# $q$-BERNSTEIN POLYNOMIALS ASSOCIATED WITH $q$-STIRLING NUMBERS AND CARLITZ'S $q$-BERNOULLI NUMBERS 

T. KIM, J. CHOI, AND Y.H. KIM


#### Abstract

Recently, T. $\operatorname{Kim}([4])$ introduced $q$-Bernstein polynomials which are different $q$-Bernstein polynomials of Phillips([12]). In this paper, we give $p$ adic $q$-integral representation for Kim's $q$-Bernstein polynomials and investigate some interesting identities of $q$-Bernstein polynomials associated with $q$-extension of binomial distribution, $q$-Stirling numbers and Carlitz's $q$-Bernoulli numbers.


## 1. Introduction

Let $p$ be a fixed prime number. Throughout this paper, $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}$ and $\mathbb{C}_{p}$ denote the ring of $p$-adic integers, the field of $p$-adic rational numbers, the complex number field and the completion of algebraic closure of $\mathbb{Q}_{p}$, respectively. Let $\mathbb{N}$ be the set of natural numbers and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. Let $\nu_{p}$ be the normalized exponential valuation of $\mathbb{C}_{p}$ with $|p|_{p}=p^{-\nu_{p}(p)}=\frac{1}{p}$.

When one talks of $q$-extension, $q$ is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$ or $p$-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, one normally assumes $|q|<1$, and if $q \in \mathbb{C}_{p}$, one normally assumes $|1-q|_{p}<1$.

The $q$-bosonic natural numbers are defined by $[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+q^{2}+\cdots+q^{n-1}$ for $n \in \mathbb{N}$, and the $q$-factorial is defined by $[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q}$. For the $q$-extension of binomial coefficient, we use the following notation in the form of

$$
\binom{n}{k}_{q}=\frac{[n]_{q}!}{[n-k]_{q}![k]_{q}!}=\frac{[n]_{q}[n-1]_{q} \cdots[n-k+1]_{q}}{[k]_{q}!} .
$$

Let $C[0,1]$ denote the set of continuous functions on $[0,1](\subset \mathbb{R})$. Then Bernstein operator for $f \in C[0,1]$ is defined by

$$
\mathbb{B}_{n}(f \mid x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{k, n}(x),
$$

where $n, k \in \mathbb{Z}_{+}$. The polynomials $B_{k, n}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$ are called Bernstein polynomials of degree $n$ (see [1]). For $f \in C[0,1]$, Kim's $q$-Bernstein operator of order $n$ for $f$ is defined by

$$
\mathbb{B}_{n, q}(f \mid x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k}[x]_{q}^{k}[1-x]_{\frac{1}{q}}^{n-k}=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{k, n}(x, q),
$$

[^0]where $n, k \in \mathbb{Z}_{+}$. Here $B_{k, n}(x, q)=\binom{n}{k}[x]_{q}^{k}[1-x]_{\frac{1}{q}}^{n-k}$ are called the Kim's $q$ Bernstein polynomials of degree $n$ (see [4]).

We say that $f$ is uniformly differentiable function at a point $a \in \mathbb{Z}_{p}$, and write $f \in U D\left(\mathbb{Z}_{p}\right)$, if the difference quotient $F_{f}(x, y)=\frac{f(x)-f(y)}{x-y}$ has a limit $f^{\prime}(a)$ as $(x, y) \rightarrow(a, a)$. For $f \in U D\left(\mathbb{Z}_{p}\right)$, the $p$-adic $q$-integral on $\mathbb{Z}_{p}$ is defined by

$$
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{q}} \sum_{x=0}^{p^{N}-1} f(x) q^{x}, \quad \text { (see [6]). }
$$

Carlitz's $q$-Bernoulli numbers can be represented by $p$-adic $q$-integral on $\mathbb{Z}_{p}$ as follows:

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}[x]_{q}^{n} d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{q}} \sum_{x=0}^{p^{N}-1}[x]_{q}^{n} q^{x}=\beta_{n, q}, \quad(\text { see }[6,7]) \tag{1}
\end{equation*}
$$

The $k$-th order factorial of the $q$-number $[x]_{q}$, which is defined by

$$
[x]_{k, q}=[x]_{q}[x-1]_{q} \cdots[x-k+1]_{q}=\frac{\left(1-q^{x}\right)\left(1-q^{x-1}\right) \cdots\left(1-q^{x-k+1}\right)}{(1-q)^{k}}
$$

is called the $q$-factorial of $x$ of order $k$ (see [6]).
In this paper, we give $p$-adic $q$-integral representation for Kim's $q$-Bernstein polynomials and derive some interesting identities for the Kim's $q$-Bernstein polynomials associated with $q$-extension of binomial distribution, $q$-Stirling numbers and Carlitz's $q$-Bernoulli numbers.

## 2. $q$-BERNSTEIN POLYNOMIALS

In this section, we assume that $0<q<1$. Let $\mathbb{P}_{q}=\left\{\sum_{i} a_{i}[x]_{q}^{i} \mid a_{i} \in \mathbb{R}\right\}$ be the space of $q$-polynomials of degree less than or equal to $n$.

For $f \in C[0,1]$ and $n, k \in \mathbb{Z}_{+}$, Kim's $q$-Bernstein operator of order $n$ for $f$ is defined by

$$
\begin{equation*}
\mathbb{B}_{n, q}(f \mid x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{k, n}(x, q) \tag{2}
\end{equation*}
$$

Here $B_{k, n}(x, q)=\binom{n}{k}[x]_{q}^{k}[1-x]_{\frac{1}{q}}^{n-k}$ are the Kim's $q$-Bernstein polynomials of degree $n$ (see [4]).

Kim's $q$-Bernstein polynomials of degree $n$ is a basis for the space of $q$-polynomials of degree less than or equal to $n$. That is, Kim's $q$-Bernstein polynomials of degree $n$ is a basis for $\mathbb{P}_{q}$.

We see that Kim's $q$-Bernstein polynomials of degree $n$ span the space of $q$ polynomials. That is, any $q$-polynomials of degree less than or equal to $n$ can be written as a linear combination of the Kim's $q$-Bernstein polynomials of degree $n$. For $n, k \in \mathbb{Z}_{+}$and $x \in[0,1]$, we have

$$
\begin{equation*}
B_{k, n}(x, q)=\sum_{l=k}^{n}\binom{n}{l}\binom{l}{k}(-1)^{l-k}[x]_{q}^{l}, \quad(\text { see }[4]) \tag{3}
\end{equation*}
$$

If there exist constants $C_{0}, C_{1}, \ldots, C_{n}$ such that $C_{0} B_{0, n}(x, q)+C_{1} B_{1, n}(x, q)+$ $\cdots+C_{n} B_{n, n}(x, q)=0$ holds for all $x$, then we can derive the following equation from (3):

$$
\begin{aligned}
0= & C_{0} B_{0, n}(x, q)+C_{1} B_{1, n}(x, q)+\cdots+C_{n} B_{n, n}(x, q) \\
= & C_{0} \sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{i}{0}[x]_{q}^{i}+C_{1} \sum_{i=1}^{n}(-1)^{i-1}\binom{n}{i}\binom{i}{1}[x]_{q}^{i} \\
& +\cdots+C_{n} \sum_{i=n}^{n}(-1)^{i-n}\binom{n}{i}\binom{i}{n}[x]_{q}^{i} \\
= & C_{0}+\left\{\sum_{i=0}^{1} C_{i}(-1)^{i-1}\binom{n}{1}\binom{1}{i}\right\}[x]_{q}+\cdots+\left\{\sum_{i=0}^{n} C_{i}(-1)^{i-n}\binom{n}{n}\binom{n}{i}\right\}[x]_{q}^{n} .
\end{aligned}
$$

Since the power basis is a linearly independent set, it follows that

$$
\begin{array}{r}
C_{0}=0 \\
\sum_{i=0}^{1} C_{i}(-1)^{i-1}\binom{n}{1}\binom{1}{i}= \\
\vdots \\
\vdots \\
\sum_{i=0}^{n} C_{i}(-1)^{i-n}\binom{n}{n}\binom{n}{i}=
\end{array}
$$

which implies that $C_{0}=C_{1}=\cdots=C_{n}=0\left(C_{0}\right.$ is clearly zero, substituting this in the second equation gives $C_{1}=0$, substituting these two into the third equation gives $C_{2}=0$, and so on).

Let us consider a $q$-polynomial $P_{q}(x) \in \mathbb{P}_{q}$ which is written by a linear combination of Kim's $q$-Bernstein basis functions as follows:

$$
\begin{equation*}
P_{q}(x)=C_{0} B_{0, n}(x, q)+C_{1} B_{1, n}(x, q)+\cdots+C_{n} B_{n, n}(x, q) \tag{4}
\end{equation*}
$$

It is easy to write (4) as a dot product of two values.

$$
P_{q}(x)=\left(B_{0, n}(x, q), B_{1, n}(x, q), \ldots, B_{n, n}(x, q)\right)\left(\begin{array}{c}
C_{0}  \tag{5}\\
C_{1} \\
\vdots \\
C_{n}
\end{array}\right)
$$

From (5), we can derive the following equation:

$$
P_{q}(x)=\left(1,[x]_{q}, \ldots,[x]_{q}^{n}\right)\left(\begin{array}{ccccc}
b_{00} & 0 & 0 & \cdots & 0 \\
b_{10} & b_{11} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b_{n 0} & b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right)\left(\begin{array}{c}
C_{0} \\
C_{1} \\
\vdots \\
C_{n}
\end{array}\right)
$$

where the $b_{i j}$ are the coefficients of the power basis that are used to determine the respective Kim's $q$-Bernstein polynomials. We note that the matrix in this case is lower triangular.

From (2) and (3), we note that

$$
\begin{aligned}
B_{0,2}(x, q) & =[1-x]_{\frac{1}{q}}^{2}=\sum_{l=0}^{2}\binom{2}{l}(-1)^{l}[x]_{q}^{l}=1-2[x]_{q}+[x]_{q}^{2} \\
B_{1,2}(x, q) & =\binom{2}{1}[x]_{q}[1-x]_{\frac{1}{q}}=2[x]_{q}-2[x]_{q}^{2} \\
B_{2,2}(x, q) & =\binom{2}{2}[x]_{q}^{2}=[x]_{q}^{2} .
\end{aligned}
$$

In the quadratic case $(n=2)$, the matrix representation is

$$
P_{q}(x)=\left(1,[x]_{q},[x]_{q}^{2}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 2 & 0 \\
1 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
C_{0} \\
C_{1} \\
C_{2}
\end{array}\right)
$$

In the cubic case $(n=3)$, the matrix representation is

$$
P_{q}(x)=\left(1,[x]_{q},[x]_{q}^{2},[x]_{q}^{3}\right)\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right)\left(\begin{array}{l}
C_{0} \\
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)
$$

In many applications of $q$-Bernstein polynomials, a matrix formulation for the Kim's $q$-Bernstein polynomials seems to be useful.
3. $q$-Bernstein polynomials, $q$-Stirling numbers and $q$-Bernoulli NUMBERS

In this section, we assume that $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$.
For $f \in U D\left(\mathbb{Z}_{p}\right)$, let us consider the $p$-adic analogue of Kim's $q$-Bernstein type operator of order $n$ on $\mathbb{Z}_{p}$ as follows:

$$
\mathbb{B}_{n, q}(f \mid x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k}[x]_{q}^{k}[1-x]_{\frac{1}{q}}^{n-k}=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{k, n}(x, q)
$$

Let $(E h)(x)=h(x+1)$ be the shift operator. Then the $q$-difference operator is defined by

$$
\begin{equation*}
\Delta_{q}^{n}:=(E-I)_{q}^{n}=\prod_{i=1}^{n}\left(E-q^{i-1} I\right) \tag{6}
\end{equation*}
$$

where $(\operatorname{Ih})(x)=h(x)$. From (6), we derive the following equation:

$$
\begin{equation*}
\Delta_{q}^{n} f(0)=\sum_{k=0}^{n}\binom{n}{k}_{q}(-1)^{k} q^{\binom{k}{2}} f(n-k), \quad(\text { see }[7]) \tag{7}
\end{equation*}
$$

By (7), we easily see that

$$
f(x)=\sum_{n \geq 0}\binom{x}{n}_{q} \Delta_{q}^{n} f(0), \quad(\text { see }[6,7])
$$

The $q$-Stirling number of the first kind is defined by

$$
\begin{equation*}
\prod_{k=1}^{n}\left(1+[k]_{q} z\right)=\sum_{k=0}^{n} S_{1, q}(n, k) z^{k}, \quad(\text { see }[5,6]) \tag{8}
\end{equation*}
$$

and the $q$-Stirling number of the second kind is also defined by

$$
\begin{equation*}
\prod_{k=1}^{n}\left(\frac{1}{1+[k]_{q} z}\right)=\sum_{k=0}^{n} S_{2, q}(n, k) z^{k}, \quad(\text { see }[5]) \tag{9}
\end{equation*}
$$

By (6), (7), (8) and (9), we get

$$
\begin{aligned}
S_{2, q}(n, k) & =\frac{q^{-\binom{k}{2}}}{[k]_{q}!} \sum_{j=0}^{k}(-1)^{j} q^{\binom{j}{2}}\binom{k}{j}_{q}[k-j]_{q}^{n} \\
& =\frac{q^{-\binom{k}{2}}}{[k]_{q}!} \Delta_{q}^{k} 0^{n}
\end{aligned}
$$

for $n, k \in \mathbb{Z}_{+}($see $[6])$.
Let us consider Kim's $q$-Bernstein polynomials of degree $n$ on $\mathbb{Z}_{p}$ as follows:

$$
B_{k, n}(x, q)=\binom{n}{k}[x]_{q}^{k}[1-x]_{\frac{1}{q}}^{n-k}
$$

for $n, k \in \mathbb{Z}_{+}$and $x \in \mathbb{Z}_{p}$. Thus, we easily see that

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} B_{k, n}(x, q) d \mu_{q}(x)=\sum_{l=0}^{n-k}\binom{n-k}{l}\binom{n}{k}(-1)^{l} \int_{\mathbb{Z}_{p}}[x]_{q}^{l+k} d \mu_{q}(x) \tag{10}
\end{equation*}
$$

By (1) and (10), we obtain the following proposition.
Proposition 1. For $n, k \in \mathbb{Z}_{+}$, we have

$$
\int_{\mathbb{Z}_{p}} B_{k, n}(x, q) d \mu_{q}(x)=\sum_{l=0}^{n-k}\binom{n-k}{l}\binom{n}{k}(-1)^{l} \beta_{l+k, q}
$$

where $\beta_{l+k, q}$ are the $(l+k)$-th Carlitz's $q$-Bernoulli numbers.
From the definition of Kim's $q$-Bernstein polynomial, we note that

$$
\begin{equation*}
\sum_{k=i}^{n} \frac{\binom{k}{i}}{\binom{n}{i}} B_{k, n}(x, q)=\sum_{k=0}^{i} q^{\binom{k}{2}}\binom{x}{k}_{q}[k]_{q}!S_{2, q}(k, i-k), \tag{11}
\end{equation*}
$$

where $i \in \mathbb{N}$. From the definition of $q$-binomial coefficient, we have

$$
\begin{equation*}
\binom{n+1}{k}_{q}=\binom{n}{k-1}_{q}+q^{k}\binom{n}{k}_{q}=q^{n-k}\binom{n}{k-1}_{q}+\binom{n}{k}_{q} \tag{12}
\end{equation*}
$$

By (12), we see that

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}\binom{x}{n}_{q} d \mu_{q}(x)=\frac{(-1)^{n}}{[n+1]_{q}} q^{(n+1)-\binom{n+1}{2}}, \quad(\text { see }[6,7]) \tag{13}
\end{equation*}
$$

From (1), (11) and (13), we obtain the following theorem.

Theorem 2. For $n, k \in \mathbb{Z}_{+}$and $i \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{k=i}^{n} \sum_{l=0}^{n-k} \frac{\binom{k}{i}}{\binom{n}{i}}\binom{n-k}{l}\binom{n}{k}(-1)^{l} \beta_{l+k, q} \\
& \quad=\sum_{k=0}^{i} q^{\binom{k}{2}}[k]_{q}!S_{2, q}(k, i-k) \frac{(-1)^{k}}{[k+1]_{q}} q^{(k+1)-\binom{k+1}{2}}
\end{aligned}
$$

It is easy to see that for $i \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{k=i}^{n} \frac{\binom{k}{i}}{\binom{n}{i}} B_{k, n}(x, q)=[x]_{q}^{i} \tag{14}
\end{equation*}
$$

By (11) and (14), we easily get

$$
[x]_{q}^{i}=\sum_{k=0}^{i} q^{\binom{k}{2}}\binom{x}{k}_{q}[k]_{q}!S_{2, q}(k, i-k), \quad(\text { see }[6]) .
$$

Thus, we have

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} & {[x]_{q}^{i} d \mu_{q}(x)=\sum_{k=0}^{i} q^{\binom{k}{2}}[k]_{q}!S_{2, q}(k, i-k) \int_{\mathbb{Z}_{p}}\binom{x}{k}_{q} d \mu_{q}(x) }  \tag{15}\\
& =q \sum_{k=0}^{i}[k]_{q}!S_{2, q}(k, i-k) \frac{(-1)^{k}}{[k+1]_{q}} .
\end{align*}
$$

By (1) and (15), we obtain the following corollary.
Corollary 3. For $n, k \in \mathbb{Z}_{+}$and $i \in \mathbb{N}$, we have

$$
\beta_{i, q}=q \sum_{k=0}^{i}[k]_{q}!S_{2, q}(k, i-k) \frac{(-1)^{k}}{[k+1]_{q}} .
$$

It is known that

$$
\begin{equation*}
S_{2, q}(n, k)=\frac{1}{(1-q)^{k}} \sum_{j=0}^{k}(-1)^{k-j}\binom{k+n}{k-j}\binom{j+n}{j}_{q}, \quad(\text { see }[6]) \tag{16}
\end{equation*}
$$

and

$$
\binom{n}{k}_{q}=\sum_{j=0}^{n}\binom{n}{j}(q-1)^{j-k} S_{2, q}(k, j-k)
$$

By simple calculation, we have that

$$
\begin{align*}
q^{n x} & =\sum_{k=0}^{n}(q-1)^{k} q^{\binom{k}{2}}\binom{n}{k}_{q}[x]_{k, q}  \tag{17}\\
& =\sum_{m=0}^{n}\left\{\sum_{k=m}^{n}(q-1)^{k}\binom{n}{k}_{q} S_{1, q}(k, m)\right\}[x]_{q}^{m}
\end{align*}
$$

and

$$
\begin{equation*}
q^{n x}=\sum_{m=0}^{n}\binom{n}{m}(q-1)^{m}[x]_{q}^{m} \tag{18}
\end{equation*}
$$

From (17) and (18), we note that

$$
\binom{n}{m}=\sum_{k=m}^{n}(q-1)^{-m+k}\binom{n}{k}_{q} S_{1, q}(k, m), \quad(\text { see }[6])
$$

Thus, we obtain the following proposition.
Proposition 4. For $n, k \in \mathbb{Z}_{+}$, we have

$$
B_{k, n}(x, q)=\binom{n}{k}[x]_{q}^{k}[1-x]_{\frac{1}{q}}^{n-k}=\sum_{m=k}^{n}(q-1)^{-k+m}\binom{n}{m}_{q} S_{1, q}(m, k)[x]_{q}^{k}[1-x]_{\frac{1}{q}}^{n-k}
$$

From the definition of the $q$-Stirling numbers of the first kind, we get

$$
\begin{equation*}
q^{\binom{n}{2}}\binom{x}{n}_{q}[n]_{q}!=[x]_{n, q} q^{\binom{n}{2}}=\sum_{k=0}^{n} S_{1, q}(n, k)[x]_{q}^{k} . \tag{19}
\end{equation*}
$$

By (11) and (19), we obtain the following theorem.
Theorem 5. For $n, k \in \mathbb{Z}_{+}$and $i \in \mathbb{N}$, we have

$$
\sum_{k=i}^{n} \frac{\binom{k}{i}}{\binom{n}{i}} B_{k, n}(x, q)=\sum_{k=0}^{i} \sum_{l=0}^{k} S_{1, q}(k, l) S_{2, q}(k, i-k)[x]_{q}^{l}
$$

By (14) and Theorem 5, we obtain the following corollary.
Corollary 6. For $i \in \mathbb{Z}_{+}$, we have

$$
\beta_{i, q}=\sum_{k=0}^{i} \sum_{l=0}^{k} S_{1, q}(k, l) S_{2, q}(k, i-k) \beta_{l . q} .
$$

The $q$-Bernoulli polynomials of order $k \in \mathbb{Z}_{+}$are defined by

$$
\begin{equation*}
\beta_{n, q}^{(k)}(x)=\frac{1}{(1-q)^{n}} \sum_{i=0}^{n}\binom{n}{i}(-1)^{i} q^{i x} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{\sum_{l=1}^{k}(k-l+i) x_{l}} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{k}\right) \tag{20}
\end{equation*}
$$

Thus, we have

$$
\left.\beta_{n, q}^{(k)}(x)=\frac{1}{(1-q)^{n}} \sum_{i=0}^{n} \frac{(-1)^{i}\binom{n}{i}(i+k) \cdots(i+1)}{[i+k]_{q} \cdots[i+1]_{q}} q^{i x}, \quad \text { see }[6]\right)
$$

The inverse $q$-Bernoulli polynomials of order $k$ are defined by
$\beta_{n, q}^{(-k)}(x)=\frac{1}{(1-q)^{n}} \sum_{i=0}^{n} \frac{(-1)^{i}\binom{n}{i} q^{i x}}{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{\sum_{l=1}^{k}(k-l+i) x_{l}} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{k}\right)}, \quad$ (see [6]).
In the special case $x=0, \beta_{n, q}^{(k)}(0)=\beta_{n, q}^{(k)}$ are called the $n$-th $q$-Bernoulli numbers of order $k$ and $\beta_{n, q}^{(-k)}(0)=\beta_{n, q}^{(-k)}$ are also called the inverse $q$-Bernoulli numbers of order $k$.

From (21), we have

$$
\begin{align*}
\beta_{k, q}^{(-n)} & =\frac{1}{(1-q)^{k}} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{[j+n]_{q} \cdots[j+1]_{q}}{(j+n) \cdots(j+1)} \\
& =\frac{1}{(1-q)^{k}} \sum_{j=0}^{k}(-1)^{j} \frac{\binom{k+n}{n-j}}{\binom{k+n}{n}}\binom{j+n}{n}_{q} \frac{[n]_{q}!}{n!}  \tag{22}\\
& =\frac{[n]_{q}!}{\binom{k+n}{n} n!}\left\{\frac{1}{(1-q)^{k}} \sum_{j=0}^{k}(-1)^{j}\binom{k+n}{n-j}\binom{j+n}{n}_{q}\right\} .
\end{align*}
$$

By (16) and (22), we get

$$
\begin{equation*}
\frac{n!}{[n]_{q}!}\binom{k+n}{n} \beta_{k, q}^{(-n)}=S_{2, q}(n, k) \tag{23}
\end{equation*}
$$

Therefore, by (11) and (23), we obtain the following theorem.
Theorem 7. For $i, n, k \in \mathbb{Z}_{+}$, we have

$$
\sum_{k=i}^{n} \frac{\binom{k}{i}}{\binom{n}{i}} B_{k, n}(x, q)=\sum_{k=0}^{i} q^{\binom{k}{2}} k!\binom{i}{k}\binom{x}{k}_{q} \beta_{i-k, q}^{(-k)}
$$

It is easy to show that

$$
\begin{aligned}
q^{\binom{n}{2}}\binom{x}{n}_{q} & =\frac{1}{[n]_{q}!} \prod_{k=0}^{n-1}\left([x]_{q}-[k]_{q}\right) \\
& =\frac{1}{[n]_{q}!} \sum_{k=0}^{n}(-1)^{k}[x]_{q}^{n-k} S_{1, q}(n-1, k)
\end{aligned}
$$

Thus, we have that

$$
\sum_{k=i}^{n} \frac{\binom{k}{i}}{\binom{n}{i}} B_{k, n}(x, q)=\sum_{k=0}^{i} \sum_{j=0}^{k}(-1)^{j}[x]_{q}^{k-j} S_{1, q}(k-1, j) \frac{k!}{[k]_{q}!}\binom{i}{k} \beta_{i-k, q}^{(-k)}
$$

where $n, k, i \in \mathbb{Z}_{+}$.
Acknowledgement. This paper was supported by the research grant of Kwangwoon University in 2010.

## References

[1] M. Acikgoz, S. Araci, A study on the integral of the product of several type Bernstein polynomials, IST Transaction of Applied Mathematics-Modelling and Simulation, 2010.
[2] M. Acikgoz, S. Araci, On the generating function of the Bernstein polynomials, Accepted to AIP on 24 March 2010 for ICNAAM 2010.
[3] V. Gupta, T. Kim, J. Choi, Y.-H. Kim, Generating function for $q$-Bernstein, $q$ -Meyer-König-Zeller and q-Beta basis, Automation Computers Applied Mathematics 19 (2010), 7-11.
[4] T. Kim, A note on $q$-Bernstein polynomials, Russ. J. Math. Phys. (accepted).
[5] T. Kim, Some identities on the q-Euler polynomials of higher order and $q$ Stirling numbers by the fermionic p-adic integrals on $\mathbb{Z}_{p}$, Russ. J. Math. Phys. 16 (2009), 484-491.
[6] T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15 (2008), 51-57.
[7] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299.
[8] T. Kim, Note on the Euler q-zeta functions, J. Number Theory 129 (2009), 1798-1804.
[9] T. Kim, Barnes type multiple q-zeta function and $q$-Euler polynomials, J. Physics A:Math. Theor. 43 (2010), 255201, 11pp.
[10] T. Kim, L.-C. Jang, H. Yi, A note on the modified q-Berstein polynomials, Discrete Dynamics in Nature and Society 2010 (2010), Article ID 706483, 12 pages.
[11] V. Kurt, A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials, Appl. Math. Sci. 3 (2009), 53-56.
[12] G. M. Phillips, Bernstein polynomials based on the q-integers, Annals of Numerical Analysis 4 (1997), 511-514.
[13] Y. Simsek, M. Acikgoz, A new generating function of $q$-Bernstein-type polynomials and their interpolation function, Abstract and Applied Analysis 2010 (2010), Article ID 769095, 12 pages.

Taekyun Kim. Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea,

E-mail address: tkkim@kw.ac.kr
Jongsung Choi. Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea,

E-mail address: jeschoi@kw.ac.kr
Young-Hee Kim. Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea,

E-mail address: yhkim@kw.ac.kr


[^0]:    2000 Mathematics Subject Classification : 11B68, 11B73, 41A30.
    Key words and phrases : $q$-Bernstein polynomial, Bernoulli numbers and polynomials, $p$-adic $q$-integral.

