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Degenerate homogeneous parabolic equations

associated with the infinity-Laplacian

Manuel Portilheiro∗

Juan Luis Vázquez†

Abstract

We prove existence and uniqueness of viscosity solutions to the degenerate parabolic

problem ut = ∆h

∞u where ∆h

∞ is the h-homogeneous operator associated with the infinity-

Laplacian, ∆h

∞u = |Du|h−3〈D2uDu,Du〉. We also derive the asymptotic behaviour of u

for the problem posed in the whole space and for the Dirichlet problem with zero boundary

conditions.

1 Introduction

In this paper we study the following class of degenerate parabolic equations for u : Q → R,
u = u(x, t) with a parameter h > 1:

ut −∆h
∞u = 0, in Q,(1.1)

u = g, on Γ,(1.2)

where ∆h
∞ denotes the h-homogeneous degenerate operator,

∆h
∞u := |Du|h−3

d
∑

i,j=1

uxixj
uxi

uxj
.

Note the h stands for the homogeneity degree of the operator. The equation is posed for (x, t) ∈
Q := Ω × (0, T ), where Ω ⊂ R

d is open (not necessarily bounded), 0 < T 6 ∞, Γ = ∂pQ the
parabolic boundary of Q and g : Γ → R is a continuous function.

Equation (1.1) has been studied in two particular cases, h = 1 and h = 3, which correspond to
the two common definitions of the infinity-Laplacian. For h = 1 we find the usual 1-homogeneous
infinity-Laplacian operator, ∆∞ u = |Du|−2

∑

i,j uxixj
uxi

uxj
, so that for other h we get the for-

mula ∆h
∞u = |Du|h−1(∆∞ u). The infinity-Laplacian operator has received a lot of attention

in the last decade, notably due to its application to image processing. Most of the interest-
ing properties of the ∞-Laplace equation can be found in Crandall’s enjoyable paper [C] (the
long list of references therein covers most of what we avoid listing here). Regarding the evolu-
tion of the infinity-Laplacian, the above two cases (h = 1, 3) have been studied in a number of
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works. The 1-homogeneous version has been considered by Wu, Juutinen-Kawhol and Barron-
Evans-Jensen ([W, JK, BEJ]; see [JK] for additional references in applications), whereas the 3-
homogeneous equation has been treated by Crandall-Wang, Akagi-Suzuki, Akagi-Juutinen-Kajikiya
and Larençot-Stinner ([CW, AS, AJK, LS]).

We think that equation (1.1), and its generalization (1.3), apart from their applications, have
intrinsic interest, as they are degenerate parabolic, singular when h < 3, do not correspond to a
geometric equation, are not variational and are not in divergence form (with the exception of the
1-homogeneous infinity-heat equation in two space dimensions, [DGIMR]). They constitute a class
of equations with particular difficulties and properties.

It is also worthwhile pointing out that radial solutions of (1.1) (or if we consider the equation in
one space dimension) correspond to solutions of the p-Laplace evolution equation

ut = div
(

|Du|p−2Du
)

in one space dimension with h = p − 1. In fact, a comparison between the radial solutions in
Section 3 and solutions of the p-Laplace evolution make this evident.

Here we consider all cases h > 1. Since the results and techniques for h = 1 are slightly different,
we will not consider this case below and will treat it in a separate paper. For the case h = 3 we
extend slightly both the existence and the asymptotic results. Our existence result allows for an
extra source term H(u) (see (1.3) bellow) and we do not impose the exterior sphere condition.

We are specially interested in the asymptotic behaviour of solutions. We make the assumption of
nonnegativity on data and solutions. For bounded domains we do not impose any extra conditions
on Ω. We also study the Cauchy problem posed in the whole Rd, where the decay rate is different,
as expected, and we get a precise convergence result to a self-similar solution of Barenblatt type.

1.1 Main results

To obtain the asymptotic behaviour on bounded domains it will be useful to prove existence for a
slightly more general equation, allowing for zero-order terms. Therefore, we consider

(1.3) ut = ∆h
∞u+H(u),

where H : R → R is a continuous function satisfying H(0) = 0 and growing at most linearly at
infinity, that is, there exists M > 0 such that |H(y)| 6 M |y|.

Theorem 1.1 (Existence). Let Q ⊂ R
d+1, g : Γ → R be continuous and H : R → R be as above.

If either Ω is bounded or g is bounded, uniformly continuous in Γ and

lim
R→∞

sup
|x|>R,t∈[0,T )

|g(x, t)| = 0,

then there exists a unique continuous viscosity solution u of (1.3) with u = g on Γ whose modulus
of continuity depends on the modulus of continuity of g. If g is Lipschitz continuous, then so is u
and its Lipschitz constant depends on the Lipschitz constant of g.

Remark. In the case h = 3 this slightly extends [AS, Theorem 2.5], not only regarding the extra
source term H(u), but as we do not impose the exterior sphere condition on the boundary of Ω
and we consider unbounded sets.

We want to analyse the large time behaviour of the solutions of (1.1)–(1.2) in two cases. The first
is the Cauchy problem, Ω = R

d, with compactly supported initial condition g = u0 ∈ Cc(R
d).

(1.4)

{

ut = ∆h
∞u, in R

d × (0,∞),

u(x, 0) = u0(x).
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In this case u converges to a radial decaying solution.

Theorem 1.2 (Asymptotic behaviour for the Cauchy problem). Let u be the unique viscosity
solution of (1.4) with u0 ∈ Cc(R

d) not identically zero, u0 > 0. Then, for some R∗ > 0,

lim
t→∞

t−
1
2h sup

x∈Rd

|u(x, t)−BR∗,h(x, t)| = 0.

where BR,h is the Barenblatt solution, which takes the form

BR,h(x, t) := ch t
− 1

2h

[

R
h+1
h − t−

h+1

2h2 |x|
h+1
h

]
h

h−1

+
,

as given in (3.1).

Next we analyse the Dirichlet problem with homogeneous boundary conditions,

(1.5)











ut −∆h
∞u = 0, in Q,

u(x, 0) = u0(x), on Ω,

u(x, t) = 0, for x ∈ ∂Ω, t > 0,

where u0 ∈ C(Ω) satisfies u0(x) = 0 for x ∈ ∂Ω, Ω bounded and Q = Ω× (0,∞). For nonnegative
initial data, we obtain the following.

Theorem 1.3 (Asymptotic behaviour for the homogeneous Dirichlet problem). Suppose u0 ∈
C(Ω), u > 0, u0 6≡ 0 and u0(x) = 0 for x ∈ ∂Ω. There exists a continuous function FΩ : Ω → R

such that the solution of (1.5), u satisfies

lim
t→∞

t
1

h−1 u(x, t) = FΩ(x).

Remark (1). Naturally, the result holds for constant boundary data with initial condition above
(below) this constant, since adding a constant to u still gives a solution of the problem.

Remark (2). We will show (Theorem 6.3) that the function GΩ := (h − 1)
1

h−1FΩ is a positive
solution of the eigenvalue problem

−∆h
∞G = G.

or

−∆∞ G =
G

|DG|h−1
.

This is a variation of the eigenvalue problem for the infinity-Laplacian studied in [J],

−∆∞ G = λG

and a variation of the nonlinear eigenvalue problem considered in [PV]

−∆∞ G = λGp, 0 < p < 1

(in connection with this, [JR] considers “large solutions” of this equation with p > 1). Note also

that the function (x, t) 7→ t
1

h−1FΩ(x), which we call the friendly giant, is a generalization of the
solutions of the form (3.3) for the radial case.

Notations

We always assume Ω ⊂ R
d is open and denote by Q a solid cylinder of the form Q × (t0, t1),

t0 < t1. We will also separate the parabolic boundary of Q into a lateral boundary and the base,
∂pQ = ∂lQ ∪ ∂bQ, with ∂lQ = ∂Ω× (t0, t1) and ∂bQ = Q̄× {t0}.
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2 Viscosity solutions

We start our analysis by defining viscosity solutions for Equation (1.1). Note that since the equation
is singular for h ∈ (1, 3) at points where the gradient of the function vanishes, the usual definition
of viscosity solution needs to be adapted at the points of singularity. For the singular case we
could use the definition from [CGG] (see also [JK] for the case h = 1). However, the singularity
is removable, and since we are not considering here h = 1 we can simply recast Equation (1.1) as
follows:

We can write this equation as

(2.1) ut + Fh(D
2u,Du) = 0 with Fh(M,p) := −|p|h−3(Mp) · p

and Fh : Sd × (Rd \ {0}) → R, where Sd is the set of d× d real symmetric matrices. Since, even for
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1 < h < 3, lim|p|→0 Fh(M,p) = 0 for every M ∈ Sd, we can take the continuous extension of Fh,

Fh(M,p) :=

{

Fh(M,p) if p 6= 0,

0 if p = 0,

and the usual theory of viscosity solutions can be applied to Fh. For simplicity we abuse notation
and write Fh to denote its continuous extension Fh.

Definition 2.1 (Viscosity Solutions). An upper [lower] semicontinuous function u : Q → R is a
viscosity subsolution [supersolution] of (1.1) in Q if and only if for every P0 ∈ Q and every
function φ ∈ C2,1(Q) touching u from above [below] at P0, that is,

(2.2)
u(P0) = φ(P0) and

u(P ) < φ(P ) [u(P ) > φ(P )] for every P ∈ Q \ {P0},

we have

(2.3) φt + Fh(D
2φ,Dφ) 6 0 [φt + Fh(D

2φ,Dφ) > 0].

A continuous function u ∈ C(Q) is a viscosity solution when it satisfies both inequalities.

Let us also record here the comparison property [CIL, Theorem 8.2] that directly applies to
(1.1)–(1.2) (see also [AS, Theorem 2.3]).

Theorem 2.2 (Comparison Principle). Let u be an upper semicontinuous viscosity subsolution,
and v be a lower semicontinuous viscosity supersolution of (1.1) such that u 6 v on ∂pQ. Then
u 6 v in the whole cylinder Q.

Furthermore, if u and v are viscosity solutions of (1.1), then

max
Q

|u− v| 6 max
∂pQ

|u− v|.

Remark. Equation (1.1) has a few symmetries which we will explore. Whenever u(x, t) is a classical
solution, it is immediate to check that for any orthogonal d×d matrix O, for any (xo, to) in R

d×R,
c ∈ R and any λ and s positive,

(2.4)

v(x, t) =u (O(x − xo), t− to) + c

w(x, t) =λu(sx, λh−1sh+1t)

z(x, t) =− u(x, t)

are also solutions in an appropriate domain. As usual, the argument can be transposed to viscosity
solutions.

3 Special solutions

3.1 Similarity solutions

We need to obtain certain explicit solutions. Let us first look at similarity solutions of (1.1). We
are mainly interested in radial solutions, u(x, t) = v(r, t). It is easy to see that v should solve

vt = (vr)
h−1vrr =

1

h

(

(vr)
h
)

r
,
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which is a 1-dimensional p-Laplacian equation with p = h+1. Similarity solutions for this equation
are well known. In fact, if we take v of the form

v(r, t) = tαf(y), with y = rtβ .

Then, we get for f the equation

tα−1 [αf(y) + βyf ′(y)] = tαh+β(h+1) (f ′(y))
h−1

f ′′(y).

Choosing α = β = − 1
2h we obtain

αyf(y) =
1

h
(f ′(y))

h
+ C.

If we take C = 0 we can integrate once more to get (where C is a differenc constant)

f(y) =

[

C −

(

1

2

)
1
h h− 1

h+ 1
y

h+1
h

]
h

h−1

+

,

which leads to the usual similarity solution

(3.1) BR,h(x, t) = Bh(x, t) := ch t
− 1

2h

[

R
h+1
h − t−

h+1

2h2 |x|
h+1
h

]
h

h−1

+
,

where

ch =

(

1

2

)
1

h−1
(

h− 1

h+ 1

)
h

h−1

.

Note that R denotes the radius of the positivity set of BR,h at time t = 1. It is straightforward to
prove this defines a viscosity solution.

Proposition 3.1. The function BR,h defined in (3.1) is a viscosity solution of (1.1) in R
d×(0,∞).

Proof. Let us for convenience define A(r, t) =
[

R
h+1
h − t−

h+1

2h2 r
h+1
h

]

+
. We have

∂tBh(x, t) = −
ch
2h

t−
2h+1
2h A

h
h−1 +

ch(h+ 1)

2(h− 1)h
t−

2h(h+1)+1

2h2 r
h+1
h A

1
h−1 ,

DBh(x, t) = −
ch(h+ 1)

h− 1
t−

2h+1

2h2 r
1
hA

1
h−1

x

|x|
,

D2Bh(x, t) =
ch(h+ 1)2

h(h− 1)2
t−

3h+2

2h2 r2/hA−h−2
h−1

x⊗ x

|x|2

+
ch(h+ 1)

h− 1
t−

2h+1

2h2 r−
h−1
h A

1
h−1

(

h− 1

h

x⊗ x

|x|2
− I

)

.

From this computation we see that the set of points where Bh is not twice differentiable is
W :=

{

(x, t) ∈ R
d × (0,∞) | A(|x|, t) = 0 or x = 0

}

. Then, from the construction, Bh is a clas-
sical solution of (1.1) in R

d× (0,∞) \W . To check Bh is a viscosity solution we just have to verify
(2.3) at the points of W . Note also that Bh is C1 everywhere and DBh = 0 on W .

Let P0 = (x0, t0) ∈ W be arbitrary and assume φ touches u from above at P0, that is, it satisfies
(2.2). Since Bh is C1, it must be that φt(P0) = ∂tBh(P0) and Dφ(P0) = 0. If x0 6= 0, then

6



A(|x0|, t0) = 0 and φt(P0) = 0, otherwise, when x0 = 0, we have φt(P0) = − ch
2h t

− 2h+1
2h

0 R
h+1
h−1 . In

any case we have
φt(P0) 6 0 = −Fh(D

2φ(P0), Dφ(P0))

and (2.3) is satisfied.

Assume now φ touches u from below at P0. We claim that the function Bh can not be touched
from below by a C2 function at a point (0, t0). If this were the case we would have

cht
− 1

2hA(|x|, t)
h

h−1 − cht
− 1

2h
0 R

h+1
h−1 = Bh(x, t) −Bh(P0) > φ(x, t)− φ(0, t0)

> φt(x, t)(t− t0) +
1

2
(D2φ(P0)x) · x+ o(|x|2) + o(t) as (x, t) → P0.

Taking t = t0 and x = λe where λ > 0 and e is any unit vector in R
d we obtain

cht
− 1

2h
0

(

A(λ, t0)
h

h−1 −R
h+1
h−1

)

>
λ2

2
(D2φ(P0) e) · e+ o(λ2) as (x, t) → P0.

Since

lim
λ↓0

A(λ, t0)
h

h−1 −R
h+1
h−1

λ2
= −∞

this leads to a contradiction and the claim is proved.

It follows that P0 must satisfy A(|x0|, t0) = 0. At points where this occurs we have φt(P0) =
∂tBh(P0) = 0 and Dφ(P0) = DBh(P0) = 0, hence φt(P0) + Fh(D

2φ(P0), Dφ(P0)) = 0 and (2.3) is
again satisfied.

Remark. Observe that for h ∈ (1, 2] the only points where Bh is not twice differentiable are of the
form (0, t), hence our proof can be simplified in these cases.

3.2 Separation of variables

Let us now look for solutions of the form

u(x, t) = T (t)X(r),

where r = |x|. From equation (1.1) we must have

T ′

|T h−1|T
=

|X ′|h−1X ′′

X
= −m

for some m ∈ R. Using the second symmetry in (2.4), we can rescale this equation to choose the
value of m that better suits us. It is convenient to take m = ± 1

h−1 .

3.2.1 Case m = 1
h−1

We can immediately integrate T and obtain for an arbitrary t0 ∈ R

T (t) =
1

(t− t0)
1

h−1

.

7



To integrate X we use the change of variable

r(s) = κ

∫ s

0

(sin(σ))
α
dσ,

where α = h−1
h+1 and κh+1 = 2α (a similar change of variable is performed in [AJK] in the case

h = 3). Since r′(s) > 0 for s ∈ (0, π), this transformation is invertible from [0, π] to [0, R], where

R = κ

∫ π

0

(sin(σ))
α
dσ.

Hence, its inverse function s : [0, R] → [0, π] is well defined, strictly increasing, s(0) = 0, s(R) = π
and s′(r) = κ−1 (sin (s(r)))

−α
. Let us define X∗ : [0, R] → R by

X∗(r) := cos(s(r)).

We have

X ′
∗(r) = −

1

κ
sin1−α(s(r)), X ′′

∗ (r) = −
1− α

κ2
sin−2α(s(r)) cos(s(r)).

Since α ∈ (0, 1), the function X∗ is C1[0, R] and C2(0, R). We can extend X∗ to R
+
0 by reflection,

(3.2) X(r) =

{

X∗(r − 2kR) if r ∈ [2kR, (2k + 1)R) for k ∈ N0,

X∗(2kR− r) if r ∈ [(2k − 1)R, 2kR) for k ∈ N.

Then X is 2R-periodic C1 function as is the function |X ′|h−1X ′. Furthermore, the latter satisfies

[

|X ′(r)|h−1X ′(r)
]′
= −

1− α

κh+1
X(r) = −mX(r)

even at the points where X is not twice differentiable, that is, the points of the form kR, with
k ∈ N0.

Proposition 3.2. For any t0 ∈ R and any r0 > 0, the function

(3.3) S(x, t; r0, t0) =
Xr0(x)

(t− t0)
1

h−1

,

where Xr(x) =
(

2r
R

)− h+1
h−1

X
(

R|x|
2r

)

, with X given by (3.2), is a viscosity solution of (1.1) in

R
d × (t0,∞). In particular, the restriction of S to Qr0,t0(0) := Br0(0) × (t0,∞) is a positive

solution of the homogeneous Dirichlet problem in this set.

Proof. Using the x-symmetry in (2.4), it is enough to consider r0 = R/2. From the properties
of X deduced above, it is clear that S is a classical, and consequently a viscosity solution of
(1.1) off the set Σ := {(x, t) | |x| = kR, k ∈ N0}. Moreover, S is C1 in the whole space with

St(x, t) = −(t− t0)
− h

h−1X(|x|) and DS(x, t) = (t− t0)
− 1

h−1X ′(|x|) x
|x| .

We need to check that (2.3) is satisfied on Σ. To this effect, let P∗ = (x∗, t∗) ∈ Σ, t∗ > t0,
and suppose φ ∈ C2,1 touches S from above at P∗. As in the proof of Proposition 3.1, since
X ′′(r) = +∞ at the points of the form r = (2k + 1)R, k ∈ N0, we see that |x∗| can not be of this
form, hence |x∗| = 2kR for some k ∈ N0. Now we have Dφ(P∗) = DS(P∗) = 0 and

φt(P∗) + F (D2φ(P∗)) = −(t∗ − t0)
− 1

h−1 < 0,

which is (2.3). The verification of the other half of Definition 2.1 is similar.

8



3.2.2 Case m = − 1
h−1

In this case we obtain a blow-up solution with

T (t) = (t0 − t)−
1

h−1 ,

for t < t0, and

X(r) = chr
h+1
h−1 ,

with ch as in (3.1). In fact, we will need a slightly more general solution.

Proposition 3.3. For any r0, t0 ∈ R, the function

V (x, t; r0, t0) =
ch [|x| − r0]]

h+1
h−1

+

(t0 − t)
1

h−1

is a viscosity solution of (1.1) in R
d × (−∞, t0).

The proof is similar to the proof of the previous proposition, having as the difficult points the
sphere {|x| = r0} when r0 > 0.

3.3 Traveling waves

Let us finally look for solutions of the form

u(x, t) = f(x1 − ct).

The function f(η) must satisfy
|f ′|h−3f ′f ′′ = −c.

Taking the constants of integration equal to zero (we can recover them using the symmetries in
(2.4)), and ignoring the stationary solutions (c = 0), we integrate twice to obtain

f(η) =
1

|c|h
(−c(h− 1)η)

h
h−1 .

Therefore, we obtain

u(x, t) =
dh
|c|

(

c2t− cx1

)
h

h−1 ,

with dh = (h−1)
h

h−1

h , valid for x1

c 6 t. Since this function is C1 up to the hyperplane x1 = ct, with
ut and Du vanishing there, we can proceed as in the two previous propositions to get the following
one.

Proposition 3.4. For any unitary vector ν ∈ R
d and c ∈ R, the function

T (x, t; ν, c) =
dh
|c|

[

c2t− cx · ν
]

h
h−1

+

is a viscosity solution of (1.1) in R
d × R.
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4 Existence

The main purpose of this section is to prove a solution to (1.1)–(1.2) exists. However, as we mention
in the introduction, and without much additional cost, it will useful to allow a zeroth-order term
as in (1.3). With ε > 0 and δ > 0, we start with the approximation

(4.1)

{

ut = Lε,δ(u) := Aε,δ(Du) : D2u+H(u) in Q

u(P ) = gε,δ(P ), on ∂pQ.

where the d× d matrix Aε,δ(p) is given by

Aε,δ(p) = εI + (|p|2 + δ2)(h−3)/2p⊗ p.

The proofs of the estimates for the approximate problem (4.1) are very similar to the corresponding
proofs of existence in [PV] or [JK]. For clarity we will present them schematically (see also [AS],
where a slightly different approximation is used).

4.1 Lipschitz estimate in time

We start with Lipschitz regularity in t and then prove the regularity in x.

Theorem 4.1. Suppose g ∈ C2(∂pQ) and u = uε,δ is a smooth solution of (4.1). Then there
exists K1 > 0 depending only on ‖D2g‖∞, ‖Dg‖∞, ‖g‖∞ and ‖gt‖∞ such that

|u(x, t)− g(x, 0)| 6 K1t

for any (x, t) ∈ Q. If g is only continuous in x and bounded in t then the modulus of continuity of
u on Ω× [0, t∗] (for small t∗) can be estimated in terms of ‖g‖∞ and the modulus of continuity of
g0 := g

∣

∣

∂pQ
in x.

Proof. Assume for the moment g ∈ C2 and H ≡ 0. Let λ > 0 and v±(x, t) = g0(x) ± λt. Then,
if we choose λ large enough, v+, respectively v−, becomes a super-, respectively subsolution of
(4.1) which lies above, respectively below u on ∂pQ. Therefore, by the classical comparison (see
for example [LSU]),

|u(x, t)− g0(x)| 6 K0t

for t ∈ [0, T ] where K0 is a constant depending only on the stated norms of g.

If H 6≡ 0, then v± is still a super/subsolution of (4.1) in Ω × (0, T∗), above/below g on ∂pQ, if
we further choose λ to satisfy λ > 2M‖g‖∞ and T∗ < (2M)−1. Therefore the estimate is valid on
this time interval. Then we can iterate the argument until we cover the whole interval [0, T ].

Assume now g is only continuous in x and bounded in t and let ω0 be the modulus of continuity
of g0. Let us fix a point x0 ∈ Ω and 0 < ρ < min(dist(x0, ∂Ω), 2

√

‖g‖∞). Let us also define

g±(x, t) = g0(x0)± ω0(ρ)±
2‖g‖∞
ρ2

|x− x0|
2.

It is easy to see that g− 6 g 6 g+ on Γ and thus, again from the comparison principle, u− 6 f 6 u+,
where u± is the solution of (4.1) with initial and boundary condition g±. Since g± are in C2(Rd×R),
we can use the above estimate to conclude that

|u±(x0, t)− g±0 (x0)| 6 K±
0 t

10



where K±
0 depends on ‖g‖∞ and ρ. Therefore,

|u(x0, t)− g0(x0)| 6 2K+
0 t+

3

2
ω0(ρ).

This inequality concludes the proof.

Using (4.1) we obtain the full Lipschitz estimate in time.

Theorem 4.2. If u is a solution of (4.1) in Q and g ∈ C2(Q), then there exists K2 > 0 depending
only on ‖D2g‖∞, ‖Dg‖∞, ‖g‖∞ and ‖gt‖∞ such that

|u(x, t)− u(x, s)| 6 K2|t− s|

for every x ∈ Ω, t, s ∈ (0, T ). If g is merely continuous, we can estimate the modulus of continuity
of u on Q in terms of ‖g0‖∞ and the modulus of continuity of g0.

Proof. Taking τ > 0 and
û(x, t) := u(x, t+ τ),

using the Theorem 4.1 it is immediate to get

|u(x, t)− û(x, t)| 6 K2t

in Ω× [0, T − τ ]. The case when g is only continuous is done as in the previous proof.

4.2 Hölder continuity in space

Theorem 4.3. Let u be the solution of (4.1) with g ∈ C2(Q)∩Lip(Q). There exist α ∈ (0, 1) and
K3 > 1, depending only on, ‖g‖∞, ‖Dg‖∞, ‖gt‖∞ and α, such that for every ε and δ sufficiently
small and for every P0 = (x0, t0) ∈ Γ and x ∈ Ω with |x− x0| 6 1 we have

|u(x, t0)− g(x0, t0)| 6 K3|x− x0|
α.

Proof. Let us define
v+(x, t) = g(x0, t0) +K∗|x− x0|

α + λ (t0 − t) ,

where K∗ > 1 and λ > 0 are constants which we will choose in such a way as to make v+ a
supersolution lying above u on the appropriate domain. Let us take x ∈ Ω∩B1(x0) and t ∈ (0, t0).
An easy computation, using the fact that |x− x0| 6 1, yields

v+t − Lε,δv+ > −λ+
K∗α(1 − α)

|x− x0|2−α

(

f

(

αK∗

|x− x0|1−α

)

− ε
d− 1

1− α

)

−M(‖g‖∞ +K∗ + Tλ),

where

f(z) := z2
(

δ2 + z2
)

h−3
2 .

Since |x−x0| 6 1, we need only consider z > αK∗. If h > 3, then f(z) > zh−1 and when 1 < h < 3
we have f(z) > 2(h−3)/2zh−1 > zh−1 provided z > δ. In any case it holds

v+t − Lε,δv+ > −λ+
K∗α(1 − α)

|x− x0|2−α

(

αh−1Kh−1
∗ − ε

d− 1

1− α

)

−M(‖g‖∞ +K∗ + Tλ) > 0

11



whenever ε, δ < 1 < αK∗,

αK∗ >

(

ε(d− 1)

1− α

)
1

h−1

and M‖g‖∞ + (1 +MT )λ < (1− α)αhKh
∗ − (ε(d− 1) +M)αK∗.

We want to have v+ > u on Q∗ = (Ω∩B1(x0))× (t0 − t∗, t0), where we take t∗ := min{1, t0}. Let
P = (x, t) ∈ ∂pQ

∗. Let us first assume P is on the lateral boundary of Q∗. Since u = g on ∂Ω and
|x− x0| < 1,

u(P ) 6 u(P0) + ‖Dg‖∞|x− x0|+ ‖gt‖∞(t0 − t)

6 g(P0) +K∗|x− x0|
α + λ(t0 − t) = v+(P ),

provided K∗ > ‖Dg‖∞ and λ > ‖gt‖∞. If, on the other hand, x ∈ Ω ∩ ∂B1(x0), then, using
comparison,

u(P ) 6 ‖g‖∞ 6 u(P0) +K∗ + λ(t0 − t) 6 v+(P ),

provided K∗ > ‖g‖∞.

We consider now the case when P is on the bottom of the cylinder Q∗. Let us first assume
x ∈ Ω ∩B1(x0) and t = t0 − 1. In this case, again using comparison, we get

u(P ) 6 ‖g‖∞ 6 u(P0) +K∗|x− x0|
α + λ = v+(P ),

as long as λ > ‖g‖∞. Finally, when t0 < 1, and hence Q∗ = (Ω ∩B1)× (0, t0), we have that u = g
on the bottom, therefore

u(P ) = u(x, 0) = g(x, 0) 6 g(x0, t0) + ‖Dg‖∞|x− x0|+ ‖gt‖∞t0

6 g(P0) +K∗|x− x0|
α + λt0 = v+(P ),

provided, once again, K∗ > ‖Dg‖∞ and λ > ‖gt‖∞.

To summarize, we have v+ > u on ∂pQ
∗, and hence, by comparison, v+ > u in Q∗, if ε, δ < 1,

K∗α > max

{

1, ‖Dg‖∞, ‖g‖∞,

(

ε(d− 1)

1− α

)
1

h−1

}

,

M‖g‖∞ + (1 +MT )λ < (1− α)αhKh
∗ − (ε(d− 1) +M)αK∗ and

λ > max {‖gt‖∞, ‖g‖∞} .

Since h > 1 we can choose the constants K∗ and λ to satisfy these inequalities. We obtain

u(x, t0)− g(x0, t0) 6 v+(x, t0)− g(P0) = K∗|x− x0|
α.

Using the barrier v− := g(P0)−K∗|x− x0|
α + λ(t− t0) we get the reverse inequality,

u(x, t0)− g(x0, t0) > −K∗|x− x0|
α.

We can extend the estimate to the interior of the domain. We will use the following notation for
convenience. For z ∈ R

d, we define Ωz = z + Ω = {x + z | x ∈ Ω} and for r > 0, Ωr = {x ∈ Ω |
dist(x, ∂Ω) > r}. Given x, y ∈ R

d we define the closed segment [x, y] := {θy+(1−θ)x | 0 6 θ 6 1}.
The semi-open and open segments [x, y), (x, y] and (x, y) are defined analogously.

12



Theorem 4.4. The conclusion of Theorem 4.3 is valid in the interior of Q, that is, there exists
K4, depending only on ‖g‖∞, ‖Dg‖∞ and ‖gt‖∞, such that for ε and δ sufficiently small and for
every x, y ∈ Ω

|u(x, t)− u(y, t)| 6 K4|x− y|α.

Proof. To simplify notation, in this proof we omit the dependence of u in t, since time does not
play any role. Take a vector z ∈ B1(0) and let V = Ω∩Ωz. Let us define uz(x) := u(x− z). From
Theorem 4.3 we have that |u(x)− uz(x)| 6 K3|z|

α on ∂V (x ∈ ∂V implies that x ∈ ∂Ω or x− z ∈
∂Ω). Hence, using the comparison principle we have that uz(x)−K3|z|

α 6 u(x) 6 uz(x) +K3|z|
α

for x ∈ V . This means that whenever x, y ∈ Ωx−y ∩ Ω or x, y ∈ Ωy−x ∩ Ω, with |x − y| 6 ρ3, we
have |u(x)− u(y)| 6 K3|x− y|α. In particular, the same is true whenever x, y ∈ Ω|x−y|.

When |x− y| > 1, using the comparison principle we obtain the conclusion of the theorem taking
K4 = 2‖g‖∞. Let us therefore assume that |x−y| 6 1 and x−y /∈ Ω|x−y|. Let us first further assume
that [x, y] ⊂ Ω. In this case we can take the two segments [x,w] and [w, y], where w = (x + y)/2
is the midpoint of [x, y], let z = y − w and note that w, y ∈ Ωz ∩ Ω and x,w ∈ Ω−z ∩ Ω. Hence,
from the first step of this proof, we have

|u(x)− u(y)| 6 |u(x)− u(w)| + |u(w)− u(y)| 6 K3(|x− w|α + |w − y|α)

6 21−αK3|x− y|α.

If the segment [x, y] is not completely in Ω, then we can certainly find w1, w2 ∈ ∂Ω ∩ [x, y]
(not necessarily different) such that [x,w1) ∈ Ω and (w2, y] ∈ Ω. In this case we can apply
Theorem 4.3 directly to get |u(x)−u(w1)| 6 K3|x−w1|

α and |u(w2)−u(y)| 6 K3|w2 − y|α. Since
|u(w1) − u(w2)| 6 ‖Dg‖|w1 − w2| 6 K3|w1 − w2|

α, we easily get the result with K4 = 41−αK3.
This finishes the proof.

4.3 Lipschitz estimate in space (ε = 0)

As in [PV], we obtain Lipschitz regularity in space when we take ε = 0 in the approximation (4.1).

Theorem 4.5. Let g ∈ Lip(Q) and suppose u is a viscosity solution of (4.1) with ε = 0. There
exist a constant K5, depending only on ‖g‖∞, ‖Dg‖∞ and ‖gt‖∞ (independent of δ ∈ (0, 1)), such
that for every P0 = (x0, t0) ∈ ∂Ω× (0, T ) and x ∈ Ω ∩B1(x0) we have

|u(x, t0)− g(x0, t0)| 6 K5|x− x0|.

Furthermore, if g is only continuous, then the modulus of continuity of u can be estimated in terms
of ‖g‖∞ and the modulus of continuity of g.

Proof. Let K∗, L∗ and λ be positive constants and define

v+(x, t) = g(P0) + L∗|x− x0| −K∗|x− x0|
2 + λ(t0 − t).

We will check v+ is a viscosity strict supersolution onQ∗ (Q∗ defined as in the proof of Theorem 4.3)
above g for an appropriate choice of constants L∗, K∗ and λ. Observe that

v+t (x, t)− L0,δv+(x, t) = −λ+ 2K∗f(|L∗ − 2K∗|x− x0||)−H(v+(x, t)),

where, as in the proof of Theorem 4.3, f(z) = (z2 + δ2)(h−3)/2z2. Recall from that proof that
f(z) > zh−1 for z > 1 and for all h > 1. Hence, if we choose L∗ and K∗ such that L∗ > 3K∗ and
2Kh+1

∗ − 2MK∗ > (1 +MT )λ+M‖g‖∞, the above inequality shows that v+ is a supersolution.
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We need to further choose the constants so that v+ > f on the parabolic boundary of Q∗. Let
P = (x, t) be a point in Γ∗ = ∂pQ

∗. If x ∈ ∂Ω, as before

u(P ) = g(P ) 6 g(P0) + ‖Dg‖∞|x− x0|+ ‖gt‖∞(t0 − t)

6 g(P0) + (L∗ − 1)|x− x0|+ λ(t0 − t) < v+(P ),

provided L∗ > ‖Dg‖∞ + 1, K∗ > 1 and λ > ‖gt‖∞. If x ∈ Ω ∩ ∂B1(x0), then

u(P ) 6 ‖g‖∞ 6 g(P0) + (L∗ − 1)|x− x0|+ λ(t0 − t) 6 v+(P ),

provided L∗ > ‖g‖∞ + 1 and yet again K∗ > 1.

When P = (x, t) is on the bottom of the cylinder Q∗, as before we consider two cases. When
t0 > 1, t = t0 − 1 and

u(P ) 6 ‖g‖∞ 6 g(P0) + λ < v+(P )

as long as λ > ‖gt‖∞ and L∗ > max{1,K∗}. On the other hand, if t0 < 1, t = 0 and hence

u(p) = g(P ) 6 ‖g‖∞ 6 g(P0) + λ < v+(P )

under the exact same conditions as for the previous formula.

Therefore, we have u 6 v+ on Γ∗, and thus by comparison on Q∗, as long as we take

λ > ‖gt‖∞, K∗ > max
{

1,
√

λ/2
}

and L∗ > max {2, ‖Dg‖∞ + 1, ‖g‖∞ + 1, 3K∗} .

Using once more the comparison principle, we have that for x ∈ Ω ∩B1(x0),

u(x, t0) 6 v+(x, t0) 6 g(P0) + L∗|x− x0|.

Using instead the barriers

v−(x, t) = g(P0)− L∗|x− x0|+K∗|x− x0|
2 + λ(t− t0)

we obtain the reverse inequality and, as a consequence, the Lipschitz estimate.

Let us finally merely assume that g is continuous and let ωg(σ) be a modulus of continuity at P0.
More specifically, let ωg be a continuous, decreasing function in σ such that |g(P )−g(P0)| 6 ωg(σ)
whenever max{|x− x0|, |t− t0|} 6 σ. Let σ ∈ (0, t0) and define the smooth functions

g±(x, t) := g(x0, 0)± ωg(σ)±
4‖g‖∞
σ2

|x− x0|
2 ±

2‖g‖∞
σ

|t− t0|.

If max{|x− x0|, |t− t0|} 6 σ, then

g−(P ) 6 g(P0)− ωg(σ) 6 g(P ) 6 g(P0) + ωg(σ) 6 g+(P ),

and if max{|x− x0|, |t− t0|} > σ then

g−(P ) 6 −‖g‖∞ 6 g(P ) 6 ‖g‖∞ 6 g+(P ).

Therefore, if u± are the solutions of (4.1) with ε = 0 and initial data g±, by comparison u− 6 u 6

u+ on Q. Since u± are smooth we can apply the first part of the theorem to deduce that

|u±(x, t0)− g±(P0)| 6 K+
5 |x− x0|,

where K+
5 depends on ‖g‖∞ and σ. From these inequalities we get

|u(x, t0)− g(P0)| 6 2K+
5 |x− x0|+

3

2
ωg(σ).

This finishes the proof.
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Our final estimate is the interior Lipschitz estimate.

Theorem 4.6. Let g and u be as in Theorem 4.5. For every x, y ∈ Ω and t ∈ (0, T )

|u(x, t)− u(y, t)| 6 K5|x− y|,

where K5 is the constant given in that theorem. If g is only continuous, then the modulus of
continuity of x 7→ u(x, t) can be estimated in terms of ‖g‖∞ and the modulus of continuity of g in
x.

Proof. The proof is similar to the proof of Theorem 4.4, but in this case it is easy to get the
optimal Lipschitz constant. Once again we omit the time dependence of u. Take z ∈ R

d such that
|z| 6 ρ5. Define V = Ω ∩ Ωz and let uz(x) := u(x − z). From previous theorem we know that
|u(x)−uz(x)| 6 K5|z| on ∂V . Using comparison, we have that uz(x)−K5|z| 6 u(x) 6 uz(x)+K5|z|
in V . Therefore, |u(x) − u(y)| 6 K5|x − y| if x, y ∈ Ωx−y, and in particular the same is true if
x, y ∈ Ω|x−y|, Ωr = {x ∈ Ω | dist(x, ∂Ω) > r}.

Suppose now x− y /∈ Ω|x−y| and let us first assume that the whole segment [x, y] = {z ∈ R
d | z =

θy + (1− θ)x, 0 6 θ 6 1} is in Ω. Let us assume without loss of generality that ρ = dist(x, ∂Ω) 6
dist(y, ∂Ω). We can find points xi, 0 6 i 6 n such that x = x0, xn = y, xi ∈ [xi−1, xi+1]
(1 6 i 6 n− 1), and ρi = |xi − xi−1| 6 ρ (1 6 i 6 n). Noting that xi, xi−1 ∈ Ωxi−xi−1 we can use
the previous step to conclude that |u(xi)− u(xi−1)| 6 K5|xi − xi−1|, and hence

|u(x)− u(y)| 6
n
∑

i=1

|u(xi)− u(xi−1)| 6 K5|x− y|.

If, on the other hand [x, y] /∈ Ω, then we can find points x1, x2 ∈ ∂Ω∩ [x, y] such that [x, x1) ⊂ Ω
and [x2, y]\{x2} ⊂ Ω. We can further choose w1 ∈ [x, x1], with |w1−x1| 6 1 and w2 ∈ [x2, y], with
|w2 − x2| 6 1. Then we apply the above to obtain |u(x) − u(w1)| 6 K5|x − w1|, |u(w2)− u(y)| 6
|w2 − y|, while from the previous theorem, |u(wi) − u(xi)| 6 K5|wi − xi|. Putting all these
inequalities together gives the Lipschitz estimate for this last case.

The proof of the statement with the modulus of continuity follows as in the proof of Theorem 4.4.

We finally prove Theorem 1.1. Existence is proved by piecing out the results in Theorems 4.2,
4.4 and 4.6, and using the standard compactness arguments, as is done in [PV, Theorem 1.1].
Uniqueness follows directly from the comparison principle, Theorem 2.2.

Proof of Theorem 1.1. The proof when Ω is bounded is similar to the proof of [PV, Theorem 1.1]
and we just sketch it here. Assume first g ∈ C2(Q) ∩ Lip(Q). The comparison principle and
Theorems 4.2 and 4.4 imply that the family of functions {uε,δ} is uniformly bounded and equicon-
tinuous, therefore, for some sequence εk → 0, uεk,δ → uδ, which, by a standard argument of
viscosity solutions, is a solution of (4.1) with eps = 0. Then, using Theorems 4.2 and 4.6, we can
find a sequence f δk → u. The stability arguments for viscosity solutions work here to show that u
is a viscosity subsolution of (1.1).

If Ω is not bounded we define ΩR := Ω∩Br(0), QR := ΩR× (0, T ] and gR : ΓR → R, ΓR = ∂pQR,
by gR(x, t) := 0 if |x| = R, gR(x, t) := χR(x)g(x, t) for (x, t) ∈ Γ ∩ QR, where χR(x) = χ(x/R)
and χ ∈ C∞

c (Rd) satisfies χ(x) = 1 if |x| 6 1/2, χ(x) = 0 if |x| > 1. In QR there exists a unique
viscosity solution with initial/boundary data gR. From the assumptions on gR, the estimates for
uR and the stability of the viscosity solutions we can let R → ∞ to obtain the result.
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5 Asymptotic behaviour in the whole space

We consider in this section Cauchy problem (1.4). We first obtain a decay rate for the solutions of
this problem and then prove the asymptotic convergence.

5.1 Decay rate

Using the similarity solutions and the comparison principle we readily obtain the following esti-
mates.

Theorem 5.1. Let u be the unique viscosity solution of (1.4) with u0 ∈ Cc(R
d) not identically

zero, u0 > 0. Then, there exist positive constants c and C depending only on u0 such that for t > 0

(5.1) c(1 + t)−
1
2h 6 max

x∈Rd
|u(x, t)| 6 C(1 + t)−

1
2h .

Moreover, the support of u expands continuously at a rate of the order of t
1
2h .

Proof. We can find similarity solutions B1 and B2 of the form (3.1) such that

±B1(x, 0) 6 u0(x) 6 ±B2(x, 0),

which immediately gives (5.1). Indeed, if xo is a point where u0(xo) 6= 0, then, with r sufficiently
small we can take B1(x, t) = Br,h(x−x0, t+1) and with R sufficiently largeB2(x, t) = BR,h(x, t+1).

To prove that the support expands continuously, take a point P∗ on the boundary of the support
of u and the take a function of the form B1, as above, with B1 6 u, with center sufficiently close
to P∗. Then, the comparison principle implies that the support cannot jump “inward” toward the
support of B1. In the other direction, we can find a function V2 of the form given in Proposition 3.3
such that u 6 V2 for a short time. Again the comparison principle implies that the support can not
jump “outward” beyond the support of V2. The rate of expansion of the support of u is controlled
by the rates of expansion for B1 and B2 above, that is, it has to be t

1
2h .

5.2 Asymptotic behaviour. Proof of Theorem 1.2

Step 1. The idea of the proof is the same as in the proof of [PV, Theorem 1.4]. First we let B1

and B2 sandwich u as in the proof of Theorem 5.1. Then consider the family of rescaled solutions
uλ, Bλ

1 and Bλ
2 , where for a function f(x, t) we define fλ(x, t) by

fλ(x, t) = λ
1
2h f(λ

1
2h x, λt).

Since B1 and B2 are invariant under this transformation, on any compact time interval [t1, t2] with
0 < t1 < t2 < ∞ the family uλ is continuous, uniformly bounded, and supported on a uniform ball
BR∗

(0).

Step 2. Now we use Aleksandrov’s principle, as explained for instance in [CVW], to show that for
a solution u(x, t) with initial data u0(x) > 0 supported in the ball BR(0) we have for all t > 0 and
all r > R

inf
|x|=r

u(x, t) = max
|x|=r+2R

u(x, t)
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Note that in doing this, we need to use the traveling wave solutions from Proposition 3.4 to show
that the solutions are almost radial. If this is applied to the rescaled solutions, we get for all
|x| > Rλ = Rλ−1/(2h)

inf
|x|=r

uλ(x, t) = max
|x|=r+2Rλ

uλ(x, t).

Step 3. We now fix t = 1, λ very large, so that Rλ 6 ε is very small, and define

ũ1(r) := inf
|x|=r

uλ(x, 1), ũ2(r) := max
|x|=r

uλ(x, 1).

We easily verify that ũ1(r), ũ2(r) are nonnegative and radially symmetric functions, both supported
in the same ball BR∗

(0), they are nonincreasing as functions of r for r > ε, and we also have

ũ2(r) > ũ1(r) > ũ1(r + ε)

for all r > ε. It is then easy to verify that the 1-d mass of ũ2(r) − ũ1(r) is less than Cε.

Step 4. If u1(r, t) and u2(r, t) are the corresponding radial solutions of the problem with initial
data at t = 1 given by ũ1(r) and ũ2(r), respectively, we have for all t > 1

u1(r, t) 6 uλ(x, t) 6 u2(r, t)

As with the convergence result for the 1-d PME, cf. [V, Theorem 18.1], the result follows.

6 Asymptotic behaviour on bounded domains

In this section we analyze the asymptotic behaviour of the solution of the homogeneous Dirichlet
problem (1.5). As in the previous section, we first obtain a decay rate for the solutions of the
problem and then prove the asymptotic convergence.

6.1 Decay rate

We start by proving that the decay rate for the solutions of (1.5) is t−
1

h−1 , the same as the decay
rate of the friendly giants in (3.3). Of course, this is not a coincidence.

Theorem 6.1. Let u0 satisfy the condition of Theorem 1.3, let u be the unique solution of (1.5)
and assume x0 is a point where u0(x0) > 0. There exist positive constants t0, r1 and r2 such that,
with Xr as in (3.3), there holds for every t > 0,

Xr1(x− x0) 6 (t+ t0)
1

h−1 u(x, t), for x ∈ Br1(x0) and

t
1

h−1 u(x, t) 6 Xr2(x− x0), for x ∈ Ω.

Proof. It it straightforward, under the conditions of the theorem, to find r1 and t0 such that
S(x− x0, 0; r1,−t0) 6 u0(x) on the ball Br1(x0) and r2 such that Ω ⊂ Br2(x0). The result is then
immediate from the comparison principle.

17



6.2 Friendly giant in Ω. Proof of Theorem 1.3

Let us now show there exists a friendly giant in Ω. We will show that the asymptotic profile for
arbitrary (nonnegative) initial conditions is the profile of this friendly giant.

According to (2.4), we can rescale a solution u of (1.5) by

uλ(x, t) := λ
1

h−1 u(x, λt)

and still obtain a solution of the same problem but with initial condition u0λ(x) = λ
1

h−1u0(x). For
λ < 1, by comparison, we see that uλ(x, t) 6 u(x, t). According to [BC, Theorem 2.3], we deduce
that

(6.1) u(x, t+ τ) − u(x, t) > −

[

1−

(

t

t+ τ

)
1

h−1

]

u(x, t)

for (x, t) ∈ Q and τ > 0 such that t+ τ < T . Let us now consider the following rescaling of u,

v(x, s) := (h− 1)
1

h−1 esu
(

x, e(h−1)s
)

.

It is easy to see that v is a viscosity solution of










vs −∆h
∞v = v in Ω× (1,∞],

v(x, 0) = (h− 1)
1

h−1 u(x, 1) for x ∈ Ω,

v(x, s) = 0 for x ∈ ∂Ω, s > 1.

The estimates for u in Theorem 6.1 and in (6.1) imply the following estimates for v:

(6.2) v(x, t) 6 M, v(x, s+ h)− v(x, s) > 0.

Using our similarity solutions (3.1), the proof of [LS, Lemma 3.2] adapts step by step, mutatis
mutandis, and we have that v eventually becomes positive on any compact subset of Ω.

Lemma 6.2 ([LS, Lemma 3.2]). For any compact set K ⊂ Ω there exist sK and mK such that

v(x, s) > mK on K × [sK ,∞).

Using this and the estimates (6.2), we deduce that there exists a lower semicontinuous function
GΩ : Ω → R such that GΩ(x) = 0 on ∂Ω and

lim
s→∞

v(x, s) = GΩ(x).

Since v is a viscosity solution of (1.3), from Theorem 1.1 we see that we can control the modulus
of continuity of v and so GΩ must be continuous. In terms of u, this means

lim
t→∞

t
1

h−1 u(x, t) = FΩ(x) := (h− 1)−
1

h−1GΩ(x).

Theorem 6.3. The function GΩ is a positive viscosity solution of the eigenvalue problem

−∆h
∞GΩ = GΩ in Ω,

GΩ(x) = 0, for x ∈ ∂Ω.

The proof is a simplification of [PV, Theorem 7.3]. With this we finish the proof of Theorem 1.3.
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7 Comments and extensions

• The restriction of nonnegativity in the study of asymptotic behaviour can be somewhat weakened
by observation that the equation is invariant under constant displacement of the u-variable. Hence,
we can assume that the initial data are compactly suported perturbations of the level u = c, c
constant. On the other hand, the restriction to compactly supported data can be weakened, but
we do not know how to find a reasonably wider class, much less an optimal class.

• The solutions of the form u(x, t) = t−
1

h−1Xr(x) described in (3.3) are interesting examples of
radial solutions which decay in time but not in |x|; they oscillate radially in a sine-like fashion.
This behaviour is distinct from the several-dimensional heat equation, where it is known that such
solutions decay like a Bessel function as |x| goes to infinity. The restriction of our functions to
appropriately chosen balls also gives an example of an asymptotic profile which changes sign as
many times as desired. This naturally leads to the question of classifying asymptotic profiles for
sign-changing initial data. We do not know if it is possible to obtain nonradial stable profiles on
a ball.

• In both settings, Dirichlet problem in a bounded domain with zero boundary data and Cauchy
Problem in the whole data, we generate a semigroup enjoying the comparison principle. Since the
operator is h homogeneous with h 6= 1, the homogeneity estimate of Bénilan-Crandall [BC] applies
and we have for all nonnegative solutions

ut ≥ −
1

(h− 1)t
u

in the sense of distributions. This estimate could be important in deeper studies.

• The “zeroth-order” large time behaviour for the Dirichlet problem with nonhomogeneous bound-
ary conditions is considered in [AJK]. We do not consider this case here, but the techniques used
there should work for our class of operators.

• We are not exploring the cases h = 1 which is a well-known equation, or the cases h < 1 which
must have novel properties.
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