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Abstract

This work originates from a heart’s images tracking which is to generate an ap-
parent continuous motion, observable through intensity variation from one starting
image to an ending one both supposed segmented. Given two images ρ0 and ρ1, we
calculate an evolution process ρ(t, ·) which transports ρ0 to ρ1 by using the optimal
extended optical flow. In this paper we propose an algorithm based on a fixed point
formulation and a time-space least squares formulation of the mass conservation
equation for computing the optimal mass transport problem. The strategy is imple-
mented in a 2D case and numerical results are presented with a first order Lagrange
finite element, showing the efficiency of the proposed strategy.
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1 Introduction

Modern medical imaging modalities can provide a great amount of informa-
tion to study the human anatomy and physiological functions in both space
and time. In cardiac Magnetic Resonance Imaging (MRI) for example, several
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slices can be acquired to cover the heart in 3D and at a collection of discrete
time samples over the cardiac cycle. From these partial observations, the chal-
lenge is to extract the heart’s dynamics from these input spatio-temporal data
throughout the cardiac cycle [12], [13].

Image registration consists in estimating a transformation which insures the
warping of one reference image onto another target image (supposed to present
some similarity). Continuous transformations are privileged, the sequence of
transformations during the estimation process is usually not much considered.
Most important is the final resulting transformation and not the way one image
will be transformed to the other. Here, we consider a reasonable registration
process to continuously map the image intensity functions between two images
in the context of cardiac motion estimation and modeling.

The aim of this paper is to present, in the context of extended optical flow, an
algorithm to compute the optimal time dependent transportation plan without
using Lagrangian techniques.

The paper is organized as follows. The introduction is ended, by recalling the
optimal extended optical flow model (OEOF) . In section 2, the algorithm we
propose is presented. Its convergence is discussed. In section 3 it is proved that
solutions obtained with the proposed algorithm are solutions to the optimal
extended optical flow, that is to say to the time dependent optimal mass
transportation problem. Section 4 deals with numerical results. A 2D cardiac
medical image is considered.

1.1 The OEOF method

Let us denote by ρ the intensity function, and by v the velocity of the apparent
motion of brightness pattern. An image sequence is considered via the gray-
value map ρ : Q = (0, 1)×Ω → R where Ω ⊂ R

d is a bounded regular domain,
the support of images, for d = 1, 2, 3. If image points move according to the
velocity field v : Q → R

d, then gray values ρ(t, X(t, x)) are constant along
motion trajectories X(t, x). One obtains the optical flow equation:

d

dt
ρ(t, X(t, x)) = ∂tρ(t, X(t, x)) + ( v | ∇Xρ(t, X(t, x)) )

Rd = 0. (1)

The assumption that the pixel intensity does not change during the movement
is in some cases too restrictive. A weakened assumption sometimes called ex-
tended optical flow, can replace the intensity preservation by a mass preser-
vation condition which reads:

∂tρ+ ( v | ∇xρ )Rd + div (v)ρ = 0. (2)
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The previous equations lead to an ill-posed problem for the unknown (ρ, v).
Variational formulations or relaxed minimizing problems for computing jointly
(ρ, v) have been first proposed in [4] and after by many other authors. Here
our concern is somewhat different. Finding (ρ, v) simultaneously is possible by
solving the optimal mass transport problem (3)-(4), developed in [5,6].

Let ρ0 and ρ1 be the cardiac images between two times arbitrary fixed to
zero and one, the mathematical problem reads: find ρ the gray level function
defined from Q with values in [0, 1] verifying




∂tρ(t, x) + div(v(t, x)ρ(t, x)) = 0, in (0, 1)× Ω

ρ(0, x) = ρ0(x); ρ(1, x) = ρ1(x)
(3)

The velocity function v is determined in order to minimize the functional:

inf
ρ,v

∫ 1

0

∫

Ω
ρ(t, x)‖v(t, x)‖2 dtdx. (4)

Thus we get an image sequence through the gray-value map ρ. Let us mention
[3], for example, where the optimal mass transportation approach is used in
images processing. For general properties of optimal transportation, the reader
is referred to the books by C. Villani [14] and L. Ambrosio et al. [2].

2 Algorithm for solving the Optimal Extended Optical Flow

In what follows, let us specify our hypotheses.

H1 Ω is a bounded C2,α domain satisfying the exterior sphere condition.
H2 ρi ∈ C1,α(Ω) for i = 1, 2, and ρ0 = ρ1 on ∂Ω. Moreover there exist two

constants such that 0 < β ≤ ρi ≤ β in Ω.

Let ρ0 ∈ C1,α([0, 1]×Ω) be given by ρ0(t, x) = (1− t)ρ0(x) + tρ1(x). We have
‖∂tρ

0‖C0,α([0,1]×Ω) ≤ C(ρ0, ρ1) and ∂tρ
0|∂Ω = 0.

For each t ∈ [0, 1], our need for problem (3)-(4) is a velocity field vanishing on
∂Ω. To do so, the following method is used.

• Compute 


− div(ρn(t, ·)∇η) = 0 in Ω

ρn(t, ·)∂nη = 1 on ∂Ω,
(5)

and set Cn(t) = 1
|∂Ω|

∫
Ω ∂tρ

nη dx.

• For each t ∈ [0, 1] compute ϕn+1 solution to
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− div(ρn(t, ·)∇ϕn+1) = ∂tρ

n(t, ·), in Ω

ϕn+1 = Cn(t) on ∂Ω.
(6)

• Set vn+1 = ∇ϕn+1.
• Compute ρn+1, L2-least squares solution to




∂tρ

n+1(t, x) + div(vn+1(t, x)ρn+1(t, x)) = 0, in (0, 1)× Ω

ρn+1(0, x) = ρ0(x); ρn+1(1, x) = ρ1(x).
(7)

For each t ∈ [0, 1], since ρn(t, ·), and ∂tρ
n(t, ·) ∈ C0,α(Ω), theorem 6.14 p. 107 of

[11] applies, and there exists a unique ϕn+1(t, ·) ∈ C2,α(Ω) solution of problem
(6). In problem (6) the time is a parameter. As the following regularities with
respect to time are verified: ρn ∈ C1,α; ∂tρ

n ∈ C0,α; Cn ∈ C0,α. The classical
C2,α(Ω) a priori estimates for solutions to elliptic problems allow us to prove
that ϕn+1 is a C0,α function with respect to time. So we have:

‖ϕn+1‖C0,α([0,1];C2,α(Ω)) ≤M(‖Cn‖C0,α([0,1]) + ‖∂tρ
n‖C0,α([0,1]×Ω)).

Consider the extension of ϕn+1 by Cn outside of the domain Ω; still denoted
by ϕn+1. Since the right hand side of equation (6) vanishes on ∂Ω, this ex-
tension is regular, and the function vn+1 vanish outside Ω and belongs to
C0,α([0, 1];C1,α(R2)).

Define the two flows Xn+1
± (s, t, x) ∈ C1,α([0, 1]× [0, 1]× R

2;R2) by





d
ds
Xn+1

± (s, t, x) = ±vn+1(s,Xn+1
± (s, t, x)) in (0, 1)

Xn+1
± (t, t, x) = x.

(8)

We have the following

Lemma 2.1 The L2-least squares solution to problem (7) is given by:

ρn+1(t, x) = (1− t)
ρ2
0
(Xn+1

+
(0,t,x))

ρn(t,x)

+t
ρ2
1
(Xn+1

+
(1,t,x))

ρn(t,x)
.

(9)

Moreover, if 0 < β ≤ ρn ≤ β in [0, 1] × Ω, then ρn+1 ∈ C1,α([0, 1]× Ω), and
verifies the same property.

Proof. We have Xn+1
− (1−s, 1− t, x) = Xn+1

+ (s, t, x) for every (s, t, x) ∈ [0, 1]×
[0, 1]× R

2 (see for example [1]).

Let us express equation (7) along the integral curves of equation (8). The
L2-least squares solution to the ordinary differential equation with initial and
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final conditions reads

ρn+1(s,Xn+1
+ (s, t, x))) = (1− s)e−

∫ s

0
div(vn+1(τ,Xn+1

+
(τ,t,x))) dτρ0(X

n+1
+ (0, t, x))

+se
∫ 1

s
div(vn+1(τ,Xn+1

+
(τ,t,x))) dτρ1(X

n+1
+ (1, t, x)).

(10)
Equation (6) gives the following expression for the divergence

div(vn+1(s,Xn+1
+ (s, t, x)) = div(vn+1(s,Xn+1

− (1− s, 1− t, x))

=
d

ds
ln(ρn(s,Xn+1

− (1− s, 1− t, x))). (11)

The representation formula (9) is straightforwardly deduced from (6). The
regularity of the function ρn+1 is a consequence of the regularity of the flow
Xn+1

+ . �

Let us now consider the convergence of the algorithm (5)-(7).

Theorem 2.2 There exist (ρ, ϕ) ∈ C1([0, 1]×Ω)×C0([0, 1];C2(Ω)), L2-least

squares solution, respectively solution to




∂tρ(t, x) + div(∇ϕ(t, x)ρ(t, x)) = 0, in (0, 1)× Ω

ρ(0, x) = ρ0(x); ρ(1, x) = ρ1(x) inΩ
(12)




− div(ρ(t, ·)∇ϕ) = ∂tρ(t, ·), in Ω

ϕ = C(t); ∇ϕ = 0 on ∂Ω
(13)

with C(t) defined by:





− div(ρ(t, ·)∇η) = 0 inΩ

ρ(t, ·) ∂nη = 1 on ∂Ω

C = 1
|∂Ω|

∫
Ω ∂tρ η dx.

(14)

Proof. Since ‖v0‖C0,α([0,1])+‖∂tρ
0‖C0,α([0,1]×Ω) is bounded, ‖ϕ

n+1‖C0,α([0,1];C2,α(Ω))

and ‖vn+1‖C0,α([0,1];C1,α(R2)) are uniformly bounded in n.

From lemma 2.1 there exists a unique ρn+1, the L2-least squares solution of
(7). Let us give an estimate for D3X

n+1
+ . Starting from

D1X
n+1
+ (s, t, x)) = vn+1(s,Xn+1

+ (s, t, x)),
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we deduce (see [1])




D3D1X

n+1
+ (s, t, x) = D2v

n+1(s,Xn+1
+ (s, t, x))D3X

n+1
+ (s, t, x)

D3X
n+1
+ (t, t, x) = Id.

(15)

Since D3D1X
n+1
+ (s, t, x) = D1D3X

n+1
+ (s, t, x) we get

D3X
n+1
+ (s, t, x) = e−

∫ s

t
D2(vn+1(τ,Xn+1

+
(τ,t,x))) dτId. (16)

Thus ‖D3v
n+1
+ ‖C0,α([0,1]2×R2) is uniformly bounded in n.

Since we have [1]:

D2X
n+1
+ (s, t, x) =

(
vn+1(s, t, x) |D3X

n+1
+ (s, t, x)

)

we obtain a bound for ‖D2v
n+1‖C0,α([0,1]2×R2) independent of n.

From theorem 2.1 we deduce that ‖ρn+1‖C1,α([0,1]×Ω) is uniformly bounded.
Since the embeddings

C0,α([0, 1];C2,α(Ω)) →֒ C0([0, 1];C2(Ω)) andC1,α([0, 1]× Ω) →֒ C1([0, 1]× Ω)

are relatively compact there is a subsequence of (ρn, ϕn) solution to (5)-(7), still
denoted by (ρn, ϕn) converging to (ρ, ϕ) in C1([0, 1]× Ω)× C0([0, 1];C2(Ω)),
and (ρ, ϕ) is the solution of (12)-(14) provided the boundary conditions to be
justified. The condition ∇ϕn|∂Ω = 0 is valid for the approximations ϕn (since
the functions can be extended by Cn outside of Ω). So the convergence in
C0([0, 1];C2(Ω)) yields the condition for the gradient of limit function. For the
approximations of function ρ, the formula given in Lemma 2.1 combined with
the regularity result show that the boundary conditions are exactly satisfied.
These conditions are thus valid for the limit function due to the convergence
in C1. �

We will show in the next section that the above least squares solution ρ is in
fact a classical solution.

3 Interpretation of solutions to problem (12)-(14)

In this section it is shown that the solution to problem (12)-(14) is a solution
to the time dependent optimal mass transportation problem.
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From one hand, remark that ϕ solution to problem (13) satisfies:

ϕ− C = Argmin
ψ∈L2((0,1);H1

0
(Ω))

1

4

∫ 1

0
‖∂tρ+ div(ρ∇ψ)‖2H−1(Ω) dt.

Since the functions (ρ, ϕ) are sufficiently regular, we have:

ϕ− C = Argmin
ψ∈L2((0,1);H1

0
(Ω)∩H2(Ω))

1

4

∫ 1

0
‖∂tρ+ div(ρ∇ψ)‖2L2(Ω) dt.

From an other hand, zero is a bound from below of the functional to be
minimized with respect to (u, ψ):

0 = 1
4

∫ 1
0 ‖∂tρ+ div(ρ∇(ϕ− C))‖2L2(Ω) dt ≤

Min

{ψ∈L2((0,1);H1(Ω)), u∈L2((0,1);L2(Ω))

∂tu+div(−u∇ψ))∈L2((0,1);L2(Ω))

∂tu+div(u∇ψ)=0

∇ψ|∂Ω=0

ψ|∂Ω=C

u(0)=ρ0; u(1)=ρ1 in Ω}

1
4

∫ 1
0 ‖∂tu+ div(u∇ψ)‖2L2(Ω) dt.

We deduce that (ρ, ϕ), solution to problem (12)-(14), satisfies

(ρ, ϕ) = Argmin

{ψ∈L2((0,1);H1(Ω)), u∈L2((0,1);L2(Ω))

∂tu+div(−u∇ψ))∈L2((0,1);L2(Ω))

∂tu+div(u∇ψ)=0

∇ψ|∂Ω=0

ψ|∂Ω=C

u(0)=ρ0; u(1)=ρ1 in Ω}

1

4

∫ 1

0
‖∂tu+ div(u∇ψ)‖2L2(Ω) dt. (17)

Lemma 3.1 Let (ρ, ϕ) be a solution to problem (12)-(14). Then it satisfies

(ρ, ϕ) = Argmin

{∂tu+div(u∇ψ)=0;∇ψ|∂Ω=0;

ψ|∂Ω=C;u(0)=ρ0;u(1)=ρ1 in Ω}

∫ 1

0
‖ div(u∇ψ)‖2H−1(Ω) dt. (18)

Proof. This is a simple consequence of ∂tρ = − div(ρ∇ϕ), and of the regularity
of div(ρ∇ϕ) which implies ‖ div(ρ∇ϕ)‖L2(Ω) = ‖ div(ρ∇ϕ)‖H−1(Ω). �

Theorem 3.2 Let (ρ, ϕ) be solution to problem (12)-(14), the existence of
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which is given in Theorem 2.2, then it satisfies:

(ρ,∇ϕ) = Argmin
{∂tu+div(uv)=0; u(0)=ρ0;u(1)=ρ1 in Ω}

∫ 1

0

∫

Ω
u‖v‖2 dxdt. (19)

Proof. Choose u regular verifying 0 < β ≤ u ≤ β, and for all t ∈ (0, 1) solve

inf
{v∈L2(Ω) ∂tu+div(uv)=0}

∫

Ω
u‖v‖2 dx. (20)

Let H = H1
0 (Ω) be equipped with the following inner product:

(θ, ψ) =
∫

Ω
u (∇θ | ∇ψ ) dx,

which induces a semi-norm which is equivalent to the H1-norm. The Riez’s
theorem claims that for the linear continuous form

Lu(ψ) =< − div (uv), ψ >H;H′=< ∂tu, ψ >H;H′,

there is a unique θ ∈ H such that

Lu(ψ) =
∫

Ω
u (∇θ | ∇ψ ) dx, ∀ψ ∈ H.

Therefore v = ∇θ and problem (20) is reduced to

inf
{ψ∈H, ∂tu+div(u∇ψ)=0, ψ|∂Ω=C}

∫

Ω
u‖∇ψ‖2 dx. (21)

Since ∫

Ω
u‖∇ψ‖2 dx = ‖ div(u∇ψ)‖2H′,

problem (21) reads

inf
{ψ∈H, ∂tu+div(u∇ψ)=0, ψ|∂Ω=C}

‖ div(u∇ψ)‖2H′ (22)

or

inf
{ψ∈H, ∂tu+div(u∇ψ)=0, ψ|∂Ω=C}

1

4
‖∂tu+ div(u∇ψ)‖2H′. (23)

Gathering lemma 3.1 with the previous result proves the theorem. �

4 Numerical Approximation of the 2D Optimal Extended Optical

Flow

The numerical method is based on a finite element time-space L2 least squares
formulation (see [7]) of the linear conservation law (7).
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Define ṽn+1 as
ṽn+1 = (1, vn+1

1 , vn+1
2 )t

and for a sufficiently regular function ϕ defined on Q, set

∇̃ϕ =

(
∂ϕ

∂t
,
∂ϕ

∂x1
,
∂ϕ

∂x2

)t
,

and

d̃iv(ṽn+1 ϕ) =
∂ϕ

∂t
+

2∑

i=1

∂

∂xi
(vn+1
i ϕ).

Let {ϕ1 · · · ϕN} be a basis of a space-time finite element subspace

Vh = {ϕ, piecewise regular polynomial functions, with ϕ(0, ·) = ϕ(1, ·) = 0},

for example, a brick Lagrange finite element of order one ([8]). Let Πh be the
Lagrange interpolation operator. Let also Wh be the finite element subspace
of H1

0 (Ω), where the basis functions {ψ1 · · ·ψM} are the traces at t = 0 of basis
functions {ϕi}

N
i=1. An approximation of problem (6) is: for a discrete sequence

of time t compute
∫

Ω
(ρnh(t, ·)

(
∇(ϕn+1

h − Cn(t)) | ∇ψh
)
dx =

∫

Ω
∂tρ

n
h(t, ·)ψh dx ∀ψh ∈ Wh,

(24)
and define ṽn+1 = ∇ϕn+1

h . The L2 least squares formulation of problem (7) is
defined in the following way. Consider the functional

J(c) =
1

2

∫

Q

(
d̃iv(ṽn+1 c) + ∂tρ

n
h + d̃iv

[
ṽn+1 Πh

(
(1− t)ρ0 + tρ1

)])2
dx dt.

This functional is convex and coercive in an appropriate anisotropic Sobolev’s
space [7]. The minimizer of J is ρn+1

h −Πh

(
(1−t)ρ0+tρ1

)
which is the solution

to the following problem

∫

Q
d̃iv(ṽn+1 ρn+1

h ) · d̃iv(ṽn+1 ψh) dx dt =
∫

Q

(
−∂tρ

n
h − d̃iv

(
ṽn+1Πh

(
(1− t)ρ0 + tρ1

)))
· d̃iv(ṽn+1 ψh) dx dt (25)

for all ψh ∈ Vh, where

ρh =
N∑

i=1

ρiϕi(t, x).

Thus an approximation of the solution to problem (7) is ρn+1
h −Πh

(
(1− t)ρ0+

tρ1
)
∈ Vh.

The iterative strategy described in Section 2 is used to compute an approxi-
mated solution, and to reconstruct the systole to diastole images of a slice of
a left ventricle. Ten time steps have been used to compute the solution, and
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10000 degrees of freedom for the time-space least squares finite element. The
approximated fixed point algorithm converges in about 10 iterations with an
accuracy of about 10−7. In the next figure 1, the initial image and the final
image are presented. In the following figure 2, two intermediate times 1/3 and

Fig. 1. End of diastole of a left ventricular (a), of systole (b)

2/3 are shown.

Fig. 2. Time step 3 and 6

To summarize, in this work, we present a fixed point algorithm for the compu-
tation of the time dependent optimal mass transportation problem, allowing
to handle the images tracking problem. The efficiency of the method has been
tested with a 2D example.
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