is same
as the criterion given in [11] for the STBCC to achieve
full-diversity in the point-to-point MIMO channel (17) with
PIC-SIC decoding under the grouping schemeI1, . . . , Ig.
Further, it is shown in [11] that this criterion is equivalent
to the sufficient condition given in Theorem 5. Thus, for



any k = 1, . . . , g, any ak ∈ ∆AIk
\ {0} and any channel

realization (3)H 6= 0 of the relay network (1), we have:
||P̃ ′

Ik
G′

Ik
ak||2F > cρ||H ||2F , whereρ = π1π2P

2

π1P+1 .
Consider thekth iteration in the PIC-SIC decoding algo-

rithm given in Section III-A in the situation where all the
previous symbol vectorsxI1

, . . . , xIk−1
have been decoded

correctly. Due to the successive interference cancellation 11,
the signalyk will only have a noisy version of the contributions
from symbol vectorsxIk

, . . . , xIg
, i.e.,

yk =

g∑

ℓ=k

GIℓ
xIℓ

+ n.

Since P̃Ik
is the projection onto the subspace which is

orthogonal to the subspace spanned by the column vectors
of GIℓ

, k < ℓ ≤ g, we have thatP̃Ik
GIℓ

= 0 for k < ℓ ≤ g.
Thus,

P̃Ik
yk =

g∑

ℓ=k

P̃Ik
GIℓ

xIℓ
+ P̃Ik

n = P̃Ik
GIk

xIk
+ P̃Ik

n.

The PIC-SIC decoder in thekth iteration is

arg minx̃Ik
∈AIk

||P̃Ik
yk − P̃Ik

GIk
x̃Ik

||2F
= arg minx̃Ik

∈AIk
||P̃Ik

GIk
xIk

+ P̃Ik
n− P̃Ik

GIk
x̃Ik

||2F
= arg minx̃Ik

∈AIk
||P̃Ik

GIk
(xIk

− x̃Ik
) + P̃Ik

n||2F .

Using an argument similar to the proof of Theorem 1,
the probability that the PIC-SIC decoder will decide
in favor of x̃Ik

when the symbolxIk
is transmitted,

given the channel realizationH , can be shown to be

PEP(xIk
→ x̃Ik

|H,Ec
1 ∩ · · · ∩Ec

k−1) = Q
( ||P̃Ik

GIk
ak||F

2

)
,

whereak = xIk
− x̃Ik

. Using the Chernoff bound on theQ
function, we have

PEP(xIk
→ x̃Ik

|H,E
c

1 ∩ · · · ∩E
c

k−1) ≤ exp

(

−||P̃Ik
GIk

ak||
2
F

4

)

.

Using an argument similar to the proof of Theorem 1, it can
be shown that

||P̃Ik
GIk

ak||2F ≥ 1

α
||P̃ ′

Ik
G′

Ik
ak||2F >

cρ||H ||2F
α

,

and then the average pairwise error probability,
PEP(xIk

→ x̃Ik
|Ec

1 ∩ · · · ∩Ec
k−1) can be shown to be

upper bounded bybkP−d for somebk > 0. This completes
the proof.
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