EQUIVARIANT MAPS BETWEEN CALOGERO-MOSER SPACES

GEORGE WILSON

ABSTRACT. We add a last refinement to the results of [BW1] and [BW2] relating ideal classes of the Weyl algebra to the Calogero-Moser varieties: we show that the bijection constructed in those papers is *uniquely determined* by its equivariance with respect to the automorphism group of the Weyl algebra.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let A be the Weyl algebra $\mathbb{C}\langle x, y \rangle/(xy - yx - 1)$, and let \mathcal{R} be the space of noncyclic right ideal classes of A (that is, isomorphism classes of noncyclic finitely generated rank 1 torsion-free right A-modules). Let \mathcal{C} be the disjoint union of the *Calogero-Moser spaces* \mathcal{C}_n $(n \geq 1)$: we recall that \mathcal{C}_n is the space of all simultaneous conjugacy classes of pairs of $n \times n$ matrices (X,Y) such that [X,Y] + I has rank 1. It is a smooth irreducible affine variety of dimension 2n(see [W]). For simplicity, in what follows we shall use the same notation (X,Y) for a pair of matrices and for the corresponding point of \mathcal{C}_n . Let G be the group of \mathbb{C} -automorphisms of A, and let Γ and Γ' be the isotropy groups of the generators y and x of A. Thus Γ consists of all automorphisms of the form

$$\Phi_p(x) = x - p(y), \quad \Phi_p(y) = y$$

where p is a polynomial; and similarly Γ' consists of all automorphisms of the form

$$\Psi_q(x) = x, \quad \Psi_q(y) = y - q(x)$$

where q is a polynomial. According to Dixmier (see [D]), G is generated by the subgroups Γ and Γ' . There is an obvious action of G on \mathcal{R} ; we let G act on \mathcal{C} by the formulae

(1.1)
$$\Phi_p(X,Y) = (X + p(Y), Y), \quad \Psi_q(X,Y) = (X, Y + q(X))$$

According to [BW1] this *G*-action is *transitive* on each space C_n . The main result of [BW1] was the following.

Theorem 1.1. There is a bijection between the spaces \mathcal{R} and \mathcal{C} which is equivariant with respect to the above actions of G.

This bijection constructed in [BW1] was obtained in a quite different way in [BW2]. The proof in [BW2] that the two constructions agree used the fact that equivariance was known in both cases; thus to prove that the bijections coincide, it was enough to check one point in each G-orbit, that is, in each space C_n . The result to be proved in the present note is that even this (not difficult) check was unnecessary.

Theorem 1.2. There is only one G-equivariant bijection between the spaces \mathcal{R} and \mathcal{C} .

GEORGE WILSON

Clearly, it is equivalent to show that there is no nontrivial G-equivariant bijection from \mathcal{C} to itself. We shall show a little more, namely, that (apart from the identity) there is no G-equivariant map (for short: G-map) at all from \mathcal{C} to itself. Since a G-map must take each orbit onto another orbit, that amounts to the following assertion.

Theorem 1.3. (i) For any $n \ge 1$, let $f : \mathcal{C}_n \to \mathcal{C}_n$ be a *G*-map. Then f is the identity.

(ii) For $n \neq m$ there is no *G*-map from C_n to C_m .

Since C_n and the action of G on it are defined by simple formulae involving matrices, the proof of Theorem 1.3 is just an exercise in linear algebra. Quite possibly there is a simpler solution to the exercise than the one given below.

The first part of Theorem 1.3 is equivalent to the statement that the isotropy group of any point of \mathcal{C} (or \mathcal{R}) coincides with its normalizer in G (see section 6 below); in particular, these isotropy groups are not normal in G, confirming a suspicion of Stafford (see [St], p. 636). Stafford's conjecture seems to have been the motivation for Kouakou's work [K], which contains a result equivalent to ours. The proof in [K] looks quite different from the present one, because Kouakou does not use the spaces \mathcal{C}_n , but rather the alternative description of \mathcal{R} (due to Cannings and Holland, see [CH]) as the adelic Grassmannian of [W]. I have not entirely succeeded in following the details of [K]; in any case, it seems worthwhile to make available the independent verification of the result offered here.

Remark. We have excluded from \mathcal{R} the cyclic ideal class, corresponding to the Calogero-Moser space \mathcal{C}_0 (which is a point). The reason is very trivial: since there is always a map from any space to a point, part (ii) of Theorem 1.3 would be false if we included \mathcal{C}_0 . However, Theorem 1.2 would still be true.

2. Proof of Theorem 1.3 in the case n < m

If we accept (cf. [BW1], section 11) that the C_n are homogeneous spaces for the (infinite-dimensional) algebraic group G, then Theorem 1.3 becomes obvious in the case n < m. Indeed, any G-map from C_n to C_m would have to be a surjective map of algebraic varieties, which is clearly impossible if n < m, because then C_m has greater dimension (2m) than C_n . For readers who are not convinced by this argument, we offer a more elementary one, based on the following lemma.

Lemma 2.1. Let $f : C_n \to C_m$ be a *G*-map. Suppose that f(X, Y) = (P, Q), and that *P* is diagonalizable. Then every eigenvalue of *P* is an eigenvalue of *X*.

Proof. Let χ be the minimum polynomial of X: then in \mathcal{C}_m we have

$$(P,Q) = f(X,Y) = f(X,Y + \chi(X)) = (P,Q + \chi(P))$$

(where the last step used the fact that f has to commute with the action of $\Psi_{\chi} \in G$). That means that there is an invertible matrix A such that

$$APA^{-1} = P$$
 and $AQA^{-1} = Q + \chi(P)$.

We may assume that $P = \text{diag}(p_1, \ldots, p_m)$ is diagonal. Then since the p_i are distinct (see [W], Proposition 1.10), A is diagonal too, so taking the diagonal entries in the last equation gives $q_{ii} = q_{ii} + \chi(p_i)$, whence $\chi(p_i) = 0$ for all i. Thus $\chi(P) = 0$, so the minimum polynomial of P divides χ . The lemma follows. \Box

 $\mathbf{2}$

Corollary 2.2. If n < m there is no G-map $f : \mathcal{C}_n \to \mathcal{C}_m$.

Proof. Choose $(P,Q) \in \mathcal{C}_m$ with P diagonalizable. Since \mathcal{C}_m is just one G-orbit, f is surjective, so we can choose $(X,Y) \in \mathcal{C}_n$ with f(X,Y) = (P,Q). But then Lemma 2.1 says that X is an $n \times n$ matrix with more than n distinct eigenvalues, which is impossible.

3. The base-point

A useful subgroup of G is the group R of scaling transformations, defined by

$$R_{\lambda}(x) = \lambda x, \ R_{\lambda}(y) = \lambda^{-1} y \quad (\lambda \in \mathbb{C}^{\times}).$$

It acts on C_n in a similar way:

(3.1)
$$R_{\lambda}(X,Y) = (\lambda^{-1}X,\lambda Y)$$

Lemma 3.1. Suppose that the conjugacy class $(X, Y) \in C_n$ is fixed by the group R. Then X and Y are both nilpotent.

Proof. Let μ be an eigenvalue of (say) Y. Then for any $\lambda \in \mathbb{C}^{\times}$, $\lambda \mu$ is an eigenvalue of λY , which is (by hypothesis) conjugate to Y. Thus $\lambda \mu$ is an eigenvalue of Y for every $\lambda \in \mathbb{C}^{\times}$, which is impossible unless $\mu = 0$. Hence all eigenvalues of Y must be 0, that is, Y must be nilpotent. The same argument applies to X.

The converse to Lemma 3.1 is also true, but we shall use that fact only for the pair (X_0, Y_0) given by

$$(3.2) X_0 = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 2 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & n-1 & 0 \end{pmatrix}, Y_0 = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

We shall regard (X_0, Y_0) as the *base-point* in C_n . In the rather trivial case n = 1, we have $C_1 = \mathbb{C}^2$, and we interpret (X_0, Y_0) as (0, 0).

Lemma 3.2. The (conjugacy class of) the pair $(X_0, Y_0) \in C_n$ is fixed by the group R.

Proof. For $\lambda \in \mathbb{C}^{\times}$, let $d(\lambda)$ be the diagonal matrix

$$d(\lambda) := \operatorname{diag}(\lambda, \lambda^2, \dots, \lambda^n).$$

Then $d(\lambda)^{-1}Xd(\lambda) = \lambda^{-1}X$ and $d(\lambda)^{-1}Yd(\lambda) = \lambda Y$.

Corollary 3.3. Let $f : C_n \to C_m$ be a *G*-map, and let $f(X_0, Y_0) = (P, Q)$. Then P and Q are nilpotent.

Proof. This follows at once from Lemmas 3.1 and 3.2, since a G-map must respect the fixed point set of any subgroup of G.

GEORGE WILSON

4. Proof of Theorem 1.3 in the case n > m

The remaining parts of the proof use the following trivial fact.

Lemma 4.1. Let $(X, Y) \in C_n$, let p be any polynomial, and let χ be divisible by the minimum polynomial of X + p(Y). Then the automorphism $\Phi_{-p}\Psi_{\chi}\Phi_{p}$ fixes (X, Y).

Proof. Since $\chi(X + p(Y)) = 0$ we have

$$\Phi_{-p}\Psi_{\chi}\Phi_{p}(X, Y) = \Phi_{-p}\Psi_{\chi}(X + p(Y), Y)
= \Phi_{-p}(X + p(Y), Y)
= (X, Y),$$

as claimed.

Proposition 4.2. If n > m > 0 there is no G-map $f : \mathcal{C}_n \to \mathcal{C}_m$.

Proof. We apply Lemma 4.1 to the base-point $(X_0, Y_0) \in C_n$, with $p(t) = t^{n-1}$. The minimum (= characteristic) polynomial of $X_0 + Y_0^{n-1}$ is

(4.1)
$$\chi(t) := \det(tI - X_0 - Y_0^{n-1}) = t^n - (n-1)! .$$

Now suppose that $f : \mathcal{C}_n \to \mathcal{C}_m$ is a *G*-map, and let $f(X_0, Y_0) = (P, Q)$: according to Corollary 3.3, *P* and *Q* are nilpotent. They are of size less than *n*, so we have $P^{n-1} = Q^{n-1} = 0$. Thus

$$\begin{split} \Phi_{-p}\Psi_{\chi}\Phi_{p}(P,\,Q) &= & \Phi_{-p}\Psi_{\chi}(P+Q^{n-1},\,Q) \\ &= & \Phi_{-p}\Psi_{\chi}(P,\,Q) \\ &= & \Phi_{-p}(P,\,Q+P^{n}-(n-1)!I) \\ &= & \Phi_{-p}(P,\,Q-(n-1)!I) \\ &= & (\text{something},\,Q-(n-1)!I) \;. \end{split}$$

Now, Q - (n-1)!I is not conjugate to Q (because their eigenvalues are different), hence $\Phi_{-p}\Psi_{\chi}\Phi_{p}$ does not fix (P,Q). So by Lemma 4.1, the isotropy group of (X_{0}, Y_{0}) is not contained in the isotropy group of $f(X_{0}, Y_{0})$. This contradiction shows that f does not exist. \Box

5. Proof of Theorem 1.3 in the case n = m

It remains to show that there is no nontrivial G-map from \mathcal{C}_n to itself. Note that because \mathcal{C}_n is a single orbit, any such map must be bijective, and must map each point of \mathcal{C}_n to a point with the same isotropy group. In the case n = 1the result follows (for example) from Lemma 2.1, so from now on we shall assume that $n \geq 2$. Let $f: \mathcal{C}_n \to \mathcal{C}_n$ be a G-map, and let $f(X_0, Y_0) = (P, Q)$. Again, Corollary 3.3 says that P and Q are nilpotent. We aim to show that (P,Q) can only be (X_0, Y_0) , whence f is the identity. We remark first that if $Q^{n-1} = 0$, then the calculation in the proof of Proposition 4.2 still gives a contradiction; thus the Jordan form of Q consists of just one block, so we may assume that $Q = Y_0$. Now, it is not hard to classify all the points $(X, Y_0) \in \mathcal{C}_n$ with X nilpotent (see [W], p.26 for the elementary argument): there are exactly n of them, and they

all have the form $(X(\boldsymbol{a}), Y_0)$, where $\boldsymbol{a} := (a_1, \ldots, a_{n-1})$ and $X(\boldsymbol{a})$ denotes the subdiagonal matrix

(5.1)
$$X(\boldsymbol{a}) = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & a_{n-1} & 0 \end{pmatrix}$$

The possible vectors \boldsymbol{a} that give points of \mathcal{C}_n are

(5.2)
$$\boldsymbol{a} = (1, 2, \dots, r-1; -(n-r), \dots, -2, -1) \text{ for } 1 \le r \le n$$

(so r = n gives X_0). Thus so far we have shown that $f(X_0, Y_0)$ must be one of these points $(X(a), Y_0)$. To finish the argument, we need the following easy calculations of characteristic polynomials (the first generalizes (4.1)):

(5.3)
$$\det(tI - X(\boldsymbol{a}) - Y_0^{n-1}) = t^n - \prod_{1}^{n-1} a_i ;$$

(5.4)
$$\det(tI - X(\boldsymbol{a}) - Y_0^{n-2}) = t^n - (\prod_{1}^{n-2} a_i + \prod_{2}^{n-1} a_i) t ,$$

where the last formula holds only for $n \geq 3$. If \boldsymbol{a} is one of the vectors (5.2) with 1 < r < n, then the right hand side of (5.4) is just t^n ; that is, $X(\boldsymbol{a}) + Y_0^{n-2}$ is nilpotent. In fact it is easy to check that the pair $(X(\boldsymbol{a}) + Y_0^{n-2}, Y_0)$ is conjugate to $(X(\boldsymbol{a}), Y_0)$; that is, the map $(X, Y) \mapsto (X + Y^{n-2}, Y)$ fixes $(X(\boldsymbol{a}), Y_0)$. It does not fix (X_0, Y_0) , so $f(X_0, Y_0)$ cannot be any of these points $(X(\boldsymbol{a}), Y_0)$. It remains only to see that f cannot map (X_0, Y_0) to the pair corresponding to r = 1 in (5.2): let us call it (X_1, Y_0) .

If *n* is even we use (5.3): the characteristic polynomial of $X_0 + Y_0^{n-1}$ is $\chi(t) := t^n - (n-1)!$ while the characteristic polynomial of $X_1 + Y_0^{n-1}$ is $t^n + (n-1)!$, so that $\chi(X_1 + Y_0^{n-1}) = -2(n-1)!I$. We now apply Lemma 4.1 with $p(t) = t^{n-1}$. According to that lemma, the map $\Phi_{-p}\Psi_{\chi}\Phi_p$ fixes (X_0, Y_0) ; on the other hand

$$\begin{split} \Phi_{-p}\Psi_{\chi}\Phi_{p}(X_{1},\,Y_{0}) &= \Phi_{-p}\Psi_{\chi}(X_{1}+Y_{0}^{n-1},\,Y_{0}) \\ &= \Phi_{-p}(X_{1}+Y_{0}^{n-1},\,Y_{0}-2(n-1)!I) \\ &= (\text{something},\,Y_{0}-2(n-1)!I) \;. \end{split}$$

Since $Y_0 - 2(n-1)!I$ is not conjugate to Y_0 , this shows that $\Phi_{-p}\Psi_{\chi}\Phi_p$ does not fix (X_1, Y_0) . Thus in this case $f(X_0, Y_0)$ cannot be equal to (X_1, Y_0)

Finally, if n is odd, we have a similar calculation using (5.4). Setting $\alpha := (n-1)! + (n-2)!$, the characteristic polynomial of $X_0 + Y_0^{n-2}$ is $\chi(t) := t^n - \alpha t$ while the characteristic polynomial of $X_1 + Y_0^{n-2}$ is $t^n + \alpha t$, so that $\chi(X_1 + Y_0^{n-2}) = -2\alpha(X_1 + Y_0^{n-2})$. We now apply Lemma 4.1 with $p(t) = t^{n-2}$. The map $\Phi_{-p}\Psi_{\chi}\Phi_p$ fixes (X_0, Y_0) ; on the other hand

$$\begin{split} \Phi_{-p}\Psi_{\chi}\Phi_{p}(X_{1},Y_{0}) &= \Phi_{-p}\Psi_{\chi}(X_{1}+Y_{0}^{n-2},Y_{0}) \\ &= \Phi_{-p}(X_{1}+Y_{0}^{n-2},Y_{0}-2\alpha(X_{1}+Y_{0}^{n-2})) \\ &= (\text{something},Y_{0}-2\alpha(X_{1}+Y_{0}^{n-2})) \;. \end{split}$$

GEORGE WILSON

The matrix $Y_0 - 2\alpha(X_1 + Y_0^{n-2})$ is not nilpotent, for example because its square does not have trace zero. Hence $\Phi_{-p}\Psi_{\chi}\Phi_p$ does not fix (X_1, Y_0) , and the proof is finished.

6. Other formulations of Theorem 1.3

The remarks in this section are at the level of "groups acting on sets": that is, we may as well suppose that \mathcal{R} denotes any set acted on by a group G. We are interested in the condition

(6.1) there is no nontrivial
$$G$$
-map $f: \mathcal{R} \to \mathcal{R}$

("nontrivial" means "not the identity map"). As we observed above, that is equivalent to the two conditions

(6.2a) each *G*-orbit in
$$\mathcal{R}$$
 satisfies (6.1);

(6.2b) if O_1 and O_2 are distinct orbits, there is no *G*-map from O_1 to O_2 .

Let us reformulate these conditions in terms of the isotropy groups G_M of the points $M \in \mathcal{R}$. If H and K are subgroups of G, then any G-map from G/H to G/K to must have the form $\varphi(gH) = g(xK)$ for some $x \in G$. This is well-defined if and only if we have

$$x^{-1}Hx \subseteq K \ .$$

In the case H = K, that says that $x \in N_G(H)$, where N_G denotes the normalizer in G: it follows that the G-maps from G/H to itself correspond 1–1 to the points of $N_G(H)/H$. Thus the conditions (6.2) are equivalent to

(6.3a) for any
$$M \in \mathcal{R}$$
, we have $G_M = N_G(G_M)$;

(6.3b) if M and N are on different orbits, no conjugate of G_M is in G_N .

Finally, we note that the conditions (6.3) are equivalent to the single assertion

(6.4) if
$$G_M \subseteq G_N$$
, then $M = N$

Indeed, suppose (6.4) holds, and let $x \in N_G(G_M)$, that is, $xG_Mx^{-1} \subseteq G_M$, or $G_{xM} \subseteq G_M$. By (6.4), we then have xM = M, that is, $x \in G_M$. Thus (6.4) \Rightarrow (6.3a). Now, if (6.3b) is false, we have $xG_Mx^{-1} \subseteq G_N$, that is, $G_{xM} \subseteq G_N$, for some $x \in G$ and some M, N on different orbits. But since they are on different orbits, $xM \neq N$, so (6.4) is false. Thus (6.4) \Rightarrow (6.3b).

Conversely, suppose (6.3) holds, and let M, N be such that $G_M \subseteq G_N$. By (6.3b), M and N are on the same orbit, so M = xN for some $x \in G$; hence $G_M = xG_Nx^{-1} \subseteq G_N$. Thus $x \in N_G(G_N)$, so by (6.3a), $x \in G_N$: hence M = N, as desired.

It is in the form (6.4) that our result is stated in [K].

Acknowledgments. I thank M. K. Kouakou for kindly allowing me see his unpublished work [K]. The main part of this paper was written in 2006, when I was a participant in the programme on Noncommutative Geometry at the Newton Institute, Cambridge; the support of EPSRC Grant 531174 is gratefully acknowledged.

References

- [BW1] Yu. Berest and G. Wilson, Automorphisms and ideals of the Weyl algebra, Math. Ann. 318 (2000), 127–147.
- [BW2] Yu. Berest and G. Wilson, Ideal classes of the Weyl algebra and noncommutative projective geometry (with an Appendix by M. Van den Bergh), Internat. Math. Res. Notices 26 (2002), 1347–1396.
- [CH] R. C. Cannings and M. P. Holland, Right ideals of rings of differential operators, J. Algebra 167 (1994), 116–141.
- [D] J. Dixmier, Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209-242.
- [K] M. K. Kouakou, Subgroups of Stafford associate to Ideals I of $A_1(k)$, unpublished.
- [St] J. T. Stafford, Endomorphisms of right ideals of the Weyl algebra, Trans. Amer. Math. Soc. 299 (1987), 623–639.
- [W] G. Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian (with an Appendix by I. G. Macdonald), Invent. Math. 133 (1998), 1–41.

MATHEMATICAL INSTITUTE, 24-29 ST GILES, OXFORD OX1 3LB, UK *E-mail address:* wilsong@maths.ox.ac.uk