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CURVATURE ESTIMATES FOR SUBMANIFOLDS

IN WARPED PRODUCTS

L. J. ALÍAS, G. P. BESSA, J. F. MONTENEGRO, AND P. PICCIONE

Dedicated to Keti Tenenblat on occasion of her 65th anniversary, with admiration.

Abstract. We give estimates on the intrinsic and the extrinsic cur-
vature of manifolds that are isometrically immersed as cylindrically
bounded submanifolds of warped products. We also address extensions
of the results in the case of submanifolds of the total space of a Rie-
mannian submersion.

1. Introduction

An important problem in submanifold theory is the isometric immersion
problem, this is for given two complete Riemannian manifolds (M,gM ) and
(N, gN ), dim(M) < dim(N) whether there exists an isometric immersion
ϕ : M →֒ N . When N is the Euclidean space, the Nash Isometric Embed-
ding Theorem answers affirmatively this question, provided the codimension
dim(N) − dim(M) is sufficiently high, see [8]. For small codimension, here
in this paper meaning that dim(N) − dim(M) ≤ dim(M) − 1, the answer,
in general, depends on the geometries of M and N . For instance, on the
sectional curvatures of M and N , e.g., a classical result of C. Tompkins [15]
extended in a series of papers, by Chern and Kuiper [3], Moore, [7], O’Neill
[9], Otsuki [11] and Stiel [14] can be summarized as follows.
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Theorem 1.1. Let ϕ : Mm →֒ Nn, n ≤ 2m − 1, be an isometric immer-
sion of a compact Riemannian m-manifold M into a Cartan-Hadamard n-
manifold N . Then the sectional curvatures of M and N satisfies

(1.1) sup
M

KM > inf
N
KN .

Theorem 1.1 was extended, in a seminal paper [5], by L. Jorge and
D. Koutrofiotis to bounded, complete submanifolds with scalar curvature
bounded below where they introduced the Omori-Yau maximum principle
to tackle this immersion problem. Due to a much better version of the
Omori-Yau maximum principle, Pigola-Rigoli-Setti [13], extended Jorge-
Kourtofiotis result to to bounded, complete submanifolds with scalar curva-
ture satisfying

(1.2) sM(x) ≥ −ρ2M (x) ·
k
∏

j=1

[

log(j)(ρM (x))
]2
, ρM (x) ≫ 1

where ρM is the distance function on M to a fixed point and log(j) is the
j-th iterate of the logarithm.

Theorem 1.2 (Jorge-Koutrofiotis-Pigola-Rigoli-Setti). Let ϕ : M →֒ N be
an isometric immersion of a complete m-dimensional Riemannian man-
ifold M into an n-dimensional Riemannian manifold N , n ≤ 2m − 1.
Let BN (r) be a geodesic ball of N centered at p = ϕ(q) with radius r <

min{injN (p), π/2
√
b}, where the radial sectional curvatures Krad

N along the

radial geodesics issuing from p are bounded as Krad
N ≤ b in BN (r) and where

π/2
√
b is replaced by +∞ if b ≤ 0. Suppose that the scalar curvature of M

satisfies (1.2) and that ϕ(M) ⊂ BN (r). Then

(1.3) sup
M

KM ≥ C2
b (r) + inf

BN (r)
KN .

Where

Cb(t) =







√
b cot(

√
b t) if b > 0,

1/t if b = 0,√
−b coth(

√
−b t) if b < 0.

Very recently, Theorem 1.2 was extended to the class of cylindrically
bounded submanifolds by Alias-Bessa-Montenegro [2].

Theorem 1.3 (Alias-Bessa-Montenegro). Let ϕ :Mm →֒ Nn×R
ℓ be an iso-

metric immersion of a complete Riemannian m-manifold M into the prod-
uct Nn× R

ℓ, n + 2ℓ ≤ 2m − 1, where Nn is a Riemannian n-manifold.
Let BN (r) be a geodesic ball of N centered at p = π1(ϕ(q))

1 with radius

r < min{injN (p), π/2
√
b}, where the radial sectional curvatures Krad

N along

the radial geodesics issuing from p are bounded as Krad
N ≤ b in BN (r) and

π/2
√
b is replaced by +∞ if b ≤ 0. Suppose that ϕ(M) ⊂ BN (r) × R

ℓ and
one of these two conditions below holds,

1π1 : N × R
ℓ → N is the projection on the first factor.
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i. ϕ is proper and supBN (r)×B
Rℓ

(t) ‖α‖ ≤ G(t), where G : [0,∞) →
(0,∞) with 1/G 6∈ L1(0,∞).

ii. The scalar curvature of M satisfies (1.2).

then

(1.4) sup
M

KM ≥ C2
b (r) + inf

BN (r)
KN .

The purpose of this paper is to show that these results above can be
extended naturally to isometric immersion into warped product manifolds
M = X × V endowed with the metric gM = gX + ψ2gV , where (X , gX )
and (V, gV ) are Riemannian manifolds and ψ :X →R

+ is a smooth positive
function on X . Set nX =dim(X ), nV=dim(V) and nM=nX+nV=dim(M).
We will assume in our main result a certain bound on the radial curvature
along geodesics issuing from a point x0 in the base manifold X , see (4.1).

Our first result is the following (see Theorem 4.2).

Theorem A. Let (M,gM ) be a complete Riemannian nM -manifold for
which the weak Omori–Yau principle for the Hessian2 holds and let ϕ :
M → M be an isometric immersion. Assume that the following hypotheses
are satisfied

(1) πX
(

ϕ(M)
)

⊂ BX (r), a geodesic ball in X with center at some x0 ∈ X
and r ∈ (0, injX (x0)).

(2) Assumption (4.1) holds.

(3) 2nM ≥ 2nV + nX + 1.

Then,

(1.5) sup
M

KM ≥ Cb(r)
2 + inf

BX (x0;r)
KX .

Our second main result gives an estimate on the mean curvature of cylin-
drically bounded submanifolds of warped product (see Theorem 4.4).

Theorem B. Let (M,gM ) be a complete Riemannian manifold for which the
weak Omori–Yau principle for the Laplacian holds, and let ϕ : M → M be
an isometric immersion. Assume that the following hypotheses are satisfied.

(1) πX
(

ϕ(M)
)

⊂ BX (x0; r) a geodesic ball in X with center at some
x0 ∈ X and r ∈ (0, injX (x0)).

(2) Assumption (4.1) holds.

Then, denoting by ~Hϕ the mean curvature vector of ϕ, one has the following

estimate on the supremum of | ~Hϕ
∣

∣

M
.

(1.6) sup
M

∣

∣ ~Hϕ
∣

∣

M
≥ (nM − nV)Cb(r)− nVΨ0,

2See Section 3 for the details of the weak Omori-Yau maximum principles for the
Hessian and for the Laplacian
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where

(1.7) Ψ0 = sup
dist(x,x0)≤r

∣

∣

∣

gradXψ(x)

ψ(x)

∣

∣

∣

X
.

In view of the above results, it is an interesting question to establish geo-
metric conditions for the validity of the weak Omori-Yau maximum prin-
ciples in submanifolds of warped products. We study this question in Sec-
tion 3, see Theorem 3.4.

We also observe that the results of Theorems A and B can be generalized
to the more general situation of cylindrically bounded isometric immersions
into the total space of a Riemannian submersion. These generalizations are
discussed in Section 5, see Theorem 5.2 and Theorem 5.3. In this situation,
the curvature estimates are given in terms of the norms of the characteristic
tensors of the submersion.

2. Generalities on warped products

Let (X , gX ) and (V, gV ) be Riemannian manifolds and let ψ :X → R
+

be a smooth positive function on X . Set nX = dim(X ), nV = dim(V) and
nM = nX +nV = dim(M). The product manifold M = X × V endowed
with the metric gM = gX + ψ2gV is the warped product of X and V, with
warping function ψ. This is also denoted with the symbol M = X ×ψ

V. The projection πX : M → X is a Riemannian submersion, while the
projection πV : M → V is not (unless ψ ≡ 1). In fact, warped products
are special cases of Riemannian submersions, characterized by the property
of having integrable horizontal distribution with totally geodesic leaves and
with totally umbilical fibers, see Section 5. We will borrow some terminology
from Riemannian submersions, and we will call X the base and V the fiber
of M. Moreover, vectors that are in the kernel of dπX are called vertical,
while vectors in the kernel of dπV are called horizontal.

Vector fields X ∈ X(X ) will be identified with vector fields in M that “do
not depend on the second variable”, i.e., X(x, v) = X(x) for all v ∈ V. This
type of horizontal vector fields will be called h-basic. Similarly, vector fields
V ∈ X(V) will be identified with vector fields in M that do not depend on
the first variable; they will be called v-basic. Note that

(2.1) gM(X,Y ) = gX (X,Y )

for every h-basic X and Y , while

(2.2) gM(V,W ) = ψ2gV(V,W )

for every v-basic V and W . We will use consistently the notation X, Y , Z
for h-basic fields, and U , V , W for v-basic fields on M. Observe that the
Lie bracket [X,Y ] of h-basic vector fields is h-basic, the Lie bracket [V,W ]
of v-basic fields is v-basic, while the Lie bracket [X,V ] of an h-basic and a
v-basic field is zero.
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2.1. Riemannian differential operators. The symbols ∇X and ∇V will
denote the Levi–Civita connections of (X , gX ) and of (V, gV) respectively.
Due to well known invariance properties, the Levi–Civita connection ∇M of
(M, gM) will be uniquely determined by the values of ∇M

A B, where A and
B are basic. Since [X,V ] = 0, then

(2.3) ∇M
X V = ∇M

V X,

for all h-basic X and v-basic V . The following formulas are easily computed

(2.4) ∇M
X Y = ∇X

XY,

for every h-basic fields X and Y . It follows in particular that X × {v} is
a totally geodesic submanifold of M for all v ∈ V; moreover, the curvature
tensor RM of horizontal vector is given by

RM(X,Y )Z = RX (X,Y )Z.

Thus, the sectional curvature KM(X,Y ) of the plane in TM spanned by
horizontal vectors X and Y coincides with the sectional curvature in the
base manifold

(2.5) KM(X,Y ) = KX (X,Y ).

As to the covariant derivative of mixed terms

∇M
V X

by (2.3)
= ∇M

X V =
X(ψ)

ψ
V,(2.6)

∇M
V W = ∇V

VW − gM(V,W )
gradXψ

ψ
,(2.7)

for all h-basic X and all v-basic V and W . The second fundamental form
of the fibers {x} × V is

(2.8) SV(V,W ) = −gM(V,W )
gradXψ

ψ
.

Therefore, critical points of ψ correspond to totally geodesic fibers. By
taking trace in (2.8), we get the following expression for the mean curvature

vector ~H of the fibers

(2.9) ~H = −nV
gradXψ

ψ
.

For an h-basic vector field X we have

(2.10) divM(X) = divX (X) + nV
X(ψ)

ψ
,

while for a v-basic field V

(2.11) divM(V ) = divV(V ).
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Let F : X → R be a smooth function and denote by F h = F ◦ πX : M →
R the lifting of F to M. It is easily seen that the gradient gradMF h is
horizontal. The gradient of F h is the h-basic field

(2.12) gradMF h = gradXF.

Similarly, if G : V → R is a smooth function, and Gv = G ◦ πV is its lifting
to M, then the gradient gradMGv is vertical, but not v-basic

(2.13) gradMGv =
1

ψ2
gradVG.

The Laplacian ∆M of the functions F h and Gv is given by

∆MF h = ∆XF + nV · gX
(

gradXF,
gradXψ

ψ

)

.(2.14)

∆MGv =
1

ψ2
∆VG.(2.15)

As to the Hessian of the functions F h and Gv, the following formulas can
be computed easily:

HessMF h(X,X) = HessXF (X,X),(2.16)

HessMF h(V, V ) = gX
(

gradXF,
gradXψ

ψ

)

· gM(V, V ),(2.17)

HessMF h(X,V ) = 0,(2.18)

HessMGv(X,X) = 0,(2.19)

HessMGv(V, V ) = HessVG(V, V ),(2.20)

HessMGv(X,V ) = −X(ψ)

ψ
V (G).(2.21)

2.2. Isometric immersions into warped products. Let us now consider
an immersion ϕ : M →֒ M. Assume that M is endowed with the pull-back
metric gM = ϕ∗(gM). If L : M → R is a smooth function, then setting
f = L ◦ ϕ :M → R, one computes3

(2.22) gM (gradMf, e) = gM
(

gradML, e
)

,

for all e ∈ TM and

(2.23) HessMf(e, e) = HessML
(

e, e
)

+ gM
(

gradML,Sϕ(e, e)
)

,

for all e ∈ TM . Here, Sϕ is the second fundamental form of ϕ and we
identified e with dϕ(e). In particular, for L = Gv, in the notation above,

3Obviously, formulas (2.22) and (2.23) hold for an isometric immersion ϕ : M → M
into any ambient manifold M, not just in warped products.
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using (2.13), (2.19), (2.21) and (2.20) one has

(2.24) HessMf(e, e) = −2 gX
(gradXψ

ψ
, ehor

)

gV
(

gradVG, ever
)

+HessVG
(

ever, ever
)

+ gV
(

gradVG,Sϕ(e, e)ver
)

.

Here, ehor and ever are respectively the horizontal and the vertical com-
ponents of e. Similarly, for L = F h, using (2.12), (2.16), (2.17) and (2.18)
one computes

(2.25) HessMf(e, e) = gX
(

gradXF,
gradXψ

ψ

)

· gM
(

ever, ever
)

+HessXF
(

ehor, ehor
)

+ gX
(

gradXF,Sϕ(e, e)hor
)

.

3. On the Omori-Yau Maximum Principle

Definition 3.1 (Pigola-Rigoli-Setti). Let (M,gM ) be a Riemannian mani-
fold. We say that the Omori–Yau Maximum Principle for the Hessian holds
in (M,gM ) if for every smooth function f : M → R with sup

M

f < +∞ there

exists a sequence (pn)n∈N in M such that

(a) lim
n→∞

f(pn) = sup
M

f ,

(b)
∥

∥gradMf(pn)
∥

∥ ≤ 1

n
,

(c) HessMf(pn)(e, e) ≤
1

n
gM (e, e) for all e ∈ TpnM ,

for all n. Similarly, the Omori–Yau Maximum Principle for the Laplacian
holds in (M,gM ) if the above properties hold, with (c) replaced by the
condition

(c’) ∆Mf(pn) ≤
1

n
.

We say that the Weak Omori–Yau Principle for the Hessian (Laplacian) in
(M,gM ) if for every smooth function f : M → R with supM f < +∞ there
exists a sequence (pn)n∈N in M satisfying (a) and (c) ((a) and (c’)) above.

The following Theorem, due to Pigola, Rigoli and Setti [13], gives suf-
ficient conditions for the Omori-Yau Maximum Principle to hold in a Rie-
mannian manifold.

Theorem 3.2 (Pigola-Rigoli-Setti). Let (M,gM ) be a Riemannian mani-
fold. Assume that there exist smooth functions

h : [0,+∞) → [0,+∞) and γ : M → [0,+∞)

such that

(1) h(0) > 0 and h′(t) ≥ 0 for all t ≥ 0,

(2) lim sup
t→+∞

t · h
(
√
t
)

/h(t) < +∞,



8 L. J. ALÍAS, G. P. BESSA, J. F. MONTENEGRO, AND P. PICCIONE

(3)

∫ +∞

0
dt/

√

h(t) = +∞,

(4) γ is proper,

(5)
∣

∣gradMγ
∣

∣ ≤ c · √γ for some c > 0 outside a compact subset of M ,

(6) HessMγ ≤ c′ ·
√

γ · h(√γ) for some c′ > 0 outside a compact subset

of M .

Then the Omori–Yau Maximum Principle for the Hessian holds in (M,gM ).
A totally analogous statement holds in the case of the Omori–Yau principle
for the Laplacian, with assumption (6) replaced by

(6’) △Mγ ≤ c′ ·
√

γ · h(√γ) for some c′ > 0 outside a compact subset of

M .

Note that any function h satisfying (1) and (2) is unbounded

lim
t→+∞

h(t) = +∞.

Definition 3.3. A pair of functions (h, γ) satisfying (1)—(6) of Theorem 3.2
will be called an OY-pair for the Hessian in (M,gM ). Similarly, a pair (h, γ)
satisfying (1)—(5) and (6’) is called an OY-pair for the Laplacian in (M,gM ).

We will now assume that (M,gM ) is isometrically immersed in a warped
product X ×ψ V, and we want to give conditions that guarantee the va-

lidity of the Omori-Yau Maximum Principle on (M,gM ) in terms of the
corresponding property of (V, gV ) and the geometry of the immersion.

Theorem 3.4. Let ϕ : M → M = X ×ψ V be an isometric immersion, and

let (h,Γ) be an OY-pair for the Hessian in (V, gV ). Set γ = Γv ◦ ϕ : M →
[0,+∞). Assume the following hypothesis.

(a) ϕ is proper,

(b) πX
(

ϕ(M)
)

is contained in a compact subset K of X ,

(c)
∥

∥Sϕ
∥

∥ ≤ α
√

h(
√
γ) for4 some α > 0, outside a compact subset of M .

Then, (h, γ) is an OY-pair for the Hessian in (M,gM ). An analogous
statement holds in the case of OY-pairs for the Laplacian, with (c) replaced
by

(c’)
∣

∣ ~Hϕ
∣

∣ ≤ α
√

h(
√
γ) for some α > 0, outside a compact subset of M .

4 i.e.,
∥

∥Sϕ(e, e)
∥

∥

M
≤ α

√

h(
√
γ)|e|2M for all e ∈ TM
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Proof. The function h by hypothesis satisfies the conditions (1)–(3) of The-
orem 3.2 so we only need to show that the function γ satisfies the conditions
(4)–(6). The assumptions (a) and (b) clearly imply that γ is proper. For
if pn ∈ M is a divergent sequence, distM(pn,p0) → ∞ as n → ∞, then
distM(ϕ(pn), ϕ(p0)) → ∞ and since πX

(

ϕ(M)
)

is contained in a compact
subset K of X we have that distM(Γv ◦ ϕ(pn),Γv ◦ ϕ(p0)) → ∞ as n → ∞
since ϕ and Γv are proper. This proves that γ is proper, (condition (4)).

For ξ ∈ Tϕ(p)M, we write ξ = ξt + ξ⊥, where ξt ∈ Im
(

dϕ(p)
)

and ξ⊥ ∈
Im

(

dϕ(p)
)⊥

. Given p ∈M , we have using (2.22), (2.13) that

∣

∣gradMγ(p)
∣

∣

M
≤ 1

ψ2

∣

∣gradVΓ
(

πV(ϕ(p))
)∣

∣

V
≤ c

√

Γ
(

πV(ϕ(p))
)

= c
√

γ(p)

This shows condition (5) of Theorem 3.2. Moreover, let p ∈M and e ∈ TpM

HessMγ(e, e)
by (2.24)

= −2 gX
(gradXψ

ψ
, ehor

)

· gV
(

gradVΓ, ever
)

+HessVΓ
(

ever, ever
)

+ gV
(

gradVΓ,Sϕ(e, e)ver
)

≤ 2A0

∣

∣gradVΓ
∣

∣

V
· |e|2M + c′

√

γ · h(γ) 1

2 ·
∣

∣ever
∣

∣

2

V

+
∣

∣gradVΓ
∣

∣

V
·
∣

∣Sϕ(e, e)ver
∣

∣

V

≤ 2A0

∣

∣gradVΓ
∣

∣

V
· |e|2M + c′

√

γ · h(γ) 1

2 · 1

ψ2

∣

∣e
∣

∣

2

M

+
∣

∣gradVΓ
∣

∣

V
· 1
ψ

∣

∣Sϕ(e, e)
∣

∣

M

≤
[

2A0

∣

∣gradVΓ
∣

∣

V
+

c′

B2
0

√

γ · h(√γ) +
∣

∣gradVΓ
∣

∣

V

B0

√

h(
√
γ)

]

∣

∣e|2M

≤
[

2A0
√
γ +

(

c′

B2
0

+
1

B0

)

√

γ · h(√γ)
]

∣

∣e|2M ,

where

A0 = max
K

∣

∣

gradXψ

ψ

∣

∣, B0 = min
K

ψ.

Since h is unbounded and γ is proper, then outside a compact subset of
M the inequality γ ≤ γ · h

(√
γ
)

holds. Hence, from the last inequality we
get that there exists a positive constant c′′ such that, outside a compact set
of M :

HessMγ ≤ c′′
√

γ · h(√γ).
This proves that (h, γ) is an OY-pair for the Hessian in (M,gM ). The
statement for the Laplacian is proved similarly. �

Remark 3.5. Observe that for the last statement of Theorem 3.4, concerning
the validity of the Omori–Yau principle for the Laplacian in (M,gM ), it is



10 L. J. ALÍAS, G. P. BESSA, J. F. MONTENEGRO, AND P. PICCIONE

necessary to assume that (h,Γ) is an OY-pair for the Hessian in (V, gV ). We
also observe that assumption (c’) can be weakened by requiring that only

the vertical component of ~Hϕ has norm less than or equal to α
√

h(
√
γ)

outside some compact set.

Corollary 3.6. Under the assumptions of Theorem 3.4, the Omori–Yau
Maximum Principle holds for (M,gM ).

4. Curvature estimates

We will generalize the results of [1] and [2] to the case of isometric immer-
sions into warped products. For this, let us consider an isometric immersion
ϕ : M → M = X ×ψ V of the Riemannian manifold (M,gM ) into a warped
product manifold M. Set nM = dim(M) and suppose that nM ≥ nV + 1.
We will assume that there exists a point x0 ∈ X , a real number b and a
positive number r < injX (x0) such that the radial sectional curvatures KXx0

along the radial geodesics issuing from x0 satisfies

(4.1) KXx0
≤ b, in BX (x0; r).

Here BX (x0; r) is the geodesic ball in X centered at x0 and of radius r > 0
and injX (x0) is the injectivity radius of X at x0. Our estimates will be given
in terms of the function Cb, defined by

(4.2) Cb(t) =























√
b cot

(
√
b t
)

, if b > 0 and t ∈ (0, π/2
√
b)

1

t
if b = 0 and t > 0

√
−b coth

(√
−b t

)

if b < 0 and t > 0.

Observe that Cb is strictly decreasing in its domain. Denote by ρ : X → R

the function

ρ(x) = distX (x0, x);

this is a smooth function in BX (x0; r). The gradient of ρ satisfies

(4.3)
∣

∣gradXρ
∣

∣

X
=

∣

∣gradMρh
∣

∣

M
≡ 1.

By the Hessian Comparison Theorem (see for instance Ref. [4]), given x ∈
BX (x0; r) and a vector X ∈ TxX orthogonal to gradX ρ(x), then

(4.4) HessXρ(X,X) ≥ Cb
(

ρ(x)
)

|X|2X ;

on the other hand, if Y ∈ TxX is parallel to gradX ρ(x)

(4.5) HessXρ(X,Y ) = HessXρ(Y, Y ) = 0.
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4.1. Sectional curvature estimates. We will first generalize the main
result in [2] to the case of isometric immersions into warped products. As
above, let ϕ : M →֒ M = X ×ψ V be an isometric immersion, let x0 be

a point in X , denote by ρ : X → R the function ρ(x) = distX (x0, x), and
define F : X → R by

F = φb ◦ ρ,
where φb is the function

(4.6) φb(t) =



















1− cos
(
√
b t
)

, if b > 0 and t ∈ (0, π/2
√
b)

t2, if b = 0 and t > 0

cosh
(√

−b t
)

, if b < 0 and t > 0.

This is a strictly increasing function, as φ′b(t) > 0 for all t in its domain, and
it satisfies the following ordinary differential equation

(4.7) φ′′b (t)− φ′b(t)Cb(t) = 0.

We assume that x belongs to a sufficiently small neighborhood U of x0, so
that F is a smooth function, and that the image πX

(

ϕ(M)
)

is contained in
such neighborhood. The value of the parameter b is chosen in such a way
that inequality (4.1) holds in U . Thus we have a smooth function f : M → R

defined by

(4.8) f = F h ◦ ϕ.
Given p ∈ M , set ϕ(p) = (x, v) ∈ M; the gradient of f at p is computed
easily from the formula
(4.9)

φ′b
(

ρ(x)
)

gradXρ(x) = gradMF h
(

ϕ(p)
)

= gradMf(p) + gradMF h
(

ϕ(p)
)⊥
.

Moreover, using (2.25), for e ∈ TpM one computes the Hessian

HessMf(e, e) = HessX (φb ◦ ρ)
(

ehor, ehor
)

+φ′b
(

ρ(x)
)

gM
(

gradXρ,Sϕ(e, e)
)

(4.10)

+φ′b
(

ρ(x)
)

gX
(

gradXρ, grad
Xψ
ψ

)

gM
(

ever, ever
)

.

Moreover,

(4.11) HessX (φb ◦ ρ)
(

ehor, ehor
)

= φ′′b (ρ) g
X
(

gradXρ, ehor
)2

+ φ′b(ρ)Hess
Xρ

(

ehor, ehor
)

by (4.7)
= φ′b(ρ)Cb(ρ)g

X
(

gradXρ, ehor
)2

+ φ′b(ρ)Hess
Xρ

(

ehor, ehor
)

= φ′b(ρ)
[

Cb(ρ)g
X
(

gradXρ, ehor
)2

+ HessXρ
(

ehor, ehor
)

]

.
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Let us now recall the following result, known in the literature as Otsuki’s
Lemma.

Lemma 4.1. Let β : V × V → W be a symmetric bilinear form, where V
and W are finite dimensional vector spaces. Assume that β(v, v) 6= 0 for all
v 6= 0, and that dim(W ) < dim(V ). Then, there exist linearly independent
vectors v1, v2 ∈ V such that β(v1, v1) = β(v2, v2) and β(v1, v2) = 0.

Proof. See for instance [6, page 28]. �

We can now state our first main result (Theorem A in the Introduction).

Theorem 4.2. Let (M,gM ) be a complete Riemannian nM -manifold for
which the Weak Omori–Yau principle for the Hessian holds and let ϕ :M →
M = X ×ψ V be an isometric immersion. Assume that the following hy-
potheses are satisfied

(1) πX
(

ϕ(M)
)

⊂ BX (x0; r) for some x0 ∈ X and r ∈ (0, injX (x0)).

(2) Assumption (4.1) holds.

(3) 2nM ≥ 2nV + nX + 1.

Then,

(4.12) sup
M

KM ≥ Cb(r)
2 + inf

BX (x0;r)
KX .

Proof. The assumption (3) together with the natural dimension bound nM ≤
nM − 1 implies that

2nV + nX + 1 ≤ 2nM ≤ 2nX + 2nV − 2.

And that gives

(4.13) nX ≥ 3.

Using again assumption (3) and (4.13), together with the fact that dϕ is
injective, we have that for all p ∈M there exists a subspace Πp ⊂ TpM with
dimension

(4.14) dim(Πp) ≥ nM − nV ≥ 1

2

(

nX + 1
)

≥ 2,

such that dϕ(Πp) is horizontal. Thus, for all e ∈ Πp, e
ver = 0, and

e = ehor = gX
(

ehor, gradXρ(p)
)

gradXρ+ e⊥.

Using Hessian’s comparison theorem, we get

HessXρ
(

ehor, ehor
)

= HessXρ
(

e⊥, e⊥
)

≥ Cb(ρ) g
X
(

e⊥, e⊥
)

(4.15)

= Cb(ρ)
[

∣

∣e
∣

∣

2

M
− gX

(

ehor, gradXρ
)2
]

.
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From (4.11), we obtain that for all e ∈ Πp

(4.16) HessX (φb ◦ ρ)
(

ehor, ehor
)

≥ φ′b(ρ)Cb(ρ)
∣

∣e
∣

∣

2

M
.

Moreover, for the function f : M → R defined in (4.8), from (4.10) and
(4.16), we obtain

(4.17) HessMf(e, e) ≥ φ′b(ρ)
[

Cb(ρ)
∣

∣e
∣

∣

2

M
−

∣

∣Sϕ(e, e)
∣

∣

M

]

,

for all p ∈M and all e ∈ Πp. Here, we have used the equalities
∣

∣gradXρ
∣

∣

X
=

1 and ever = 0. We will now apply the Omori–Yau principle for the Hessian
to the function f , which is smooth and bounded by assumption (1). Let
pn ∈M be a sequence satisfying

(a) f(pn) > supM f − 1

n
;

(b) HessMf(pn) <
1

n
,

for all n. Choose e ∈ Πpn , and recall that |e|M =
∣

∣e
∣

∣

M
=

∣

∣ehor
∣

∣

M
. By (b)

and (4.17), we have

1

n
|e|2M > HessMf(pn)(e, e) ≥ φ′b(sn)

(

Cb(sn) |e|2M −
∣

∣Sϕ(e, e)
∣

∣

M

)

,

where
sn = ρh

(

ϕ(pn)
)

.

Hence
(4.18)

∣

∣Sϕ(e, e)
∣

∣

M
≥

(

Cb(sn)−
1

nφ′b(sn)

)

|e|2M ≥
(

Cb(r)−
1

nφ′b(sn)

)

|e|2M .

We now observe that assumption (3) gives nM > nV ; this implies that the
image ϕ(M) is not contained in the vertical fiber {x0}×V, and in particular
that supM ρh ◦ ϕ > 0. For all b, the function φb is increasing and positive,
and therefore supM f > 0; this says that πX (pn) stays away from x0, i.e.,
there exists δ > 0 such that sn ≥ δ. Therefore

(4.19) lim
n→∞

1

nφ′b(sn)
= 0,

and so for n sufficiently large, we have Cb(sn)−
1

nφ′b(sn)
> 0, which implies

in particular that Sϕ(e, e) 6= 0 for all e ∈ Πpn \ {0}. We can invoke Otsuki’s
Lemma, applied to the symmetric bilinear form given by the restriction of

Sϕ to Πpn ×Πpn , which takes values in the space Im
(

dϕ(pn)
)⊥

. Note that,
by assumption (3)

dim
[

Im
(

dϕ(pn)
)⊥

]

= nX + nV − nM < nM − nV = dim(Πpn).

Thus, there exist linearly independent vectors e1, e2 ∈ Πpn such that:

Sϕ(e1, e1) = Sϕ(e2, e2), Sϕ(e1, e2) = 0.
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We can assume |e1|M ≥ |e2|M > 0. We will now compare the sectional
curvatureKM (e1, e2) with the sectional curvatureKM

(

dϕ(e1),dϕ(e2)
)

. The

plane spanned by dϕ(e1), dϕ(e2) is horizontal, and recalling (2.5), we have:

(4.20) KM

(

dϕ(e1),dϕ(e2)
)

= KX

(

dϕ(e1),dϕ(e2)
)

.

Then, using Gauss equation we have

KM (e1, e2)−KX

(

dϕ(e1),dϕ(e2)
)

= KM (e1, e2)−KM

(

dϕ(e1),dϕ(e2)
)

=
gM

(

S(e1, e1),S(e2, e2)
)

−
∣

∣S(e1, e2)
∣

∣

2

M

|e1|2M |e2|2M − gM (e1, e2)2
=

∣

∣S(e1, e1)
∣

∣

2

M

|e1|2M |e2|2M − gM (e1, e2)2

≥
[
∣

∣S(e1, e1)
∣

∣

M

|e1|2M

]2
by (4.18)

≥
(

Cb(r)−
1

nφ′b(sn)

)2

.

Hence

sup
M

KM − inf
BX (x0;r)

KX ≥
(

Cb(r)−
1

nφ′b(sn)

)2

.

Taking the limit as n→ ∞ and recalling (4.19) we get (4.12). �

4.2. Mean curvature estimates. We start with an elementary result.

Lemma 4.3. Let
(

Wi, 〈 , 〉i
)

, i = 1, 2, be finite dimensional vector spaces
with inner product, with dimensions ni, i = 1, 2, and let T : W1 → W2 be a
linear map with the property that there exists an orthogonal decomposition
W1 = W ⊕ W ′ such that T |W : W → W2 is a surjective isometry and
T |W ′ = 0. Then, for every orthonormal basis ξ1, . . . , ξn1

of W1, the following
equality holds.

(4.21)

n1
∑

i=1

∣

∣

∣
Tξi

∣

∣

2

2
= n2.

In particular, if η1, . . . , ηn is any orthonormal family inW1, then
n
∑

i=1

∣

∣Tηi
∣

∣

2

2
≤

n2.

Proof. The left-hand side of (4.21) does not depend5 on the orthonormal
basis; it is the Hilbert–Schmidt squared norm of the linear map T . The
equality is verified easily using an orthonormal basis of W1 consisting of the
union of an orthonormal basis of W and an orthonormal basis of W ′. �

We can now prove the following (Theorem B in the Introduction):

5Namely, if η′
1, . . . , η

′
n1

is another orthonormal basis, then there exists an orthogonal
n1 × n1 matrix A = (aij) such that η′

i =
∑

j
aijηj for all i. The orthogonality of A means

that (A∗A)jk =
∑

i
aijaik = δjk for all j, k. Then:

∑

i

|Tη′

i|22 =
∑

i,j,k

aijaik〈Tηj , T ηk〉2 =
∑

j,k

δjk〈Tηj , T ηk〉2 =
∑

j

|Tηj |22.
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Theorem 4.4. Let (M,gM ) be a complete Riemannian manifold for which
the Weak Omori–Yau principle for the Laplacian holds, and let ϕ : M →
M = X ×ψ V be an isometric immersion. Assume that the following hy-
potheses are satisfied.

(1) πX
(

ϕ(M)
)

⊂ BX (x0; r) for some x0 ∈ X and r ∈ (0, injX (x0)).

(2) Assumption (4.1) holds.

Then, denoting by ~Hϕ the mean curvature vector of ϕ, one has the following

estimate on the supremum of | ~Hϕ
∣

∣

M
.

(4.22) sup
M

∣

∣ ~Hϕ
∣

∣

M
≥ (nM − nV)Cb(r)− nVΨ0,

where

(4.23) Ψ0 = sup
dist(x,x0)≤r

∣

∣

∣

gradXψ(x)

ψ(x)

∣

∣

∣

X
.

Proof. Inequality (4.22) is proved applying the Weak Omori–Yau principle
to the function f :M → R defined in (4.8). Let us give an estimate for the
Laplacian of f as follows. From (4.10) and (4.11), given p ∈M and e ∈ TpM
we have

HessMf(e, e) = φ′b(ρ)
[

Cb(ρ)g
X
(

gradXρ, ehor
)2

+HessXρ
(

ehor, ehor
)

]

+φ′b(ρ) g
X
(

gradXρ,
gradXψ

ψ

)

gM
(

ever, ever
)

(4.24)

+φ′b(ρ) g
M
(

gradXρ,Sϕ(e, e)
)

.

Let us write e = ehor + ever and ehor = eρ + e⊥, where

eρ = gX
(

ehor, gradX ρ
)

gradX ρ.

Observe

∣

∣ehor
∣

∣

2

M
=

∣

∣eρ
∣

∣

2

M
+

∣

∣e⊥
∣

∣

2

M
= gX

(

ehor, gradXρ
)2

+
∣

∣e⊥
∣

∣

2

M

Using the Hessian Comparison Theorem (4.4), we obtain

HessXρ
(

ehor, ehor
)

= HessXρ
(

e⊥, e⊥
)

≥ Cb(ρ) g
X
(

e⊥, e⊥
)

(4.25)

= Cb(ρ)
∣

∣e⊥
∣

∣

2

M
.
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From (4.24) and (4.25) we get to the following inequality.

HessMf(e, e) ≥ φ′b(ρ)Cb(ρ)
[

gX
(

ehor, gradXρ
)2

+
∣

∣e⊥
∣

∣

2

M

]

+φ′b(ρ)g
M
(

gradXρ,
gradXψ

ψ

)
∣

∣ever
∣

∣

2

M

+φ′b(ρ)g
M
(

gradXρ,Sϕ(e, e)
)

= φ′b(ρ)Cb(ρ)
∣

∣ehor
∣

∣

2

M
(4.26)

+φ′b(ρ)g
M
(

gradXρ,
gradXψ

ψ

)
∣

∣ever
∣

∣

2

M

+φ′b(ρ)g
M
(

gradXρ,Sϕ(e, e)
)

Let (ei)
nM

i=1 be an orthonormal basis of TpM ; from (4.26), we get

△Mf =

nM
∑

i=1

HessMf(ei, ei)

≥ φ′b(ρ)Cb(ρ)

nM
∑

i=1

∣

∣dϕ(ei)
hor

∣

∣

2

M

+φ′b(ρ)g
M
(

gradXρ,
gradXψ

ψ

)

nM
∑

i=1

∣

∣dϕ(ei)
ver

∣

∣

2

M

+φ′b(ρ)g
M
(

gradXρ, ~Hϕ
)

≥ φ′b(ρ)Cb(ρ)

nM
∑

i=1

(

1−
∣

∣dϕ(ei)
ver

∣

∣

2

M

)

(4.27)

−φ′b(ρ)
∣

∣

gradXψ

ψ

∣

∣

X

nM
∑

i=1

∣

∣dϕ(ei)
ver

∣

∣

2

M
− φ′b(ρ)

∣

∣ ~Hϕ
∣

∣

M

= φ′b(ρ)
[

Cb(ρ)
(

nM −
nM
∑

i=1

∣

∣dϕ(ei)
ver

∣

∣

2

M

)

−
∣

∣

gradXψ

ψ

∣

∣

X

nM
∑

i=1

∣

∣dϕ(ei)
ver

∣

∣

2

M
−

∣

∣ ~Hϕ
∣

∣

M

]

.
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Now, we claim that the following inequality holds

(4.28)

nM
∑

i=1

∣

∣everi

∣

∣

2

M
≤ nV .

This follows from Lemma 4.3 applied to the linear map

dπV
(

ϕ(pn)
)

: Tϕ(pn)M −→ Tπ(ϕ(pn))V,
where the space Tπ(ϕ(pn))V is endowed with the inner product ψ2 · gV , con-
sidering the orthonormal family e1, . . . , enM

in Tϕ(pn)M.
Thus, (4.27) gives

(4.29) △Mf ≥ φ′b(ρ)
[

Cb(ρ)
(

nM − nV
)

− nV Ψ0 −
∣

∣ ~Hϕ
∣

∣

M

]

.

The Weak Omori–Yau Principle for the Laplacian yields the existence of a
sequence pn in M such that

(a) f(pn) > supM f − 1

n
.

(b) ∆Mf(pn) <
1

n
.

Set sn = ρ
(

ϕ(pn)
)

. The inequality (4.29) gives

(4.30) φ′b(sn)
[

Cb(sn)
(

nM − nV
)

− nV Ψ0 −
∣

∣ ~Hϕ
∣

∣

M

]

<
1

n
for all n. Arguing as in the proof of Theorem 4.2, the sequence sn is bounded
away from 0, and so is the quantity φ′b(sn). Moreover, since Cb is decreasing,
it is Cb(sn) ≥ Cb(r) for all n. Taking the limit as n→ ∞ in (4.30), we obtain

Cb(r)
(

nM − nV
)

− nV Ψ0 − sup
∣

∣ ~Hϕ
∣

∣

M
≤ 0,

which is our thesis. �

In Theorem 4.4, the hypothesis on the validity of the weak Omori–Yau
principle in (M,gM ) can be omitted by assuming instead that the fiber of
the warped product has an OY-pair and that ϕ is proper.

Corollary 4.5. Assume that

• (V, gV ) has an OY-pair for the Hessian,

• ϕ is proper,

• the ball BX (x0; r) has compact closure in X (for instance, if (X , gX )
is complete).

Then the conclusion of Theorem 4.4 holds.

Proof. We argue by contradiction. If (4.22) does not hold, then the norm of

the mean curvature vector
∣

∣ ~Hϕ
∣

∣

M
is bounded, and we can apply Proposi-

tion 3.4 to deduce that the (strong) Omori–Yau principle for the Laplacian
holds in (M,gM ). Thus, a fortiori, (4.22) holds. �
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5. Isometric immersions into Riemannian submersions

Our curvature estimates for isometric immersions into warped product
can be partially extended to the far more general case of immersions into
the total space of Riemannian submersions. Given Riemannian smooth man-
ifolds (M, gM) and (X , gX ), a Riemannian submersion is a smooth surjec-
tive map π : M → X such that the differential dπ has everywhere maxi-
mal rank, and it is an isometry when restricted to horizontal vectors, i.e.,
|X|M =

∣

∣dπ(X)|X for all X orthogonal to the kernel of dπ. The manifold
M is called the total space of the submersion, X is the base, and for all
x ∈ X , the fiber Vx is the smooth embedded submanifold of M given by
π−1(x).

A horizontal vector fieldX ∈ X(M) is basic if it is π-related to some vector
field X∗ ∈ X(X ). If X and Y are basic vector fields, then the horizontal
component (∇M

X Y )h of the covariant derivative ∇M
X Y is basic, and it is

π-related to ∇X
X∗
Y∗, see [10, Lemma 1]. Having this in mind, it is easy to

prove the following

Lemma 5.1. Let F : X → R be a smooth function; set F h = F ◦π : M → R.
Then, the gradient gradMF h is basic. Given p ∈ M and horizontal vectors
X,Y ∈ TpM, then HessMF h(X,Y ) is equal to HessXF

(

dπp(X),dπp(Y )
)

.
�

Let us recall that the geometry of a Riemannian submersion π : M → X
is described by the fundamental tensors T and A, introduced by O’Neill see
[10], defined by the following formulas:

Tξ(η) =
(

∇M
ξver(η

ver)
)hor

+
(

∇M
ξver(η

hor)
)ver

,

Aξ(η) =
(

∇M
ξhor(η

hor)
)ver

+
(

∇M
ξhor(η

ver)
)hor

,

for ξ, η ∈ TM. Restricted to vertical vectors, T is the second fundamental
form of the fibers of the submersion. On horizontal fields, A is essentially
the integrability tensor of the horizontal distribution of the submersion.

5.1. Sectional curvature estimates. The tensor A is related to the sec-
tional curvature of horizontal planes, as follows. Let p ∈ M and X,Y ∈
TpM be (linearly independent) horizontal vectors; set X∗ = dπp(X) and
Y∗ = dπp(Y ). Then:

(5.1) KM(X,Y ) = KX (X∗, Y∗)−
3
∣

∣AXY
∣

∣

2

M
∣

∣X
∥

∥

2

M

∣

∣Y
∣

∣

2

M
− gM(X,Y )2

.

Given p ∈ M, let us introduce the following notation:

secMhor(p) = min
{

KM(Π) : Π ⊂ TpM horizontal 2-plane
}

.

When the horizontal distribution is integrable, i.e., when the tensor A van-
ishes identically on horizontal vectors, then by (5.1) the sectional curvature
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of horizontal planes in M coincides with the curvature of the corresponding
plane in the base manifold X .

Theorem 5.2. Let (M,gM ) be a Riemannian manifold in which the Omori–
Yau Principle for the Hessian holds, and let ϕ : M → M be an isometric
immersion of M into the total space of a Riemannian submersion π : M →
X . Denote by nV the dimension of the fibers of π. Assume that the following
hypotheses are satisfied.

(1) π
(

ϕ(M)
)

⊂ BX (x0; r) for some x0 ∈ X and r ∈ (0, injX (x0))

(2) assumption (4.1) holds,

(3) 2nM ≥ 2nV + nX + 1.

Then,

(5.2) sup
M

KM ≥ Cb(r)
2 + inf

π−1(BX (x0;r))
secMhor.

If the horizontal distribution of π is integrable, then

(5.3) sup
M

KM ≥ Cb(r)
2 + inf

BX (x0;r)
KX .

Proof. In the proof of Theorem 4.2, the Omori–Yau principle is used for
evaluating the Hessian of smooth functions on the base X , in the direc-
tions of horizontal vectors. By Lemma 5.1, also in the case of Riemannian
submersions the value of the Hessian in horizontal directions coincides with
the Hessian on the base manifolds. Thus, the proof of Theorem 4.2 can be
repeated verbatim, with the exception of formula (4.20), which is replaced
by (5.1). This yields the estimate (5.2). When the horizontal distribution
is integrable, then also formula (4.20) holds for the Riemannian submersion
π : M → X , and the conclusion is exactly the same as in Theorem 4.2. �

5.2. Mean curvature estimates. In order to extend to Riemannian sub-
mersions the result of Theorem 4.4, we need a generalization of formula
(2.25). This is obtained easily using the expressions for the Levi–Civita
connection of the total space of a Riemannian submersions given, for in-
stance, in [10, Lemma 3]. If X is basic, and V is vertical, then the horizontal
component of the covariant derivative ∇M

V X is given by

(5.4)
(

∇M
V X

)h
=

(

∇M
X V

)h
= AXV ;

similarly, the vertical component of ∇M
V X is

(5.5)
(

∇M
V X

)v
= TVX.

Let F : X → R be a smooth map, F h = F ◦ π : M → R, ϕ : M → M an
isometric immersion and f = F h ◦ ϕ : M → R. For p ∈ M and e ∈ TpM ,
let us set ξ = dϕp(e) ∈ Tϕ(p)M, and let Sϕ denote the second fundamental

form of ϕ.. Using the fact that dF h is basic, π-related to gradXF , and using
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formulas (2.23), (5.4) and (5.5), we obtain the following expression for the
Hessian of f .

(5.6) HessMf(e, e) = HessMF h(ξ, ξ) + gM
(

gradMF h,Sϕ(e, e)
)

= HessMF h(ξhor, ξhor) + 2HessMF h(ξhor, ξver)

+ HessMF h(ξver, ξver) + gM
(

gradMF h,Sϕ(e, e)
)

= HessXF (ξhor∗ , ξhor∗ ) + 2 gM
(

Aξhor(grad
MF h), ξver

)

+ gM
(

Tξver(grad
MF h), ξver

)

+ gM
(

gradMF h,Sϕ(e, e)
)

.

Denote by SV the second fundamental form of the fibers; the term containing
the fundamental tensor T can be rewritten in terms of SV as

(5.7) gM
(

Tξver(grad
MF h), ξver

)

= −gM
(

SV(ξver, ξver), gradMF h
)

.

Comparing (5.6) with (2.25), the reader will observe that the term in (5.7)
corresponds to the last term in (2.25), see (2.8). The new term here is
the one containing the fundamental tensor A, which vanishes in the case of
warped products. Thus, it is easy to formulate the following extension of
Theorem 4.4:

Theorem 5.3. Let (M,gM ) be a Riemannian manifold in which the Omori–
Yau principle for the Laplacian holds, and let ϕ : M → M be an isometric
immersion into the total space of a Riemannian submersion π : M → X .
Assume that the following hypotheses are satisfied.

(1) π
(

ϕ(M)
)

⊂ BX (x0; r) for some x0 ∈ X and r ∈ ]0, injX (x0)[
(2) assumption (4.1) holds;

Then, denoting by ~Hϕ the mean curvature vector of ϕ, and by T , A the
fundamental tensors of the Riemannian submersion, one has the following

estimate on the supremum of ‖ ~Hϕ
∥

∥

M
:

(5.8) sup
M

∥

∥ ~Hϕ
∥

∥

M
≥ (nM − nV)Cb(r)− nM α0 − nV τ0,

where

(5.9) τ0 = sup
π−1(BX (x0;r))

∣

∣T
∣

∣,

and

(5.10) α0 = sup
π−1(BX (x0;r))

∣

∣A
∣

∣.

Proof. It suffices to repeat the proof of Theorem 4.4, keeping into consider-
ation also the contribution of the term

2 gM
(

Aξhor(grad
MF h), ξver

)

,

which is estimated as follows

2 gM
(

Aξhor(grad
MF h), ξver

)

≥ −2α0 |ξhor|M |ξver|M.
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When |ξ|2M = 1, then |ξhor|M |ξver|M ≤ 1
2 . The conclusion follows readily.

�
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