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Pin−(2)-MONOPOLE EQUATIONS AND INTERSECTION FORMS WITH

LOCAL COEFFICIENTS OF 4-MANIFOLDS

NOBUHIRO NAKAMURA

Abstract. We introduce a variant of the Seiberg-Witten equations, Pin−(2)-monopole
equations, and give its applications to intersection forms with local coefficients of 4-
manifolds. The first application is an analogue of Froyshov’s results on 4-manifolds which
have definite forms with local coefficients. The second is a local coefficient version of
Furuta’s 10/8-inequality. As a corollary, we construct nonsmoothable spin 4-manifolds
satisfying Rohlin’s theorem and the 10/8-inequality.

1. Introduction

K. Froyshov[11] recently proved theorems on intersection forms with local coefficients of
4-manifolds which can be considered as a local coefficient analogue of Donaldson’s theo-
rem for definite 4-manifolds[7, 8]. To prove his results, he analyzes the moduli space of
SO(3)-instantons, and effectively make use of the existence of a kind of reducibles, twisted
reducibles, whose stabilizers are Z/2, in order to extract the information on local coefficient
cohomology.

The first part of this paper proves an analogue of Froyshov’s results by Seiberg-Witten
theory. In fact, we prove that, if a closed smooth 4-manifold has a definite intersection
form with local coefficient, it should be the standard form.

To state the precise statement, we give some preliminaries. Let X be a closed, connected,
oriented smooth 4-manifold. Suppose a double covering X̃ of X is given. Let l = X̃×{±1}Z

and λ = X̃ ×{±1} R be its associated bundles with fiber Z and R. We can consider
the cohomology H∗(X ; l) with l as bundle of coefficients. Since l ⊗ l = Z, we have a
homomorphism by the cup product,

H2(X ; l)⊗H2(X ; l) → H4(X ;Z) = Z.

This induces a unimodular quadratic form QX,l on H2(X ; l)/torsion. Let bq(X ; l) be the
l-coefficient q-th Betti number, i.e., bq(X ; l) = rankHq(X ; l)/torsion. The ordinary Z-
coefficient Betti numbers are denoted by bq(X). Now, our first theorem is as follows:

Theorem 1.1. Let X be a closed, connected, oriented smooth 4-manifold. Suppose that a

nontrivial Z-bundle l → X satisfies the following :

(1) The intersection form QX,l is definite.

(2) w1(λ)
2 = 0, where λ = l ⊗ R.
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Then QX,l is isomorphic to the diagonal form.

The proof of Theorem 1.1 is outlined as follows. For the double covering X̃ for l, let
ι : X̃ → X̃ be the covering transformation. We consider a Spinc-structure c on X̃ such that
the pullback Spinc-structure ι∗c is isomorphic to the complex conjugation of c. In fact, if we
starts from a Spinc−-structure on X , a Pin−(2)-variant of Spinc-structure introduced in §3,
we obtain an antilinear involution I covering ι on the spinor bundles and the determinant
line bundle of c. Then, I acts on the Seiberg-Witten moduli space M of c, and we analyze
its I-invariant part MI . The rest of the argument is analogous to the argument in the
alternative proof of Donaldson’s theorem by the Seiberg-Witten theory (see e.g. [18, 21]).
That is, under the assumptions of Theorem 1.1, we prove the virtual dimension of MI

cannot be greater than b1(X ; l), and obtain an inequality on the characteristic elements of
QX,l. Finally, we invoke a theorem of Elkies[9] to prove the form should be the standard
form.

The second part of the paper introduces a variant of Seiberg-Witten equations, Pin−(2)-
monopole equations we call, which are defined on Spinc−-structures. It turns out that
the I-invariant moduli space of the double covering X̃ as above can be identified with the
moduli space of solutions of Pin−(2)-monopole equations. In particular, the moduli space of
Pin−(2)-monopoles is compact. Then we can consider the finite dimensional approximation
of the Pin−(2)-monopole map as in [13, 3], which enable us to prove a 10/8-type inequality
for intersection forms with local coefficients:

Theorem 1.2. Let X be a closed connected oriented smooth 4-manifold. For any nontrivial

Z-bundle l over X which satisfies w1(λ)
2 = w2(X), the inequality b+(X ; l) ≥ − sign(X)/8

holds.

Remark 1.3. (1)Since α ∪ α = Sq1(α) for α ∈ H1(X ;Z/2), and Sq1 is the Bockstein
homomorphism, w2(X) = α ∪ α holds for some α if w2(X) has an integral lift of order 2.
(2)We will give an alternative proof of Theorem 1.1 by using the same technique used in
the proof of Theorem 1.2.

As an application of Theorem 1.1 and Theorem 1.2, we construct nonsmoothable 4-
manifolds satisfying known constraints on smooth 4-manifolds.

Let us consider the spin cases. For smooth spin 4-manifolds, we know two fundamental
theorems, Rohlin’s theorem(see e.g.[16]) and Furuta’s theorem[13]. Rohlin’s theorem tells
us that the signature of every closed spin 4-manifold is divisible by 16. On the other hand,
Furuta’s theorem[13] tells us that every closed smooth spin 4-manifold X with indefinite
form satisfies the so-called “10/8-inequality”

b2(X) ≥ 5

4
| sign(X)|+ 2.

This inequality is improved by M. Furuta and Y. Kametani [14] in the case when b1(X) > 0.
We call the improved inequality in [14] the strong 10/8-inequality.

Theorem 1.4. There exist nonsmoothable spin 4-manifolds which have signatures divisible

by 16 and satisfy the strong 10/8-inequality.
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The idea of the construction of such nonsmoothable examples is as follows. Let V be
any simply-connected 4-manifold with even definite form QV of rank 16k, and let X be a
connected sum of V with sufficiently many T 2 ×S2’s or T 4’s so that the 10/8-inequality is
satisfied. Since b2(M ; l) = 0 and w1(λ)

2 = 0 for a non-trivial Z-bundle l on M = T 2×S2 or
T 4, we can show that X is nonsmoothable by Theorem 1.1. We can also construct similar
examples by using Theorem 1.2.

C. Bohr [4] and Lee-Li [17] proved 10/8-type inequalities for non-spin 4-manifolds with
even forms. We also construct nonsmoothable non-spin 4-manifolds with even forms satis-
fying their inequalities.

Theorem 1.5. There exist nonsmoothable non-spin 4-manifolds X with even indefinite

forms satisfying

b2(X) ≥ 5

4
| sign(X)|.

Remark 1.6. One of the results of Bohr [4] and Lee-Li [17] is that the inequality b2(X) ≥
5/4| sign(X)| holds for non-spin 4-manifolds X with even indefinite forms whose 2-primary
torsion part of H1(X ;Z) is isomorphic to Z/2k or Z/2⊕ Z/2. We consturct our examples
so that the 2-primary torsion part of H1(X ;Z) is Z/2.

The organization of the paper is as follows. In Section 2, we prove Theorem 1.4 and
Theorem 1.5 assuming Theorem 1.1 and Theorem 1.2. In Section 3, we introduce the notion
of Spinc−-structures which is a Pin−(2)-variant of Spinc-structures. It is also explained

that, if a Spinc−-structure on X is given, then a Spinc-structure on the double covering X̃
is induced, and the covering transformation of X̃ is covered by antilinear involutions I on
the spinor bundles and the determinant line bundle. In Section 4, we study the Seiberg-
Witten theory on X̃ with the I-action, especially, analyze the I-invariant part of the moduli
spaces. In Section 5, we prove Theorem 1.1. In Section 6, we introduce Pin−(2)-monopole
equations, and show that the moduli space of solutions of Pin−(2)-monopole equations can

be identified with the I-invariant Seiberg-Witten moduli space on the double covering X̃ .
The Bauer-Furuta theory[13, 3] of Pin−(2)-monopole map is also considered. In Section 7,
the proof of Theorem 1.2 is given by using the equivariant K-theory as in [13, 5]. We also
give an alternative proof of Theorem 1.1 by the same technique.

Acknowledgments. The author would like to thank M. Furuta, Y. Kametani, K. Kiyono
and S. Matsuo for helpful discussions and their comments on the earlier versions of the
paper.

2. Applications

In this section, we prove Theorem 1.4 and Theorem 1.5 assuming Theorem 1.1 and
Theorem 1.2. First, we prove the following. (Cf. [11], Corollary 1.1.)

Theorem 2.1. Let V be any closed oriented topological 4-manifold which satisfies either

of the following:

(1) the intersection form QV on H2(V ;Z) is non-standard definite, or
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(2) there exists an element α ∈ H1(V ;Z/2) so that α ∪ α = w2(V ), and QV,lα satisfies

b+(V ; lα) < − sign(V )/8, where lα is the Z-bundle corresponding to α. (If w2(V ) =
0, then α may be 0.)

Let M be a closed oriented 4-manifold which admits a nontrivial Z-bundle l′ → M such

that b2(M ; l′) = 0 and w1(λ
′)2 = 0, where λ′ = l′⊗R. Then the connected sum X = V#M

does not admit any smooth structure.

Before proving Theorem 2.1, we will discuss how to construct V and M as in the the-
orem. One can construct simply-connected examples of V satisfying (1) by Freedman’s
theory[10]. Examples of V satisfying (2) can be constructed as follows. Let |E8| be the
simply-connected topological 4-manifold whose form is −E8. (This can be also constructed
by Freedman’s theory.) Then V = m|E8|#n(S2 × S2) with m > n are spin manifolds sat-
isfying (2) with α = 0.

As shown in Hambleton-Kreck’s paper[15](Proof of Theorem 3), there exist non-spin
rational homology 4-spheres Σ0 and Σ1 with π1 = Z/2 and Kirby-Siebenmann obstructions
ks(Σ0) = 0 and ks(Σ1) 6= 0. For instance, an Enriques surface is topologically decomposed
into |E8|#(S2 × S2)#Σ1. Then V = m|E8|#n(S2 × S2)#Σi with m > n+ 1 are non-spin
manifolds satisfying (2) with non-zero class α ∈ H1(V ;Z/2) ∼= H1(Σi;Z/2) ∼= Z/2. Note
that b+(V ; lα) = b+(V ) + 1 in this case. In fact, for any Z-bundle l over a manifold X ,
let X̃ be the double covering corresponding to l, and let λ = l⊗ R considered as a bundle
with discrete fibers. Then, we have in general,

b0(X)− b1(X) + b+(X) = b0(X ; l)− b1(X ; l) + b+(X ; l),

H∗(X̃;R) = H∗(X ;R)⊕H∗(X ;λ).

Note also that ks(V ) = 0 if and only if m+ i ≡ 0 mod 2.
As examples of M , we can take M = T 2 × S2 or T 4 or their arbitrary connected sum.

In fact, b2(M ; l′) = 0 and w1(λ
′)2 = 0 for any nontrivial Z-bundle l′ over M = T 2 × S2 or

T 4. When M is a connected sum of several T 2 × S2 or T 4, take l′ which is nontrivial on
each T 2 × S2 or T 4 summand.

Proof of Theorem 2.1. Suppose V satisfies (1) and X is smoothable. Take l′ as in the
assumption, and let l → V#M be the connected sum of a trivial Z-bundle on V and l′.
Then, H2(X ; l) = H2(V ;Z)⊕H2(M ; l′) and QX,l = QV . Note that w1(λ)

2 = w1(λ
′)2 = 0.

By Theorem 1.1, QX,l should be standard. This is a contradiction. If V satisfies (2), then
consider l = lα#l′ and use Theorem 1.2. �

Proof of Theorem 1.4. Let V be any simply-connected 4-manifold with even form QV of
rank 16k which satisfies either of the following:

(1) QV is definite, or
(2) QV

∼= m(−E8)⊕ nH and m > n, where H is the hyperbolic form.

Then, take a connected sum of V with sufficiently many T 2 × S2’s or T 4’s so that the
10/8-inequality is satisfied. By Theorem 2.1, it is nonsmoothable. �
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Proof of Theorem 1.5. Let V = #m|E8|#n(S2 × S2)#Σi with m > n + 1, and take a
connected sum of V with sufficiently many T 2 × S2’s or T 4’s. �

3. Spinc−-structures

In this section, we introduce a variant of Spinc-structure, Spinc−-structure we call. The
notion of Spinc−-structure was introduced to the author by M. Furuta, and a large part of
this section is due to him.

3(i). Spinc−-groups. Let Pin−(2) be a subgroup of Sp(1) generated by U(1) and j, that
is, Pin−(2) = U(1) ⊔ jU(1). There is a two-to-one homomorphism ϕ0 : Pin−(2) → O(2),
which sends z ∈ U(1) in Pin−(2) to z2 ∈ U(1) ⊂ O(2), and j to the reflection

(

1 0
0 −1

)

.

Let us define Spinc−(n) = Spin(n)×{±1} Pin
−(2). There is an exact sequence

1 → {±1} → Spinc−(n) → SO(n)×O(2) → 1.

3(ii). Spinc−-structures. Let X be a n-dimensional oriented smooth manifold. Fix a
Riemannian metric on X , and let F (X) be its SO(n)-frame bundle. Suppose an O(2)-
bundle E over X is given.

Definition 3.1. A Spinc−-structure on F (X)×X E is a lift of the principal SO(n)×O(2)-
bundle F (X)×X E to a principal Spinc−(n)-bundle. This is given by the data (P, φ) where
P is a Spinc−(n)-bundle and ϕ is a bundle isomorphism P/{±1} → F (X)×X E.

Remark 3.2. Let G0 be the identity component of Spinc−(n). Then G0 is isomorphic to

Spinc(n), and X̃ = P/G0 → X is a double covering. Note that the determinant line bundle
detE of E is isomorphic to X̃ ×{±1} R, where {±1} acts on R by multiplication.

Proposition 3.3. There exists a Spinc−-structure on F (X)×X E if and only if w2(TX) =
w2(E) + w1(E)2.

Proof. Note that the image of Pin−(2) ⊂ Sp(1) = Spin(3) by the canonical homomorphism
Spin(3) → SO(3) is an O(2) in SO(3). This embedding O(2) ⊂ SO(3) is given by A 7→
A⊕ detA. By using this embedding, embed SO(n)×O(2) in SO(n+3). Let ϕ : Spin(n+
3) → SO(n + 3) be the canonical homomorphism. Then Spinc−(n) = ϕ−1(SO(n)×O(2)).
Therefore, w2(X) = w2(E ⊕ detE) = w2(E) + w1(E)2 is the required condition. �

Remark 3.4. Let l → X be a Z-bundle over X , and λ = l ⊗ R. The isomorphism classes
of O(2)-bundles E whose determinant line bundles detE are isomorphic to λ are classified
by their twisted first Chern classes c̃1(E) ∈ H2(X ; l). See [11], Proposition 2.2.

We concentrate on the case when n = 4 below. Let HT be a Spinc−(4)-module which is
a copy of H as a vector space, such that the action of [q+, q−, u] ∈ Spinc−(4) = (Sp(1) ×
Sp(1))×{±1}Pin(2) on v ∈ HT is given by q+vq

−1
− . Then, the associated bundle P ×Spinc

−(4)

HT is identified with the tangent bundle TX .
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Similarly, let ϕ : Spinc−(4) → O(2) be the homomorphism defined from ϕ0 : Pin−(2) →
O(2). Then the associated bundle P ×ϕ O(2) is identified with E.

Let us consider Spinc−(4)-modules H+ and H− which are copies of H as vector spaces,
such that the action of [q+, q−, u] ∈ Spinc−(4) on φ ∈ H± is given by q±φu

−1. Then, one
can obtain the associated bundles S± = P ×Spinc

−(4) H±. These are positive and negative

spinor bundles for the Spinc−-structure.
The Clifford multiplication ρR : Ω

1(X) × Γ(S+) → Γ(S−) is defined via Spinc−(4)-
equivariant map HT × H+ → H− defined by (v, φ) 7→ v̄φ. Later we will need a twisted

complex version of the Clifford multiplication defined as follows. Let G0 be the identity
component of Spinc−(4). Then G0 is isomorphic to Spinc(4), and Spinc−(4)/G0

∼= Z/2. Let
ε : Spinc−(4) → Spinc−(4)/G0 be the projection, and let Spinc−(4)/G0

∼= Z/2 act on C by
complex conjugation. Then Spinc−(4) acts on C via ε and complex conjugation. Define
ρ0 : HT ⊗R C × H+ → H− by ρ0(v ⊗ a, φ) = v̄φā. This ρ0 is Spinc−(4)-equivariant. Let
us define the bundle K over X by K = X̃ ×{±1} C where {±1} acts on C by complex
conjugation. Then we can define via ρ0 the Clifford multiplication

(3.5) ρ : Ω1(X ;K)× Γ(S+) → Γ(S−).

Note that K = R⊕iλ, where R is a trivial R-bundle. By restricting ρ to R, ρR is recovered.
By restricting ρ to iλ, we obtain,

ρ : Ω1(X ; iλ)× Γ(S+) → Γ(S−).

3(iii). Double coverings. In this subsection, we write Spinc−(4) as G. Note that G has
two connected components G0 and G1, and the identity component G0 is Spinc(4). If a

Spinc−-structure (P, φ) on a 4-manifold X is given, then X̃ = P/G0 gives a double covering
π : X̃ → X . Then, we have a G0-bundle P → P/G0 = X̃ . The pull-back bundle π∗E has a

SO(2)-reduction L, and a bundle isomorphism φ̃ : P/{±1} → F (X̃)×X̃ L is induced from

φ, where F (X̃) = π∗F (X), which can be considered as the frame bundle over X̃ for the

pull-back metric. The G0-bundle P over X̃ and φ̃ define an ordinary Spinc-structure c on
X̃ .

Let ι : X̃ → X̃ be the covering transformation, and J be [1, 1, j] ∈ G = (Sp(1) ×
Sp(1)) ×{±1} Pin−(2). Then the right J-action on P → X̃ covers ι. Although the J-

action is not a G0-bundle automorphism of P → X̃ , it can be considered as a kind of
automorphism of P → X̃ which reverses the complex structure as follows. (This can be
considered as a natural isomorphism between the pull-back bundle ι∗c and the complex
conjugation of c.)

Let us consider the pull-back G-bundle π∗P → X̃ . Then

π∗P = P ×G (G/G0 ×G) = P ×G ({±1} ×G) = P ×G0
G.

The bundle P ×G0
G has two components: P ×G0

G = P0 ⊔ P1, where Pi = P ×G0
Gi

for i = 0, 1. Note that P0 = P ×G0
G0 = P over X̃ . Then ι : X̃ → X̃ has a natural

lift ι̃ : P ×G0
G → P ×G0

G given by ι̃([p, g]) = [pJ, J−1g]. Note that ι̃ exchanges the
components P0 and P1.
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On the other hand, we have a natural isomorphism of the fiber bundles α : P0 → P1

given by α([p, g]) = [p, gJ ]. Then we have an automorphism I0 of P0 given by I0 = α ◦ ι̃
which reverses the complex structure. Note that I0 has order 4.

The J-action also induces antilinear automorphisms, denoted by I, on the spinor bundles
S± = P ×G0

H± given by I([p, φ]) = [pJ, J−1 · φ] = [pJ, φj]. Since J2 ∈ G0, I
2([p, φ]) =

[pJ2, J−2 · φ] = [p, φ]. Therefore I is an antilinear involution on each of spinor bundles.
Similarly, the J-action induces an antilinear involution of the determinant line bundle,

also denoted by I. This can be seen from the construction above, or noticing the following.
Note that λ = X̃ ×{±1} R → X is isomorphic to the determinant R-bundle of E. Let
E0 → X be the R2-bundle associated to E. Then, the determinant C-bundle L0 of c can
be identified with the pull-back π∗E0 as real vector bundles, and the involution ι lifts to
L0

∼= π∗E0 as an antilinear bundle automorphism.

Remark 3.6. By using Pin+(2) (instead of Pin−(2)), which is isomorphic to O(2), but
considered as a double covering of O(2), we can define analogous objects, Spinc+-structures.
In this case also, one can construct a Spinc-structure c associated to it on a double covering
X̃ of X . But the covering transformation ι lifts on the spinor bundles as a Z/4-action.

4. I-invariant Seiberg-Witten moduli spaces

In the previous section, we introduced the notion of Spinc−-structures, and saw that
an involution I is induced on the spinor bundles and the determinant line bundle of the
associated Spinc-structure c on the double covering X̃ . In this section, we study the Seiberg-
Witten theory on (X̃, c) with the I-action. In particular, we will analyze the I-invariant
part of the moduli space.

Remark 4.1. As mentioned before, we will later introduce Pin−(2)-monopole equations on
Spinc−-structures, and see that the I-invariant Seiberg-Witten moduli space of (X̃, c) can
be identified with the moduli space of Pin−(2)-monopole solutions.

4(i). I-invariant Seiberg-Witten moduli spaces. Let X be a 4-manifold satisfying
the assumptions of Theorem 1.1, and E → X be an O(2)-bundle satisfying w2(E) +
w1(E)2 = w2(X) and detE = λ. Then, by Proposition 3.3, there is a Spinc−-structure
whose associated O(2)-bundle is E. Furthermore, we have a Spinc-structure c on the
double covering X̃ with the I-action as above. Let S̃+ be the positive spinor bundle of c,
and A be the space of U(1)-connections on L = det S̃+. In this situation, the I-action on

C := A×Γ(S̃+) is induced from the I-action on S̃± and L, and the Seiberg-Witten equations
on c is I-equivariant equations for (A,Φ) ∈ C = A × Γ(S̃+). The gauge transformation

group G = Map(X̃, S̃1) acts on C, and the I-action on G is given by Iu = ι∗u for u ∈ G,
where ·̄ means the complex conjugation. (Strictly speaking, we need to take completions
of C and G by suitable Sobolev norms, e.g., L2

k-norms for sufficiently large k. Since these
things are already standard, the detail is omitted. See [19].)

Now, we concentrate on the I-invariant part of the whole theory. Below, for any object Z
on which I acts, the fixed point set is denoted as ZI . Let BI = CI/GI . Note that GI can be

identified with the space of sections of the fiber bundle over X defined by X̃×{±1}S
1 → X ,
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where the {±1}-action on S1 = U(1) is given by complex conjugation. Let MI ⊂ BI be
the I-invariant moduli space which is defined as the space of I-invariant solutions to the
Seiberg-Witten equations modulo GI . The reducible solutions are the solutions of the form
(A, 0), and their stabilizers are {±1}, because the constant maps in GI are only ±1. As
noted in Remark 3.4 of [20] or [12], BI is embedded continuously in B, and therefore MI is
a closed subspace of the ordinary Seiberg-Witten moduli space. Hence, MI is a compact
space.

4(ii). The deformation complex. When (A,Φ) is an I-invariant solution, the defor-
mation complex for MI at (A,Φ) is given by the restriction of the ordinary deformation
complex to its I-invariant part:

(4.2) 0 → Ω0(X̃ ; iR)I → (Ω1(X̃ ; iR)⊕ Γ(S̃+))I → (Ω+(X̃; iR)⊕ Γ(S̃−))I → 0,

where the I-action on forms is given by the composition of the pullback by ι and the com-
plex conjugation. For calculation of the index of (4.2), 0-th order terms can be neglected,
and therefore, the complex (4.2) can be assumed to be a direct sum of the de Rham part
and the Dirac part. (See [19], 4.6.) The de Rham part can be identified with the twisted
de Rham complex:

0 → Ω0(X ; iλ)
d→ Ω1(X ; iλ)

d+→ Ω+(X ; iλ) → 0.

The index of the Dirac part is calculated by the Lefschetz formula. More precisely, since the
I-action is not complex linear, complexify the operator first, and then apply the Lefschetz
formula[2]. Then the index of the Dirac part above is half of the index of the Dirac operator

associated to A because the ι-action on X̃ is free. Thus we have,

Proposition 4.3. The virtual dimension d of MI is given by

(4.4) d =
1

4
(c̃1(E)2 − sign(X))− (b0(X ; l)− b1(X ; l) + b+(X ; l)),

where c̃1(E) ∈ H2(X ; l) is the twisted Chern class in [11].

Remark 4.5. Note that b0(X ; l) = 0 if X is connected and l is nontrivial. The class c̃1(E)
is the Euler class of E considered in H2(X ; l).

4(iii). The structure of MI . Suppose b1(X ; l) = 0 and b+(X ; l) = 0. Then, there is a
unique reducible class ρ0 in MI . Suppose further that d > 0. By perturbing the Seiberg-
Witten equations by adding an I-invariant self-dual 2-form to the equation for curvature,
and if necessary, perturbing the Dirac operator near ρ0, the moduli space MI become a
d-dimensional manifold outside ρ0. Let us fix a small neighborhood N(ρ0) of ρ0, and MI

be the closure of MI \ N(ρ0). Then, MI is a compact d-manifold whose boundary is a
real projective space RPd−1.

If b1(X ; l) > 0 and b+(X ; l) = 0, then the space of I-invariant reducible classes forms a

b1(X ; l)-dimensional torus T b1(X;l). Let MI be the closure of the complement of a small
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neighborhood of the reducible torus T b1(X;l). If d′ = d − b1(X ; l) > 0, then, after pertur-

bation, MI is a compact d-manifold whose boundary is a fiber bundle over T b1(X;l) with
fiber RPd′−1. We will show that the assumption d′ > 0 causes a contradiction.

Remark 4.6. The manifold MI could be non-orientable.

4(iv). The topology of BI . We will evaluate the fundamental class of the boundary of

MI by a cohomology class of BI . Let (B∗)I be the space of I-invariant irreducibles, i.e.,

(B∗)I =
(

A× (Γ(S̃+) \ 0)
)I

/GI .

Proposition 4.7. The space (B∗)I has the same homotopy type with RP∞ ×T b1(X;λ).

Before proving Proposition 4.7, we show the following lemma which will be a key point
of our argument.

Lemma 4.8. If b+(X ; l) = 0, then d′ = d− b1(X ; l) ≤ 0.

Proof. As explained above, if d′ > 0, then MI is a compact d-manifold whose boundary is
a fiber bundle over T b1(X;l) with fiber RPd′−1. Note that (B∗)I can be considered as a fiber

bundle over T b1(X;λ). If we cut down the moduli MI by a generic fiber Fb over b ∈ T b1(X;λ),
then the cut-down moduli space (MI)b = MI ∩ Fb is a compact d′-dimensional manifold

whose boundary is an RPd′−1. Then there exists a cohomology class A ∈ Hd′−1(Fb;Z/2) =

Hd′−1(RP∞;Z/2) so that 〈A, [∂(MI)b]〉 6= 0. This is a contradiction. �

Let us begin the proof of Proposition 4.7. The proof is divided into several steps.

Lemma 4.9. The space (C∗)I =
(

A× (Γ(S̃+) \ 0)
)I

is contractible.

Proof. Note that (C∗)I = CI \ (A× 0)I . Since the I-action on C is linear, (C∗)I is the com-
plement of a linear subspace with infinite codimension. Therefore (C∗)I has the homotopy
type of an infinite dimensional sphere, and is contractible. �

Since GI acts on (C∗)I freely, Lemma 4.9 implies that (B∗)I has the homotopy type of
the classifying space BGI . Hence, Proposition 4.7 follows from the next lemma.

Lemma 4.10. GI ≃ (Z/2)× Zb1(X,l).

Proof. We have the following split exact sequence:

(4.11) 1 → G0 → G h→ [X̃, S1] ∼= H1(X̃ ;Z) → 0,

where G0 is the identity component of G, and h sends u ∈ G to its homotopy class. Since

G0 has the homotopy type of S1, we see G ≃ S1 × Zb1(X̃). By restricting (4.11) to GI , we
have,

1 → G0 ∩ GI → GI → h(GI) → 1.

Then the image h(GI) can be identified with π∗H1(X ; l) ∼= Zb1(X;l). Therefore, it suffices
to prove that G0 ∩ GI ≃ Z/2 via the homotopy in GI . Let us introduce another sequence:

1 → Map(X̃,Z) → Map(X̃,R)
e→ Map(X̃,R/Z),
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where e is defined by e(f) = exp(2π
√
−1f) for f : X̃ → R. Then the image of e is just

G0. Every I-invariant element u ∈ G0 ∩ GI is represented by f in Map(X̃ ;R) satisfying
ι∗f = m − f for some integer m. Since I acts on Map(X̃,Z) trivially, we may assume

u ∈ G0 ∩ GI is represented by f ∈ Map(X̃ ;R) such that ι∗f = −f or ι∗f = 1 − f . If
ι∗f = −f , then f is deformed I-equivariantly to the constant map 0. If ι∗f = 1− f , then
f is deformed I-equivariantly to the constant map 1/2. Thus, G0 ∩ GI ≃ {±1}. �

5. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1. Let X be a closed oriented smooth
4-manifold, and l → X be a Z-bundle over X . The short exact sequence of bundles,

0 → l
·2→ l → Z/2 → 0,

induces a long exact sequence,

· · · → Hq(X ; l)
·2→ Hq(X ; l) → Hq(X ;Z/2) → Hq+1(X ; l) → · · · .

Lemma 5.1. The second Stiefel-Whitney class w2(X) has a lift in H2(X ; l). Moreover, if

c ∈ H2(X ; l) is an characteristic element of QX,l, there exists a torsion class δ ∈ H2(X ; l)
such that c+ δ is a lift of w2(X).

Remark 5.2. An element w in a lattice L is called characteristic if w · v ≡ v · v mod 2 for
any v ∈ L.

Proof of Lemma 5.1. Note that l∗ = l and Hom(l;Z/2) = Z/2. By the universal coefficient
theorem, we have a commutative diagram,

0 −−−→ Ext(H1(X ; l),Z) −−−→ H2(X ; l)
h1−−−→ Hom(H2(X ; l),Z) −−−→ 0





y





y

ρ1





y

ρ2

0 −−−→ Ext(H1(X ; l),Z/2) −−−→ H2(X ;Z/2)
h1−−−→ Hom(H2(X ; l),Z/2) −−−→ 0.

As in [1], we can see that w2(X) has a lift in H2(X ; l) by using Wu’s formula. The second
statement is also proved by using the diagram. �

Theorem 5.3. Let X be a closed, connected, oriented smooth 4-manifold. Suppose we

have a nontrivial Z-bundle l → X satisfying b+(X ; l) = 0. Let λ = l ⊗ R. Then, for every

cohomology class C ∈ H2(X ; l) which satisfies [C]2 + w1(λ)
2 = w2(X), where [C]2 is the

mod 2 reduction of C, the inequality |C2| ≥ b2(X ; l) holds.

Proof. For C ∈ H2(X ; l) satisfying the assumption, there is a Spinc−-structure on X whose
O(2)-bundle E has c̃1(E) = C by Proposition 3.3. Then, we can consider the I-invariant

moduli MI on the double covering X̃ and the Spinc-structure corresponding to the Spinc−-
structure above. If b+(X ; l) = 0, then C2 ≤ 0 and sign(X) = −b2(X ; l), and Lemma 4.8
implies that d′ = 1/4(C2 − sign(X)) = 1/4(C2 + b2(X ; l)) ≤ 0. Thus, |C2| ≥ b2(X ; l)
holds. �

To complete the proof of Theorem 1.1, we invoke the following theorem due to Elkies.
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Theorem 5.4 (Elkies[9]). Let L be a lattice over Z. If every characteristic element w ∈ L
satisfies |w2| ≥ rankL, then L is isomorphic to the standard form.

Proof of Theorem 1.1. We can assume that b+(X ; l) = 0 by reversing the orientation if
necessary. Under the assumptions of Theorem 1.1, Wu’s formula, Lemma 5.1 and Theo-
rem 5.3 imply that every characteristic element C of QX,l satisfies |C2| ≥ rankQX,l. Then,
by Elkies’ theorem, QX,l should be the standard form. �

6. Pin−(2)-monopole equations

In this section, we introduce Pin−(2)-monopole equations, and develop the Pin−(2)-
monopole gauge theory. The whole story is almost parallel to the ordinary Seiberg-Witten
case.

6(i). Pin−(2)-monopole equations. Let X be a closed oriented smooth 4-manifold, E
be a O(2)-bundle over X , and λ = detE. We suppose λ is a nontrivial bundle throughout
the rest of the paper. Fix a Riemannian metric on X . Suppose a Spinc−-structure (P, ϕ)
on (X,E) is given. If an O(2)-connection A on E is given, then A and the Levi-Civita
connection induces a Spinc−(4)-connection on P , and we can define the Dirac operator via
the Clifford multiplication ρ of (3.5) as

DA : Γ(S
+) → Γ(S−).

If A′ is another O(2)-connection on E, then a = A − A′ is in Ω1(X ; iλ), and the relation
of Dirac operators of A and A′ = A+ a is given via ρ by

DA+aφ = DAφ+ ρ(a)φ.

The curvature FA of A is an element of Ω2(X ; iλ). The space of iλ-valued self-dual forms,
Ω+(X ; iλ), is also associated to the Spinc−(4)-bundle P as follows. Let ε : Pin−(2) →
Pin−(2)/U(1) ∼= {±1} be the projection, and let Spinc−(4) act on imH by v ∈ imH →
ε(u)q+vq

−1
+ for [q+, q−, u] ∈ Spinc−(4). Then the space of sections of the associated bundle

P ×Spinc
−(4) imH is isomorphic to Ω+(X ; iλ). For φ ∈ H+, φiφ̄ ∈ imH, and Spinc−(4) acts

on it similarly. Thus, one can define a quadratic map

q : Γ(S+) → Ω+(X ; iλ).

Let A(E) be the space of O(2)-connections on E. Then Pin−(2)-monopole equations for
(A, φ) ∈ A(E)× Γ(S+) are defined by

(6.1)

{

DAφ =0,

F+
A =q(φ),

where F+
A is the self-dual part of the curvature FA.

As in the case of the ordinary Seiberg-Witten equations, it is convenient to work in
Sobolev spaces. Fix k ≥ 2, and take L2

k-completion of A(E) × Γ(S+). The Pin−(2)-
monopole equations (6.1) are assumed as equations for L2

k-connections/spinors.
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6(ii). Gauge transformations. The gauge transformation group G is defined as the space
of Spinc−(4)-equivariant diffeomorphisms of P covering the identity map of P/Pin−(2).
Then, G can be identified with Γ(P×adPin

−(2)), where ad means the adjoint representation
on Pin−(2) by the Pin−(2)-component of Spinc−(4). Note that LieG ∼= Γ(P ×ad Ri) ∼=
Ω0(X ; iλ). We take L2

k+1-completion of G.
Let us look at G more closely. Recall that Pin−(2) = U(1) ∪ j U(1). For u, z ∈ U(1),

note that adz(u) = zuz̄ = u, adjz(u) = jzuz̄(−j) = ū, adz(ju) = z2ju and adjz(ju) =
z̄2jū. Then G can be decomposed into G = G0 ∪ G1, where G0 = Γ(P ×ad U(1)) and

G1 = Γ(P ×ad jU(1)). Note that G0
∼= Γ(X̃ ×{±1} U(1)), where {±1} acts on U(1) by

complex conjugation. For G1, the following holds:

Proposition 6.2. G1 = ∅ if and only if c̃1(E) 6= 0.

Proof. Note that P×adj U(1) is isomorphic to the bundle of unit vectors of E, and c̃1(E) = 0
if and only if E is isomorphic to R⊕ iλ. (Recall Remark 3.4.) �

6(iii). Moduli spaces. The moduli space M of Pin−(2)-monopoles is defined as the space
of solutions to (6.1) divided by G.
Proposition 6.3. The moduli space M is compact.

For Dirac operators of Spinc−-structures, one can readily prove the Weitzenböck formula
(see [19]),

(6.4) D2
Aφ = ∇∗

A∇Aφ+
κ

4
φ+

ρ(FA)

2
φ,

where κ is the scalar curvature of the metric on X . With this understood, the proof of
Proposition 6.3 is almost parallel to the case of the ordinary Seiberg-Witten theory. The
compactness of M can be seen also from the relation with the Seiberg-Witten theory on
the double covering as in the next subsection.

6(iv). The relation with the Seiberg-Witten theory on the double covering.

Let A(E) be the space of O(2)-connections on E. As explained in §3(iii), for a Spinc−-

structure on (X,E), it is induced a Spinc-structure c on the double covering X̃ associated
to λ = detE. Let π : X̃ → X be the projection. Let S̃± be the spinor bundles of c, L be
the determinant line bundle of c, and A(L) be the space of U(1)-connections on L. Then,

by construction, we can see that π∗S± ∼= S̃±, and

Γ(S±) ∼= Γ(S̃±)I .

The relation of A(E) and A(L) is given as follows. For an O(2)-connection A on E, A with
the Levi-Civita connection determines a Spinc−(4)-connection A on P . Let us consider the
pull-back Spinc−(4)-connection π∗A on π∗P → X̃ . Since π∗P = P0 ∪ P1 (see §3(iii)), the
Spinc−(4)-connection π∗A has a Spinc(4)-reduction Ã on the Spinc(4)-bundle P0. Then we

obtain a U(1)-connection Ã on L from Ã, and we can see that

A(E) ∼= A(L)I .
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If we write G̃ = Map(X̃, S1), then G̃I ∼= Γ(X̃ ×{±1} U(1)) ∼= G0 (see §4(i)). Let C =

A(E)× Γ(S+) and C̃ = A(L)× Γ(S̃+). Then we have

Proposition 6.5. C/G0
∼= C̃I/G̃I .

Furthermore, it can be seen that the I-invariant Seiberg-Witten moduli space M̃I of
(X̃, c) can be identified with the Pin−(2)-monopole moduli space M:

Proposition 6.6. If c̃1(E) 6= 0, then M ∼= M̃I. If c̃1(E) = 0, let M′ be the space of

Pin−(2)-monopole solutions divided by G0. Then M′ ∼= M̃I .

Since the ordinary Seiberg-Witten moduli space is compact, the compactness of M
(Proposition 6.3) follows from Proposition 6.6, too. Proposition 6.6 also implies the fol-
lowing,

Proposition 6.7. The virtual dimension d of the Pin−(2)-monopole moduli space M is

given by (4.4).

Of course, Proposition 6.7 can be also proved by the index theorem.

6(v). The Pin−(2)-monopole map. Let A = A(E). The Pin−(2)-monopole map µ̃ is
defined as follows (Cf. [3], p.11):

µ̃ : A× (Γ(S+)⊕ Ω1(X ; iλ)) → A× (Γ(S−)⊕ Ω+(X ; iλ)⊕ Ω0(X ; iλ)⊕H1(X ; iλ),

(A, φ, a) 7→ (A,DA+aφ, F
+
A + d+a− q(φ), d∗a, aharm),

where aharm is the harmonic part of a. When c̃1(E) 6= 0, let G = G0 act trivially on
forms. When c̃1(E) = 0, let G act on forms by multiplication of ±1 via the projection
G → G/G0

∼= {±1}. Then the monopole map µ̃ is G-equivariant.
Choose a base point ∗ onX , and let Ge ⊂ G0 be the based gauge group consisting of u ∈ G

so that u(∗) = 1. Let us choose a reference connection A. The subspace A + ker d ⊂ A is
preserved by the action of Ge, and the Ge-action is free. The quotient space is isomorphic
to the “λ-coefficient Picard torus” T b1(X;l) = H1(X ;λ)/H1(X ; l). Let V and W be the
quotient spaces,

V =(A+ ker d)× (Γ(S+)⊕ Ω1(X ; iλ))/Ge,

W =(A+ ker d)× (Γ(S−)⊕ Ω+(X ; iλ)⊕ Ω0(X ; iλ)⊕H1(X ; iλ))/Ge.

Then V and W are bundles over T b1(X;l). Dividing µ̃ by Ge, we obtain a fiber preserving
map

µ = µ̃/Ge : V → W.

Constant gauge transformations {±1} ⊂ G0 still act on V andW, and µ is a Z/2-equivariant
map in general. If c̃1(E) = 0, then fix an isomorphism E ∼= R⊕ λ, and take a connection
on E which is the direct sum of the trivial flat connection on R and a connection on iλ as
a reference connection A. Then µ is a Z/4-equivariant map.

For a fixed k > 4, we take the fiberwise Lp
k-completion of V and the fiberwise Lp

k−1-
completion of W. Then we can prove the map µ is a Fredholm proper map as in [3]. In
fact, we can readily prove the following by using the Weitzenböck formula (6.4).
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Proposition 6.8 ([3]). Preimages µ−1(B) ⊂ V of bounded disk bundles B ⊂ W are

contained in bounded disk bundles.

With this understood, we can construct a finite dimensional approximation f : V → W
of µ between some finite rank vector bundles over T b1(X;l) as in [3]. The map f is also a
Z/2(or Z/4)-equivariant proper map.

Remark 6.9. We can further develop Pin−(2)-monopole gauge theory. Many things in the
Seiberg-Witten theory could also be considered in the Pin−(2)-monopole theory. Especially,
we can define Pin−(2)-monopole invariants and their cohomotopy refinements. It would
also be interesting to consider gluing formulas, Floer theory, and so on. All of these issues
are left to future researches.

7. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by using equivariant K-theory as in Bryan’s
paper[5]. We also give an alternative proof of Theorem 1.1 by the same technique.

7(i). Equivariant K-theory. We review several facts on equivariant K-theory, especially,
the equivariant Thom isomorphism and tom Dieck’s character formula for the K-theoretic
degree. We refer to the readers §3.3 of [5] and tom Dieck’s book [6], pp.254–255.

Let V and W be complex Γ-representations for some compact Lie group Γ. Let BV
and BW be Γ-invariant balls in V and W and let f : BV → BW be a Γ-map preserving
the boundaries SV and SW . The K-group KΓ(V ) is defined as KΓ(BV, SV ), and the
equivariant Thom isomorphism theorem says that KΓ(V ) is a free R(Γ)-module with the
Bott class λ(V ) as generator, where R(Γ) is the complex representation ring of Γ. The map
f induces a homomorphism f ∗ : KΓ(W ) → KΓ(V ). The K-theoretic degree αf ∈ R(Γ) is
uniquely determined by the relation f ∗(λ(W )) = αf · λ(V ).

For g ∈ Γ, let Vg and Wg be the subspaces of V and W fixed by g, and let V ⊥
g and W⊥

g

be their orthogonal complements. Let f g : Vg → Wg be the restriction of f , and let d(f g)
be the ordinary topological degree of f g. (Note that d(f g) = 0 if dimVg 6= dimWg.) For
β ∈ R(Γ), let Λ−1β be the alternating sum

∑

(−1)iΛiβ of exterior powers.
Then tom Dieck’s character formula[6] is,

(7.1) trg(αf) = d(f g) trg(Λ−1(W
⊥
g − V ⊥

g )),

where trg is the trace of the g-action.

7(ii). Proof of Theorem 1.2. Suppose X and a Z-bundle l satisfy the assumptions of
Theorem 1.2. Let λ = l⊗R and E = R⊕λ. By the assumptions, a Spinc−-structure (P, φ)
for (X,E) exists by Proposition 3.3, and we obtain a finite dimensional approximation
f : V → W of the Pin−(2)-monopole map on (P, φ). Since c̃1(E) = 0, f is a Γ = Z/4-
equivariant proper map. If b1(X ; l) > 0, by restricting f to the fiber over the origin of
T b1(X;l) which is represented by the fixed reference connection A, f can be assumed to be
a Γ-map between (real) Γ-representation V and W . In fact, f can be considered as a map
of the following form,

f : R̃m ⊕ C
n+k
1 → R̃

m+b ⊕ C
n
1 ,
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where Γ = Z/4 acts on R̃ by multiplication of ±1 via the surjection Z/4 → {±1}, and on
Ck by multiplication of g = exp 2π

√
−1k/4 for some fixed generator g of Γ, m,n are some

positive integers, b = b+(X ; l) and

k =
1

2
indR DA =

1

8
(c̃1(E)2 − sign(X)) = −1

8
sign(X).

As in [13], take the complexification of f as f(u⊗ 1 + v ⊗ i) = f(u)⊗ 1 + f(v)⊗ i. Now
the complexified f is of the form,

f : C̃m ⊕ (C1 ⊕ C−1)
n+k → C̃

m+b ⊕ (C1 ⊕ C−1)
n,

where C̃ = R̃⊗C. Let us apply tom Dieck’s formula (7.1). Since Vg = Wg = 0, d(f g) = 1.
Then we have,

trg(αf) = trg(Λ−1(C̃
b − (C1 ⊕ C−1)

k) = trg((C− C̃)b(2C− C1 ⊕ C−1)
−k) = 2b−k.

Since trg(αf) is an integer, we have b− k ≥ 0. Thus, Theorem 1.2 is proved.

Remark 7.2. In the proof of Theorem 1.2, we restrict the finite dimensional approximation
f to a fiber, and take the complexification of it. Due to such modifications of f , the
inequality we obtained might be somewhat weaker than expected. One could improve the
inequality by using the technique of [14].

7(iii). An alternative proof of Theorem 1.1. In this subsection, we give an alternative
proof of Theorem 1.1 by giving an alternative proof of Lemma 4.8. Suppose X and l
satisfy the assumption of Theorem 1.1. We may assume b+(X ; l) = 0 by reversing the
orientation ofX if necessary. Suppose an O(2)-bundle E such that detE = λ, and a Spinc−-
structure are given. Then we have a Γ = Z/2-equivariant finite dimensional approximation
f : V → W of the Pin−(2)-monopole map. By restricting f to a fiber if b1(X ; l) > 0, we
may assume f has the form of

f : Rm ⊕ C̃
n → R

m ⊕ C̃
n+k,

where Γ ∼= {±1} acts on R trivially, and on C̃ by multiplication of ±1, and m,n are some
positive integers, and

k = −1

2
indR DA = −1

8
(c̃1(E)2 − sign(X)).

Take the complexification of f and apply tom Dieck’s formula (7.1) for g = −1. Then,

trg(αf) = trg((C− C̃)2k) = 22k.

Therefore k ≥ 0, and Lemma 4.8 is proved.
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