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Abstract

The maximum size of a binary code is studied as a functiorsdéitgthn, minimum distancel, andminimum
codeword weight. This function B(n,d,w) is first characterized in terms of its exponential growtte riat the
limit n — oo for fixed 6 = d/n andw = w/n. The exponential growth rate d®(n,d,w) is shown to be equal to
the exponential growth rate of(n,d) for 0 < w < 1/2, and equal to the exponential growth rate o, d, w)
for 1/2 < w < 1. Second, analytic and numerical upper boundsiZgn, d, w) are derived using the semidefinite
programming (SDP) method. These bounds yield a non-asyimptgprovement of the second Johnson bound and
are tight for certain values of the parameters.
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I. INTRODUCTION

Two classical functions in combinatorial coding theory ate:, d), the largest size of a binary code
of length n and minimum distancel, and A(n, d,w), the largest size of a binary code of length
minimum distanced, and constant weightv. A closely related function iS3(n, d, w), obtained from
A(n,d,w) by relaxing the weight constraint to only require that theghie of each codeword is at least
w. Codes satisfying a minimum weight constraint are calledvy weight codem [7], where they are
motivated by certain asynchronous communication prohlérhs other relaxation where codewords are
required to have weight at most defines the functiorl(n, d, w). Complementation immediately shows
that L(n,d,w) = B(n,d,n — w). The functionZ naturally occurs in the proof of the Elias bound[15,
Lemma 2.5.1]. It also occurs in the problem of list decodinigew bounding the size of the list as a
function of the decoding radiug. In this problem,L(n,d,w) represents the largest size of a list of
codewords at distance at mastfrom the received vector, given a binary code of lengtand minimum
distanced. This function is denoted byl}(n,d, w) in [14], where the Elias Lemma [15, Lemma 2.5.1]
is referred to as the Johnson bound, and is used to prove bppeds on the list size.

In the present paper we first characterize the asymptotiorexgt of B(n, d, w) as a function of those
of A(n,d) and A(n,d,w) (Theoren{ll). This result is based on the asymptotic uninitydafl A(n, d,w),
which was conjectured i [7, Conjectu2é Note that, the non asymptotic analogue of this result édos
as a research problem in |16, p.674])fadseas A(15,6,6) < A(15,6,7) [19].

Second, we provide upper bounds &, d, w) obtained by the semidefinite programming method.
From these bounds, we derive a non asymptotic improvemetiteoElias/Johnson Lemma in a certain
range ofn, d, andw (TheoreniB) as well as numerical tables.

The material is organized as follows. Sectioh Il containsneintary bounds and some tables of
B(n,d,w) derived therefrom. SectidnlIl contains the asymptotialtss Sectior 1V is dedicated to the
SDP method. Section]V explores three heavy weight codestragtion techniques. In Sectidn VI we
provide some concluding remarks.
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and A. Tchamkerten are with Telecom ParisTech (France).chamkerten is partly supported by an Excellence Chair dgrant the French
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http://arxiv.org/abs/1009.3657v1

[I. ELEMENTARY BOUNDS

In this section we establish a few basic relations betwBén, d,w) and A(n, d, w).
Note first thatB(n,d,w) is increasing inn, and decreasing i@ and w. Further, by definition of
B(n,d,w), we have
B(n,d,w) > A(n,d,j) forj>w. (1)

By taking weight classes sulfficiently far apart so that theyndt overlap, we get

L=
B(n,d,w) > Y A(n,d,w+ hd) 2)
h=0

where |z | denotes the largest integer not exceeding
Since any code is a disjoint union of constant weight codeshave

B(n,d,w) <Y A(n,d, j). (3)

Jj=w
Removing the weight constraint can only improve the sizeche
B(n,d,w) < A(n,d) = B(n,d,0). 4)

The following result is analogous to the first half of the filshnson bound [6,36)]:
Proposition 1: Forw < n we have

B(n, d,w) < \%B(n —1,dw-1).

Proof: Let C' be a code realizing?(n, d, w), and consider the matrix whose rows are its codewords.
Since the average weight of a column, which we denotélfyis given by the total number dfs in the
matrix divided byn, we get

n
Now, say column has weight at leadt’ (one such column clearly exists). Pick the subcod€' gfiven by
the codewords of’ that have al in the [-th position. Modify this subcode by deleting théh component
of each codeword. If we denote I8y the resulting code, we conclude thét < |C'| < B(n—1,d,w—1).
Using this together with{5) yields the desired result. [ |
Finally, the following Gilbert type lower bound is immedzat
Proposition 2: For alln > 1, d <n, andw <n
B(n,d,w) > 222_7\'1'(;)
>z (7)
We conclude this section with tables derived from the pregedounds. Some trivial entries are
B(n,d,w) = 1 wheneverd > min{2w, 2(n — w)}. We limited» andd to the values wherel(n,d) and
A(n,d,w) are known exactly (for al) in [5], [6]. Entries of the tables wher& > n are left blank.

Whether or not the analogous of the second half of the firshshmh bound, i.e[]6,3p)], holds as well remains an open question.
Specifically, it is unclear at this point whether the inedgyal

" B(n—1,d,w)

n—w

B(”? d? W) S

is valid.



TABLE I: B(n,4,w)

n|An4)|lw=2|w=3|w=4|w=5w=6w=7|w=8|w=09
6 4 4 3-4 3 -4 1 1

7 8 8 7-8 | 7-8 | 35 1 1

8 16 16 |15-16| 15-16| 8-10 | 4 -6 1 1

9 20 20 | 19-20| 19-20| 18-20| 12-18| 4-6 1

10 40 40 | 39- 40| 39-40| 36-40| 30-40| 13-20| 5-7 1

TABLE I1: B(n,6,w)

n|An,6)|lw=2{w=3w=4|w=5|w=6|w=7|w=8|w=9
9 4 4 4 3-4 | 3-4 3-4 1 1 1
10 6 6 6 6 6 5-6 | 3-6 1 1
11 12 12 12 | 11-12| 11-12 | 11- 12| 6-9 | 3-6 1
12 24 24 24 | 23- 24| 23-24 | 23-24 | 12- 24| 9-16 | 4-7
13 32 32 32 | 31-32| 31- 32| 31- 32| 26-32 | 18-32| 13- 20

[1l. ASYMPTOTICS

For fixed d,w € [0, 1], we denote byy(é,w) the exponential growth rate dB(n, d,w) with respect to
n with d = d(n) = [dn] andw = w(n) = |wn], i.e.

b(d,w) = limsup (
n—oo

1 log B(n, d(n),W(n)))

n

where logarithms are taken to the baséhroughout the paper. The asymptotic exponents! of, d, w)
and A(n, d) are defined similarly and are denoted d&y, w) anda(d), respectively.
Proposition 3: For anyé € [0,1] andw € [0, 1/2], we haveb(d,w) = a(d).
Proof: The Elias-Bassalygo bound [18, equati@ms]

A(n,d) _ A(n,d,w)

n S n

2 (W)
together with the trivial inequalityl(n, d, w) < A(n,d) shows that the asymptotic exponentsAifn, d)
and A(n,d,n/2) are the same. The result then follows by combining the bofidand [4) to obtain

A(n,d,n/2) < B(n,d,w) < A(n,d)

(6)

for w < n/2. u
The next result provides the main ingredient for proving #a, w) = a(J,w) whenw € (1/2,1].
Theorem 1:For fixedé € [0, 1], a(d,w) is unimodal inw with a maximum atv = 1/2.

Corollary 1: For anyd € [0,1] andw € (1/2, 1], we haveb(d,w) = a(d,w).
Proof of Corollary[1: We have

A(n,d,j) < B(n,d,w) < (n—w+1) max

je{ww1,...,n}

A(n, d, j) (7)

max
je{w,w+1,...,n}

by (@) for the first inequality and by {3) for the second indiyaletting w = |wn| andd = |dn| we
get

A(n,d,j) = max A(n,d, |pn]), (8)

pE[w,1]

max
Je{ww+1,...n}



TABLE I11: B(n,8,w)

n|An,8)|w=2|w=3|w=4|w=5w=6|w=7{w=8|w=9
12 4 4 4 4 4 4 3-4 | 3-4 1
13 4 4 4 4 4 4 4 3-4 3-4
14 8 8 8 8 8 8 8 7-8 | 4-8
15 16 16 16 16 | 15-16| 15-16| 15-16| 15-16| 10- 16

and therefore from{7) we have
b(0,w) = sup a(d,p)
w<p<l1
for any ¢ € [0,1] andw € [0, 1]. Assuming thatl /2 < w < 1, the theorem then follows from Theordrh 1.
[
Proof of Theoreni]1::We establish that(J, -) is non-decreasing ovéd, 1/2]. This, by complemen-
tation, shows that(0, -) is non-increasing ovell /2, 1], proving the claim.

Fix 6 € [0,1] and letw;, wy be such thab < w; < ws < 1/2. Throughout the proof we disregard
discrepancies due to the rounding of non-integer quastégethey play no role asymptotically. Thus, for
instance, we shall always treatn as if it is an integer.

We show that, from a given constant weight cadewith parametergn, d = én,w; = wn) such that
|C1| = A(n,d,w,), it is possible to construct a constant weight cadewith parametersgn, d, wy = won),
of size at least equal t@, | multiplied by 1/(n + 1)?. This shows thati(d, w,) > a(d,w;). The codeCs
is obtained fromC; via translation.

For a given fixed codeword € (', let us construct a length binary vectort of weight

Wo — W1
= n

1-— 2&)1
as follows. Consider first the positions dfthat form the support o¢ (w; of them). Pickw,w of these
positions arbitrarily and assign thet’s. Similarly, assignl’s to an arbitrary selection of th@ — w;)w
positions that lie outside the support @ The remaining positions aof are filled with0’s. Note that, by

of our choice ofw, the vectorc’ = t @& ¢ (component wise modul® sum oft andc) has weightws.
Now observe that, because the selections made to consteuetarbitrary, for any given € (' there

(o) (0 Z050)

ways of choosing: for which ¢’ has weightw,. Therefore, if we now pick randomly and uniformly
among all possible sequences of weightthe probability that this sequence translates a givenC; to
a sequence of weights, is given by

W= wn

win l—wi)n
(wltun) (((l—wll)z.m)
This implies that a vectar that is randomly and uniformly chosen among all possibleiseges of weight
w translates on average

pA(TL, da Wl)
codewords from(; into codewords of weightv, (and minimum distancé€). Therefore,

A(n,d,Wo) > pA(n,d,wy).



Finally, using the following standard bounds on binomiagfticient§

( il)th(k/n) < <Z) < orhlk/m) < gy
n
(see, e.gL[11, Example 11.1.3, p.353]) shows that

S 1

P=tre
Therefore we obtain .
A(n, d, WQ) Z (n n 1)2A(n, d, Wl) ,

from which the theorem follows. [ |

IV. UPPER BOUNDS ONL(n,d, W) FROM SEMIDEFINITE PROGRAMMING

The semidefinite programming method is a far reaching génatian of Delsarte linear programming
method to obtain bounds for extremal problems in coding thelm the present situation, we aim at
upper boundingL(n, d, w), which is the maximal number of elements of a code containethe ball
B(w) centered at the all-zero word with radiwsof the binary Hamming spac#,, = {0, 1}". We obtain
numerical bounds for small values of the parameters/, w), which improve the elementary bounds for
B(n,d,n—w) = L(n,d,w) given in Section Il. We also obtain a new bound, which is arlieigunction
of (n,d,w), and improves on the Elias/Johnson bound for some valudsesttparameters.

The numerical bounds are obtained by a straightforwardieadmn of the SDP method. We refer
to [2] for a survey of this method and its applications to theaby Hamming space, including the
case of codes in balls. See also [3] for a survey on the morergkesubject of symmetry reduction of
semidefinite programs, with applications to coding thetmya few words,L(n, d,w) can be interpreted
as the independence number of a certain graph with vertei,sehus is upper bounded by the so-called
Lovasz theta numbe# of this graph (or rather by its strengthenifif), which is the optimal value of a
certain semidefinite program. This SDP has exponential iazecan be reduced to polynomial size by
the action of the symmetry group of the graph, which is theragtny group ofB(w), i.e. the groups,,
of permutations of the: coordinates.

Let us recall that a functiod” : H? — R is said to bepositive definitg(or positive semidefinite) if
the matrix (F'(z,y)) indexed by H,, is positive semidefinite. This property is denotéd> 0. In the
symmetrization process discussed above, a descriptioneo$,f-invariant positive definite functions on
H, is required. This description is in fact provided in[20],den the name of block diagonalization of
the Terwilliger algebra of the Hamming space, and in the &aork of group representations in [22].
Numerical upper bounds fak(n, d,w) obtained in this way are displayed in Tables 1V, V, VL.

For the announced explicit bound, we use a slightly diffef@amd self contained) formulation of the
SDP bound, which is given in Theordm 2. We shall recover thasElohnson bound as a special case,
and obtain a new bound in Theorérh 3. There, we follow the sameefor Hamming balls as the one
followed for spherical caps in_[4]. In the latter, the SDP huet has lead to numerical bounds and also
to explicit bounds of degree up to two.

A. Improving the Johnson bound

We start with a more handy restatement of the SDP bound, whkielssentially the dual form of the
SDP defining the theta numbeéf. The notations are as follows: the space of functiondignis denoted
C(H,) ={f: H, — C} and is endowed with the standard inner prodifet f>) = 3= > ., f1(x)f2().
We shall consider the decomposition of this space under tienaof the full automorphism group

2h(p) denotes the binary entropyplogp — (1 — p)log(1 — p).



Aut(H,) of the Hamming space and under the action of the symmetrigpgtn. Since the irreducible
components are indeed real, we can restrict to the real ddluections.

The orbit of (z,y) € H? under the action of5,, is determined uniquely by the values of= wt(z),
v := wt(y) andt := d(z,y). Thus the elements of € C(H?) which areS,-invariant, i.e. which satisfy
F(gx,gy) = F(x,y) for all g € S, (z,y) € H?, are of the formF = F(u,v,t). With this notation,
F > 0 stands for:(z,y) — F(wt(z), wt(y), d(z,y)) = 0.

Theorem 2:Let

Qn,d,w) = {(u,v,t) eN*: 0<u,v<w, d<t<n,

t<u+v, u+v—t=0 mod 2}.

Let P(u,v,t) € Rlu,v,t] be a polynomial symmetric ifu, v). If P satisfies the following conditions:
1) P— fy =0 for somef, >0
2) P(u,v,t) <0 forall (u,v,t) € Qn,d,w),
3) P(u,u,0) <1 forallue{0,...,w},

then
1

%.
Proof: For (z,y) € H?, let F(z,y) := P(wt(z), wt(y),d(z,y)). We consider for a cod€' C B(w)
with minimal distance at least equal # the sum

S = Z F(z,y).

(z,y)eC?

L(n,d,w) <

From property (1) ofP, we haveS > f,|C|%. On the other hand§ = S; + S, where S, is the sum over
pairs (z,y) € C? with z = y and S, is the sum over the non equal pairs y) € C?, x # y. Condition
2) on P insures thatS; < 0 and condition 3) onP that.S; < |C|. Altogether we obtainC| < 1/f,. m

In order to apply the above theorem with specific polynomials, v, t), we need an explicit description
of those who are positive definite. Such a description iseéddebtained in[[20], and in_[22] in terms of
orthogonal polynomials (Hahn polynomials to be precisey.we shall see, for our purpose, we need a
slightly different expression.

A general method is explained inl[1],/[2],/[3], involving gmp representation. The spa€¢H,,) can
be decomposed into the direct sum$f-irreducible subspaces. The sum of those subspaces whach ar
isomorphic to a given irreducible representatiorbpfis called an isotypic subspace. We recall that certain
matricesFy(z,y) are associated to the isotypic componenftsof C(H,,) under the action of5,,. Here
k € 10..|n/2]], Z) corresponds to the irreducible representatior k, k| of the symmetric grou,,, and
has multiplicityn — 2k + 1. Moreover,E(z,y) is S,-invariant thus can be expressed in termg«afv, t),
namelyEy(z,y) := Yi(u,v,t). Then we have the following characterization (we use thedsted notation
(A, B) = Trace(AB™*) for matrices):

Proposition 4: For all P € Rlu, v, t], symmetric in(u,v), P > 0 if and only if

[n/2]
P(U,U,t) = Z(Fk,Ek(x,y>> (9)
k=0
where fork € [0..|n/2]], F}, € R™>*™ my = n —2k+ 1, and F, = 0. More precisely,E(z,y)
is computed from a decomposition 8f into irreducible subspaces, = Ry1 @ ... Ry, . If for all 4,
(€ki1,---,e€kin,) IS @an orthonormal basis aky; in which the action ofS,, is expressed by the same
matrices (i.e., not depending ajy then

Ekzjxy E 6k:zs 6kjs )



The decomposition af, with irreducible submodules is not unique but chan@igée, v) to AE(x,y)A*
for an invertible matrixA, see [1, Lemma 4.2]. Note that such a change does not affecalibve
characterization of” being positive definite sincéry,, AE;(z,y)A*) = (A*FLA, Ex(z,y)) and F, = 0 if
and only if A*F,A > 0.

There are essentially two strategies to obtain such a dessitign. One can start from the decom-
position of X = H,, into orbits under the action of,, namely X = X, U ---U X, with X}, = {z €
H, : wt(z) = k}, which leads to a decomposition of the functional sp@c&) = C(X,) L --- L C(X,,)
and then decompose eaéh-spaceC(Xy), following [12]. It is the method adopted in [22] where the
corresponding matrice&(x,y) are obtained in terms of Hahn polynomials. Another approstelnts
from the decomposition of (H,,) under the fullAut(H,), namelyC(H,) = P, L P, L --- L P, where
Py = @wiw)=kCxw, xw(z) = (=1)"*, then decomposes eadh under the action of the subgrouf,.
Because we want to work with polynomials {m, v, ¢) of low degree, this last decomposition is better
suited. Indeed, ifP € Rlu, v, t], thenz — F(z,y) := P(wt(z), wt(y),d(x,y)) belongs toPy L --- L P
if and only if the total degree oP in the variablequ,t) is at most equal td:.

An isomorphism ofS,,-modules betweed(X,) and P, is given by ¢y:

Fro)= D fWxw
wt(w)=Fk

so we have exactly the same picture for the decompositio®( &f,) when P, replacesC(X}), namely
the irreducible decomposition @, under the action of,, that is for0 < k& < |3 ], we have

P,=Hy, L Hyp L--- L Hpy (10)
and the isotypic components 6fH,,), i.e.
Ty =Hypp L Hypr L --- L Hy g H;?,E%H-

Sinceu = wt(z), as a function ofr, is invariant underS,,, and is of degred, the isotypic subspacg,
can also be decomposed as: '
Ty = EB?:_okuZHk,k

Moreover, starting from an orthonormal basis ;) of Hy,, we obtain an orthonormal basig’e; ;) of
u'Hy . in which the action ofS,, is expressed by the same matrices, thus we can use it to certiput
corresponding matrid’, (z, y) the coefficients of which will be equal to:
hy
Epij(z,y) = u'v? Z er,s()er,s(y).-
s=1
In other words, it is enough to computé,(z,y) = S, ex.(z)er.(y), which is the zonal function
associated tddy ;, in terms of(u, v,t). We obtain:
Proposition 5: We have the following expressions fai,, up to a positive multiplicative constant:
[ ZO - ]_
e Z1=—t+u+v—2uv/n
o« Zo =1+ (2/(n—2))(n —nu—nv+2u)t+ (1/(n —1)(n — 2))(4u*v? — 4n(v?*v + w?) + (n +
2)(n —1)(u* +v*) + 2n(n + uv — 2n(n — 1)(u + v))
Proof: We take the following notations: it(w) = 1, andw; = 1, we letx; := xy. Let

Ui=n—-2u=> " xiz),

Vi=n—20=3" xiy),
T:=n-2t=>" xi(z)xi(y).



Following [12], and the isomorphism,, defined aboveH, ;, = ker(d) whered : P, — P,_, is defined
by: dxw = > xw wWhere the sum is over the wordg of weight wt(w') = wt(w) — 1, and of support
contained in the support af. We setd = d, to specify the variable under consideration ahé d, + d,
when applied to a functiof’(z, y) on H2. Then,Z, is uniquely determined up to a multiplicative constant
by the properties:

1) Z, € R[U,V,T|, is symmetric in(U, V),

2) x+— Zy(z,y) belongs toF;,

3) dZ; = 0.
According to the decompositioh (110) with pairwise non isepic irreducible subspaces, the space of
functions satisfying conditions (1) and (2) below is of dm®n1 + k. In the variabler, U andT belong
to P, and it is easy to check that> —n, UT — V, T? — n, belong toP,. Thus a basis for the space of
functions satisfying (1) and (2) is given by:

kE=0: {1}

k=1: {UV,T}

k=2: {(U?-n)(V?-n),
UVT —U? —V?4n,T? —n}

The assertiorZ, = 1 is then trivial. In order to comput&; and Z,, we need formulas for the image
underd of the monomials inU, V,T"). We compute the following:

d,1 =dl =0,
d,U=mn thus dUV)=n(U+V),
d, =V thus dT'=U+V.
With the above we obtain thé&f; is proportional to7" — %UV. Similarly we obtain:
d(U?+V?)=2(n—-1)(U+V),
d(U?V?) =2(n — 1)(U*V + UV?),
dUVT) = (U*V +UV?) + (n—2)(U + V)T,
d(T?*) = =2(U+V)+2(U+ V)T.

and Z, turns to be proportional to

T 2 (UVT —U* = V%4 n)
n—2
1 2 2
+(n— 1)(n—2)<U —n)(V= —=n).
From the identityZ;(z,z) = > ex s(x)?, we have thatZ, (U, U,0) > 0 which determines the sign of the
multiplicative factor. We obtain the announced formulas. [ ]

Remark:The method used to calculate the polynomiéjsfor 0 < k£ < 2 outlines an algorithmic way to
computeZ, for generalk. It would be more satisfactory to have an expression of tipeggnomials in
terms of orthogonal polynomials.

Now we apply Theorerhl2 in order to obtain upper boundsrfot, d, w). We start with a polynomial
P(u,v,t) of degree one and recover Elias bound: Let

P(u,v,t) =2y (u,v,t) +d — 2w(1 —w/n)
=d—t+ (u+v—2uv/n) —2w(1 —w/n).



9

With fy := d—2w(1—w/n), we haveP — f, = 0. If w < n/2, the maximum ovef0, w|? of u+v—2uv/n
equals2w(1 —w/n), and is attained for = v = w. Thus P(u,v,t) < 0 for (u,v,t) € Q(n,d,w), and
P(u,u,0) < d. Thus we obtain that itv<n/2 and d > 2w(1 —w/n), then

d

Lin. d W) < G am =y

It is unclear in general how to design a good polynonitabf degreek. A possible strategy is to start
from a polynomialL(t) optimizing the bound forA(n, d) and disturb it with a polynomiab(u, v), i.e.
take P = L(t) + p(u,v). Since L(t) = 0, condition (1) of Theorerl2, is equivalent & — fy £, = 0.
In order to fulfill condition (2), it is enough to havg(u,v) < 0 for [u,v] € [0,w]* so one can take
p(u,v) = (u+v—2wW)s(u,v) or p(u,v) = (u(u—w)+v(v—Ww))s(u, v) wheres(u, v) is a sum of squares.
For the degred, if one follows this line and take® = (d — t) + A(u + v — 2w) with A > 0, one finds
that the optimal choice of is A = 1 — 2w/n and obtains again the Elias bouid](11). For the degree
we consider accordingly a polynomi&l of the form

P=({t—d)(t—n)+ Mu(u—w)+v(v—w)),
with A > 0. The matrix /() associated td is equal to
nd —n —d— AW 1+ A
Fo(N\) = ( dn/(n—1)+2d/n —4/(n—1) ) .
4/(n(n —1))

Let fo(\) := det(Fp(A). The lower left2 x 2 corner of Fy()\) is positive semidefinite so the matrix
Fy(N\) — foEy is positive semidefinite if and only if its determinant is neegative, which amounts to the
condition

(11)

n?(n —1)

<
Jo< 8d

fo(A).

On the other hand
P(u,u,0) = dn+ 2 u(u —w) < dn

so we obtain the bourtt’? /((n—1) fo()\)). It remains to find the maximum ¢f (), which is a polynomial
of degree2 in A:

”(”2‘ D foA) = —((n — 1)d + 2(n — W)2)\2
+d(2n +2 —AW)A + d(2d — (n — 1)).

The maximum is attained foko = d(n +1 —2w)/((n — 1)d + 2(n —w)?), \g > 0 if w< (n+1)/2, and
is equal to

Ad(d? + 2o 20 gy — w)?)

n((n —1)d+ 2(n —w)?)
This last value is positive if and only if

(\/Q(n—w)(n— 1) — (n+1-w)).

g (n —w)
(n—1)

Altogether we obtain:
Theorem 3:Assumew < (n + 1)/2 and

(n—w

d > (n_l))(\/Q(n—w)(n—l)—(n+1—W)).
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TABLE IV: d =4

n\w]| 4 5 6 7 8 9 10 11 12 13 A(n,4) <
10 | 31 | 37 40
11 | 42° | 67 72
12 | 56 | 100 | 138 144
13 | 72 | 144 | 221 | 248 256
14 | 92° | 201* | 340 | 411 | 486 | 503 512
15 | 114* | 274 | 508 | 750 | 849 | 989 | 1002 1024
16 | 141* | 365* | 736 | 1184 | 1571 | 1767 | 1984 | 2012 2048
17 | 171 | 477 | 1039 | 1813 | 2602 | 2981 3276
18 | 205 | 613 | 1437 | 2703 | 4183 | 5041 | 6007 | 6324 6552
19 | 243 | 776 | 1947 | 3933 | 6541 | 9174 | 10532 | 12249 | 12641 13104
20 | 286 | 970 | 2594 | 5600 | 9976 | 14966 | 19390 | 21965 | 24834 | 25388 26168

Then
2(n—w)? )

< 2d(d +
L(n, d,w) < @2 4 AWl gy g2

n—1

n—1

Example:with the above we obtaitl.(n,n/2,n/2) < 2n — 1. It is an almost sharp bound in view of
A(n,n/2,n/2) = 2n — 2 for values ofn for which an Hadamard matrix of order exists [6, Theorem
10]. Note that adding the all zero codeword to such an Haddmade yieldsL(n,n/2,n/2) = 2n — 1.
Example:For d = 2w(1 — w/n) the degreel bound does not apply. The degréegives a bound if

w > n/2 —y/n?/(2(n+ 1)) which equals
2wW(n? — w)
g -+ w-3)"

B. Tables
The tables IV, V and VI give upper bounds éfn,d,w) employing the SDP method. Theylways
improve on the bound{4) (Cf right most column) and sometioe$3) when the latter is stronger than

the former. This situation is indicated by a star exponent.
In some cases they allow us to derigractvalues of L(n,d, w) by using the expurgation technique

of the next section. These cases are indicated by bold factens. To do that we collect the weight

enumerators of some special binary codes in the notatiodGjf [
The weight enumerator of thBM (2, 4) dual of theRM (1,4) is computed by MacWilliams transform

[16, Ch. 5, Th. 1] as
210 4+ 910 4+ 140(2 Pyt + 2ty'?) + 448(20y0 + 25910)

+8702%°.

This shows by expurgation that
L(16,4,4) = 141.

The weight enumerator of the Nordstrom Robinson code is
x16+y16+ 112(x10y6+x6y10) +30x8y8

This shows by expurgation
L(16,6,6) = 113, L(16,6,10) = 255.

The weight enumerator of the extended Golay code is
ZL‘24 +y24+759(x16y8 —l—xsylﬁ) _‘_25761,12?/12.



11

TABLE V: d=6

nw| 6 | 7 | 8 9 [ 10 | 11 A(n, 6) <

14 | 51 | 56 | 63 64

15 | 74 | 96 | 113 | 127 128
16 | 113 | 157 | 207 | 228 | 255 | 255 256
17 | 159 | 250 | 318 340
18 | 205 | 409 | 481 | 563 | 677 680
19 | 259 | 554 | 752 | 913 | 1107 1280
20 | 324 | 739 | 1200 | 1519 | 1835 | 2096 2372

TABLE VI: d =8

nw]| 8 9 [ 10 | 11 | 12 | 13 | 14 | 15 | 16 A(n,8) <

18 | 67 72

19 | 100 | 123 | 137 142
20 | 154 | 222 | 253 256
21 | 245 | 359 | 465 512
22 | 349 | 598 | 759 | 870 | 967 | 990 | 1023 1024
23 | 507 | 831 | 1112 | 1541 | 1800 | 1843 | 1936 | 2047 | 2048 2048
24 | 760 | 1161 | 1641 | 2419 | 3336 | 3439 | 3711 | 3933 | 4095 4096

Shortening we obtained the dual of the perfect Golay code.
2% 4+ 50625y + 12882y + 2532716,
This shows by expurgation
L(24,8,8) = 760, L(24,8,12) = 3336, L(24,8,16) = 4095,

and
L(23,8,8) =507, L(23,8,16) = 2048.

V. CONSTRUCTIONS

Three well studied code construction techniques are egpiorg translation, and concatenation. In the
context of heavy weight codes, the first is perhaps mostlyhebretical interest as a good decoding
algorithm needs not, in general, provide a good decodingrigtgn for a subcode. In contrast, the other
two techniques also provide practical decoding algorithms

A. Expurgation

The following result shows that, faw < d, B(n,d,w) and A(n, d) are essentially the same (recall that
B(n,d,w) < A(n,d)).
Proposition 6: For 1 <w < d < n, we have

B(n,d,w) > A(n,d) — 1.

Proof: Let C' be a code achieving(n, d). By first translating this code so that to include the all-zero
codeword, then by removing the all-zero codeword, we gevagwle of sizeA(n, d) — 1, with minimum
distance and weight both at least equalitorhe proposition follows. [ ]

Theorem 4:For all large enough and even all w < n/2, and alld < nh~'(1/2)H we have

B(n,d,w) > 2"=2)/2,

3h=1() denotes the inverse function of the binary entropy over émge[0, 1/2].
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Proof: Pick a self dual code above the Gilbert bound [17]. This cagladbinary self-dual, contains
the all-one codeword, and is therefore self-complementdgnce, half of its codewords at least have
weight at least:/2. u

B. Translation

We assume that the reader has some familiarity with the sayeadius concept [10]. Recall that the
covering radius of a code is the smallest integsuch that Hamming balls of radiuscentered on the
codewords cover the ambient space. Defi(e:, d) as the largest covering radius of a code achieving
A(n,d). Since the covering radius exceeds — 1)/2], we getR(n,d) > |(d — 1)/2] with equality iff
the code that achieveR(n, d) is perfect. A sharper bound oR(n, d) for non perfect codes is obtained
as a direct consequence of the sphere covering bound

R(n,d) n
2" < A(n,d :
<A Y ()
The motivation for taking “largest” rather than “smallesti’ the definition of R(n, d) is to have the
best upper bound ow in the next Proposition, which sharpens, in certain caseqd3ition[6.
Proposition 7: Fix two integersn > 1 andd > 1. If w < R(n,d) then

B(n,d,w) = A(n,d).

Proof: Pick a codeC' realizing A(n,d). There exists a translate ¢f of weightw as long asw is
less than or equal to the covering radiusCaf This givesB(n, d,w) > A(n, d). The reverse inequality is

@). [ |

C. Concatenation

Consider an heavy weight code of lengthsizeq, minimum weightw, and distancd. If we concatenate
this code with a code of lengthv, size M/, and minimum distanc® over GF'(q), we get a binary code
of length Nn, weight at leastvN, size M and minimum distance€D. Hence, provided3(n, d,w) > q,
we see that

B(Nn,dD,wN) > A,(N, D).

where A,(N, D) denotes the largest size of a code of lengtrand minimum distancé, over GF(q).
Efficient decoding algorithms for concatenated codes cafoled in [13].

VI. CONCLUDING REMARKS

We investigatedB(n, d,w), defined as the largest number of codewords of weight at Maahd
minimum distancel. The asymptotic exponent @ (n, d, w) is reduced to those ol(n, d) or A(n,d,w),
depending orw. For finite values of the parameters, we obtained bound®@n d, w) partly using the
SDP method. As future research, it might be possible to find eeact values ofB(n, d, w) by special
constructions. In this direction, one possibility is to éstigateR(n, d) defined in Sectiof V.
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