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On Bounded Weight Codes
Christine Bachoc Venkat Chandar Gérard Cohen Patrick Solé Aslan Tchamkerten

Abstract

The maximum size of a binary code is studied as a function of its lengthn, minimum distanced, andminimum
codeword weightw. This functionB(n, d,w) is first characterized in terms of its exponential growth rate in the
limit n → ∞ for fixed δ = d/n andω = w/n. The exponential growth rate ofB(n, d,w) is shown to be equal to
the exponential growth rate ofA(n, d) for 0 ≤ ω ≤ 1/2, and equal to the exponential growth rate ofA(n, d,w)
for 1/2 < ω ≤ 1. Second, analytic and numerical upper bounds onB(n, d,w) are derived using the semidefinite
programming (SDP) method. These bounds yield a non-asymptotic improvement of the second Johnson bound and
are tight for certain values of the parameters.

Index Terms

Constant weight codes, Johnson bounds, semidefinite programming

I. INTRODUCTION

Two classical functions in combinatorial coding theory areA(n, d), the largest size of a binary code
of length n and minimum distanced, and A(n, d,w), the largest size of a binary code of lengthn,
minimum distanced, and constant weightw. A closely related function isB(n, d,w), obtained from
A(n, d,w) by relaxing the weight constraint to only require that the weight of each codeword is at least
w. Codes satisfying a minimum weight constraint are calledheavy weight codesin [7], where they are
motivated by certain asynchronous communication problems. The other relaxation where codewords are
required to have weight at mostw defines the functionL(n, d,w). Complementation immediately shows
that L(n, d,w) = B(n, d, n − w). The functionL naturally occurs in the proof of the Elias bound [15,
Lemma 2.5.1]. It also occurs in the problem of list decoding when bounding the size of the list as a
function of the decoding radiusw. In this problem,L(n, d,w) represents the largest size of a list of
codewords at distance at mostw from the received vector, given a binary code of lengthn and minimum
distanced. This function is denoted byA′

2(n, d,w) in [14], where the Elias Lemma [15, Lemma 2.5.1]
is referred to as the Johnson bound, and is used to prove upperbounds on the list size.

In the present paper we first characterize the asymptotic exponent ofB(n, d,w) as a function of those
of A(n, d) andA(n, d,w) (Theorem 1). This result is based on the asymptotic unimodality of A(n, d,w),
which was conjectured in [7, Conjecture2]. Note that, the non asymptotic analogue of this result (posed
as a research problem in [16, p.674]) isfalseasA(15, 6, 6) < A(15, 6, 7) [19].

Second, we provide upper bounds onL(n, d,w) obtained by the semidefinite programming method.
From these bounds, we derive a non asymptotic improvement ofthe Elias/Johnson Lemma in a certain
range ofn, d, andw (Theorem 3) as well as numerical tables.

The material is organized as follows. Section II contains elementary bounds and some tables of
B(n, d,w) derived therefrom. Section III contains the asymptotic results. Section IV is dedicated to the
SDP method. Section V explores three heavy weight codes construction techniques. In Section VI we
provide some concluding remarks.

C. Bachoc is with the University of Bordeaux (France), V. Chandar is with MIT Lincoln Laboratory (USA), and G. Cohen , P. Solé, and
and A. Tchamkerten are with Telecom ParisTech (France). A. Tchamkerten is partly supported by an Excellence Chair grantfrom the French
National Research Agency (ANR, ACE project). Part of this work appeared at ISIT 2010.
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II. ELEMENTARY BOUNDS

In this section we establish a few basic relations betweenB(n, d,w) andA(n, d,w).
Note first thatB(n, d,w) is increasing inn, and decreasing ind and w. Further, by definition of

B(n, d,w), we have
B(n, d,w) ≥ A(n, d, j) for j ≥ w . (1)

By taking weight classes sufficiently far apart so that they do not overlap, we get

B(n, d,w) ≥

⌊n−w
d

⌋
∑

h=0

A(n, d,w+ hd) (2)

where⌊x⌋ denotes the largest integer not exceedingx.
Since any code is a disjoint union of constant weight codes, we have

B(n, d,w) ≤
n

∑

j=w

A(n, d, j) . (3)

Removing the weight constraint can only improve the size, hence

B(n, d,w) ≤ A(n, d) = B(n, d, 0) . (4)

The following result is analogous to the first half of the firstJohnson bound [6, (3a)]:1

Proposition 1: For w ≤ n we have

B(n, d,w) ≤
n

w
B(n− 1, d,w− 1) .

Proof: Let C be a code realizingB(n, d,w), and consider the matrix whose rows are its codewords.
Since the average weight of a column, which we denote byW , is given by the total number of1’s in the
matrix divided byn, we get

W ≥
wB(n, d,w)

n
. (5)

Now, say columnl has weight at leastW (one such column clearly exists). Pick the subcode ofC given by
the codewords ofC that have a1 in the l-th position. Modify this subcode by deleting thel-th component
of each codeword. If we denote byC ′ the resulting code, we conclude thatW ≤ |C ′| ≤ B(n−1, d,w−1).
Using this together with (5) yields the desired result.

Finally, the following Gilbert type lower bound is immediate:
Proposition 2: For all n ≥ 1, d ≤ n, andw ≤ n

B(n, d,w) ≥

∑n
i=w

(

n
i

)

∑d−1
i=0

(

n
i

) .

We conclude this section with tables derived from the preceding bounds. Some trivial entries are
B(n, d,w) = 1 wheneverd > min{2w, 2(n− w)}. We limitedn andd to the values whereA(n, d) and
A(n, d,w) are known exactly (for allw) in [5], [6]. Entries of the tables wherew > n are left blank.

1Whether or not the analogous of the second half of the first Johnson bound, i.e. [6, (3b)], holds as well remains an open question.
Specifically, it is unclear at this point whether the inequality

B(n, d,w) ≤
n

n− w
B(n− 1, d,w)

is valid.



3

TABLE I: B(n, 4,w)

n A(n, 4) w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8 w = 9
6 4 4 3-4 3 -4 1 1
7 8 8 7-8 7-8 3-5 1 1
8 16 16 15 -16 15-16 8-10 4 -6 1 1
9 20 20 19-20 19-20 18-20 12-18 4-6 1
10 40 40 39- 40 39-40 36-40 30-40 13-20 5-7 1

TABLE II: B(n, 6,w)

n A(n, 6) w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8 w = 9
9 4 4 4 3- 4 3- 4 3-4 1 1 1
10 6 6 6 6 6 5- 6 3- 6 1 1
11 12 12 12 11-12 11-12 11- 12 6- 9 3- 6 1
12 24 24 24 23- 24 23-24 23-24 12- 24 9-16 4- 7
13 32 32 32 31-32 31- 32 31- 32 26-32 18-32 13- 20

III. A SYMPTOTICS

For fixed δ, ω ∈ [0, 1], we denote byb(δ, ω) the exponential growth rate ofB(n, d,w) with respect to
n with d = d(n) = ⌊δn⌋ andw = w(n) = ⌊ωn⌋, i.e.

b(δ, ω) = lim sup
n→∞

(

1

n
logB(n, d(n),w(n))

)

where logarithms are taken to the base2 throughout the paper. The asymptotic exponents ofA(n, d,w)
andA(n, d) are defined similarly and are denoted bya(δ, ω) anda(δ), respectively.

Proposition 3: For anyδ ∈ [0, 1] andω ∈ [0, 1/2], we haveb(δ, ω) = a(δ).
Proof: The Elias-Bassalygo bound [18, equation (2.8)]

A(n, d)

2n
≤

A(n, d,w)
(

n
w

) (6)

together with the trivial inequalityA(n, d,w) ≤ A(n, d) shows that the asymptotic exponents ofA(n, d)
andA(n, d, n/2) are the same. The result then follows by combining the bounds(1) and (4) to obtain

A(n, d, n/2) ≤ B(n, d,w) ≤ A(n, d)

for w ≤ n/2.
The next result provides the main ingredient for proving that b(δ, ω) = a(δ, ω) whenω ∈ (1/2, 1].
Theorem 1:For fixedδ ∈ [0, 1], a(δ, ω) is unimodal inω with a maximum atω = 1/2.
Corollary 1: For anyδ ∈ [0, 1] andω ∈ (1/2, 1], we haveb(δ, ω) = a(δ, ω).

Proof of Corollary 1: We have

max
j∈{w,w+1,...,n}

A(n, d, j) ≤ B(n, d,w) ≤ (n− w+ 1) max
j∈{w,w+1,...,n}

A(n, d, j) (7)

by (1) for the first inequality and by (3) for the second inequality. Letting w = ⌊ωn⌋ and d = ⌊δn⌋ we
get

max
j∈{w,w+1,...,n}

A(n, d, j) = max
ρ∈[ω,1]

A(n, d, ⌊ρn⌋) , (8)
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TABLE III: B(n, 8,w)

n A(n, 8) w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8 w = 9
12 4 4 4 4 4 4 3- 4 3- 4 1
13 4 4 4 4 4 4 4 3-4 3-4
14 8 8 8 8 8 8 8 7- 8 4- 8
15 16 16 16 16 15-16 15-16 15-16 15-16 10- 16

and therefore from (7) we have
b(δ, ω) = sup

ω≤ρ≤1
a(δ, ρ)

for any δ ∈ [0, 1] andω ∈ [0, 1]. Assuming that1/2 < ω ≤ 1, the theorem then follows from Theorem 1.

Proof of Theorem 1::We establish thata(δ, ·) is non-decreasing over[0, 1/2]. This, by complemen-
tation, shows thata(δ, ·) is non-increasing over[1/2, 1], proving the claim.

Fix δ ∈ [0, 1] and letω1, ω2 be such that0 ≤ ω1 < ω2 ≤ 1/2. Throughout the proof we disregard
discrepancies due to the rounding of non-integer quantities as they play no role asymptotically. Thus, for
instance, we shall always treatω1n as if it is an integer.

We show that, from a given constant weight codeC1 with parameters(n, d = δn,w1 = ω1n) such that
|C1| = A(n, d,w1), it is possible to construct a constant weight codeC2 with parameters(n, d,w2 = ω2n),
of size at least equal to|C1| multiplied by 1/(n+ 1)2. This shows thata(δ, ω2) ≥ a(δ, ω1). The codeC2

is obtained fromC1 via translation.
For a given fixed codewordc ∈ C1, let us construct a lengthn binary vectort of weight

w = ωn =
ω2 − ω1

1− 2ω1

n

as follows. Consider first the positions oft that form the support ofc (w1 of them). Pickω1w of these
positions arbitrarily and assign them1’s. Similarly, assign1’s to an arbitrary selection of the(1 − ω1)w
positions that lie outside the support ofc. The remaining positions oft are filled with0’s. Note that, by
of our choice ofw, the vectorc′ = t⊕ c (component wise modulo2 sum oft andc) has weightw2.

Now observe that, because the selections made to constructt are arbitrary, for any givenc ∈ C1 there
are

(

ω1n

ω1ωn

)(

(1− ω1)n

(1− ω1)ωn

)

ways of choosingt for which c
′ has weightw2. Therefore, if we now pickt randomly and uniformly

among all possible sequences of weightw, the probability that this sequence translates a givenc ∈ C1 to
a sequence of weightw2 is given by

p =

(

ω1n
ω1ωn

)(

(1−ω1)n
(1−ω1)ωn

)

(

n
ωn

) .

This implies that a vectort that is randomly and uniformly chosen among all possible sequences of weight
w translates on average

pA(n, d,w1)

codewords fromC1 into codewords of weightw2 (and minimum distanced). Therefore,

A(n, d,w2) ≥ pA(n, d,w1) .
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Finally, using the following standard bounds on binomial coefficients2

1

(n+ 1)
2nh(k/n) ≤

(

n

k

)

≤ 2nh(k/n) k ≤ n ,

(see, e.g.,[11, Example 11.1.3, p.353]) shows that

p ≥
1

(n+ 1)2
.

Therefore we obtain
A(n, d,w2) ≥

1

(n + 1)2
A(n, d,w1) ,

from which the theorem follows.

IV. UPPER BOUNDS ONL(n, d,w) FROM SEMIDEFINITE PROGRAMMING

The semidefinite programming method is a far reaching generalization of Delsarte linear programming
method to obtain bounds for extremal problems in coding theory. In the present situation, we aim at
upper boundingL(n, d,w), which is the maximal number of elements of a code contained in the ball
B(w) centered at the all-zero word with radiusw of the binary Hamming spaceHn = {0, 1}n. We obtain
numerical bounds for small values of the parameters(n, d,w), which improve the elementary bounds for
B(n, d, n−w) = L(n, d,w) given in Section II. We also obtain a new bound, which is an explicit function
of (n, d,w), and improves on the Elias/Johnson bound for some values of these parameters.

The numerical bounds are obtained by a straightforward application of the SDP method. We refer
to [2] for a survey of this method and its applications to the binary Hamming space, including the
case of codes in balls. See also [3] for a survey on the more general subject of symmetry reduction of
semidefinite programs, with applications to coding theory.In a few words,L(n, d,w) can be interpreted
as the independence number of a certain graph with vertex setHn, thus is upper bounded by the so-called
Lovász theta numberϑ of this graph (or rather by its strengtheningϑ′), which is the optimal value of a
certain semidefinite program. This SDP has exponential size, but can be reduced to polynomial size by
the action of the symmetry group of the graph, which is the symmetry group ofB(w), i.e. the groupSn

of permutations of then coordinates.
Let us recall that a functionF : H2

n 7→ R is said to bepositive definite(or positive semidefinite) if
the matrix (F (x, y)) indexed byHn is positive semidefinite. This property is denotedF � 0. In the
symmetrization process discussed above, a description of the Sn-invariant positive definite functions on
Hn is required. This description is in fact provided in [20], under the name of block diagonalization of
the Terwilliger algebra of the Hamming space, and in the framework of group representations in [22].
Numerical upper bounds forL(n, d,w) obtained in this way are displayed in Tables IV, V, VI.

For the announced explicit bound, we use a slightly different (and self contained) formulation of the
SDP bound, which is given in Theorem 2. We shall recover the Elias/Johnson bound as a special case,
and obtain a new bound in Theorem 3. There, we follow the same line for Hamming balls as the one
followed for spherical caps in [4]. In the latter, the SDP method has lead to numerical bounds and also
to explicit bounds of degree up to two.

A. Improving the Johnson bound

We start with a more handy restatement of the SDP bound, whichis essentially the dual form of the
SDP defining the theta numberϑ′. The notations are as follows: the space of functions onHn is denoted
C(Hn) = {f : Hn 7→ C} and is endowed with the standard inner product〈f1, f2〉 =

1
2n

∑

x∈Hn
f1(x)f2(x).

We shall consider the decomposition of this space under the action of the full automorphism group

2h(p) denotes the binary entropy−p log p− (1− p) log(1− p).
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Aut(Hn) of the Hamming space and under the action of the symmetric group Sn. Since the irreducible
components are indeed real, we can restrict to the real valued functions.

The orbit of (x, y) ∈ H2
n under the action ofSn is determined uniquely by the values ofu := wt(x),

v := wt(y) and t := d(x, y). Thus the elements ofF ∈ C(H2
n) which areSn-invariant, i.e. which satisfy

F (gx, gy) = F (x, y) for all g ∈ Sn, (x, y) ∈ H2
n, are of the formF = F (u, v, t). With this notation,

F � 0 stands for:(x, y) 7→ F (wt(x),wt(y), d(x, y)) � 0.
Theorem 2:Let

Ω(n, d,w) := {(u, v, t) ∈ N
3 : 0 ≤ u, v ≤ w, d ≤ t ≤ n,

t ≤ u+ v, u+ v − t ≡ 0 mod 2}.

Let P (u, v, t) ∈ R[u, v, t] be a polynomial symmetric in(u, v). If P satisfies the following conditions:
1) P − f0 � 0 for somef0 > 0
2) P (u, v, t) ≤ 0 for all (u, v, t) ∈ Ω(n, d,w),
3) P (u, u, 0) ≤ 1 for all u ∈ {0, . . . ,w},

then
L(n, d,w) ≤

1

f0
.

Proof: For (x, y) ∈ H2
n, let F (x, y) := P (wt(x),wt(y), d(x, y)). We consider for a codeC ⊂ B(w)

with minimal distance at least equal tod, the sum

S :=
∑

(x,y)∈C2

F (x, y).

From property (1) ofP , we haveS ≥ f0|C|2. On the other hand,S = S1 + S2 whereS1 is the sum over
pairs (x, y) ∈ C2 with x = y andS2 is the sum over the non equal pairs(x, y) ∈ C2, x 6= y. Condition
2) onP insures thatS2 ≤ 0 and condition 3) onP thatS1 ≤ |C|. Altogether we obtain|C| ≤ 1/f0.

In order to apply the above theorem with specific polynomialsP (u, v, t), we need an explicit description
of those who are positive definite. Such a description is indeed obtained in [20], and in [22] in terms of
orthogonal polynomials (Hahn polynomials to be precise). As we shall see, for our purpose, we need a
slightly different expression.

A general method is explained in [1], [2], [3], involving group representation. The spaceC(Hn) can
be decomposed into the direct sum ofSn-irreducible subspaces. The sum of those subspaces which are
isomorphic to a given irreducible representation ofSn is called an isotypic subspace. We recall that certain
matricesEk(x, y) are associated to the isotypic componentsIk of C(Hn) under the action ofSn. Here
k ∈ [0..⌊n/2⌋], Ik corresponds to the irreducible representation[n−k, k] of the symmetric groupSn, and
has multiplicityn−2k+1. Moreover,Ek(x, y) is Sn-invariant thus can be expressed in terms of(u, v, t),
namelyEk(x, y) := Yk(u, v, t). Then we have the following characterization (we use the standard notation
〈A,B〉 = Trace(AB∗) for matrices):

Proposition 4: For all P ∈ R[u, v, t], symmetric in(u, v), P � 0 if and only if

P (u, v, t) =

⌊n/2⌋
∑

k=0

〈Fk, Ek(x, y)〉 (9)

where for k ∈ [0..⌊n/2⌋], Fk ∈ Rmk×mk , mk = n − 2k + 1, and Fk � 0. More precisely,Ek(x, y)
is computed from a decomposition ofIk into irreducible subspacesIk = Rk,1 ⊕ . . . Rk,mk

. If for all i,
(ek,i,1, . . . , ek,i,hk

) is an orthonormal basis ofRk,i in which the action ofSn is expressed by the same
matrices (i.e., not depending oni), then

Ek,i,j(x, y) =

hk
∑

s=1

ek,i,s(x)ek,j,s(y).
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The decomposition ofIk with irreducible submodules is not unique but changesEk(x, y) to AEk(x, y)A
∗

for an invertible matrixA, see [1, Lemma 4.2]. Note that such a change does not affect the above
characterization ofP being positive definite since〈Fk, AEk(x, y)A

∗〉 = 〈A∗FkA,Ek(x, y)〉 andFk � 0 if
and only ifA∗FkA � 0.

There are essentially two strategies to obtain such a decomposition. One can start from the decom-
position ofX = Hn into orbits under the action ofSn, namelyX = X0 ∪ · · · ∪ Xn, with Xk = {x ∈
Hn : wt(x) = k}, which leads to a decomposition of the functional spaceC(X) = C(X0) ⊥ · · · ⊥ C(Xn)
and then decompose eachSn-spaceC(Xk), following [12]. It is the method adopted in [22] where the
corresponding matricesEk(x, y) are obtained in terms of Hahn polynomials. Another approachstarts
from the decomposition ofC(Hn) under the fullAut(Hn), namelyC(Hn) = P0 ⊥ P1 ⊥ · · · ⊥ Pn where
Pk = ⊕wt(w)=kCχw, χw(x) = (−1)w·x, then decomposes eachPk under the action of the subgroupSn.
Because we want to work with polynomials in(u, v, t) of low degree, this last decomposition is better
suited. Indeed, ifP ∈ R[u, v, t], thenx 7→ F (x, y) := P (wt(x),wt(y), d(x, y)) belongs toP0 ⊥ · · · ⊥ Pk

if and only if the total degree ofP in the variables(u, t) is at most equal tok.
An isomorphism ofSn-modules betweenC(Xk) andPk is given byφk:

φk : C(Xk) → Pk

f 7→ φk(f) :=
∑

wt(w)=k

f(w)χw.

so we have exactly the same picture for the decomposition ofC(Hn) whenPk replacesC(Xk), namely
the irreducible decomposition ofPk under the action ofSn that is for0 ≤ k ≤ ⌊n

2
⌋, we have

Pk = H0,k ⊥ H1,k ⊥ · · · ⊥ Hk,k (10)

and the isotypic components ofC(Hn), i.e.

Ik = Hk,k ⊥ Hk,k+1 ⊥ · · · ⊥ Hk,n−k ≃ Hn−2k+1
k,k .

Sinceu = wt(x), as a function ofx, is invariant underSn, and is of degree1, the isotypic subspaceIk

can also be decomposed as:
Ik = ⊕n−2k

i=0 uiHk,k

Moreover, starting from an orthonormal basis(ek,s) of Hk,k, we obtain an orthonormal basis(uiek,s) of
uiHk,k in which the action ofSn is expressed by the same matrices, thus we can use it to compute the
corresponding matrixEk(x, y) the coefficients of which will be equal to:

Ek,i,j(x, y) = uivj
hk
∑

s=1

ek,s(x)ek,s(y).

In other words, it is enough to computeZk(x, y) :=
∑hk

s=1 ek,s(x)ek,s(y), which is the zonal function
associated toHk,k, in terms of(u, v, t). We obtain:

Proposition 5: We have the following expressions forZk, up to a positive multiplicative constant:
• Z0 = 1
• Z1 = −t + u+ v − 2uv/n
• Z2 = t2 + (2/(n − 2))(n − nu − nv + 2uv)t + (1/(n − 1)(n − 2))(4u2v2 − 4n(u2v + uv2) + (n +
2)(n− 1)(u2 + v2) + 2n(n + 1)uv − 2n(n− 1)(u+ v))

Proof: We take the following notations: ifwt(w) = 1, andwi = 1, we letχi := χw. Let










U := n− 2u =
∑n

i=1 χi(x),

V := n− 2v =
∑n

i=1 χi(y),

T := n− 2t =
∑n

i=1 χi(x)χi(y).
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Following [12], and the isomorphismφk defined above,Hk,k = ker(d) whered : Pk → Pk−1 is defined
by: dχw =

∑

χw′ where the sum is over the wordsw′ of weight wt(w′) = wt(w) − 1, and of support
contained in the support ofw. We setd = dx to specify the variable under consideration andd = dx+ dy
when applied to a functionF (x, y) onH2

n. Then,Zk is uniquely determined up to a multiplicative constant
by the properties:

1) Zk ∈ R[U, V, T ], is symmetric in(U, V ),
2) x 7→ Zk(x, y) belongs toPk,
3) dZk = 0.

According to the decomposition (10) with pairwise non isomorphic irreducible subspaces, the space of
functions satisfying conditions (1) and (2) below is of dimension1+k. In the variablex, U andT belong
to P1, and it is easy to check thatU2 − n, UT − V , T 2 − n, belong toP2. Thus a basis for the space of
functions satisfying (1) and (2) is given by:



















k = 0 : {1}

k = 1 : {UV, T}

k = 2 : {(U2 − n)(V 2 − n),

UV T − U2 − V 2 + n, T 2 − n}

The assertionZ0 = 1 is then trivial. In order to computeZ1 andZ2, we need formulas for the image
underd of the monomials in(U, V, T ). We compute the following:











dx1 = d1 = 0,

dxU = n thus d(UV ) = n(U + V ),

dxT = V thus dT = U + V.

With the above we obtain thatZ1 is proportional toT − 1
n
UV . Similarly we obtain:



















d(U2 + V 2) = 2(n− 1)(U + V ),

d(U2V 2) = 2(n− 1)(U2V + UV 2),

d(UV T ) = (U2V + UV 2) + (n− 2)(U + V )T,

d(T 2) = −2(U + V ) + 2(U + V )T.

andZ2 turns to be proportional to

T 2 − n−
2

n− 2
(UV T − U2 − V 2 + n)

+
1

(n− 1)(n− 2)
(U2 − n)(V 2 − n).

From the identityZk(x, x) =
∑

ek,s(x)
2, we have thatZk(U, U, 0) ≥ 0 which determines the sign of the

multiplicative factor. We obtain the announced formulas.
Remark:The method used to calculate the polynomialsZk for 0 ≤ k ≤ 2 outlines an algorithmic way to
computeZk for generalk. It would be more satisfactory to have an expression of thesepolynomials in
terms of orthogonal polynomials.

Now we apply Theorem 2 in order to obtain upper bounds forL(n, d,w). We start with a polynomial
P (u, v, t) of degree one and recover Elias bound: Let

P (u, v, t) :=Z1(u, v, t) + d− 2w(1− w/n)

=d− t + (u+ v − 2uv/n)− 2w(1− w/n).
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With f0 := d−2w(1−w/n), we haveP −f0 � 0. If w ≤ n/2, the maximum over[0,w]2 of u+v−2uv/n
equals2w(1 − w/n), and is attained foru = v = w. ThusP (u, v, t) ≤ 0 for (u, v, t) ∈ Ω(n, d,w), and
P (u, u, 0) ≤ d. Thus we obtain that ifw ≤ n/2 and d > 2w(1− w/n), then

L(n, d,w) ≤
d

d− 2w(1− w/n)
. (11)

It is unclear in general how to design a good polynomialP of degreek. A possible strategy is to start
from a polynomialL(t) optimizing the bound forA(n, d) and disturb it with a polynomialp(u, v), i.e.
takeP = L(t) + p(u, v). SinceL(t) � 0, condition (1) of Theorem 2, is equivalent toF0 − f0E0 � 0.
In order to fulfill condition (2), it is enough to havep(u, v) ≤ 0 for [u, v] ∈ [0,w]2 so one can take
p(u, v) = (u+v−2w)s(u, v) or p(u, v) = (u(u−w)+v(v−w))s(u, v) wheres(u, v) is a sum of squares.
For the degree1, if one follows this line and takesP = (d− t) + λ(u + v − 2w) with λ > 0, one finds
that the optimal choice ofλ is λ = 1 − 2w/n and obtains again the Elias bound (11). For the degree2,
we consider accordingly a polynomialP of the form

P = (t− d)(t− n) + λ(u(u− w) + v(v − w)),

with λ ≥ 0. The matrixF0(λ) associated toP is equal to

F0(λ) =





nd −n− d− λw 1 + λ
4n/(n− 1) + 2d/n −4/(n− 1)

4/(n(n− 1))



 .

Let f0(λ) := det(F0(λ). The lower left2 × 2 corner ofF0(λ) is positive semidefinite so the matrix
F0(λ)− f0E0 is positive semidefinite if and only if its determinant is nonnegative, which amounts to the
condition

f0 ≤
n2(n− 1)

8d
f0(λ).

On the other hand
P (u, u, 0) = dn+ 2λu(u− w) ≤ dn

so we obtain the bound8d2/((n−1)f0(λ)). It remains to find the maximum off0(λ), which is a polynomial
of degree2 in λ:

n(n− 1)

2
f0(λ) = −((n− 1)d+ 2(n− w)2)λ2

+d(2n+ 2− 4w)λ+ d(2d− (n− 1)).

The maximum is attained forλ0 = d(n+ 1− 2w)/((n− 1)d+ 2(n− w)2), λ0 ≥ 0 if w ≤ (n+ 1)/2, and
is equal to

4d
(

d2 + 2(n−w)(n+1−2w)
n−1

d− (n− w)2
)

n((n− 1)d+ 2(n− w)2)
.

This last value is positive if and only if

d >
(n− w)
(n− 1)

(
√

2(n− w)(n− 1)− (n + 1− w)
)

.

Altogether we obtain:
Theorem 3:Assumew ≤ (n+ 1)/2 and

d >
(n− w)
(n− 1)

(
√

2(n− w)(n− 1)− (n + 1− w)
)

.
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TABLE IV: d = 4

n\w 4 5 6 7 8 9 10 11 12 13 A(n, 4) ≤
10 31 37 40
11 42∗ 67 72
12 56∗ 100 138 144
13 72∗ 144∗ 221 248 256
14 92∗ 201∗ 340 411 486 503 512
15 114∗ 274∗ 508 750 849 989 1002 1024
16 141

∗ 365∗ 736 1184 1571 1767 1984 2012 2048
17 171 477 1039 1813 2602 2981 3276
18 205 613 1437 2703 4183 5041 6007 6324 6552
19 243 776 1947 3933 6541 9174 10532 12249 12641 13104
20 286 970 2594 5600 9976 14966 19390 21965 24834 25388 26168

Then

L(n, d,w) ≤
2d

(

d+ 2(n−w)2

n−1

)

d2 + 2(n−w)(n+1−2w)
n−1

d− (n− w)2
.

Example:with the above we obtainL(n, n/2, n/2) ≤ 2n − 1. It is an almost sharp bound in view of
A(n, n/2, n/2) = 2n − 2 for values ofn for which an Hadamard matrix of ordern exists [6, Theorem
10]. Note that adding the all zero codeword to such an Hadamard code yieldsL(n, n/2, n/2) = 2n− 1.
Example:For d = 2w(1 − w/n) the degree1 bound does not apply. The degree2 gives a bound if
w > n/2−

√

n2/(2(n+ 1)) which equals

2w(n2 − w)
n2

2
− (n+ 1)

(

w− n
2

)2 .

B. Tables

The tables IV, V and VI give upper bounds ofL(n, d,w) employing the SDP method. Theyalways
improve on the bound (4) (Cf right most column) and sometimeson (3) when the latter is stronger than
the former. This situation is indicated by a star exponent.

In some cases they allow us to deriveexact values ofL(n, d,w) by using the expurgation technique
of the next section. These cases are indicated by bold face numbers. To do that we collect the weight
enumerators of some special binary codes in the notation of [16].

The weight enumerator of theRM(2, 4) dual of theRM(1, 4) is computed by MacWilliams transform
[16, Ch. 5, Th. 1] as

x16 + y16 + 140(x12y4 + x4y12) + 448(x10y6 + x6y10)

+870x8y8.

This shows by expurgation that
L(16, 4, 4) = 141.

The weight enumerator of the Nordstrom Robinson code is

x16 + y16 + 112(x10y6 + x6y10) + 30x8y8.

This shows by expurgation
L(16, 6, 6) = 113, L(16, 6, 10) = 255.

The weight enumerator of the extended Golay code is

x24 + y24 + 759(x16y8 + x8y16) + 2576x12y12.
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TABLE V: d = 6

n\w 6 7 8 9 10 11 A(n, 6) ≤
14 51 56 63 64
15 74 96 113 127 128
16 113 157 207 228 255 255 256
17 159 250 318 340
18 205 409 481 563 677 680
19 259 554 752 913 1107 1280
20 324 739 1200 1519 1835 2096 2372

TABLE VI: d = 8

n\w 8 9 10 11 12 13 14 15 16 A(n, 8) ≤
18 67 72
19 100 123 137 142
20 154 222 253 256
21 245 359 465 512
22 349 598 759 870 967 990 1023 1024
23 507 831 1112 1541 1800 1843 1936 2047 2048 2048
24 760 1161 1641 2419 3336 3439 3711 3933 4095 4096

Shortening we obtained the dual of the perfect Golay code.

x23 + 506x15y8 + 1288x11y12 + 253x7y16.

This shows by expurgation

L(24, 8, 8) = 760, L(24, 8, 12) = 3336, L(24, 8, 16) = 4095,

and
L(23, 8, 8) = 507, L(23, 8, 16) = 2048.

V. CONSTRUCTIONS

Three well studied code construction techniques are expurgation, translation, and concatenation. In the
context of heavy weight codes, the first is perhaps mostly of theoretical interest as a good decoding
algorithm needs not, in general, provide a good decoding algorithm for a subcode. In contrast, the other
two techniques also provide practical decoding algorithms.

A. Expurgation

The following result shows that, forw ≤ d, B(n, d,w) andA(n, d) are essentially the same (recall that
B(n, d,w) ≤ A(n, d)).

Proposition 6: For 1 ≤ w ≤ d ≤ n, we have

B(n, d,w) ≥ A(n, d)− 1.

Proof: Let C be a code achievingA(n, d). By first translating this code so that to include the all-zero
codeword, then by removing the all-zero codeword, we get a new code of sizeA(n, d)−1, with minimum
distance and weight both at least equal tod. The proposition follows.

Theorem 4:For all large enough and evenn, all w ≤ n/2, and alld ≤ nh−1(1/2),3 we have

B(n, d,w) ≥ 2(n−2)/2.

3h−1(·) denotes the inverse function of the binary entropy over the range[0, 1/2].
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Proof: Pick a self dual code above the Gilbert bound [17]. This code being binary self-dual, contains
the all-one codeword, and is therefore self-complementary. Hence, half of its codewords at least have
weight at leastn/2.

B. Translation

We assume that the reader has some familiarity with the covering radius concept [10]. Recall that the
covering radius of a code is the smallest integert such that Hamming balls of radiust centered on the
codewords cover the ambient space. DefineR(n, d) as the largest covering radius of a code achieving
A(n, d). Since the covering radius exceeds⌊(d − 1)/2⌋, we getR(n, d) ≥ ⌊(d − 1)/2⌋ with equality iff
the code that achievesR(n, d) is perfect. A sharper bound onR(n, d) for non perfect codes is obtained
as a direct consequence of the sphere covering bound

2n ≤ A(n, d)

R(n,d)
∑

i=0

(

n

i

)

.

The motivation for taking “largest” rather than “smallest”in the definition ofR(n, d) is to have the
best upper bound onw in the next Proposition, which sharpens, in certain cases, Proposition 6.

Proposition 7: Fix two integersn ≥ 1 andd ≥ 1. If w ≤ R(n, d) then

B(n, d,w) = A(n, d).

Proof: Pick a codeC realizingA(n, d). There exists a translate ofC of weight w as long asw is
less than or equal to the covering radius ofC. This givesB(n, d,w) ≥ A(n, d). The reverse inequality is
(4).

C. Concatenation

Consider an heavy weight code of lengthn, sizeq, minimum weightw, and distanced. If we concatenate
this code with a code of lengthN , sizeM , and minimum distanceD overGF (q), we get a binary code
of lengthNn, weight at leastwN , sizeM and minimum distancedD. Hence, providedB(n, d,w) ≥ q,
we see that

B(Nn, dD,wN) ≥ Aq(N,D) .

whereAq(N,D) denotes the largest size of a code of lengthN and minimum distanceD, overGF (q).
Efficient decoding algorithms for concatenated codes can befound in [13].

VI. CONCLUDING REMARKS

We investigatedB(n, d,w), defined as the largest number of codewords of weight at leastw and
minimum distanced. The asymptotic exponent ofB(n, d,w) is reduced to those ofA(n, d) or A(n, d,w),
depending onw. For finite values of the parameters, we obtained bounds onB(n, d,w) partly using the
SDP method. As future research, it might be possible to find new exact values ofB(n, d,w) by special
constructions. In this direction, one possibility is to investigateR(n, d) defined in Section V.
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