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OPTIMALLY SPARSE FRAMES

PETER G. CASAZZA, ANDREAS HEINECKE, FELIX KRAHMER, AND GITTA KUTYNIOK

Dedicated to the memory of Nigel J. Kalton, who was a great person, friend, and mathematician.

Abstract. Frames have established themselves as a means to derive redundant, yet sta-
ble decompositions of a signal for analysis or transmission, while also promoting sparse
expansions. However, when the signal dimension is large, the computation of the frame
measurements of a signal typically requires a large number of additions and multiplications,
and this makes a frame decomposition intractable in applications with limited computing
budget. To address this problem, in this paper, we introduce sparsity of a frame as a new
paradigm. In our terminology, a sparse frame is a frame whose elements have a sparse repre-
sentation in an orthonormal basis, thereby enabling low-complexity frame decompositions.
To introduce a precise meaning of optimality, we take the sum of the numbers of vectors
needed of this orthonormal basis when expanding each frame vector as sparsity measure.
We then analyze the recently introduced algorithm Spectral Tetris for construction of unit
norm tight frames and prove that the tight frames generated by this algorithm are in fact
optimally sparse with respect to the standard unit vector basis. Finally, we show that even
the generalization of Spectral Tetris for the construction of unit norm frames associated
with a given frame operator produces optimally sparse frames.

1. Introduction

Frames are nowadays a standard methodology in applied mathematics, computer science,
and engineering when redundant, yet stable expansions are required. Examples include
sampling theory [19], data quantization [5, 3], quantum measurements [20], coding [2, 26],
image processing [8, 25], wireless communication [21, 22, 27], time-frequency analysis [17, 28],
speech recognition [1], and bioimaging [15]; see also [23, 24] for a beautiful survey and further
references. The typical application exploits the decomposition of a signal x ∈ R

n into its
frame components, which requires computation of the frame measurements, i.e., the inner
products between the signal x and the frame vectors (ϕi)

N
i=1, say. However, if the dimension

n of the ambient space is large and the frame vectors have ‘many’ non-zero entries, the
computational complexity of the computation of the frame measurements might be high;
in fact, for applications with constraints on the available computing power and bandwidth
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for data processing, computing the frame measurements and hence the frame decomposition
might be intractable.

In this paper we tackle this problem by constructing frames which have very few non-zero
entries, thereby reducing the number of required additions and multiplications when com-
puting frame measurements significantly. This viewpoint can be also slightly generalized by
assuming that there exists a unitary transformation mapping the frame into one having this
‘sparsity property’. Sparsity of fusion frames, which were introduced in [13] as a mathemat-
ical framework for distributed processing thereby going beyond frame theory, was already
defined in [7] as a concept. However, the paradigm we aim for in this paper differs from the
one introduced in [7] for fusion frames when restricting to the case of frames, since we here
aim for an overall sparsity of the frame.

Frame constructions have a long history; browsing through the literature, however, it be-
comes evident that all constructions for unit norm tight frames – those frames most advan-
tageous for applications – only produce such frames for very special cases such as harmonic
frames, see also [10, 14]. Very recently, a real breakthrough for the construction of unit norm
tight frames was achieved through the introduction of the so-called Spectral Tetris algorithm
in [12]. For most combinations of the number of frame vectors and the dimension of the
ambient space, this procedure indeed generates a unit norm tight frame. A few months ago,
an extension of Spectral Tetris to construct unit norm frames with prescribed frame operator
was introduced in [7] to allow additional flexibility in the design process.

Surprisingly, in this paper we show that all unit norm frames which this extended Spectral
Tetris algorithm generates are optimally sparse in the sense of the total number of non-zero
entries in the frame vectors. We also explicitly determine the exact minimum value of the
non-zero entries. This result then immediately provides an explicit construction for optimally
sparse unit norm frames with a prescribed frame operator. Along the way, we introduce block
decompositions as a novel structural property of unit norm frames, which we anticipate to
be useful also in other settings.

1.1. Main Contribution. Our main contribution is hence two-fold: Firstly, we introduce
sparsity of a frame as a novel paradigm in frame theory. More precisely, we introduce the
notion of a sparse frame as well as a sparsity measure for such frames, thereby allowing for
optimality results. Secondly, we analyze an extended version of Spectral Tetris and prove
that this algorithm indeed constructs optimally sparse frames. Thus, Spectral Tetris can
serve as an algorithm for computing frames with this desirable property, and our results
show that it is not possible to derive sparser frames through a different procedure.

1.2. Impact on Applications. This paper proclaims the consideration of the computa-
tional complexity of a frame in the sense of efficient computation of the frame measurements
as a new direction in frame theory. The particular result derived in this paper provides for
the first time an algorithmic construction of such computationally efficient frames. Since
the method is applicable for almost all combinations of the number of frame vectors and the
dimension of the ambient space, we expect this construction to be beneficial for all those
applications which require frame measurements if there is some flexibility in choosing the
utilized frame. Here we, in particular, think of sensing applications, where the sensors can
be designed, or coding strategies, which allow the freedom to choose the codes appropriately.
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Even more, applications previously being prevented from using frame decompositions due to
constraints such as computing power and bandwidth, or even limited space to store the syn-
thesis matrix, might now be able to implement resilience to robustness by exploiting sparse
frames constructed by the Spectral Tetris algorithm.

1.3. Outline. This paper is organized as follows. In Section 2, we first fix the terminology
we require from frame theory and then review the extended version of the Spectral Tetris
algorithm. A novel sparsity measure for a frame will then be introduced in Section 3 together
with a notion of optimality. In Section 4, a structural property of frames suitable for our
analysis is first introduced, and finally we state and prove our main result Theorem 4.5. We
finish with some conclusions and discussions in Section 5.

2. Frame Construction

We first review the classical as well as the extended version of the Spectral Tetris algorithm
from [7]. To stand on common ground, we start by fixing our terminology while briefly
reviewing the basic definitions and notations related to frames.

2.1. Frames. A sequence Φ = (ϕi)
N
i=1 in R

n is called a frame for Rn, if it is a – typically,
but not necessarily linearly dependent – spanning set. This definition is equivalent to asking
for the existence of constants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
N
∑

i=1

|〈x, ϕi〉|
2 ≤ B‖x‖2 for all x ∈ R

n.

When A is chosen as the largest possible value and B as the smallest for these inequalities
to hold, then we call them the (optimal) frame bounds. If A and B can be chosen as A = B,
then the frame Φ is called A-tight, and if A = B = 1 is possible, Φ is a Parseval frame. Φ is
called equal-norm, if there exists some c > 0 such that ‖ϕi‖ = c for all i = 1, . . . , N , and it
is unit-norm if c = 1.

Frames allow the analysis of data by studying the associated frame coefficients (〈x, ϕi〉)
N
i=1,

where the operator T defined by T : Rn → ℓ2({1, 2, . . . , N}), x 7→ (〈x, ϕi〉)
N
i=1 is called the

analysis operator. The adjoint T ∗ of the analysis operator is typically referred to as the
synthesis operator and satisfies T ∗((ci)

N
i=1) =

∑N

i=1 ciϕi. Later, the synthesis operator will
play an essential role, and we will write it in the matrix form [ϕ1| . . . |ϕN ] with the frame
vectors as columns. In the sequel we refer to this matrix as the synthesis matrix. The main
operator associated with a frame, which provides a stable reconstruction process, is the frame
operator

S = T ∗T : Rn → R
n, x 7→

N
∑

i=1

〈x, ϕi〉ϕi,

a positive, self-adjoint, invertible operator on R
n. In the case of an A-tight frame, we have

S = A · IdRn, and in case of a Parseval frame, S = IdRn . In general, S allows for the
reconstruction of a signal x ∈ R

n through the reconstruction formula

x =

N
∑

i=1

〈x, S−1ϕi〉ϕi. (1)
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Redundancy is obviously the crucial property of a frame ensuring resilience to noise and
erasures while simultaneously enabling us to choose the expansion coefficients appropriately.
The particular choice of coefficients displayed in (1) is the smallest in ℓ2 norm [16], hence
it contains the least energy. Recently, a different view point has received rapidly increasing
attention, namely to choose the coefficient sequence to be sparse in the sense of having only
few non-zero entries, thereby allowing data compression while preserving perfect recoverabil-
ity (see, e.g., [6] and the references therein). In this context, for later use, we will denote the
support of a vector x ∈ R

n, i.e., the number of non-zero entries, by supp x.
Finally, we should mention that, customarily, redundancy of a frame (ϕi)

N
i=1 for R

n was
measured by N

n
, i.e., the number of frame vectors divided by the dimension of the ambient

space. Since this measure is exceptionally crude and not sensitive to local behavior of the
frame vectors, the notions of upper and lower redundancy have been suggested in [4] as a
finer redundancy measure.

2.2. The Spectral Tetris Algorithm. Spectral Tetris was first introduced in [12] as an
algorithm to generate unit norm tight frames for any number of frame vectors N , say, and
for any ambient dimension n provided that N

n
≥ 2. This algorithm can indeed be considered

a breakthrough in frame construction, since it is the first systematic construction of unit
norm tight frames. Before, only a number of very special classes of unit norm tight frames
such as harmonic frames have been known.

An extension to the construction of unit norm frames having a desired frame operator
associated with eigenvalues λ1, . . . , λn ≥ 2 satisfying

∑n

j=1 λj = N was then introduced and

analyzed in [7] – in fact, an even more general algorithm for the construction of fusion frames
was stated therein. The frame-version of this algorithm is what we intend to analyze in this
paper. Figure 1 states the steps of this version of the algorithm, which we coin Spectral
Tetris for Frames; in short, STF. We wish to remark that the original form of the algorithm
in [12] requires the sequence of eigenvalues to be in decreasing order, i.e. λ1 ≥ . . . ≥ λn.
This assumption, however, was made only for classification reasons, and it is easily seen
that it can be dropped. Since in the sequel, we will consider carefully chosen, presumably
non-decreasing, sequences of eigenvalues, the gained freedom is essential for our analysis.

3. New Paradigm for Frame Constructions: Sparsity

3.1. Classical Sparsity. Over the past few years, sparsity has become a key concept in
various areas of applied mathematics, computer science, and electrical engineering. Sparse
signal processing methodologies explore the fundamental fact that many types of signals can
be represented by only a few non-zero coefficients when choosing a suitable basis or, more
generally, a frame. A signal representable by only k, say, basis or frame elements is called k-
sparse. If signals possess such a sparse representation, they can in general be recovered from
few measurements using ℓ1 minimization techniques (see, e.g., [6, 9, 18] and the references
therein).

3.2. Sparse Frames. In this paper, however, we pose a different question concerning spar-
sity, viewing sparsity from a very different standpoint. Typically, data processing applica-
tions face low on-board computing power and/or a small bandwidth budget. When the signal
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STF: Spectral Tetris for Frames

Parameters:

• Dimension n ∈ N.
• Number of frame elements N ∈ N.
• Sequence of eigenvalues λ1, . . . , λn ≥ 2 satisfying

∑n

j=1 λj = N .

Algorithm:

1) Set i := 1.
2) For j = 1, . . . , n do
3) Repeat
4) If λj < 1 then

5) ϕi :=
√

λj

2
· ej +

√

1− λj

2
· ej+1.

6) ϕi+1 :=
√

λj

2
· ej −

√

1−
λj

2
· ej+1.

7) i := i+ 2.
8) λj+1 := λj+1 − (2− λj).
9) λj := 0.
10) else
11) ϕi := ej .
12) i := i+ 1.
13) λj := λj − 1.
14) end.
15) until λj = 0.
16) end.

Output:

• Frame STF(N ;λ1, . . . , λn) := {ϕi}
N
i=1.

Figure 1. The Spectral Tetris algorithm for constructing an N -element unit
norm frame STF(N ;λ1, . . . , λn) for R

n with an associated frame operator hav-
ing eigenvalues λ1, . . . , λn.

dimension is large, the decomposition of the signal into its frame measurements requires a
large number of additions and multiplications, which may be infeasible for on-board data
processing. Also the space required for storing the synthesis matrix of the frame might be
huge. It would hence be a significant improvement, if each frame vector would contain very
few non-zero entries, hence – phrasing it differently – be sparse in the standard unit vector
basis, which ensures low-complexity processing. Since we are interested in the performance
of the whole frame, the total number of non-zero entries in the frame vectors seems to be
a suitable sparsity measure. This viewpoint can also be slightly generalized by assuming
that there exists a unitary transformation mapping the frame into one having this ‘sparsity’
property.
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3.3. Sparseness Measure. Taking these considerations into account, we are led to proclaim
the following definition for a sparse frame:

Definition 3.1. Let (ej)
n
j=1 be an orthonormal basis for Rn. Then a frame (ϕi)

N
i=1 for Rn is

called k-sparse with respect to (ej)
n
j=1, if, for each i ∈ {1, . . . , N}, there exists Ji ⊆ {1, . . . , n}

such that

ϕi ∈ span{ej : j ∈ Ji}

and
n
∑

i=1

|Ji| = k. (2)

The attentive reader will have realized that this definition differs from the definition stated
in [7] for fusion frames (see [13]) when restricting to the special case of frames. The exact
relation is the following: Let (ej)

n
j=1 be an orthonormal basis for Rn, let (ϕi)

N
i=1 be a frame for

R
n, and, for each i ∈ {1, . . . , N}, let Ji ⊆ {1, . . . , n} such that ϕi ∈ span{ej : j ∈ Ji}. Then,

in the sense of [7], the frame is max{|Ji| : i = 1, . . . , n}-sparse, whereas in our Definition 3.1,
the frame is

∑n

i=1 |Ji| sparse. Thus our definition encodes the true overall sparsity which is
the sparsity required for frame processing in contrast to the more local version of [7].

One can certainly imagine other sparsity measures dependent on the requirements and
constraints of the application at hand. Instead of (2), a weighted version could be considered
with the weights chosen depending on the computational constraints of the application. Also,
(2) could be regarded as the ℓ1 norm of the sequence {|Ji| : i = 1, . . . , n}, and a different
viewpoint might lead us to considering a different norm instead – as it was done in [7] for
the ℓ∞ norm.

3.4. Notion of Optimality. We now have the necessary machinery at hand to introduce
a notion of an optimally sparse frame. Optimality will typically – as also in this paper - be
considered within a particular class of frames, for instance, in the class of unit norm tight
frames.

Definition 3.2. Let F be a class of frames for R
n, let (ϕi)

N
i=1 ∈ F , and let (ej)

n
j=1 be an

orthonormal basis for Rn. Then (ϕi)
N
i=1 is called optimally sparse in F with respect to (ej)

n
j=1,

if (ϕi)
N
i=1 is k1-sparse with respect to (ej)

n
j=1 and there does not exist a frame (ψi)

N
i=1 ∈ F

which is k2-sparse with respect to (ej)
n
j=1 with k2 < k1.

We wish to emphasize the strong dependence of sparsity on the chosen basis. Also an
optimally sparse frame is in general not uniquely determined; we present an example for this
observation in Subsection 4.2.

4. An Optimality Result for Sparse Frames

We now seek a construction for an optimally sparse unit norm frame with prescribed prop-
erties. As already elaborated upon before, the condition we impose is having a given frame
operator, which, in particular, also includes operators with equal eigenvalues correspond-
ing to tight frames. This frame operator will in the following be always determined by its
eigenvalues. Hence we are interested in optimal sparsity within the following class:
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Let n,N > 0 and let the real values λ1, . . . , λn ≥ 2 satisfy
∑n

j=1 λj = N . Then the class

of unit norm frames (ϕi)
N
i=1 in R

n whose frame operator has eigenvalues λ1, . . . , λn will be
denoted by

F(N, {λi}
n
i=1).

It is important to mention that by writing {λi}
n
i=1, we wish to indicate that the ordering does

not play a role here, however, multiplicities are counted. Also the reader should note that
F(N, {λi}

n
i=1) does contain infinitely many elements for any set of real values λ1, . . . , λn ≥ 2.

It might be beneficial for the reader to mention at this point that we will discuss the
analysis presented in Subsections 4.1 to 4.3 in the important special case of tight frames in
Subsection 4.4 for illustrative purposes.

4.1. Novel Structural Property of Synthesis Matrices. Aiming for determining the
maximally achievable sparsity for a class F(N, {λi}

n
i=1), we first need to introduce a particular

measure associated with the set of eigenvalues {λi}
n
i=1. This measure indicates the maximal

number of partial sums which are an integer; here one maximizes over all reorderings of the
eigenvalues. Later, this will allow us to – roughly speaking – reduce the analysis to the blocks
between two such integer partial sums, and hence, in particular, the maximally achievable
sparsity will depend on this number.

Definition 4.1. A finite sequence of real values λ1, . . . , λn is ordered blockwise, if for any
permutation π of {1, . . . , n} the set of partial sums {

∑s

j=1 λj : s = 1, . . . , n} contains at

least as many integers as the set {
∑s

j=1 λπ(j) : s = 1, . . . , n}. The maximal block number

of a finite sequence of real values λ1, . . . , λn, denoted by µ(λ1, . . . , λn), is the number of
integers in {

∑s

j=1 λσ(j) : s = 1, . . . , n}, where σ is a permutation of {1, . . . , n} such that
λσ(1), . . . , λσ(n) is ordered blockwise.

Surprisingly, the notion of maximal block number can illuminatingly be transferred to a
particular decomposition property of the synthesis matrix of a frame. Let us first define the
decomposition property we are interested in:

Definition 4.2. Let n,N > 0, and let (ϕi)
N
i=1 be a frame for R

n. Then we say that the
synthesis matrix of (ϕi)

N
i=1 has block decomposition of order m, if there exists a partition

{1, . . . , N} = I1 ∪ . . . ∪ Im such that, for any k1 ∈ Ii1 and k2 ∈ Ii2 with i1 6= i2, we have
suppϕk1 ∩ suppϕk2 = ∅ and m is maximal.

The following result now connects the maximal block number of the sequence of eigenvalues
of a frame operator with the block decomposition order of an associated frame.

Proposition 4.3. Let n,N > 0 and let the real values λ1, . . . , λn ≥ 2 satisfy
∑n

j=1 λj = N .

Then the synthesis matrix of any frame in the class F(N, {λi}
n
i=1) has block decomposition

of order at most µ(λ1, . . . , λn).

Proof. Suppose (ϕi)
N
i=1 ∈ F(N, {λi}

n
i=1) has block decomposition of order ν > µ(λ1, . . . , λn),

and let {1, . . . , N} = I1∪ . . .∪Iν be a corresponding partition. For j = 1, . . . , ν, let Sj be the
common support set of the vectors (ϕi)i∈Ij , i.e., k ∈ Sj if and only if k ∈ suppϕi for some
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i ∈ Ij . Now let rk denote the k-th row of the synthesis matrix of (ϕi)
N
i=1. Then S1, . . . , Sν is

a partition of {1, . . . , n} and, for every j = 1, . . . , ν,

|Ij | =
∑

k∈Ij

‖ϕk‖
2 =

∑

k∈Sj

‖rk‖
2 =

∑

k∈Sj

λk.

This implies that the maximal block number of λ1, . . . , λn is at least ν, which is a con-
tradiction. Thus the synthesis matrix of the arbitrarily chosen frame (ϕi)

N
i=1 in the class

F(N, {λi}
n
i=1) has block decomposition of order at most µ(λ1, . . . , λn). �

4.2. Maximally Achievable Sparsity. Having introduced the required new notions, we
are now in a position to state the exact value for the maximally achievable sparsity for a class
F(N, {λi}

n
i=1). It is not initially clear that this optimal sparsity can always be attained. With

Theorem 4.5 we will prove that this is indeed the case; in fact, Theorem 4.5 also provides
an explicit construction of those frames.

Theorem 4.4. Let n,N > 0, and let the real values λ1, . . . , λn ≥ 2 satisfy
∑n

j=1 λj = N .

Then any frame in F(N, {λi}
n
i=1) has sparsity at least

N + 2(n− µ(λ1, . . . , λn))

with respect to any orthonormal basis.

Proof. We first study the case that µ(λ1, . . . , λn) = 1. For this, let T ∗ denote the synthesis
matrix of a frame in F(N, {λi}

n
i=1) with respect to a fixed orthonormal basis. For the sake

of brevity, in the sequel we will use the phrase that two rows of T ∗ have overlap of size k,
if the intersection of their supports is a set of size k. Note that, since the rows of T ∗ are
orthogonal, it is not possible that two rows of T ∗ have overlap 1.

Fix now an arbitrary row r1 of T
∗. Since, by Proposition 4.3, T ∗ has block decomposition

of order 1, there exists a row r2 whose overlap with r1 is of size ≥ 2. Similarly, there has to
exist a row different from r1 and r2 which has overlap of size ≥ 2 with r1 or r2. Iterating
this procedure will provide an order r1, r2, . . . rn such that, for each row rj , there exists some
k < j such that rj has overlap of size ≥ 2 with rk. Since all columns in T ∗ are unit norm,
for each column c, there exists a minimal j for which the entry crj is non-zero. This yields
N non-zero entries in T ∗. In addition, each row r2 through rn has at least 2 non-zero entries
coming from the overlap, which are different from the just accounted for N entries. This
sums up to a total of at least 2(n − 1) non-zero coefficients. Consequently, the synthesis
matrix has at least N + 2(n− 1) non-zero entries, as desired.

Finally, suppose µ := µ(λ1, . . . , λn) > 1. By Proposition 4.3, T ∗ has block decomposition
of order at most µ. Performing the same construction as above, there exist at most µ rows rj
(including the first one) which do not have overlap with a row rk, k < j. Thus the synthesis
matrix T ∗ must at least contain N + 2(n− µ) non-zero entries. �

It should be mentioned that an optimally sparse frame from F(N, {λi}
n
i=1) is in general

not uniquely determined. Various examples can be constructed along the following line: For
simplicity, we choose n = 4 and N = 9 and construct a tight frame, i.e., λ1 = . . . = λ4 =

9
4
.

Then, by Theorem 4.4, the maximal achievable sparsity is 9 + 2(4− 1) = 15. The following
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matrices are synthesis matrices with respect to the standard unit vector basis of two different
frames in F(9, {9

4
}9i=1), the first in fact being generated by Spectral Tetris:
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.

4.3. Main Result. Having set the benchmark, we now prove that frames constructed by
Spectral Tetris in fact achieve the optimal sparsity rate. For this, we would like to remind
the reader that the frame constructed by Spectral Tetris (see Figure 1) was denoted by
STF(N ;λ1, . . . , λn).

Theorem 4.5. Let n,N > 0, and let the real values λ1, . . . , λn ≥ 2 be ordered block-
wise and satisfy

∑n

j=1 λj = N . Then the frame STF(N ;λ1, . . . , λn) is optimally sparse

in F(N, {λi}
n
i=1) with respect to the standard unit vector basis. That is, this frame is

N + 2(n− µ(λ1, . . . , λn))-sparse with respect to the standard unit vector basis.

Proof. Let (ϕi)
N
i=1 be the frame STF(N ;λ1, . . . , λn). We will first show that its synthesis

matrix has block decomposition of order µ := µ(λ1, . . . , λn). For this, let k0 = 0, and let

k1, . . . , kµ ∈ N be chosen such that mi :=
∑ki

j=ki−1+1 λj is an integer for every i = 1, . . . , µ.

Moreover, let m0 = 0. Further, note that kµ = n and mµ = N , since
∑n

j=1 λj is an integer

by hypothesis. The steps of Spectral Tetris (STF) for computing STF(m1;λ1, . . . , λk1) and
STF(N ;λ1, . . . , λn) coincide until the dimension for computing STF(N ;λ1, . . . , λn) exceeds
m1 and k1. Therefore, the first k1 entries of the first m1 vectors of both constructions
coincide. Continuing the computation of STF(N ;λ1, . . . , λn) will set the remaining entries
of the first m1 vectors and also the first k1 entries of the remaining vectors to zero. Thus,
any of the first k1 vectors has disjoint support from any of the vectors constructed later on.
Repeating this argument for k2 until kµ, we obtain that the synthesis matrix has a block
decomposition of order µ; the corresponding partition of the frame vectors being

µ
⋃

i=1

{ϕmi−1+1, . . . , ϕmi−1+mi
}.

To compute the number of non-zero entries in the synthesis matrix generated by Spectral
Tetris, we let i ∈ {1, . . . , µ} be arbitrarily fixed and compute the number of non-zero entries
of the vectors ϕmi−1+1, . . . , ϕmi−1+mi

. Spectral Tetris ensures that each of the rows ki−1 + 1
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up to ki−1 intersects the support of the subsequent row on a set of size 2. Thus, there exist
2(ki−ki−1−1) frame vectors with two non-zero entries. The remaining mi−2(ki−ki−1−1)
frame vectors will have only one entry, yielding a total number of mi + 2(ki − ki−1 − 1)
non-zero entries in the vectors ϕmi−1+1, . . . , ϕmi−1+mi

.
Summarizing, the total number of non-zero entries in the frame vectors of (ϕi)

N
i=1 is

µ
∑

i=1

mi + 2(ki − ki−1 − 1) =

(

µ
∑

i=1

mi

)

+ 2

(

kµ −

(

µ
∑

i=1

1

))

= N + 2(n− µ),

which is by Theorem 4.4 the maximal achievable sparsity. �

The reader will have realized that Spectral Tetris generates frames which are ‘only’ op-
timally sparse with respect to the standard unit vector basis. This seems at first sight like
a drawback. However, if sparsity with respect to a different orthonormal basis is required,
Spectral Tetris can easily be modified to accommodate this request by using vectors of this
orthonormal basis instead of the standard unit vector basis when filling in the frame vectors
in Steps 5, 6 and 11 in STF (cf. Figure 1). It is a straightforward exercise to show that this
modified Spectral Tetris algorithm then generates a frame which is optimally sparse with
respect to this new orthonormal basis.

4.4. Special Case: Constructing Optimally Sparse Tight Frames. In the special case
of equal eigenvalues, i.e., of tight frames, with N elements in R

n, all eigenvalues need to equal
N
n

for the equality
∑n

j=1 λj = N to be satisfied. The maximal block number can be easily

computed to be gcd(N, n). Theorem 4.5 then takes the following form:

Corollary 4.6. For all strictly positive n and N , the frame STF(N ; N
n
, . . . , N

n
) is optimally

sparse in F(N, {N
n
}Ni=1) with respect to the standard unit vector basis. That is, this frame is

N + 2(n− gcd(N, n))-sparse with respect to the standard unit vector basis.

5. Conclusions and Discussion

In this paper we considered the design of frames which enable efficient computations of
the associated frame measurements. This led to the introduction of the notion of a sparse
frame as well as a sparsity measure for such frames, thereby introducing optimal sparsity
as a new paradigm into the construction of frames. We then analyzed an extended version
of Spectral Tetris for frames and proved that the frames constructed by this algorithm are
indeed optimally sparse. This shows that Spectral Tetris can serve as an algorithm for
computing frames with this desirable property, and our results prove that it is not possible
to derive sparser frames through a different procedure.

We would finally like to point out that the analysis in this paper leads to several intriguing
open problems for future research; a few examples are stated in the sequel.

• Eigenvalues also smaller than 2. It is still an open problem whether and how Spectral
Tetris extends to sets of eigenvalues, if some eigenvalues are smaller than 2. Some
partial results by extending Spectral Tetris by inserting larger DFT matrices than the
previously exploited 2×2-matrices were derived in [11]. However, from the results in
[11] it can be deduced that this procedure does not always lead to optimally sparse
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frames even in the case when all eigenvalues are equal, i.e., the tight frame case.
Hence, extensive research will be necessary to introduce an appropriate – in the
sense of optimal sparsity – extension of Spectral Tetris.

• Extension to other classes of frames. Depending on the application, other desiderata
might be requested from a frame such as, for instance, equi-angularity. For such a
class of frames, the question of an optimally sparse frame can and should similarly
be posed.

• Relative sparsity/Compressibility. Taking numerical considerations and perturba-
tions into account, it will be necessary to extend the notion of sparsity to relative
sparsity/compressibility for frames and analyze optimality for such.
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and sigma-delta quantization, J. Fourier Anal. Appl. 16 (2010), no. 3, 365–381. MR 2643587

4. Bernhard G. Bodmann, Pete Casazza, and Gitta Kutyniok, A quantative notion of redundancy for finite
frames, preprint.

5. Bernhard G. Bodmann and Vern I. Paulsen, Frame paths and error bounds for sigma-delta quantization,
Appl. Comput. Harmon. Anal. 22 (2007), no. 2, 176–197. MR 2295294 (2007m:94108)

6. Alfred M. Bruckstein, David L. Donoho, and Michael Elad, From sparse solutions of systems of equations
to sparse modeling of signals and images, SIAM Rev. 51 (2009), no. 1, 34–81. MR 2481111 (2010d:94012)

7. Robert Calderbank, Peter Casazza, Andreas Heinecke, Gitta Kutyniok, and Ali Pezeshki, Sparse fusion
frames: existence and construction, Adv. Comput. Math., to appear.

8. Emmanuel J. Candès and David L. Donoho, New tight frames of curvelets and optimal representations of
objects with piecewise C2 singularities, Comm. Pure Appl. Math. 57 (2004), no. 2, 219–266. MR 2012649
(2004k:42052)

9. Emmanuel J. Candès, Justin Romberg, and Terence Tao, Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory 52 (2006),
no. 2, 489–509. MR 2236170 (2007e:94020)



12 P. CASAZZA, A. HEINECKE, F. KRAHMER, AND G. KUTYNIOK

10. Peter G. Casazza, Custom building finite frames, Wavelets, frames and operator theory, Contemp. Math.,
vol. 345, Amer. Math. Soc., Providence, RI, 2004, pp. 61–86. MR 2066822 (2005f:42078)

11. Peter G. Casazza, Matthew Fickus, and Andreas Heinecke, Spectral tetris constructions for fusion frames,
preprint.

12. Peter G. Casazza, Matthew Fickus, Dustin G. Mixon, Yang Wang, and Zhengfang Zhou, Constructing
tight fusion frames, Appl. Comput. Harmon. Anal., to appear.

13. Peter G. Casazza, Gitta Kutyniok, and Shidong Li, Fusion frames and distributed processing, Appl.
Comput. Harmon. Anal. 25 (2008), no. 1, 114–132. MR 2419707 (2009d:42094)

14. Peter G. Casazza and Manuel T. Leon, Existence and construction of finite tight frames, J. Concr. Appl.
Math. 4 (2006), no. 3, 277–289. MR 2224599 (2006k:42062)

15. A. Chebira and J. Kovacevic, Frames in bioimaging, Information Sciences and Systems, 2008. CISS 2008.
42nd Annual Conference on, mar. 2008, pp. 727 –732.

16. Ole Christensen, An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis,
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