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fermions in Dirac–Yang–Mills model equations
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Abstract

In the Standard Model of electroweak interactions the fundamental
fermions acquire masses by the Yukawa interaction with the (spin 0)
Higgs field. In our model spin 1/2 fermions acquire masses by an
interaction with (spin 1) gauge field with symplectic symmetry.

In [2, 3, 4, 5, 8] we develop a new approach to field theory, which based on
so called model equations of field theory. In this paper we introduce Dirac–
Yang–Mills model equations for spin 1/2 fermions interacting with two gauge
fields simultaneously. One field has a unitary gauge symmetry and another
has a symplectic gauge symmetry. There is no fermion’s mass (m) term in
the model Dirac equation. But there is the term 3m3/16 in the right hand
part of the Yang–Mills equations with symplectic gauge symmetry. Hence,
the constant 3m3/16 can be considered as a constant (charge) describing the
interaction of a fermion with the symplectic gauge field.

Clifford algebra. Let Cℓ(1, 3) be the complex Clifford algebra [1] with
the unity element e and with generators ea, a = 0, 1, 2, 3, which satisfy the
relations

eaeb + ebea = 2ηabe, a, b = 0, 1, 2, 3,

where η = ‖ηab‖ = diag(1,−1,−1,−1) is the diagonal matrix.
Let Cℓk(1, 3), (k = 0, 1, 2, 3, 4) be subspaces of rank k Clifford algebra ele-

ments and CℓEven(1, 3), CℓOdd(1, 3) be the subspaces of even and odd Clifford
algebra elements respectively. By CℓR(1, 3) denote the real Clifford algebra.
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Denote β = e0 ∈ Cℓ(1, 3). Consider an operation of pseudo-Hermitian

conjugation ∗ : Cℓ(1, 3) → Cℓ(1, 3) such that (ea)∗ = ea, a = 0, 1, 2, 3 and

(λU)∗ = λ̄U∗, (UV )∗ = V ∗U∗, (U + V )∗ = U∗ + V ∗,

where U, V are arbitrary elements of Cℓ(1, 3) and λ ∈ C. Now we can define
an operation of Hermitian conjugation of Clifford algebra elements by the
formula [6]

U † = βU∗β.

Symplectic Lie group and its real Lie algebra. Consider the real sym-

plectic Lie group of matrices of even order n = 2m and its Lie algebra

Sp(m,R) = {U ∈ Mat(n,R) : UTSU = S},

sp(m,R) = {u ∈ Mat(n,R) : uTS = −Su},

where UT is the transposed matrix, S is the block matrix

S =

(

0 −Im
Im 0

)

,

and Im is the identity matrix of order m. Note that S2 = −1 (1 is the
identity matrix of order 2m).

Symplectic Lie group of the Clifford algebra and its Lie algebra.
Let us define two sets of Clifford algebra elements [7]

Sp(Cℓ(1, 3)) = {V ∈ CℓREven(1, 3)⊕ iCℓROdd(1, 3) : V
∗V = e},

sp(Cℓ(1, 3)) = {v ∈ iCℓR1 (1, 3)⊕ CℓR2 (1, 3)}.

The set Sp(Cℓ(1, 3)) is closed with respect to the multiplication of Clifford
algebra elements and forms a (Lie) group. This group is called the symplectic

group of Clifford algebra Cℓ(1, 3). The set sp(Cℓ(1, 3)) is closed w.r.t. the
commutator [u, v] = uv − vu and forms the Lie algebra.

The following proposition is proved in [7]: The group Sp(Cℓ(1, 3)) is iso-

morphic to the group Sp(2,R) and the Lie algebra sp(Cℓ(1, 3)) is isomorphic

to the Lie algebra sp(2,R), i.e.

Sp(Cℓ(1, 3)) ≃ Sp(2,R), (1)

sp(Cℓ(1, 3)) ≃ sp(2,R).
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Hermitian idempotents. Let t ∈ Cℓ(1, 3) be a nonzero element such that

t2 = t, t† = t, t̄J = Jt, (2)

where J = −e1e3. Such an element is called a Hermitian idempotent. In
particular, we may take the Hermitian idempotents

t(1) =
1

4
(e+ e0)(e+ ie12),

t(2) =
1

2
(e+ e0),

t(3) =
1

4
(3e+ e0 + ie12 − ie012),

t(4) = e.

A Hermitian idempotent t generates the left ideal I(t), the two sided ideal
K(t), the Lie algebra L(t), and the Lie group G(t)

I(t) = {U ∈ Cℓ(1, 3) : U = Ut},

K(t) = {U ∈ I(t) : U = tU}, (3)

L(t) = {U ∈ K(t) : U † = −U},

G(t) = {U ∈ Cℓ(1, 3) : U †U = e, U − e ∈ K(t)}.

The Minkowski space. Let R
1,3 be the Minkowski space with cartesian

coordinates xµ, where µ = 0, 1, 2, 3 and ∂µ = ∂/∂xµ are partial derivatives.
We use Greek indices µ, ν, α, β, . . . (run from 0 to 3) as tensor indices relative
to coordinates xµ. The Minkowski metric is given by the diagonal matrix η.
By Tr

s denote the set of tensor fields of type (r, s) (of rank r+s) in Minkowski
space. By T[s] denote the set of rank s antisymmetric covariant tensor fields.
In the sequel we consider tensors with values in Lie algebras. For example, if
uµ is a covector with values in a Lie algebra L(t), then we write uµ ∈ L(t)T1.

In what follows the generators e0, e1, e2, e3 of Clifford algebra Cℓ(1, 3) and
the fixed Hermitian idempotent t do not depend on x and they are scalars of
the Minkowski space, i.e. they do not transform under Lorentzian changes
of coordinates.

Model Dirac–Yang–Mills equations. Consider the model Dirac–Yang–
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Mills equations [4, 8]

ihµ(∂µφ+ φAµ − Cµφ)−mφ = 0,

∂µAν − ∂νAµ − [Aµ, Aν] = Fµν, (4)

∂µF
µν − [Aµ, F

µν] = φ†βihνφ,

∂µh
ν − [Cµ, h

ν ] = 0,

where

1. The vector ihµ = ihµ(x) ∈ sp(Cℓ(1, 3))T1 is such that

hµhν + hνhµ = 2ηµνe, µ, ν = 0, 1, 2, 3. (5)

2. The element φ = φ(x) ∈ I(t) is a scalar of Minkowski space (it does not
transform under Lorentzian changes of coordinates) (φ(x) → φ(x(x́))).

3. Aµ = Aµ(x) ∈ L(t)T1.

4. Fµν = Fµν(x) ∈ L(t)T[2].

5. The mass m is a real constant.

6. Cµ = Cµ(x) ∈ sp(Cℓ(1, 3))T1.

We suppose that the idempotent t, the constantm, and the generators of Clif-
ford algebra ea are known and the variables hµ, φ, Aµ, Fµν, Cµ are unknown.
In this case equations (4) are called model Dirac–Yang–Mills equations (with
local symplectic symmetry).

From the first equation in (4), using the identity 1
4
hµhµ = e, we get the

equation
ihµ(∂µφ+ φAµ −Bµφ) = 0,

where
Bµ = Cµ −

m

4
ihµ ∈ sp(Cℓ(1, 3))T1.

If we substitute the expression

Cµ = Bµ +
m

4
ihµ ∈ sp(Cℓ(1, 3))T1

into the equalities (the second equality is a consequence of the first one)

∂µh
ν − [Cµ, h

ν ] = 0,

∂µCν − ∂νCµ − [Cµ, Cν] = 0,
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then we get

∂µih
ν − [Bµ, ih

ν ] =
m

4
[ihµ, ih

ν ], (6)

∂µBν − ∂νBµ − [Bµ, Bν] = −
(m

4

)2

[ihµ, ihν].

From the first equality if follows that

∂µh
µ − [Bµ, h

µ] = 0.

We denote

Gµν = −
(m

4

)2

[ihµ, ihν].

Using the relations (6) and the relations

1

4
hµhµ = e, hµhνhµ = hµh

νhµ = −2hν ,

we see that

∂µG
µν − [Bµ, G

µν ] =
3

16
m3ihν .

Therefore we have proved that if the variables φ, hµ, Aµ, Cµ, Fµν satisfy
conditions (5) and equations (4), then the variables

φ, hµ, Aµ, Bµ = Cµ −
m

4
ihµ, Fµν , Gµν = −

(m

4

)2

[ihµ, ihν ]

satisfy the equations

ihµ(∂µφ+ φAµ −Bµφ) = 0,

∂µAν − ∂νAµ − [Aµ, Aν] = Fµν ,

∂µF
µν − [Aµ, F

µν] = φ†βihνφ, (7)

∂µBν − ∂νBµ − [Bµ, Bν] = Gµν ,

∂µG
µν − [Bµ, G

µν ] =
3

16
m3ihν .

This system of equations contains two pairs of Yang–Mills equations for the
fields (Aµ, Fµν) and (Bµ, Gµν) respectively.

Consider the system of equations (7), where the idempotent t, the real
constant m, and the generators of Clifford algebra ea are known and the
variables hµ, φ, Aµ, Fµν, Bµ, Gµν are unknown and such that
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1a. The vector ihµ = ihµ(x) ∈ sp(Cℓ(1, 3))T1 satisfies conditions (5).

2a. The element φ = φ(x) ∈ I(t) is a scalar of the Minkowski space.

3a. Aµ = Aµ(x) ∈ L(t)T1.

4a. Fµν = Fµν(x) ∈ L(t)T[2].

5a. Bµ = Bµ(x) ∈ sp(Cℓ(1, 3))T1.

6a. Gµν = Gµν(x) ∈ sp(Cℓ(1, 3))T[2].

This system of equation is called the model Dirac–Yang–Mills system of equa-

tions with two Yang–Mills fields.
Suppose that the variables

φ, hµ, Aµ, Bµ, Fµν , Gµν

satisfy the conditions 1a-6a and satisfy equations (7). We see the vector hµ

at the right hand part of the Yang–Mills equations

∂µBν − ∂νBµ − [Bµ, Bν] = Gµν ,

∂µG
µν − [Bµ, G

µν ] =
3

16
m3ihν .

Therefore the vector field hµ satisfies the non-abelian conservation law

∂µh
µ − [Bµ, h

µ] = 0. (8)

However the identities (6) can’t be fulfilled. Hence we may consider the
system of equations (7) as a generalization of the system of equations (4).

Properties of the model Dirac–Yang–Mills equations. A transforma-
tion of variables in the system of equation (7) is called equivalent transfor-

mation if this system of equation written for transformed variables has the
same form as the system of equation in initial variables. In this case we say
that system (7) is covariant w.r.t. this transformation of variables.

An equivalent transformation of variables in the system of equation (7)
is called symmetry if the generators ea and the Hermitian idempotent t do
not transform (see [4, 8] for details).

Let us discuss the properties of the model equations (7) that related to
equivalent transformations and symmetries. Let Θ = {hµ, φ, Bµ, Gµν, Aµ, Fµν}
satisfy the equations (7).
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1. (Symmetry). All the variables in the system of equation (7) are tensors
(scalars are rank 0 tensors). Therefore this system of equations is covariant
under Lorentzian changes of coordinates.

2. Consider bilinear forms of the model Dirac–Yang–Mills equations (7)

iJµ1...µk = i
k(k−1)

2
+1φ†βh[µ1 . . . hµk]φ ∈ L(t)T[k].

Bilinear forms Jµ1...µk are the components of contravariant antisymmetric
tensors of rank k with values in Hermitian elements of the Clifford Algebra
Cℓ(1, 3). Eigenvalues of these bilinear forms are real.

3. The vector
iJµ = φ†βihµφ ∈ L(t)T1

satisfy non-abelian conservative law

∂µJ
µ − [Aµ, J

µ] = 0.

4. The equations (7) are covariant under the following global transformation
defined by a unitary element U ∈ Cℓ(1, 3), U † = U−1, ∂µU = 0,

φ → φU, Aµ → U−1AµU, Fµν → U−1FµνU, t → U−1tU. (9)

5. (Symmetry). The equations (7) are covariant under the local (gauge)
transformation with U = U(x) ∈ G(t)

φ → φU, Aµ → U−1AµU − U−1∂µU, Fµν → U−1FµνU. (10)

Note that for U ∈ G(t) we have [U, t] = 0 and under the considered
transformation the Hermitian idempotent t does not transform.

6. (Symmetry). System of equation (7) is covariant w.r.t. the local (gauge)
transformation of variables Θ → Θ̂ induced by an element W = W (x) ∈
Sp(Cℓ(1, 3)):

φ̂ = W−1φ, ĥµ = W−1hµW, B̂µ = W−1BµW −W−1∂µW.

7. System of equation (7) is covariant w.r.t. the discreet transformation
(complex conjugation) of variables

ihµ → ihµ, (hµ → −h̄µ), t → t̄,
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φ → φ̄, Aµ → Āµ, Fµν → F̄µν, Bµ → B̄µ,

here we suppose that ēa1...ak = ea1...ak .

8. (Symmetry). System of equation (7) is covariant w.r.t. the discreet
transformation of variables

ihµ → ihµ, (hµ → −h̄µ), φ → φ̄J, Bµ → B̄µ,

Aµ → J−1ĀµJ, Fµν → J−1F̄µνJ,

where J = −e1e3.

Discussion of the model. We have introduced system of equation (7),
which consists of three parts

• The model Dirac equation

ihµ(∂µφ+ φAµ −Bµφ) = 0

for the wave function (ihµ, φ) of spin 1/2 particle.

• The first pair of Yang–Mills equations

∂µAν − ∂νAµ − [Aµ, Aν] = Fµν ,

∂µF
µν − [Aµ, F

µν] = φ†βihνφ, (11)

describes the Yang–Mills field (Aµ, Fµν) with the gauge group G(t) that
is isomorphic to a subgroup of the unitary group U(4). According to the
Standard Model, if the gauge group G(t) is isomorphic to one of three
groups – U(1), U(1)× SU(2), SU(3), then system of equation (11) can
be used for the description of the electromagnetic (QED) interaction,
the electroweak (EW) interaction, and the strong (QCD) interaction
respectively.

• The second pair of Yang–Mills equations

∂µBν − ∂νBµ − [Bµ, Bν] = Gµν ,

∂µG
µν − [Bµ, G

µν] =
3

16
m3ihν (12)

describes the Yang–Mills field (Bµ, Gµν) with the symplectic group
Sp(Cℓ(1, 3)) of gauge symmetry. The dimension of the Lie algebra
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sp(Cℓ(1, 3)) is equal to 10. Hence the Yang–Mills field (Bµ, Gµν) de-
scribes 10 types of spin 1 elementary particles (mediators), which in-
teract with the initial spin 1/2 particle (wave function (ihµ, φ)). The
model Dirac equation does not contain the mass m of spin 1/2 particle.
We see massm only at the right hand part of Yang–Mills equations (12)
in the term 3m3/16. Therefore the constant 3m3/16 can be considered
as a charge of spin 1/2 particle relevant to the gauge field (Bµ, Gµν).

Conclusion. In considered model, which based on equations (7), spin 1/2
particles acquire masses by interaction between these fermions and the (spin
1) gauge field with symplectic symmetry.
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