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EQUIVARIANT MAPS BETWEEN CALOGERO-MOSER SPACES

GEORGE WILSON

Abstract. We add a last refinement to the results of [BW1] and [BW2] re-
lating ideal classes of the Weyl algebra to the Calogero-Moser varieties: we
show that the bijection constructed in those papers is uniquely determined by
its equivariance with respect to the automorphism group of the Weyl algebra.

1. Introduction and statement of results

Let A be the Weyl algebra C〈x, y〉/(xy − yx − 1) , and let R be the space
of noncyclic right ideal classes of A (that is, isomorphism classes of noncyclic
finitely generated rank 1 torsion-free right A-modules). Let C be the disjoint
union of the Calogero-Moser spaces Cn (n ≥ 1 ): we recall that Cn is the space
of all simultaneous conjugacy classes of pairs of n× n matrices (X,Y ) such that
[X,Y ] + I has rank 1 . It is a smooth irreducible affine variety of dimension 2n
(see [W]). For simplicity, in what follows we shall use the same notation (X,Y ) for
a pair of matrices and for the corresponding point of Cn . Let G be the group of
C-automorphisms of A , and let Γ and Γ′ be the isotropy groups of the generators
y and x of A . Thus Γ consists of all automorphisms of the form

Φp(x) = x− p(y) , Φp(y) = y

where p is a polynomial; and similarly Γ′ consists of all automorphisms of the
form

Ψq(x) = x , Ψq(y) = y − q(x)

where q is a polynomial. According to Dixmier (see [D]), G is generated by the
subgroups Γ and Γ′ . There is an obvious action of G on R ; we let G act on C
by the formulae

(1.1) Φp(X,Y ) = (X + p(Y ), Y ) , Ψq(X,Y ) = (X, Y + q(X)) .

According to [BW1] this G-action is transitive on each space Cn . The main result
of [BW1] was the following.

Theorem 1.1. There is a bijection between the spaces R and C which is equi-
variant with respect to the above actions of G .

This bijection constructed in [BW1] was obtained in a quite different way in
[BW2]. The proof in [BW2] that the two constructions agree used the fact that
equivariance was known in both cases; thus to prove that the bijections coincide,
it was enough to check one point in each G-orbit, that is, in each space Cn . The
result to be proved in the present note is that even this (not difficult) check was
unnecessary.

Theorem 1.2. There is only one G-equivariant bijection between the spaces R
and C .
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Clearly, it is equivalent to show that there is no nontrivial G-equivariant bijection
from C to itself. We shall show a little more, namely, that (apart from the identity)
there is no G-equivariant map (for short: G-map) at all from C to itself. Since
a G-map must take each orbit onto another orbit, that amounts to the following
assertion.

Theorem 1.3. (i) For any n ≥ 1 , let f : Cn → Cn be a G-map. Then f is the
identity.
(ii) For n 6= m there is no G-map from Cn to Cm .

Since Cn and the action of G on it are defined by simple formulae involving
matrices, the proof of Theorem 1.3 is just an exercise in linear algebra. Quite
possibly there is a simpler solution to the exercise than the one given below.

The first part of Theorem 1.3 is equivalent to the statement that the isotropy
group of any point of C (or R ) coincides with its normalizer in G (see section 6
below); in particular, these isotropy groups are not normal in G , confirming a
suspicion of Stafford (see [St], p. 636). Stafford’s conjecture seems to have been the
motivation for Kouakou’s work [K], which contains a result equivalent to ours. The
proof in [K] looks quite different from the present one, because Kouakou does not
use the spaces Cn , but rather the alternative description of R (due to Cannings
and Holland, see [CH]) as the adelic Grassmannian of [W]. I have not entirely
succeeded in following the details of [K]; in any case, it seems worthwhile to make
available the independent verification of the result offered here.

Remark. We have excluded from R the cyclic ideal class, corresponding to the
Calogero-Moser space C0 (which is a point). The reason is very trivial: since there
is always a map from any space to a point, part (ii) of Theorem 1.3 would be false
if we included C0 . However, Theorem 1.2 would still be true.

2. Proof of Theorem 1.3 in the case n < m

If we accept (cf. [BW1], section 11) that the Cn are homogeneous spaces for the
(infinite-dimensional) algebraic group G , then Theorem 1.3 becomes obvious in the
case n < m . Indeed, any G-map from Cn to Cm would have to be a surjective
map of algebraic varieties, which is clearly impossible if n < m , because then Cm
has greater dimension (2m) than Cn . For readers who are not convinced by this
argument, we offer a more elementary one, based on the following lemma.

Lemma 2.1. Let f : Cn → Cm be a G-map. Suppose that f(X,Y ) = (P,Q) , and
that P is diagonalizable. Then every eigenvalue of P is an eigenvalue of X .

Proof. Let χ be the minimum polynomial of X : then in Cm we have

(P,Q) = f(X,Y ) = f(X,Y + χ(X)) = (P,Q + χ(P ))

(where the last step used the fact that f has to commute with the action of
Ψχ ∈ G ). That means that there is an invertible matrix A such that

APA−1 = P and AQA−1 = Q+ χ(P ) .

We may assume that P = diag(p1, . . . , pm) is diagonal. Then since the pi are
distinct (see [W], Proposition 1.10), A is diagonal too, so taking the diagonal
entries in the last equation gives qii = qii+χ(pi) , whence χ(pi) = 0 for all i . Thus
χ(P ) = 0 , so the minimum polynomial of P divides χ . The lemma follows. �



EQUIVARIANT MAPS BETWEEN CALOGERO-MOSER SPACES 3

Corollary 2.2. If n < m there is no G-map f : Cn → Cm .

Proof. Choose (P,Q) ∈ Cm with P diagonalizable. Since Cm is just one G-orbit,
f is surjective, so we can choose (X,Y ) ∈ Cn with f(X,Y ) = (P,Q) . But then
Lemma 2.1 says that X is an n×n matrix with more than n distinct eigenvalues,
which is impossible. �

3. The base-point

A useful subgroup of G is the group R of scaling transformations, defined by

Rλ(x) = λx , Rλ(y) = λ−1y (λ ∈ C
×) .

It acts on Cn in a similar way:

(3.1) Rλ(X,Y ) = (λ−1X, λY ) .

Lemma 3.1. Suppose that the conjugacy class (X,Y ) ∈ Cn is fixed by the group
R . Then X and Y are both nilpotent.

Proof. Let µ be an eigenvalue of (say) Y . Then for any λ ∈ C× , λµ is an eigen-
value of λY , which is (by hypothesis) conjugate to Y . Thus λµ is an eigenvalue
of Y for every λ ∈ C× , which is impossible unless µ = 0 . Hence all eigenvalues
of Y must be 0 , that is, Y must be nilpotent. The same argument applies to
X . �

The converse to Lemma 3.1 is also true, but we shall use that fact only for the
pair (X0, Y0) given by

(3.2) X0 =

















0 0 0 . . . 0
1 0 0 . . . 0

0 2 0
. . .

...
...

...
. . .

. . . 0
0 0 . . . n− 1 0

















, Y0 =

















0 1 0 . . . 0
0 0 1 . . . 0

0 0 0
. . .

...
...

...
. . .

. . . 1
0 0 . . . 0 0

















.

We shall regard (X0, Y0) as the base-point in Cn . In the rather trivial case n = 1 ,
we have C1 = C2, and we interpret (X0, Y0) as (0, 0) .

Lemma 3.2. The (conjugacy class of) the pair (X0, Y0) ∈ Cn is fixed by the group
R .

Proof. For λ ∈ C× , let d(λ) be the diagonal matrix

d(λ) := diag(λ, λ2, . . . , λn) .

Then d(λ)−1Xd(λ) = λ−1X and d(λ)−1Y d(λ) = λY . �

Corollary 3.3. Let f : Cn → Cm be a G-map, and let f(X0, Y0) = (P,Q) . Then
P and Q are nilpotent.

Proof. This follows at once from Lemmas 3.1 and 3.2, since a G-map must respect
the fixed point set of any subgroup of G . �
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4. Proof of Theorem 1.3 in the case n > m

The remaining parts of the proof use the following trivial fact.

Lemma 4.1. Let (X,Y ) ∈ Cn , let p be any polynomial, and let χ be divisible by
the minimum polynomial of X + p(Y ) . Then the automorphism Φ−pΨχΦp fixes
(X,Y ) .

Proof. Since χ(X + p(Y )) = 0 we have

Φ−pΨχΦp(X, Y ) = Φ−pΨχ(X + p(Y ), Y )

= Φ−p(X + p(Y ), Y )

= (X, Y ) ,

as claimed. �

Proposition 4.2. If n > m > 0 there is no G-map f : Cn → Cm .

Proof. We apply Lemma 4.1 to the base-point (X0, Y0) ∈ Cn , with p(t) = tn−1 .
The minimum (= characteristic) polynomial of X0 + Y n−1

0 is

(4.1) χ(t) := det(tI −X0 − Y n−1
0 ) = tn − (n− 1)! .

Now suppose that f : Cn → Cm is a G-map, and let f(X0, Y0) = (P,Q) : according
to Corollary 3.3, P and Q are nilpotent. They are of size less than n , so we have
Pn−1 = Qn−1 = 0 . Thus

Φ−pΨχΦp(P, Q) = Φ−pΨχ(P +Qn−1, Q)

= Φ−pΨχ(P, Q)

= Φ−p(P, Q+ Pn − (n− 1)!I)

= Φ−p(P, Q− (n− 1)!I)

= (something, Q− (n− 1)!I) .

Now, Q− (n− 1)!I is not conjugate to Q (because their eigenvalues are different),
hence Φ−pΨχΦp does not fix (P,Q) . So by Lemma 4.1, the isotropy group of
(X0, Y0) is not contained in the isotropy group of f(X0, Y0) . This contradiction
shows that f does not exist. �

5. Proof of Theorem 1.3 in the case n = m

It remains to show that there is no nontrivial G-map from Cn to itself. Note
that because Cn is a single orbit, any such map must be bijective, and must map
each point of Cn to a point with the same isotropy group. In the case n = 1
the result follows (for example) from Lemma 2.1, so from now on we shall assume
that n ≥ 2 . Let f : Cn → Cn be a G-map, and let f(X0, Y0) = (P,Q) . Again,
Corollary 3.3 says that P and Q are nilpotent. We aim to show that (P,Q) can
only be (X0, Y0) , whence f is the identity. We remark first that if Qn−1 = 0 ,
then the calculation in the proof of Proposition 4.2 still gives a contradiction; thus
the Jordan form of Q consists of just one block, so we may assume that Q = Y0 .
Now, it is not hard to classify all the points (X, Y0) ∈ Cn with X nilpotent (see
[W], p.26 for the elementary argument): there are exactly n of them, and they
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all have the form (X(a), Y0) , where a := (a1, . . . , an−1) and X(a) denotes the
subdiagonal matrix

(5.1) X(a) =

















0 0 0 . . . 0
a1 0 0 . . . 0

0 a2 0
. . .

...
...

...
. . .

. . . 0
0 0 . . . an−1 0

















.

The possible vectors a that give points of Cn are

(5.2) a = (1, 2, . . . , r − 1;−(n− r), . . . ,−2,−1) for 1 ≤ r ≤ n

(so r = n gives X0 ). Thus so far we have shown that f(X0, Y0) must be one
of these points (X(a), Y0) . To finish the argument, we need the following easy
calculations of characteristic polynomials (the first generalizes (4.1)):

(5.3) det(tI −X(a)− Y n−1
0 ) = tn −

n−1
∏

1

ai ;

(5.4) det(tI −X(a)− Y n−2
0 ) = tn − (

n−2
∏

1

ai +
n−1
∏

2

ai) t ,

where the last formula holds only for n ≥ 3 . If a is one of the vectors (5.2) with
1 < r < n , then the right hand side of (5.4) is just tn ; that is, X(a) + Y n−2

0 is

nilpotent. In fact it is easy to check that the pair (X(a) + Y n−2
0 , Y0) is conjugate

to (X(a), Y0) ; that is, the map (X,Y ) 7→ (X + Y n−2, Y ) fixes (X(a), Y0) . It
does not fix (X0, Y0) , so f(X0, Y0) cannot be any of these points (X(a), Y0) .
It remains only to see that f cannot map (X0, Y0) to the pair corresponding to
r = 1 in (5.2): let us call it (X1, Y0) .

If n is even we use (5.3): the characteristic polynomial of X0+Y n−1
0 is χ(t) :=

tn − (n− 1)! while the characteristic polynomial of X1 + Y n−1
0 is tn + (n− 1)! , so

that χ(X1 + Y n−1
0 ) = −2(n− 1)!I . We now apply Lemma 4.1 with p(t) = tn−1 .

According to that lemma, the map Φ−pΨχΦp fixes (X0, Y0) ; on the other hand

Φ−pΨχΦp(X1, Y0) = Φ−pΨχ(X1 + Y n−1
0 , Y0)

= Φ−p(X1 + Y n−1
0 , Y0 − 2(n− 1)!I)

= (something, Y0 − 2(n− 1)!I) .

Since Y0 − 2(n− 1)!I is not conjugate to Y0 , this shows that Φ−pΨχΦp does not
fix (X1, Y0) . Thus in this case f(X0, Y0) cannot be equal to (X1, Y0)

Finally, if n is odd, we have a similar calculation using (5.4). Setting α :=
(n− 1)! + (n− 2)! , the characteristic polynomial of X0 + Y n−2

0 is χ(t) := tn − αt
while the characteristic polynomial of X1+Y n−2

0 is tn+αt , so that χ(X1+Y n−2
0 ) =

−2α(X1+Y n−2
0 ) . We now apply Lemma 4.1 with p(t) = tn−2 . The map Φ−pΨχΦp

fixes (X0, Y0) ; on the other hand

Φ−pΨχΦp(X1, Y0) = Φ−pΨχ(X1 + Y n−2
0 , Y0)

= Φ−p(X1 + Y n−2
0 , Y0 − 2α(X1 + Y n−2

0 ))

= (something, Y0 − 2α(X1 + Y n−2
0 )) .
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The matrix Y0 − 2α(X1 + Y n−2
0 ) is not nilpotent, for example because its square

does not have trace zero. Hence Φ−pΨχΦp does not fix (X1, Y0) , and the proof is
finished.

6. Other formulations of Theorem 1.3

The remarks in this section are at the level of “groups acting on sets”: that is,
we may as well suppose that R denotes any set acted on by a group G . We are
interested in the condition

(6.1) there is no nontrivial G-map f : R → R

(“nontrivial” means “not the identity map”). As we observed above, that is equiv-
alent to the two conditions

(6.2a) each G-orbit in R satisfies (6.1);

(6.2b) if O1 and O2 are distinct orbits, there is no G-map from O1 to O2 .

Let us reformulate these conditions in terms of the isotropy groups GM of the
points M ∈ R . If H and K are subgroups of G , then any G-map from G/H to
G/K to must have the form ϕ(gH) = g(xK) for some x ∈ G . This is well-defined
if and only if we have

x−1Hx ⊆ K .

In the case H = K , that says that x ∈ NG(H) , where NG denotes the normalizer
in G : it follows that the G-maps from G/H to itself correspond 1–1 to the points
of NG(H)/H . Thus the conditions (6.2) are equivalent to

(6.3a) for any M ∈ R , we have GM = NG(GM ) ;

(6.3b) if M and N are on different orbits, no conjugate of GM is in GN .

Finally, we note that the conditions (6.3) are equivalent to the single assertion

(6.4) if GM ⊆ GN , then M = N .

Indeed, suppose (6.4) holds, and let x ∈ NG(GM ) , that is, xGMx−1 ⊆ GM , or
GxM ⊆ GM . By (6.4), we then have xM = M , that is, x ∈ GM . Thus (6.4) ⇒
(6.3a). Now, if (6.3b) is false, we have xGMx−1 ⊆ GN , that is, GxM ⊆ GN , for
some x ∈ G and some M,N on different orbits. But since they are on different
orbits, xM 6= N , so (6.4) is false. Thus (6.4) ⇒ (6.3b).

Conversely, suppose (6.3) holds, and let M,N be such that GM ⊆ GN . By
(6.3b), M and N are on the same orbit, so M = xN for some x ∈ G ; hence
GM = xGNx−1 ⊆ GN . Thus x ∈ NG(GN ) , so by (6.3a), x ∈ GN : hence M = N ,
as desired.

It is in the form (6.4) that our result is stated in [K].
Acknowledgments. I thank M. K. Kouakou for kindly allowing me see his unpublished work [K].
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