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Abstract

When the Channel State Information (CSI) is known by thedmaitter as well as the receiver, beamforming
techniques that employ Singular Value Decomposition (S&i2)commonly used in Multiple-Input Multiple-Output
(MIMO) systems. In the absence of channel coding, when dessygmbol is transmitted, these systems achieve the
full diversity order provided by the channel. Whereas, frigperty is lost when multiple symbols are simultaneously
transmitted. Full diversity can be restored when channdingpis added, as long as the code ré&tg and the
number of employed subchannedssatisfy the condition?.S < 1. By adding a properly designed constellation
precoder, full diversity can be achieved for both uncodeti@nvolutional coded SVD systems, e.g., Fully Precoded
Multiple Beamforming (FPMB) and Bit-Interleaved Coded Mple Beamforming with Full Precoding (BICMB-
FP) without the condition?.S < 1. Recently discovered Perfect Space-Time Block Code (P3Ti8@ full-rate
full-diversity space-time code, which achieves maximundieg gain for MIMO systems. Particular PSTBCs,
which yield increased coding gain, only exist in dimensi@ns3, 4 and 6. Previously, Perfect Coded Multiple
Beamforming (PCMB) was proposed. PCMB transmits PSTBCsutliin uncoded multiple beamforming. It was
shown that PCMB achieves the full diversity order and itsfgp@nance is close to general MIMO systems using
PSTBCs and FPMB, whereas the worst-case decoding compisxsignificantly less than general MIMO systems
using PSTBCs and is much lower than FPMB for dimensibard4. In this paper, a new technique, Bit-Interleaved
Coded Multiple Beamforming with Perfect Coding (BICMB-R@3 introduced. BICMB-PC transmits PSTBCs

through convolutional coded SVD systems. Simulation tesshow that BICMB-PC achieves almost the same
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performance as BICMB-FP. Moreover, since the real and ineagiparts of the received signal can be separated
for BICMB-PC of dimension® and4, and only the part corresponding to the coded bit is requimeatquire one
bit metric for the Viterbi decoder, BICMB-PC provides mudwer decoding complexity than BICMB-FP.

I. INTRODUCTION

Substantial research and development has been carriedch ddtltiple-Input Multiple-Output (MIMO)
systems, because they offer high spectral efficiency arfdnpesince in a given bandwidth. In such systems,
space-time coding can be employed to offer spatial diwgraitd increasingly, spatial multiplexing gains
[1].

When Channel State Information (CSI) is available at thedmatter, beamforming techniques, which
exploit Singular Value Decomposition (SVD), are applieciMIMO system to achieve spatial multiplex-
ing and thereby increase the data rate, or to enhance therpearice [[2]. However, spatial multiplexing
without channel coding results in the loss of the full divgrorder [3]. To overcome the diversity
degradation, Bit-Interleaved Coded Multiple Beamform{@CMB), which interleaves the codewords
through the multiple subchannels, was proposed [4], [SCMB can achieve the full diversity order as
long as the code rat&. and the number of employed subchannglsatisfy the condition?.S < 1
[6], [7]. In [8], [9], [LO], it was shown that by employing theonstellation precoding technique, the
full diversity order can be achieved for both uncoded andveluional coded SVD systems, e.g., Fully
Precoded Multiple Beamforming (FPMB) and Bit-Interleav€dded Multiple Beamforming with Full
Precoding (BICMB-FP) without the conditioR.S < 1.

In [11]], the Perfect Space-Time Block Code (PSTBC) was thioed for dimensiong, 3, 4, and6.
PSTBCs have the full rate, the full diversity, nonvanishmgimum determinant for increasing spectral
efficiency, uniform average transmitted energy per anteand good shaping of the constellation.[In![12],
PSTBCs were generalized to any dimension. However, it wasegr in [13] that particular PSTBCs,
yielding increased coding gain, only exist in dimensia@n8, 4, and6. Due to the advantages of PSTBCs,
the Golden Code (GC), which is the best known PSTBC for MIMGtems with two transmit and two
receive antennas [14], [15], has been incorporated int@®Rel6e WIMAX standard [[16].

In our previous work|[[17],[[18], Perfect Coded Multiple Befmmming (PCMB) was proposed. PCMB
combines PSTBCs with multiple beamforming and achievesuleate and the full diversity, in a similar
fashion to the general MIMO systems employing PSTBCs and BPlMwas shown that for dimensions

2 and 4, all these three techniques have close Bit Error Rate (BERjppnance, while the worst-case



decoding complexity of PCMB is significantly less than gahevIMO systems using PSTBCs and is
much lower than FPMB.

In this paper, a new technique with the full diversity ordar ¢onvolutional coded SVD systems, called
Bit-Interleaved Coded Multiple Beamforming with Perfeading (BICMB-PC), is proposed. BICMB-PC
transmits bit-interleaved codewords of PSTBC through thtipie subchannels. Simulation results show
that BICMB-PC achieves almost the same BER performance @8BF-P. Moreover, BICMB-PC has
much lower complexity than BICMB-FP for dimensiofisand 4, because the real and imaginary parts
of the received signal can be separated, and only the paspamding to the coded bit is required to
calculate one bit metric for the Viterbi decoder.

The remainder of this paper is organized as follows: In $edl], the description of BICMB-PC is given.
In Section[ll, the diversity analysis of BICMB-PC is proed. In Sectiori IV, the decoding technique
and complexity of BICMB-PC are shown. In Sectibn V, perfono@ comparisons of BICMB-PC and

BICMB-FP are carried out. Finally, a conclusion is providadSection VI.

Il. BICMB-PC OVERVIEW

The structure of BICMB-PC is presented in Fg. 1. First, tlhewwlutional encoder of code rafe,,
possibly combined with a perforation matrix for a high ratengtured code, generates the bit codeword
c from the information bits. Then, a random bit-interleaveraipplied to generate the interleaved bit
sequence, which is then modulated ki*QAM or M-HEX [19] and mapped by Gray encoding. Théh
consecutive complex-valued scalar symbols are encodedivg PSTBC codeword, whefec {2,3.4,6}

is the system dimension. Hence, at #ié time instant, the PSTBC codewo#)}, is constructed as

S
Zp =) _ diag(Gx,,)E"" 1)

v=1
whereG is anS x S unitary matrix,x, ; is an.S x 1 vector whose elements are th& S input modulated

scalar symbols, and

[0 1 0 0]
00 1

E= ;
0 - 1
g 0 0 0




with

1, S =24,
g= 6%, S =3,
—e%, S =6,

anddiag(w = [wy, ..., ws|T) denotes a diagonal matrix with diagonal entries . .., ws. The selection
of the G matrix for different dimensions can be found in [11].

The MIMO channelH € Z"*M is assumed to be quasi-static, Rayleigh, and flat fading,kaotvn
by both the transmitter and the receiver, whé¥e = N, = S denote the number of transmit and
receive antennas respectively, @adtands for the set of complex numbers. The beamforming &eare
determined by the SVD of the MIMO channel, i.#1, = UAV!, whereU andV are unitary matrices,
and A is a diagonal matrix whose" diagonal element), € R*, is a singular value oH in decreasing
order, whereR"™ denotes the set of positive real numbers. Witeatreams are transmitted at the same
time, the firstS vectors ofU andV are chosen to be used as beamforming matrices at the reegmiger
the transmitter, respectively.

The received signal at the” time instant is
Y, = AZ;, + Ny, (2)

whereY, is an S x S complex-valued matrix, an@N, is the S x S complex-valued additive white
Gaussian noise matrix whose elements have zero mean amtha@aN, = S/SNR. The channel matrix
H is complex Gaussian with zero mean and unit variance. Tla ti@nsmitted power is scaled &sin
order to make the received Signal-to-Noise Ratio (SSR)R.

The location of the coded hit, within the PSTBC codeword sequence is denoteld as (k, (m,n), j),
where k, (m,n), and j are the time instant of the PSTBC codewords, the symbol ipasih X; =
X1k, .- .,Xg), and the bit position on the label of the scalar symbg] ) ., respectively. Lety denote
the signal set of the modulation scheme, andyledenote a subset of whose labels have ¢ {0,1}
in the 5** bit position. By using the location information and the ityoutput relation in[(R), the receiver
calculates the Maximum Likelihood (ML) bit metrics fef, as

AmWI(Y o) = min  [[Y, — AZ| )

I(m,n)exék/



Finally, the ML decoder, which uses Viterbi decoding, makélesisions according to the rule
¢ = argmin > A (Y ). (4)
kl

[1l. DIVERSITY ANALYSIS

Based on the bit metrics irll(3), the instantaneous Pairwiser BProbability (PEP) between the
transmitted codeword and the decoded codewoédis
Pr(c — ¢ |H) =Pr (Z min Y, —AZ[*> )" min Y, - AZ|]| H) : (5)

k! m(m,n)eXék/ k! T(mn) EXék/

wherec,, and¢,, are the coded bit of and¢, respectively. Letl; denote the Hamming distance between
c andé¢. It is assumed that théy coded bits are interleaved such that they are placet<dndy distinct
PSTBC codewords. Since the bit metrics corresponding tgdh®e coded bits between the pairwise errors
are the same[{5) is rewritten as

Pr(c—>é|H):Pr<Z min  |[Y,—AZ|*> )" min ||Yk—AZ||2|H>, (6)

k'.d "E(m,n)GXék/ k' .d x(m,n)€X5k,

where},, ; stands for the summation of thevalues corresponding to the different coded bits between
the bit codewords.
DefineZ, andZ, as
Z, = arg min Y = AZ)?,

T(m,n) eXék/

A (7)
Z,=arg min [[Y; — AZ|?,

x(m.n)exjék/

whereg, is the complement of;. in binary. It is easily found tha, is different fromZ;, since the sets
that z,,, ,)'s belong to are disjoint, as can be seen from the definitio;qggf. In the same manner, it is

clear thatZ, is different fromZ,. With Z,, andZ,,, (6) is rewritten as
Pr(c — &|H) = Pr (Z Y — AZ|> > ) (Y, - AZH2> : ®)
K.d K.d

Based on the fact thatY, — AZ||2 > ||Y, — AZ||> and the relation in({2), equatiofl (8) is upper-bounded



by

Pr(c = & | H) < Pr (5 > 3 IAZ - zk>||2> , ©)

K .d
where¢ = >, Tr[—(Zy — Z)P AN, — NIA(Z, — Z;)]. Since¢ is a zero-mean Gaussian random

variable with varianc&N, ., ; [|A(Zy, — Z:)|1?, @) is replaced by thé) function as

Pric > & |H) = Q (\/Z’“"d ”A2<]ZV’“ _ Zk)2) . (10)

0

By using the upper bound on thg function Q(z) < %6_12/2, the average PEP can be upper bounded as

Pr(c — &) = E[Pr(c — & | H)]

7 2
- (_zk/,duA<zk Z)| )] wn

<FE
- 4Ny

In [17], [18], it was shown that
|AZ||> = Tx[Z A" AZy]
S S
=Y D el (12)
u=1 v=1

whereg” denotes the/' row of G. By replacingZ; in (I2) by Z;, — Z,, (L) is then rewritten as

B Ek’,d 25:1 )‘iTu> ]

1
Pr(c—¢)<FE §exp<

- 4N,
- S g
=F 5 eXP (— N, , (13)

wherer, = Zle gl (xy 1 — %Xu1)|?. The upper bound il(13) can be further bounded by employing a
theorem from([20] which is given below.

Theorem 1. Consider the largest < min(N;, N,.) eigenvalues:, of the uncorrelated centra¥, x N,
Wishart matrix that are sorted in decreasing order, and giweectorp = [py, - - - , ps]” with non-negative

real elements. In the high SNR regime, an upper bound forxtpeessionF [exp(—~ Zle psits)], which



is used in the diversity analysis of a number of MIMO systerss,

S
exp (—7 > psus>
s=1

where~ is signal-to-noise ratiog is a constantp,,;, = min,, 4 {pi}le, and/ is the index to the first

E

Y

S C (pmin,}/)—(N7-—5+1)(Nt—5+1)

non-zero element in the weight vector.
Proof: See [20]. [ |
Note thatr, > 0, theno = 1. By applying Theorem]1 td_(13), an upper bound of PEP is

. — N, Ny
Pr(c— &) < ¢ (%S}VR) . (14)

Hence, BICMB-PC achieves the full diversity order.

IV. DECODING

It was shown in [[1[7], [[18], that each element &fZ, in (@) is related to only one of the, .
Consequently, the elements AZ; can be divided inte groups, where the® group contains elements
related tox, ,, andv =1,---, 5.

Take GC § = 2) as an example,

M eglx M elx
AZ, = 181 X1,k 1871 X2,k . (15)

; T T
7)\2g2 X2k >\2g2 X2k

The input-output relation i {2) is then decomposed into dgoations as

. Yok Mgl X1k Na e
Yir = = + 5
Yook A2gJ X1 1 Nk
- 4t (16)
. Y2k Mgl Xo g Na o)k
Yor = = ) + )
i Y(2,1),k i | Z)\2g2TX2,k N(2,1),k

whereY,, ) x andN,, ) x denote thém, n)"™ element ofY, andIN,, respectively. Lefi; ,, = [N1,1y.x, N2y xl”
and iy, = [Ng12) %, Naykl”, then [I6) can be further rewritten as

Vie = AGxy; + 1y,
(17)

Vor = PAGxy ), + Ny,



where

& —
0 2

A similar procedure can be applied to larger dimensions.nTihegeneral, the received signal, which

is divided into.S parts, can be represented as
yv,k = (I)UAGXv,k + ﬁv,k; (18)

wherev =1,...,5 and ®, = diag(d, 1, - .., Pys) iS @ diagonal unitary matrix whose elements satisfy

5 1, 1<u<<S+1—uw,
7 g, S+2—v<u<s

By using the QR decomposition &G = QR, whereR is an upper triangular matrix, and the matrix

Q is unitary, and movingp,Q to the left hand,[(18) is rewritten as
S’v,kz = QH‘I)ES?U,]C = va,k’ + QH(ﬁ{){ﬁv,k = va,kz + flv,k- (19)
Then the ML bit metrics in[(3) can be simplified as

,y(m,n)J(Yk’ Ck’) = mlr{lj Hym,k — :R,)(||27 (20)

Xeﬁck'/

where¢/ is a subset of”, defined as
ol ={x=x - xs)” Tyjs=n € X3, aNdTg[szn € X}

The simplified ML bit metrics[(20) are similar to BICMB-FP gented in([9],[[10], which are used to
caIcuIate%MS points by exhaustive search for one bit metric. Hence, theptexity is proportional to
M#, denoted byO(M*). Sphere Decoding (SD) is an alternative for ML with reducedhplexity [21],
which reduces the average complexity and provides the veasst complexity ofd(M°).

Particularly, it was shown in_[17]/ [18], tha& is a real-valued matrix for dimensiorzsand 4, which
implies that the real and imaginary partsyof . in (20) can be separated, and only the part corresponding
to the coded bit is required for calculating one bit metridho# Viterbi decoder. Assume that squdrke

QAM is used, whose real and imaginary parts are Gray codearaty as twoy/M/-PAM. Therefore,



the ML bit metrics in [(20) can be further simplified for dimésss 2 and4 as

A (Y ep) = min | R[Fme] — RRX]|% (21)
R[x]eRled,]

if ¢, is mapped to the real part, or

VI (Y o) = min[|S[Fms] — RS (22)

Spes(end]

if ¢, is mapped to the imaginary part, whefgx] and (x| denote the real and imaginary parts sof
respectively. Forl(21) and (22), the worst-case decodimgpdexity is only(’)(Mg), which is much lower
than BICMB-FP.

V. SIMULATION RESULTS

In this section, simulation results are provided for BICN®B- and BICMB-FP of dimensiorn and 4
for different modulation schemes, since BICMB-PC has moeter decoding complexity than BICMB-FP
in these dimensions.

ConsideringR,. = 2/3, 2 x 2 systems, Figl.12 shows BER-SNR performance comparison oMBIC
PC and BICMB-FP. The constellation precoder for FPMB is dfel@ as the best one introduced in [8].
Simulation results show that BICMB-PC and BICMB-FP, withe ttvorst-case decoding complexity of
O(M) andO(M?) to acquire one bit metric respectively, achieve almost reesperformance for all of
4-QAM, 16-QAM, and 64-QAM.

In the case ofR. = 4/5, 4 x4 systems, Fid.13 shows BER-SNR performance comparison ofiBI®C
and BICMB-FP for4-QAM and 16-QAM. The constellation precoder for FPMB is also choserhasiiest
one in [8]. Similarly, simulation results show that BICMBSRachieves almost the same performance as
BICMB-FP. Moreover, the worst-case decoding complexity¢f/?) to get one bit metric for BICMB-PC
is much lower than that of(M*) for BICMB-FP.

VI. CONCLUSION

In this paper, BICMB-PC which combines PSTBC and multiplarbrming technique is proposed.
It is shown that PSTBC achieves the full diversity order, ansimilar BER performance to BICMB-FP,
which is also a full-diversity technique for convolutiora@ded SVD systems. Particularly, for dimensions

2 and4, because only one of the real or imaginary part of the redesignal is required to calculate one
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bit metric for the Viterbi decoder, the worst-case decodiamplexity of BICMB-PC is much lower than

BICMB-FP, which provides the advantage of BICMB-PC.
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Fig. 1. Structure of BICMB-PC.
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Fig. 2. BER vs. SNR for BICMB-PC and BICMB-FP fdk. = 2/3, 2 x 2 systems.
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