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Abstract. The stochastic systems without detailed balance are common in various

chemical reaction systems, such as metabolic network systems. In studies of these

systems, the concept of potential landscape is useful. However, what are the sufficient

and necessary conditions of the existence of the potential function is still an open

problem. Use Hodge decomposition theorem in differential form theory, we focus on the

general chemical Langevin equations, which reflect complex chemical reaction systems.

We analysis the conditions for the existence of potential landscape of the systems. By

mapping the stochastic differential equations to a Hamiltonian mechanical system, we

obtain the Fokker-Planck equation of the chemical reaction systems. The obtained

Fokker-Planck equation can be used in further studies of other steady properties of

complex chemical reaction systems, such as their steady state entropies.
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The nonequilibrium behaviors of a great amount of chemical reaction networks can

be described by stochastic differential equations. For example, the kinetics of a simple

chemical chain reaction,

→ A → B →, (1)

can be described by a set of stochastic differential equations, namely, chemical Langevin

equations [1, 2, 3],

dx1
dt

= k0 − k1x1 +

√
k0√
Ω
ζ1 −

√
k1x1√
Ω

ζ2,

dx2
dt

= k1x1 − k2x2 +

√
k1x1√
Ω

ζ2, (2)

where xi denotes the concentrate of ith species in the chemical reaction system of

interest, here, x1 ≡ [A] and x2 ≡ [B] (”[ ]” denotes concentrate of the specie). The

ki are rate constants for corresponding reaction steps, i = 0, 1, 2 stands for the reactions

in Eq. (1) from left to right. The Ω is the closed system’s volume, ζi, i = 1, 2 refers to

stochastic varible.

We use the state variables qi ≡ ln xi, instead of xi ∈ R+ to make sure qi ∈ R. Here,

we do not require the detailed balance condition to be satisfied in our complex chemical

reaction system. In general, chemical Langevin equations are nonlinear stochastic

differential equations.

It is convenient to rewrite Eq. (2) to a concise form. From the point of view of

tensor field theory [4], Eq. (2) can be written as,

q̇a = wa(q) + hab(q)ζ
b, (3)

here, xa, ζa and wa(q) are all (0, 1) tensor fields, or 1−form in Rn, in the language

of differential form theory. The hab is a symmetric (0, 2) tensor field, hab = hba.

Here, we have used Penrose’s abstract index notation [4], for example, ζa = ζµ (e
µ)a,

ζµ, µ = 1, 2, . . . , n are the components of the ζa in the basis {(eµ)a}. In particular, if

use the special basis {(eµ)a = (dxµ)a}, which are the dual basis of natural basis {(∂µ)a},
ζa = ζµ (dx

µ)a. The following discussions can be applied to the systems with a large

number of species, or mathematically, the systems have high-dimensional state spaces

(manifolds) Rn, with coordinates {qµ}, µ = 1, 2, . . . n. Note that Eqs. (2) have broad

applications in the researches of physical, chemical, ecological, and financial systems,

Eq. (2) is not merely restricted to chemical reaction systems [5, 6].

In previous studies [8, 9], Eq. (2) was treated in the mathematical language of

vectors and matrices. However, in order to effectively exploit the power results of

modern mathematics, in present work, we will treat the chemical Langevin equations in

a different way. In the studies on the existence of nonequilibrium processes described

by stochastic different equations, Ao et al. [8, 9, 10, 11] introduced an ”axillary matrix”

M(q) = S(q) +A(q), and S(T)(q) is symmetric (antisymmetric) part of matrix M(q).

The meaning of the the approach can be much clearer using the language of differential

form theory. By introducing an axillary tensor field M b
a , original differential 1-form
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wa in Eq. 3) is converted to another differential 1-form w̃a = M b
a wb. The existence of

potential means

w̃a = (df)a, f ∈ C∞(U), (4)

and U is open in Rn. The necessary conditions of Eq. (4) can be expressed as following

equations [7],

∂w̃µ

∂xν
=
∂w̃ν

∂xµ
, (µ, ν = 1, 2, . . . , n). (5)

The Eq. (5) restricts the choices of axillary tensor field M b
a . It is worth noting that

Eq. (5) can not ensure that the potential function is f ∈ C∞(U).

In present work, we directly decompose the differential 1-form wa using Hodge

decomposition theorem, instead of introducing an axillary tensor field. The Hodge

decomposition theorem is the extension of Helmholtz decomposition theorem in

traditional vector analysis of R3. It tells us, for any differential p-form wp, (p < n)

in Rn, it can be uniquely decomposed into three differential forms,

wp(q) = dαp−1(q) + δβp+1(q) + γp(q), (6)

Here, the d and δ denote external derivative and codifferential operators

respectively [7]. The α is a differential (p − 1)− form, β is a differential (p + 1)−
form, and γ is a harmonic p−form, i.e., ∆γ = (dδ + δd)γ(q) = 0, and ”∆” is the

Laplace-Beltrami operator.

In particular, Hodge decomposition of differential 1-form in R3 is equivalent to

Helmholtz decomposition in traditional vector analysis: given a vector ~V , it can be

uniquely decomposed as ~V = ∇ · φ + ∇ × ~A, therefore Hodge decomposition can also

refer to Hodge-Helmholtz decomposition.

For our problem of interest, 1-formwa can be decomposed as wa = (dφ)a+(δβ)a+γa,

with the φ being a scalar field (0-form), βab being a 2-form (antisymmetric (0,2) tensor

field) and γa being a harmonic 1-form, i.e., (dδ + δ d)γa = 0.

In present problem, the index of the tensor field can be lowered and raised by

metric tensor in Rn, gab = δab. Using Hodge decomposition theorem, after certain

mathematical deriving, we obtain a stochastic differential equations with a form,

q̇i = −∂φ(q)
∂qi

+
∂fij(q)

∂qj
+ Ai(q) + hij(q)ζ

j, i = 1, 2, . . . , n. (7)

Here, ”q̇i” denotes time derivative of qi(t). The fij is antisymmetric, i.e., fij = −fji.
The constraint on Ai, ∂

2Ai(q) = 0 implies Ai(q) is a harmonic function. We will

use the properties of harmonic function later. Here, we have already adopted Einstein

summation convention. In Ref. [8], with axillary matrix S(qt) and A(qt), the so called

φ-decomposition need further constraints, and the constrained φ-decomposition is then

called ”gauged” φ−decomposition. In our approach, the decomposition is definitely

unique, which is guaranteed by Hodge decomposition theorem.

To obtain the Fokker-Planck equation of our complex chemical reaction systems,

a powerful method is the mapping from chemical Langevin equations to a Hamiltonian
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mechanical system [8, 9, 10]. The deterministic forces and stochastic forces in Eq. (7)

implies there are two different time scales in the system, which describe fast stochastic

motions and slower chemical kinetic evolutions respectively. As discussed in Ref. [8],

slow motion can be thought of as the consequence of the inertial of the chemical reaction

systems, which can be described by an inertial mass m in the theory.

We improved the approaches presented in Ref. [9], map the chemical Langevin

equations to a Hamiltonian system which has a 2n−dimensional phase space, then obtain

the Klein-Kramers equation for time evolution of probability distribution function. From

now on, we will not use previous mathematical language of differential form, but directly

use the components of differential forms, such as pi, fij , etc. To construct the 2n-

dimensional phase space, or so called ”enlarged state space”, we introduce dynamic

momentum pi, let

q̇i = pi/m, i = 1, 2, . . . , n. (8)

The other n Hamiltonian equations are constructed based on Eq. (7),

ṗi = −pi
m

− ∂φ(q)

∂qi
+
∂fij(q)

∂qj
+ Ai(q) + hij(q)ζ

j. (9)

There is no Itô-Stratonovich dilemma in the connection between the stochastic

differential equations, Eq. (2) and the Hamiltonian equations, Eq. (8) and Eq. (9).

We will truncate the results at the order of O (1/m), finally integrate out the

freedom of dynamic momentum p, and obtain the time evolution of ρ(q, t). For

simplification, we assume a noise in Eq. (9) is a standard Gaussian white noise with m

independent components ζi, i = 1, 2, . . . , m. Define ξi(q) = hij ζ
j, i = 1, 2, . . . , n, j =

1, 2, . . . , m, we have 〈ξi〉 = 0, and

〈ξi(t)ξj(τ)〉 = 2D(q)δijδ(t− τ), i, j = 1, 2, . . . , n. (10)

Here, the number of stochastic variables m can be different than that of state variables,

the matrix D(q) is diffusion matrix.

The generalized Fokker-Planck equation, so called Klein-Kramers equation can be

obtained from Eq. (8) and Eq. (9),

∂tρ1(q, p, t) = ∂pi

[

pi
m

+ ∂qiφ (q)− ∂qk fik −Ai(q) +Dij(q)∂pj

]

ρ1(q, p, t)

− ∂qi ·
pi
m
ρ1(q, p, t), (11)

which can be rewritten as,
{

∂t +
pi
m
∂qi +Gi(q) ∂pi − ∂pi

[

Dij(q)∂pj +
pi
m

]}

ρ1(q, p, t) = 0. (12)

Here, Gi(q) ≡ ∂qkfik(q) + Ai(q)− φqi(q), and φqi ≡ ∂qiφ (q).

To get Fokker-Planck equation, we regroup the p− and q− derivatives in Eq. (12)

into two operators L̂1 and L̂2,

L̂1 = ∂pi

(

Dij∂pj +
pi
m

)

,

L̂2 = − pi
m
∂qi + [φqi(q)− Ai(q)− ∂qkfik] ∂pi , (13)
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and Eq. (12) becomes,

∂tρ(q, p, t) =
(

L̂1 + L̂2

)

ρ1(q, p, t). (14)

Then use Gardiner’s standard projection operator method to eliminate the fast

degrees of freedom of q implied in the zero mass limit, or ”over-dumping” limit. We

introduce a projection operator P̂ , as

P̂ h(q, p, t) =
1

(√
2πm detD

)n exp

(

−piD
−1

ij pj

2m

)

∫

h(p′, q′, t)dnp′. (15)

here h(q, p, t) is an arbitrary function, and detD is the determinant of the diffusion

matrix D(q).

Projection operator is an idempotent operator, P̂ 2 = P̂ . Notice the fact,
(

Dij∂pj +
pi
m

)

exp

(

−pkD
−1

kl pl
2m

)

= 0, (16)

obviously there is an identity, L̂1P̂ = 0. For an arbitrary p-independent ci(q), the

following identity holds,

L̂1pici(q) exp

(

−pkD
−1

kl pl
2m

)

= − 1

m
pici(q) exp

(

−pkD
−1

kl pl
2m

)

. (17)

Thus, ψ ≡ pici(q) exp
(

−pkD
−1

kl
pl

2m

)

is the eigenfunction of operator L̂1, with the

eigenvalue being −1/m, and the inverse operator L̂−1
1 satisfies,

L̂−1

1 ψ = −mψ. (18)

Apply projection operator P̂ to the phase space probability distribution function

ρ(q, p, t)

P̂ ρ1(q, p, t) =
1

(√
2πmdetD

)n exp

(

−piD
−1

ij pj

2m

)

ρ(q, t) ≡ v(q, p, t), (19)

with ρ(q, t) ≡ ∫

dp ρ1(q, p, t) being the state space probability distribution.

It has been proved [9]

∂t v(q, p, t) = −PL2L̂
−1

1 L̂2v + O
(√

m
)

. (20)

Substitute of explicit forms of operators L̂1 and L̂2 to Eq. (20), we have

− P̂L2L̂
−1

1 L̂2v = ∂qi [Dil∂ql + Ai(q) + ∂qiφ(q)] v(q, p, t). (21)

Finally, by integrating out the degrees of freedom of p in ρ(q, p, t), we get the

multivariate Fokker-Planck equation with the form,

∂tρ(q, t) = ∂qi
[

Dij∂qj + Ai(q) + ∂qiφ(q)
]

ρ(q, t). (22)

We have known Ai(q) is a harmonic function. Assuming it is bounded at the state

space Rn, it must be constant, (denoted as Ai(q) = ai), according to the Liouville’s
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theorem in harmonic function theory [15]. With this assumption, our Fokker-Planck

equation can be further reduced to

∂tρ(q, t) = ∂qi
[

Dij(q)∂qj + ∂qi φ̄
]

ρ(q, t). (23)

Here, φ̄(q, t) ≡ φ(q, t)+ai q
i, is the potential landscape of the chemical reaction systems,

therefore the ”force” has a form of

f̄i = − [Ai(q) + ∂qiφ(q)] = − [ai + ∂qiφ(q)] = −∂qi φ̄(q). (24)

To conclude, we have used Hodge decomposition approach to study the potential

landscape for chemical reaction systems described by chemical Langevin equations,

which are stochastic differential equations. We do not require detailed balance condition

to be held in the systems. Hodge decomposition theorem is very convenient to deal with

the problem related to high-dimensional state space. We map the chemical Langevin

equations to a Hamiltonian mechanical system, and find the Fokker-Planck equation

for chemical Langevin equations. With certain assumptions, there does exist potential

landscape, the potential can also be time-dependent. Our work can be used in the

studies of other steady state properties of the chemical reaction systems, such as their

steady state entropies.
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