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q-BERNSTEIN POLYNOMIALS ASSOCIATED WITH

q-STIRLING NUMBERS AND CARLITZ’S

q-BERNOULLI NUMBERS

T. KIM, J. CHOI, AND Y.H. KIM

Abstract Recently, T. Kim([4]) introduced q-Bernstein polynomials which
are different q-Bernstein polynomials of Phillips([12]). In this paper, we give p-
adic q-integral representation for Kim’s q-Bernstein polynomials and investigate
some interesting identities of q-Bernstein polynomials associated with q-extension
of binomial distribution, q-Stirling numbers and Carlitz’s q-Bernoulli numbers.

1. Introduction

Let p be a fixed prime number. Throughout this paper, Zp, Qp, C and Cp denote
the ring of p-adic integers, the field of p-adic rational numbers, the complex number
field and the completion of algebraic closure of Qp, respectively. Let N be the set of
natural numbers and Z+ = N∪{0}. Let νp be the normalized exponential valuation

of Cp with |p|p = p−νp(p) = 1
p
.

When one talks of q-extension, q is variously considered as an indeterminate, a
complex number q ∈ C or p-adic number q ∈ Cp. If q ∈ C, one normally assumes
|q| < 1, and if q ∈ Cp, one normally assumes |1− q|p < 1.

The q-bosonic natural numbers are defined by [n]q = 1−qn

1−q
= 1+q+q2+· · ·+qn−1

for n ∈ N, and the q-factorial is defined by [n]q! = [n]q[n − 1]q · · · [2]q[1]q. For the
q-extension of binomial coefficient, we use the following notation in the form of

(

n

k

)

q

=
[n]q!

[n− k]q![k]q!
=

[n]q[n− 1]q · · · [n− k + 1]q
[k]q!

.

Let C[0, 1] denote the set of continuous functions on [0, 1](⊂ R). Then Bernstein
operator for f ∈ C[0, 1] is defined by

Bn(f |x) =

n
∑

k=0

f(
k

n
)

(

n

k

)

xk(1− x)n−k =

n
∑

k=0

f(
k

n
)Bk,n(x),

where n, k ∈ Z+. The polynomials Bk,n(x) =
(

n
k

)

xk(1− x)n−k are called Bernstein
polynomials of degree n (see [1]). For f ∈ C[0, 1], Kim’s q-Bernstein operator of
order n for f is defined by

Bn,q(f |x) =
n
∑

k=0

f(
k

n
)

(

n

k

)

[x]kq [1− x]n−k
1
q

=
n
∑

k=0

f(
k

n
)Bk,n(x, q),
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where n, k ∈ Z+. Here Bk,n(x, q) =
(

n

k

)

[x]kq [1 − x]n−k
1
q

are called the Kim’s q-

Bernstein polynomials of degree n (see [4]).
We say that f is uniformly differentiable function at a point a ∈ Zp, and write

f ∈ UD(Zp), if the difference quotient Ff (x, y) = f(x)−f(y)
x−y

has a limit f ′(a) as

(x, y) → (a, a). For f ∈ UD(Zp), the p-adic q-integral on Zp is defined by

Iq(f) =

∫

Zp

f(x)dµq(x) = lim
N→∞

1

[pN ]q

pN−1
∑

x=0

f(x)qx, (see [6]).

Carlitz’s q-Bernoulli numbers can be represented by p-adic q-integral on Zp as
follows:

∫

Zp

[x]nq dµq(x) = lim
N→∞

1

[pN ]q

pN−1
∑

x=0

[x]nq q
x = βn,q, (see [6, 7]). (1)

The k-th order factorial of the q-number [x]q, which is defined by

[x]k,q = [x]q [x− 1]q · · · [x− k + 1]q =
(1− qx)(1− qx−1) · · · (1− qx−k+1)

(1− q)k
,

is called the q-factorial of x of order k (see [6]).
In this paper, we give p-adic q-integral representation for Kim’s q-Bernstein

polynomials and derive some interesting identities for the Kim’s q-Bernstein poly-
nomials associated with q-extension of binomial distribution, q-Stirling numbers
and Carlitz’s q-Bernoulli numbers.

2. q-Bernstein polynomials

In this section, we assume that 0 < q < 1. Let Pq = {
∑

i

ai[x]
i
q| ai ∈ R} be the

space of q-polynomials of degree less than or equal to n.
For f ∈ C[0, 1] and n, k ∈ Z+, Kim’s q-Bernstein operator of order n for f is

defined by

Bn,q(f |x) =

n
∑

k=0

f(
k

n
)Bk,n(x, q). (2)

Here Bk,n(x, q) =
(

n

k

)

[x]kq [1−x]n−k
1
q

are the Kim’s q-Bernstein polynomials of degree

n (see [4]).
Kim’s q-Bernstein polynomials of degree n is a basis for the space of q-polynomials

of degree less than or equal to n. That is, Kim’s q-Bernstein polynomials of degree
n is a basis for Pq.

We see that Kim’s q-Bernstein polynomials of degree n span the space of q-
polynomials. That is, any q-polynomials of degree less than or equal to n can be
written as a linear combination of the Kim’s q-Bernstein polynomials of degree n.
For n, k ∈ Z+ and x ∈ [0, 1], we have

Bk,n(x, q) =

n
∑

l=k

(

n

l

)(

l

k

)

(−1)l−k[x]lq, (see [4]). (3)
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If there exist constants C0, C1, . . . , Cn such that C0B0,n(x, q) + C1B1,n(x, q) +
· · · + CnBn,n(x, q) = 0 holds for all x, then we can derive the following equation
from (3):

0 = C0B0,n(x, q) + C1B1,n(x, q) + · · ·+ CnBn,n(x, q)

= C0

n
∑

i=0

(−1)i
(

n

i

)(

i

0

)

[x]iq + C1

n
∑

i=1

(−1)i−1

(

n

i

)(

i

1

)

[x]iq

+ · · ·+ Cn

n
∑

i=n

(−1)i−n

(

n

i

)(

i

n

)

[x]iq

= C0 + {

1
∑

i=0

Ci(−1)i−1

(

n

1

)(

1

i

)

}[x]q + · · ·+ {

n
∑

i=0

Ci(−1)i−n

(

n

n

)(

n

i

)

}[x]nq .

Since the power basis is a linearly independent set, it follows that

C0 = 0,
1

∑

i=0

Ci(−1)i−1

(

n

1

)(

1

i

)

= 0,

...
...

n
∑

i=0

Ci(−1)i−n

(

n

n

)(

n

i

)

= 0,

which implies that C0 = C1 = · · · = Cn = 0 (C0 is clearly zero, substituting this
in the second equation gives C1 = 0, substituting these two into the third equation
gives C2 = 0, and so on).

Let us consider a q-polynomial Pq(x) ∈ Pq which is written by a linear combina-
tion of Kim’s q-Bernstein basis functions as follows:

Pq(x) = C0B0,n(x, q) + C1B1,n(x, q) + · · ·+ CnBn,n(x, q). (4)

It is easy to write (4) as a dot product of two values.

Pq(x) = (B0,n(x, q), B1,n(x, q), . . . , Bn,n(x, q))











C0

C1

...
Cn











. (5)

From (5), we can derive the following equation:

Pq(x) = (1, [x]q, . . . , [x]
n
q )











b00 0 0 · · · 0
b10 b11 0 · · · 0
...

...
...

. . .
...

bn0 bn1 bn2 . . . bnn





















C0

C1

...
Cn











,

where the bij are the coefficients of the power basis that are used to determine the
respective Kim’s q-Bernstein polynomials. We note that the matrix in this case is
lower triangular.
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From (2) and (3), we note that

B0,2(x, q) = [1− x]21
q

=

2
∑

l=0

(

2

l

)

(−1)l[x]lq = 1− 2[x]q + [x]2q ,

B1,2(x, q) =

(

2

1

)

[x]q[1− x] 1
q
= 2[x]q − 2[x]2q ,

B2,2(x, q) =

(

2

2

)

[x]2q = [x]2q .

In the quadratic case (n = 2), the matrix representation is

Pq(x) = (1, [x]q, [x]
2
q)





1 0 0
−2 2 0
1 − 2 1









C0

C1

C2



 .

In the cubic case (n = 3), the matrix representation is

Pq(x) = (1, [x]q, [x]
2
q , [x]

3
q)









1 0 0 0
−3 3 0 0
3 − 6 3 0

−1 3 − 3 1

















C0

C1

C2

C3









.

In many applications of q-Bernstein polynomials, a matrix formulation for the Kim’s
q-Bernstein polynomials seems to be useful.

3. q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli

numbers

In this section, we assume that q ∈ Cp with |1− q|p < 1.
For f ∈ UD(Zp), let us consider the p-adic analogue of Kim’s q-Bernstein type

operator of order n on Zp as follows:

Bn,q(f |x) =

n
∑

k=0

f(
k

n
)

(

n

k

)

[x]kq [1− x]n−k
1
q

=

n
∑

k=0

f(
k

n
)Bk,n(x, q).

Let (Eh)(x) = h(x + 1) be the shift operator. Then the q-difference operator is
defined by

∆n
q := (E − I)nq =

n
∏

i=1

(E − qi−1I), (6)

where (Ih)(x) = h(x). From (6), we derive the following equation:

∆n
q f(0) =

n
∑

k=0

(

n

k

)

q

(−1)kq(
k

2)f(n− k), (see [7]). (7)

By (7), we easily see that

f(x) =
∑

n≥0

(

x

n

)

q

∆n
q f(0), (see [6, 7]).
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The q-Stirling number of the first kind is defined by

n
∏

k=1

(1 + [k]qz) =

n
∑

k=0

S1,q(n, k)z
k, (see [5, 6]), (8)

and the q-Stirling number of the second kind is also defined by

n
∏

k=1

(
1

1 + [k]qz
) =

n
∑

k=0

S2,q(n, k)z
k, (see [5]). (9)

By (6), (7), (8) and (9), we get

S2,q(n, k) =
q−(

k

2)

[k]q!

k
∑

j=0

(−1)jq(
j

2)
(

k

j

)

q

[k − j]nq

=
q−(

k

2)

[k]q!
∆k

q0
n,

for n, k ∈ Z+ (see [6]).
Let us consider Kim’s q-Bernstein polynomials of degree n on Zp as follows:

Bk,n(x, q) =

(

n

k

)

[x]kq [1− x]n−k
1
q

,

for n, k ∈ Z+ and x ∈ Zp. Thus, we easily see that

∫

Zp

Bk,n(x, q)dµq(x) =

n−k
∑

l=0

(

n− k

l

)(

n

k

)

(−1)l
∫

Zp

[x]l+k
q dµq(x). (10)

By (1) and (10), we obtain the following proposition.

Proposition 1. For n, k ∈ Z+, we have

∫

Zp

Bk,n(x, q)dµq(x) =
n−k
∑

l=0

(

n− k

l

)(

n

k

)

(−1)lβl+k,q,

where βl+k,q are the (l + k)-th Carlitz’s q-Bernoulli numbers.

From the definition of Kim’s q-Bernstein polynomial, we note that

n
∑

k=i

(

k

i

)

(

n

i

)Bk,n(x, q) =

i
∑

k=0

q(
k

2)
(

x

k

)

q

[k]q!S2,q(k, i− k), (11)

where i ∈ N. From the definition of q-binomial coefficient, we have
(

n+ 1

k

)

q

=

(

n

k − 1

)

q

+ qk
(

n

k

)

q

= qn−k

(

n

k − 1

)

q

+

(

n

k

)

q

. (12)

By (12), we see that
∫

Zp

(

x

n

)

q

dµq(x) =
(−1)n

[n+ 1]q
q(n+1)−(n+1

2 ), (see [6, 7]). (13)

From (1), (11) and (13), we obtain the following theorem.



6 T. KIM, J. CHOI, AND Y.H. KIM

Theorem 2. For n, k ∈ Z+ and i ∈ N, we have

n
∑

k=i

n−k
∑

l=0

(

k
i

)

(

n
i

)

(

n− k

l

)(

n

k

)

(−1)lβl+k,q

=

i
∑

k=0

q(
k

2)[k]q!S2,q(k, i− k)
(−1)k

[k + 1]q
q(k+1)−(k+1

2 ).

It is easy to see that for i ∈ N,
n
∑

k=i

(

k
i

)

(

n

i

)Bk,n(x, q) = [x]iq. (14)

By (11) and (14), we easily get

[x]iq =

i
∑

k=0

q(
k

2)
(

x

k

)

q

[k]q!S2,q(k, i− k), (see [6]).

Thus, we have

∫

Zp

[x]iqdµq(x) =

i
∑

k=0

q(
k

2)[k]q!S2,q(k, i− k)

∫

Zp

(

x

k

)

q

dµq(x) (15)

= q

i
∑

k=0

[k]q!S2,q(k, i− k)
(−1)k

[k + 1]q
.

By (1) and (15), we obtain the following corollary.

Corollary 3. For n, k ∈ Z+ and i ∈ N, we have

βi,q = q

i
∑

k=0

[k]q!S2,q(k, i− k)
(−1)k

[k + 1]q
.

It is known that

S2,q(n, k) =
1

(1− q)k

k
∑

j=0

(−1)k−j

(

k + n

k − j

)(

j + n

j

)

q

, (see [6]), (16)

and
(

n

k

)

q

=
n
∑

j=0

(

n

j

)

(q − 1)j−kS2,q(k, j − k).

By simple calculation, we have that

qnx =

n
∑

k=0

(q − 1)kq(
k

2)
(

n

k

)

q

[x]k,q (17)

=

n
∑

m=0

{

n
∑

k=m

(q − 1)k
(

n

k

)

q

S1,q(k,m)}[x]mq

and

qnx =

n
∑

m=0

(

n

m

)

(q − 1)m[x]mq . (18)
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From (17) and (18), we note that

(

n

m

)

=

n
∑

k=m

(q − 1)−m+k

(

n

k

)

q

S1,q(k,m), (see [6]).

Thus, we obtain the following proposition.

Proposition 4. For n, k ∈ Z+, we have

Bk,n(x, q) =

(

n

k

)

[x]kq [1− x]n−k
1
q

=

n
∑

m=k

(q − 1)−k+m

(

n

m

)

q

S1,q(m, k)[x]kq [1− x]n−k
1
q

.

From the definition of the q-Stirling numbers of the first kind, we get

q(
n

2)
(

x

n

)

q

[n]q! = [x]n,q q
(n2) =

n
∑

k=0

S1,q(n, k)[x]
k
q . (19)

By (11) and (19), we obtain the following theorem.

Theorem 5. For n, k ∈ Z+ and i ∈ N, we have

n
∑

k=i

(

k
i

)

(

n
i

)Bk,n(x, q) =

i
∑

k=0

k
∑

l=0

S1,q(k, l)S2,q(k, i− k)[x]lq.

By (14) and Theorem 5, we obtain the following corollary.

Corollary 6. For i ∈ Z+, we have

βi,q =
i

∑

k=0

k
∑

l=0

S1,q(k, l)S2,q(k, i− k)βl.q.

The q-Bernoulli polynomials of order k ∈ Z+ are defined by

β(k)
n,q(x) =

1

(1− q)n

n
∑

i=0

(

n

i

)

(−1)iqix
∫

Zp

· · ·

∫

Zp

q
∑k

l=1
(k−l+i)xldµq(x1) · · · dµq(xk). (20)

Thus, we have

β(k)
n,q(x) =

1

(1− q)n

n
∑

i=0

(−1)i
(

n
i

)

(i + k) · · · (i + 1)

[i+ k]q · · · [i+ 1]q
qix, (see [6]).

The inverse q-Bernoulli polynomials of order k are defined by

β(−k)
n,q (x) =

1

(1− q)n

n
∑

i=0

(−1)i
(

n

i

)

qix
∫

Zp
· · ·

∫

Zp
q
∑

k
l=1

(k−l+i)xldµq(x1) · · · dµq(xk)
, (see [6]). (21)

In the special case x = 0, β
(k)
n,q(0) = β

(k)
n,q are called the n-th q-Bernoulli numbers

of order k and β
(−k)
n,q (0) = β

(−k)
n,q are also called the inverse q-Bernoulli numbers of

order k.
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From (21), we have

β
(−n)
k,q =

1

(1 − q)k

k
∑

j=0

(−1)j
(

k

j

)

[j + n]q · · · [j + 1]q
(j + n) · · · (j + 1)

=
1

(1 − q)k

k
∑

j=0

(−1)j

(

k+n

n−j

)

(

k+n
n

)

(

j + n

n

)

q

[n]q!

n!
(22)

=
[n]q!

(

k+n
n

)

n!
{

1

(1− q)k

k
∑

j=0

(−1)j
(

k + n

n− j

)(

j + n

n

)

q

}.

By (16) and (22), we get

n!

[n]q!

(

k + n

n

)

β
(−n)
k,q = S2,q(n, k). (23)

Therefore, by (11) and (23), we obtain the following theorem.

Theorem 7. For i, n, k ∈ Z+, we have

n
∑

k=i

(

k
i

)

(

n

i

)Bk,n(x, q) =

i
∑

k=0

q(
k

2)k!

(

i

k

)(

x

k

)

q

β
(−k)
i−k,q.

It is easy to show that

q(
n

2)
(

x

n

)

q

=
1

[n]q!

n−1
∏

k=0

([x]q − [k]q)

=
1

[n]q!

n
∑

k=0

(−1)k[x]n−k
q S1,q(n− 1, k).

Thus, we have that

n
∑

k=i

(

k
i

)

(

n
i

)Bk,n(x, q) =

i
∑

k=0

k
∑

j=0

(−1)j[x]k−j
q S1,q(k − 1, j)

k!

[k]q!

(

i

k

)

β
(−k)
i−k,q,

where n, k, i ∈ Z+.
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