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NEW OUTLOOK ON MORI THEORY, I

PAOLO CASCINI AND VLADIMIR LAZIĆ

Abstract. We give a simple and self-contained proof of the finite generation of
adjoint rings with big boundaries. As an easy consequence, we show that the
canonical ring of a smooth projective variety is finitely generated.
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1. Introduction

The main goal of this paper is to provide a simple proof of the following theorem
while avoiding techniques of the Minimal Model Program.

Theorem 1.1. Let X be a smooth projective variety and let ∆ be a Q-divisor with
simple normal crossings such that ⌊∆⌋ = 0.
Then the log canonical ring R(X,KX +∆) is finitely generated.

Date: 16 September 2010.
Part of this work was written while the second author was a PhD student of A. Corti, who

influenced ideas developed here immensely. Part of the paper started as a collaboration with
J. McKernan. We would like to express our gratitude to both of them for their encouragement,
support and continuous inspiration. We thank C. Hacon, J. Hausen, A.-S. Kaloghiros and M. Reid
for many useful comments and suggestions. The first author was partially supported by an EPSRC
grant. The second author is grateful for support from the University of Cambridge, the Max-
Planck-Institut für Mathematik, and the Institut Fourier.

1

http://arxiv.org/abs/1009.3188v1


2 PAOLO CASCINI AND VLADIMIR LAZIĆ

This work supersedes [Laz09], where the results of this paper were first proved
without Mori theory by the second author. Several arguments here follow closely
those in [Laz09] and, based on these methods, we obtain a streamlined proof which
is almost entirely self-contained. We even prove a lifting lemma for adjoint bundles
without relying on asymptotic multiplier ideals, assuming only Kawamata-Viehweg
vanishing and some elementary arithmetic.
The results presented here were originally proved by extensive use of methods of

the Minimal Model Program in [BCHM10, HM10], and an analytic proof of finite
generation of the canonical ring for varieties of general type is announced in [Siu06].
By contrast, in this paper we avoid the following tools which are commonly used
in the Minimal Model Program: Mori’s bend and break, which relies on methods
in positive characteristic [Mor82], the Cone and Contraction theorem [KM98], the
theory of asymptotic multiplier ideals, which was necessary to prove the existence
of flips in [HM10]. Moreover, contrary to the classical Mori theory, we do not need
to work with singular varieties.
In [CL10], Corti and the second author recently proved that the Cone and Con-

traction theorem, and the main result of [BCHM10], follow quickly from one of
our main results, Theorem A. Therefore, this paper and [CL10] together give a
completely new organisation of Mori theory.
We now briefly describe the strategy of the proof. As part of the induction, we

prove the following two theorems.

Theorem A. Let X be a smooth projective variety of dimension n. Let B1, . . . , Bk

be Q-divisors on X such that ⌊Bi⌋ = 0 for all i, and such that the support of∑k

i=1Bi has simple normal crossings. Let A be an ample Q-divisor on X , and
denote Di = KX + A+Bi for every i.
Then the adjoint ring

R(X ;D1, . . . , Dk) =
⊕

(m1,...,mk)∈Nk

H0
(
X,OX

(
⌊
∑

miDi⌋
))

is finitely generated.

Theorem B. Let (X,
∑p

i=1 Si) be a log smooth projective pair of dimension n,
where S1, . . . , Sp are distinct prime divisors. Let V =

∑p
i=1RSi ⊆ DivR(X), and let

A be an ample Q-divisor on X .
Then

EA(V ) = {B ∈ L(V ) | |KX + A+B|R 6= ∅}

is a rational polytope.

For definitions of various terms involved in the statements of the theorems, see
Section 2. In the sequel, “Theorem An” stands for “Theorem A in dimension n,”
and so forth.
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In Section 2 we lay the foundation for the remainder of the paper: we discuss basic
properties of asymptotic invariants of divisors, convex geometry and Diophantine
approximation, and we introduce divisorial rings graded by monoids of higher rank
and present basic consequences of finite generation of these rings. Basic references
for asymptotic invariants of divisors are [Nak04, ELM+06]. The first systematic
use of Diophantine approximation in Mori theory was initiated by Shokurov in
[Sho03], and our arguments at several places in this paper are inspired by some of
the techniques introduced there.
In Section 3 we give a simplified proof of a version of the lifting lemma from

[HM10]. The proof in [HM10] is based on methods initiated in [Siu98], which also
inspired a systematic use of multiplier ideals in the theory. We want to emphasise
that our proof, even though ultimately following the same path, is much simpler
and uses only Kawamata-Viehweg vanishing and some elementary arithmetic.
In Section 4 we prove that one of the sets which naturally appears in the theory

is a rational polytope. Some steps in the proof are close in spirit to Hacon’s ideas in
the proof of [HK10, Theorem 9.16]. The proof is an application of the lifting result
from Section 3.
In Section 5 we prove Theorem Bn, assuming Theorems An−1 and Bn−1. Certain

steps of the proof here are almost the same as in [BCHM10, Section 6]. Lemma
5.3 was obtained in [Pău08] by analytic methods, without assuming Theorems An−1

and Bn−1.
Finally, in Section 6, we prove Theorem An, assuming Theorems An−1 and Bn,

therefore completing the induction step. This part of the proof is close in spirit to
that of the finite generation of the restricted algebra when grading is by non-negative
integers, see [Cor05, Lemma 2.3.6].
The paper [Cor10] is an introduction to some of the ideas presented in this work.

2. Preliminary results

2.1. Notation and conventions. In this paper all algebraic varieties are defined
over C. We denote by R+ and Q+ the sets of non-negative real and rational numbers.
For any x, y ∈ RN , we denote by [x, y] the segment joining x and y. Given subsets
A,B ⊆ RN , we denote A + B = {a + b | a ∈ A, b ∈ B}. We denote by C the
topological closure of a set C ⊂ RN .
Let X be a smooth projective variety and R ∈ {Z,Q,R}. We denote by DivR(X)

the group of R-divisors on X , and ∼R and ≡ denote the R-linear and numerical
equivalence of R-divisors. If A =

∑
aiCi and B =

∑
biCi are two R-divisors on

X , ⌊A⌋ is the round-down of A, ⌈A⌉ is the round-up of A, {A} = A − ⌊A⌋ is the
fractional part of A, ‖A‖ = max

i
{|ai|} is the sup-norm of A, and

A ∧ B =
∑

min{ai, bi}Ci.
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Given D ∈ DivR(X) and x ∈ X , multx D is the order of vanishing of D at x. If S
is a prime divisor, multS D is the order of vanishing of D at the generic point of S.
In this paper, a log pair (X,∆) consist of a smooth variety X and an R-divisor

∆ ≥ 0. We say that (X,∆) is log smooth if Supp∆ has simple normal crossings.
A projective birational morphism f : Y −→ X is a log resolution of the pair (X,∆)
if Y is smooth, Exc(f) is a divisor and the support of f−1

∗ (∆) + Exc(f) has simple
normal crossings.

Definition 2.1. Let (X,∆) be a log pair with ⌊∆⌋ = 0. Then (X,∆) has klt
(respectively canonical , terminal) singularities if for every log resolution f : Y −→
X , if we write E = KY +f−1

∗ ∆−f ∗(KX +∆), we have ⌈E⌉ ≥ 0 (respectively E ≥ 0;
E ≥ 0 and SuppE = Exc f).

The following result is standard.

Lemma 2.2. Let (X,S + B) be a log smooth projective pair, where S is a prime
divisor and B is a Q-divisor such that ⌊B⌋ = 0 and S * SuppB. Then there exist a
log resolution f : Y −→ X of (X,∆) and Q-divisors C,E ≥ 0 on Y with no common
components such that the components of C are disjoint, E is f -exceptional, and if
T = f−1

∗ S, then
KY + T + C = f ∗(KX + S +B) + E.

Proof. By [KM98, Proposition 2.36], there exists a birational morphism f : Y −→
X , and Q-divisors C,E ≥ 0 on Y with no common components, such that the
components of C are disjoint, E is f -exceptional, and

KY + C = f ∗(KX +B) + E.

Moreover, f is a sequence of blow-ups along intersections of components of B. Since
(X,S+B) is log smooth, it follows that if a collection of components of B intersect,
then no irreducible component of their intersection is contained in S. Thus T = f ∗S,
and the lemma follows. �

If D is an R-divisor on X , we denote

|D|R = {D′ ≥ 0 | D ∼R D′} and B(D) =
⋂

D′∈|D|R

SuppD′,

and we call B(D) the stable base locus of D. We set B(D) = X if |D|R = ∅. The
following result shows that this is compatible with the usual definition.

Lemma 2.3. Let X be a smooth projective variety and let D be a Q-divisor. Then
B(D) =

⋂
q Bs |qD| for all q sufficiently divisible.

Proof. Fix a point x ∈ X \B(D). Then there exist an R-divisor F ≥ 0, real numbers

r1, . . . , rk and rational functions f1, . . . , fk ∈ k(X) such that F = D +
∑k

i=1 ri(fi)
and x /∈ SuppF . Let W ⊆ DivR(X) be the subspace spanned by the components of
D, D′ and all (fi). Let W0 ⊆ W be the subspace of divisors R-linearly equivalent
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to zero, and note that W0 is a rational subspace of W . Consider the quotient map
π : W −→ W/W0. Then the set {G ∈ π−1(π(D)) | G ≥ 0} is not empty as it
contains F , and it is cut out from W by rational hyperplanes. Thus, it contains a
Q-divisor D′ ≥ 0 such that D ∼Q D′ and x /∈ SuppD′. �

Definition 2.4. Let (X,S+
∑p

i=1 Si) be a log smooth projective pair, where S and
all Si are distinct prime divisors, let V =

∑p

i=1RSi ⊆ DivR(X), and let A be a
Q-divisor on X . We define

L(V ) = {B =
∑

biSi ∈ V | 0 ≤ bi ≤ 1 for all i},

EA(V ) = {B ∈ L(V ) | |KX + A+B|R 6= ∅},

BS
A(V ) = {B ∈ L(V ) | S * B(KX + S + A+B)}.

If D is an integral divisor, Fix(D) and Mob(D) denote the fixed and mobile parts
of D. Hence |D| = |Mob(D)|+Fix(D), and the base locus of |Mob(D)| contains no
divisors. More generally, if V is any linear system on X , Fix(V ) denotes the fixed
divisor of V . If S is a prime divisor on X such that S * Fix(D), then |D|S denotes
the image of the linear system |D| under restriction to S.

Definition 2.5. Let X be a smooth projective variety and let S be a prime divisor
onX . Let C andD be Q-divisors onX such that |C|Q 6= ∅, |D|Q 6= ∅ and S * B(D).
Then we define

Fix(C) = lim inf
1

k
Fix |kC| and FixS(D) = lim inf

1

k
Fix |kD|S

for all k sufficiently divisible.

2.2. Diophantine approximation and convex geometry.

Definition 2.6. Let C ⊆ RN be a convex set. A subset F ⊆ C is a face of C if F is
convex, and whenever u + v ∈ F for u, v ∈ C, then u, v ∈ F . Note that C is itself
a face of C. We say that x ∈ C is an extreme point of C if {x} is a face of C. For
y ∈ C, the minimal face of C which contains y is denoted by face(C, y).
A polytope in RN is a compact set which is the intersection of finitely many half

spaces; equivalently, it is the convex hull of finitely many points in RN . A polytope
is rational if it is an intersection of rational half spaces; equivalently, it is the convex
hull of finitely many rational points in RN . A rational polyhedral cone in RN is a
convex cone spanned by finitely many rational vectors.

Remark 2.7. Given a smooth projective variety X , we often consider subspaces
V ⊆ DivR(X) which are spanned by a finite set of prime divisors. Thus, these divi-
sors implicitly define an isomorphism between V and RN for some N . In particular,
with notation from Definition 2.4, L(V ) is a rational polytope.

Definition 2.8. Let C ⊆ RN be a convex set and let Φ: C −→ RM be a function.
Then Φ is convex if Φ

(
tx+(1− t)y

)
≤ tΦ(x) + (1− t)Φ(y) for any x, y ∈ C and any
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t ∈ [0, 1]. If C is a rational polytope, then Φ is rationally piecewise affine if there

exists a finite decomposition C =
⋃ℓ

i=1 Ci into rational polytopes such that Φ|Ci is a
rational affine map for all i. If C is a cone, then Φ is homogeneous of degree one if
Φ(tx) = tΦ(x) for any x ∈ C and t ∈ R+.

Lemma 2.9. Let H ⊆ RN be a rational affine hyperplane which does not contain
the origin, and let P ⊆ H be a rational polytope. Let PQ = P ∩ QN , and let
f : PQ −→ R be a bounded convex function. Assume that there exist x1, . . . , xq ∈ PQ

with f(xi) ∈ Q+ for all i, and that for any x ∈ PQ there exists (r1, . . . , rq) ∈ Rq
+

such that x =
∑

rixi and f(x) =
∑

rif(xi).
Then f can be extended to a rational piecewise affine function on P.

Proof. Since P ⊆ H, for any x ∈ PQ and (r1, . . . , rq) ∈ Rq
+ such that x =

∑
rixi, we

have
∑

ri = 1. Pick C ∈ Q+ such that −C ≤ f(x) ≤ C for all x ∈ PQ.
Let Q ⊆ RN+1 be the convex hull of all points

(
xi, f(xi)

)
and (xi, C), and set

Q′ = {(x, y) ∈ PQ × R+ | f(x) ≤ y ≤ C}. Since f is convex, and all
(
xi, f(xi)

)
and

(xi, C) are contained in Q′, it follows that Q ∩ QN+1 ⊆ Q′. Now, fix (u, v) ∈ Q′.
Then there exists t ∈ [0, 1] such that v = tf(u) + (1 − t)C, and as u ∈ PQ, there
exist ri ∈ R+ such that

∑
ri = 1, u =

∑
rixi and f(u) =

∑
rif(xi). Therefore

(u, v) =
∑

tri
(
xi, f(xi)

)
+
∑

(1− t)ri(xi, C),

and hence (u, v) ∈ Q. This yields Q = Q′. Define F : P −→ [−C,C] as

F (x) = min{y ∈ [−C,C] | (x, y) ∈ Q}.

Then F extends f , and it is rational piecewise affine as Q is a rational polytope. �

We use the following result from Diophantine approximation.

Lemma 2.10. Let ‖ · ‖ be a norm on RN , let P ⊆ RN be a rational polytope and
let x ∈ P. Fix a positive integer k and a positive real number ε.
Then there are finitely many xi ∈ P and positive integers ki divisible by k, such

that kixi/k are integral, ‖x− xi‖ < ε/ki, and x is a convex combination of xi.

Proof. See [BCHM10, Lemma 3.7.7]. �

2.3. Nakayama-Zariski decomposition. We need several definitions and results
from [Nak04].

Definition 2.11. LetX be a smooth projective variety, let A be an ample R-divisor,
and let Γ be a prime divisor. If D ∈ DivR(X) is a big divisor, define

σ′
Γ(D) = inf{multΓD

′ | D′ ∈ |D|R}.

If D ∈ DivR(X) is pseudo-effective, set

σΓ(D) = lim
ε→0

σ′
Γ(D + εA) and Nσ(D) =

∑
Γ σΓ(D) · Γ,

where the sum runs over all prime divisors Γ on X .
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Lemma 2.12. Let X be a smooth projective variety, let A be an ample R-divisor,
let D be a pseudo-effective R-divisor, and let Γ be a prime divisor. Then σΓ(D)
exists as a limit, it is independent of the choice of A, it depends only on the nu-
merical equivalence class of D, and σΓ(D) = σ′

Γ(D) if D is big. The function σΓ

is homogeneous of degree one, convex and lower semi-continuous on the cone of
pseudo-effective divisors on X, and it is continuous on the cone of big divisors.
Furthermore, Nσ(D) is an R-divisor on X, D − Nσ(D) is pseudo-effective, and

for any R-divisor 0 ≤ F ≤ Nσ(D) we have Nσ(D − F ) = Nσ(D)− F .

Proof. See [Nak04, §III.1]. �

Lemma 2.13. Let X be a smooth projective variety, let D be a pseudo-effective
R-divisor, and let A be an ample Q-divisor.
If D 6≡ Nσ(D), then there exist a positive integer k and a positive rational number

β such that kA is integral and

h0(X,OX(⌊mD⌋ + kA)) > βm for all m ≫ 0.

Proof. Replacing D by D − Nσ(D), we may assume that Nσ(D) = 0. Now apply
[Nak04, Theorem V.1.11]. �

Lemma 2.14. Let X be a smooth projective variety, let D be a pseudo-effective R-
divisor on X, and let Γ1, . . . ,Γℓ be distinct prime divisors such that σΓi

(D) > 0 for

all i. Then for any γj ∈ R+ we have σΓi
(
∑ℓ

j=1 γjΓj) = γi for every i. In particular,

if D ≥ 0 and if σΓ(D) > 0 for every component Γ of D, then D = Nσ(D).

Proof. This is [Nak04, Proposition III.1.10]. �

Lemma 2.15. Let X be a smooth projective variety and let Γ be a prime divisor.
Let D be a pseudo-effective R-divisor such that σΓ(D) = 0 and let A be an ample
Q-divisor. Then Γ * B(D + A).

Proof. Note that σΓ(D + 1
2
A) ≤ σΓ(D) = 0. Thus there exists 0 ≤ D′ ∼R D + 1

2
A

such that γ = multΓD
′ ≪ 1 and 1

2
A + γΓ is ample. Pick A′ ∼R

1
2
A+ γΓ such that

A′ ≥ 0 and multΓ A
′ = 0. Then

D + A ∼R D′ − γΓ + A′ ≥ 0 and multΓ(D
′ − γΓ + A′) = 0.

This proves the lemma. �

2.4. Divisorial rings. Now we establish properties of finite generation of (diviso-
rial) graded rings that we use in the paper.

Definition 2.16. Let X be a smooth projective variety and let S ⊆ DivQ(X) be a
finitely generated monoid. Then

R(X,S) =
⊕

D∈S

H0
(
X,OX

(
⌊D⌋)

)



8 PAOLO CASCINI AND VLADIMIR LAZIĆ

is the divisorial S-graded ring . If D1, . . . , Dℓ are generators of S and if Di ∼Q

ki(KX + ∆i), where ∆i ≥ 0 and ki ∈ Q+ for every i, the algebra R(X,S) is the
adjoint ring associated to S; furthermore, the adjoint ring associated to the sequence
D1, . . . , Dℓ is

R(X ;D1, . . . , Dℓ) =
⊕

(m1,...,mℓ)∈Nℓ

H0
(
X,OX(⌊

∑
miDi⌋)

)
.

Note that then there is a natural projection map R(X ;D1, . . . , Dℓ) −→ R(X,S).
If C ⊆ DivR(X) is a rational polyhedral cone, then S = C ∩ Div(X) is a finitely

generated monoid, and we define the algebra R(X, C), the adjoint ring associated to
C, to be R(X,S).

Definition 2.17. Let (X,S + D) be a projective pair, where X is smooth, S is a
prime divisor and D ≥ 0 is integral, and fix η ∈ H0(X,OX(S)) such that div η = S.
From the exact sequence

0 −→ H0(X,OX(D − S))
·η

−→ H0(X,OX(D))
ρS−→ H0(S,OS(D))

we define resS H
0(X,OX(D)) = Im(ρS), and for σ ∈ H0(X,OX(D)), denote σ|S =

ρS(σ). Note that
Ker(ρS) = H0(X,OX(D − S)) · η,

and that resS H
0(X,OX(D)) = 0 if S ⊆ Bs |D|.

If S ⊆ DivQ(X) is a monoid generated by divisors D1, . . . , Dℓ, the restriction of
R(X,S) to S is the S-graded ring

resS R(X,S) =
⊕

D∈S

resS H
0
(
X,OX(⌊D⌋)

)
,

and similarly for resS R(X ;D1, . . . , Dℓ). These rings are not necessarily divisorial.

Definition 2.18. Let S ⊆ Nr be a finitely generated monoid and let R =
⊕

s∈S Rs

be an S-graded algebra. If S ′ ⊆ S is a finitely generated submonoid, then R′ =⊕
s∈S′ Rs is a Veronese subring of R. If there exists a subgroup L ⊂ Zr of finite

index such that S ′ = S ∩ L, then R′ is a Veronese subring of finite index of R.

Lemma 2.19. Let S ⊆ Nr be a finitely generated monoid and let R =
⊕

s∈S Rs be
an S-graded algebra. Let S ′ ⊆ S be a finitely generated submonoid and let R′ =⊕

s∈S′ Rs.

(1) If R is finitely generated over R0, then R′ is finitely generated over R0.
(2) If additionally R0 is Noetherian, R′ is a Veronese subring of finite index of

R, and R′ is finitely generated over R0, then R is finitely generated over R0.

Proof. Part (1) is [ADHL10, Proposition 1.1.6].
To prove (2), let L ⊆ Zr be a subgroup of index d such that S ′ = S ∩ L. Then

for any f ∈ R we have f d ∈ R′, so R is an integral extension of R′. Now the claim
follows from the theorem of E. Noether on finiteness of integral closure. �
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The proof of the following result was kindly communicated to us by J. Hausen.

Lemma 2.20. Let S =
∑ℓ

i=1Nsi ⊆ Nr be a finitely generated monoid and let
R =

⊕
s∈S Rs be an S-graded algebra such that R is an integral domain and R0 is

Noetherian. Set T =
⊕ℓ

i=1Nsi, let ϕ : T −→ S be the projection map, and consider
the T -graded algebra R′ =

⊕
t∈T Rϕ(t).

If R is finitely generated over R0, then R′ is finitely generated over R0.

Proof. If Ŝ =
∑ℓ

i=1Rsi and T̂ =
⊕ℓ

i=1Rsi are the associated groups, then ϕ extends

to the projection ϕ̂ : T̂ −→ Ŝ. Define Rs = 0 for s ∈ Ŝ \ S, and set R̂ =
⊕

s∈Ŝ Rs

and R̂′ =
⊕

t∈T̂ Rϕ̂(t). Then R̂ is finitely generated, and R′ is a Veronese subring of

R̂′. Therefore, by Lemma 2.19(1) and by replacing S by Ŝ and T by T̂ , we may
assume that S is a group and that T = Zℓ.
Denote R′

t = Rϕ(t) for every t ∈ T , and set T0 = ϕ−1(0). Since T0 is a subgroup
of Zℓ, there is a basis e1, . . . , eℓ of Zℓ and positive integers a1, . . . , ak such that
a1e1, . . . , akek is a basis of T0. Let T1 =

⊕ℓ
i=k+1Zei ⊆ Zℓ. This gives Veronese

subrings of R′:

R′
0 =

⊕
t∈T0

R′
t, R′

1 =
⊕

t∈T1
R′

t, R′
∞ =

⊕
t∈T0⊕T1

R′
t.

Note that R′
∞ is a Veronese subring of finite index of R′, and that it is generated

by R′
1 and by the elements fi ∈ R′

aiei
and gi ∈ R′

−aiei
corresponding to 1 ∈ R0.

Observe that R′
1 is isomorphic to the Veronese subring

⊕
t∈T1

Rϕ(t) of R, and thus
it is finitely generated by Lemma 2.19(1). Therefore R′

∞ is finitely generated, and
hence so is R′ by Lemma 2.19(2). �

Corollary 2.21. Let X be a smooth projective variety and let D1, . . . , Dℓ ∈ Div(X).

Let C =
∑ℓ

i=1R+Di ⊆ DivR(X), and assume that R(X, C) is finitely generated.
Then the ring R = R(X ;D1, . . . , Dℓ) is finitely generated.

Proof. The monoid S =
∑ℓ

i=1NDi ⊆ Div(X) is a submonoid of C ∩ Div(X), and
thus R(X,S) is finitely generated by Lemma 2.19(1). But then R(X ;D1, . . . , Dℓ) is
finitely generated by Lemma 2.20. �

A stronger version of the following result can be found in [ELM+06], see [CL10,
Theorem 3.5].

Lemma 2.22. Let X be a smooth projective variety and let D1, . . . , Dℓ ∈ DivQ(X)
be such that |Di|Q 6= ∅ for each i. Let V ⊆ DivR(X) be the subspace spanned by the
components of D1, . . . , Dℓ, and let P ⊆ V be the convex hull of D1, . . . , Dℓ. Assume
that the ring R(X ;D1, . . . , Dℓ) is finitely generated. Then:

(1) Fix extends to a rational piecewise affine function on P;
(2) there exists a positive integer k such that for every D ∈ P and every m ∈ N,

if m
k
D ∈ Div(X), then Fix(D) = 1

m
Fix |mD|.
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Proof. Pick a prime divisor S ∈ Div(X) \ V and a rational function η ∈ k(X) such
that multS div η = 1. Then, setting D′

i = Di + div η ∼Q Di, we have multS D
′
i = 1

and R(X ;D1, . . . , Dℓ) ≃ R(X ;D′
1, . . . , D

′
ℓ). If P ′ ⊆ DivR(X) is the convex hull of

D′
1, . . . , D

′
ℓ, it suffices to prove claims (1) and (2) on P ′. Therefore, after replacing

Di by D′
i, we may assume that P belongs to a rational affine hyperplane which does

not contain the origin. Denote PQ = P ∩ DivQ(X).
Fix a prime divisor G ∈ V . For all D ∈ PQ and all m ∈ N sufficiently divisible,

let ϕm(D) = 1
m
multG Fix |mD|, and set ϕ(D) = multG Fix(D). Then, in order to

show (1), it suffices to prove that ϕ is rational piecewise affine.
For every D ∈ PQ, the ring R(X,D) is finitely generated by Lemma 2.19(1),

and so by [Bou89, III.1.2], there exists a positive integer d such that R(X, dD) is
generated by H0(X,OX(dD)). Thus ϕ(D) = ϕd(D), and in particular ϕ(D) ∈ Q.
If σ1, . . . , σq are generators of R(X ;D1, . . . , Dℓ), then there are Gi ∈ P and mi ∈

Q+ such that σi ∈ H0
(
X,OX(⌊miGi⌋)

)
. Fix D ∈ PQ. Let m be a sufficiently divisi-

ble positive integer such that mD ∈
∑

NDi∩Div(X), and let σ ∈ H0(X,OX(mD))
be such that ϕm(D) = 1

m
multG div σ. Then σ is a polynomial in σi, and thus there

are αi ∈ N such that mD =
∑

αimiGi and multG div σ =
∑

αi multG div σi. Denote
tm,i =

αimi

m
, and note that multG div σi ≥ ϕ(miGi) = miϕ(Gi). Then we have

D =
∑

tm,iGi and ϕ(D) = inf
m

ϕm(D) ≥ inf
m

∑
tm,iϕ(Gi).

However, for all ti ∈ Q+ with D =
∑

tiGi, by convexity we have
∑

tiϕ(Gi) ≥ ϕ(D).
Therefore

ϕ(D) = inf
∑

tiϕ(Gi),

where the infimum is taken over all (t1, . . . , tq) ∈ Rq
+ such that D =

∑
tiGi. By

compactness, there exists (r1, . . . , rq) ∈ Rq
+ such that D =

∑
riGi and ϕ(D) =∑

riϕ(Gi). Thus, ϕ is rational piecewise affine by Lemma 2.9, and (1) follows.
Now we show (2). After decomposing P, we may assume that Fix is rational linear

on R+P. By Gordan’s lemma the monoid S = R+P ∩Div(X) is finitely generated,
and let F1, . . . , Fp be its generators. By the first part of the proof, there exists a
positive integer k such that Fix(Fi) =

1
k
Fix |kFi| for all i. Let D ∈ P ∩ DivQ(X),

and let m,αi ∈ N be such that m
k
D =

∑
αiFi ∈ S. Then

∑
αiFix(Fi) =

m
k
Fix(D) ≤ 1

k
Fix |mD| ≤ 1

k

∑
αi Fix |kFi| =

∑
αi Fix(Fi),

and hence all inequalities are equalities. This completes the proof. �

3. Lifting sections

We will need the following easy consequence of Kawamata-Viehweg vanishing:

Lemma 3.1. Let (X,S +B) be a log smooth projective pair of dimension n, where
S is a prime divisor and B is a Q-divisor such that ⌊B⌋ = 0 and S * SuppB. Let
A be a nef and big Q-divisor on X.
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(1) If G ∈ Div(X) is such that G ∼Q KX + S + A+B, then |G|S| = |G|S.
(2) Let f : X −→ Y be a birational morphism to a projective variety Y , and

let U ⊆ X be an open set such that f|U is an isomorphism. Let H ′ be a
very ample divisor on Y and let H = f ∗H ′. If F ∈ Div(X) is such that
F ∼Q KX +(n+1)H+A+B, then |F | is basepoint free at every point of U .

Proof. Considering the exact sequence

0 −→ OX(G− S) −→ OX(G) −→ OS(G) −→ 0,

Kawamata-Viehweg vanishing implies H1(X,OX(G − S)) = 0. In particular, the
map H0(X,OX(G)) −→ H0(S,OS(G)) is surjective. This proves (1).
We prove (2) by induction on n. Let x ∈ U , and pick a general element T ∈ |H|

which contains x. Then (X, T + B) is log smooth, and since F|T ∼Q KT + nH|T +
A|T +B|T , by induction F|T is free at x. Considering the exact sequence

0 −→ OX(F − T ) −→ OX(F ) −→ OT (F ) −→ 0,

Kawamata-Viehweg vanishing implies that H1(X,OX(F − T )) = 0. In particular,
the map H0(X,OX(F )) −→ H0(T,OT (F )) is surjective, and (2) follows. �

Lemma 3.2. Let (X,S+B) be a projective pair, where X is smooth, S is a smooth
prime divisor and B is a Q-divisor such that S * SuppB. Let A be a nef and big
Q-divisor on X. Assume that D ∈ Div(X) is such that D ∼Q KX +S+A+B, and
let Σ ∈ |D|. Let Φ ∈ DivQ(S) be such that the pair (S,Φ) is klt and B|S ≤ Σ + Φ.
Then Σ ∈ |D|S.

Proof. Let f : Y −→ X be a log resolution of the pair (X,S + B), and write T =
f−1
∗ S. Then there are divisors Γ ≥ 0 and E ≥ 0 on Y with no common components
such that T * SuppΓ, E is f -exceptional, and

KY + T + Γ = f ∗(KX + S +B) + E.

Let C = Γ−E and G = f ∗D − ⌊C⌋ = f ∗D − ⌊Γ⌋+ ⌈E⌉. Note that

G− (KY + T + {C}) ∼Q f ∗(KX + S + A+B)− (KY + T + C) = f ∗A

is nef and big, and Lemma 3.1(1) implies that |G|T | = |G|T .
Denote g = f|T : T −→ S. Then

KT + C|T = g∗(KS + B|S) and KT +Ψ = g∗(KS + Φ),

for some divisor Ψ on S, and note that ⌊Ψ⌋ ≤ 0 since (S,Φ) is klt. Therefore

g∗(B|S − Φ) = C|T −Ψ.

By assumption we have that B|S ≤ Σ+Φ, that g∗Σ is integral, and that the support
of C + T has normal crossings, hence

g∗Σ ≥ g∗Σ + ⌊Ψ⌋ = ⌊g∗Σ+Ψ⌋ ≥ ⌊g∗(B|S − Φ) + Ψ⌋

= ⌊C|T ⌋ = ⌊C⌋|T = (f ∗D)|T −G|T .
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Thus, since g∗Σ ∈ |(f ∗D)|T |, if we denote

R = G|T − (f ∗D)|T + g∗Σ ≥ 0,

then R ∈ |G|T | = |G|T . Moreover, since E ≥ 0 is f -exceptional, we have

|G|T + ⌊Γ⌋|T = |f ∗D − ⌊Γ⌋+ ⌈E⌉|T + ⌊Γ⌋|T ⊆ |f ∗D + ⌈E⌉|T = |f ∗D|T + ⌈E⌉|T .

Therefore R + ⌊Γ⌋|T ∈ |f ∗D|T + ⌈E⌉|T , and

g∗Σ = R + (f ∗D)|T −G|T = R + ⌊Γ⌋|T − ⌈E⌉|T ∈ |f ∗D|T ,

hence the claim follows. �

Lemma 3.3. Let (X,S +
∑p

i=1 Si) be a log smooth projective pair, where S and all
Si are distinct prime divisors. Let V =

∑p

i=1RSi ⊆ DivR(X), and let B ∈ L(V ) and
0 ≤ D ∈ V be Q-divisors with no common components. Let P be a nef Q-divisor
and denote ∆ = S +B + P . Assume that

KX +∆ ∼Q D.

Let k be a positive integer such that kP and kB are integral, and write Ω = (B+P )|S.
Then there is a very ample divisor H such that for all divisors Σ ∈ |k(KS + Ω)|

and U ∈ |H|S|, and for every positive integer l we have

lΣ + U ∈ |lk(KX +∆) +H|S.

Proof. For any m ≥ 0, let lm = ⌊m
k
⌋ and rm = m − lmk ∈ {0, 1, . . . , k − 1}, define

Bm = ⌈mB⌉ − ⌈(m− 1)B⌉, and set Pm = kP if rm = 0, and otherwise Pm = 0. Let

Dm =

m∑

i=1

(KX + S + Pi +Bi) = m(KX + S) + lmkP + ⌈mB⌉,

and note that Dm is integral and

Dm = lmk(KX +∆) +Drm .

By Serre vanishing, we can pick a very ample divisor H on X such that:

(1) Dj +H is basepoint free for every 0 ≤ j ≤ k − 1,
(2) |Dk +H|S = |(Dk +H)|S|.

We claim that for all divisors Σ ∈ |k(KS + Ω)| and Um ∈ |(Drm +H)|S| we have

lmΣ+ Um ∈ |Dm +H|S.

The case rm = 0 immediately implies the lemma.
We prove the claim by induction on m. The case m = k is covered by (2). Now

let m > k, and pick a rational number 0 < δ ≪ 1 such that Drm−1
+ H + δBm is

ample. Note that 0 ≤ Bm ≤ ⌈B⌉, that (X,S + B + D) is log smooth, and that
D and S + B have no common components. Thus, there exists a rational number
0 < ε ≪ 1 such that, if we define

F = (1− εδ)Bm + lm−1kεD,
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then (X,S+F ) is log smooth and ⌊F ⌋ = 0. In particular, if W is a general element
of the free linear system |(Drm−1

+H)|S| and

Φ = F|S + (1− ε)W,

then (S,Φ) is klt.
By induction, there is a divisor Υ ∈ |Dm−1 +H| which does not contain S in its

support and such that

Υ|S = lm−1Σ +W.

Denoting C = (1− ε)Υ + F , we have

C ∼Q (1− ε)(Dm−1 +H) + (1− εδ)Bm + lm−1kεD

and

C|S = (1− ε)Υ|S + F|S ≤ lm−1Σ + Φ ≤ (lmΣ+ Um) + Φ.

By the choice of δ and since Pm is nef, the Q-divisor

A = ε(Drm−1
+H + δBm) + Pm

is ample. Since

Dm +H = KX + S +Dm−1 +Bm + Pm +H

= KX + S + (1− ε)Dm−1 + lm−1kε(KX +∆) + εDrm−1
+Bm + Pm +H

∼Q KX + S + A+ (1− ε)Dm−1 + lm−1kεD + (1− εδ)Bm + (1− ε)H

∼Q KX + S + A+ C,

we deduce lmΣ + Um ∈ |Dm +H|S by Lemma 3.2. �

Theorem 3.4. Let (X,S +
∑p

i=1 Si) be a log smooth projective pair, where S and
all Si are distinct prime divisors. Let V =

∑p

i=1RSi ⊆ DivR(X), and let B ∈ L(V )
be a Q-divisor such that (S,B|S) is canonical. Let A be an ample Q-divisor on X
and denote ∆ = S +A+B. Let C ≥ 0 be a Q-divisor on S, and let m be a positive
integer such that mA, mB and mC are integral.
Assume that there exists a positive integer q ≫ 0 such that qA is very ample,

S 6⊆ Bs |qm(KX +∆+ 1
m
A)| and

C ≤ B|S − B|S ∧
1

qm
Fix |qm(KX +∆+ 1

m
A)|S.

Then

|m(KS + A|S + C)|+m(B|S − C) ⊆ |m(KX +∆)|S.

In particular, if |m(KS + A|S + C)| 6= ∅, then |m(KX +∆)|S 6= ∅, and

Fix |m(KS + A|S + C)|+m(B|S − C) ≥ Fix |m(KX +∆)|S ≥ mFixS(KX +∆).
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Proof. Let f : Y −→ X be a log resolution of the pair (X,S + B) and of the linear
system |qm(KX+∆+ 1

m
A)|, and write T = f−1

∗ S. Then there are divisors B′, E ≥ 0
on Y with no common components, such that E is f -exceptional and

KY + T +B′ = f ∗(KX + S +B) + E.

Let Γ = T +B′ + f ∗A, and define

Fq =
1
qm

Fix |qm(KY + Γ + 1
m
f ∗A)| and B′

q = B′ − B′ ∧ Fq.

Set Γq = T + B′
q + f ∗A. Since (Y, T + B′ + Fq) is log smooth and Mob

(
qm(KY +

Γ + 1
m
f ∗A)

)
is basepoint free, by Bertini’s theorem there exists a Q-divisor D ≥ 0

such that

KY + Γq +
1
m
f ∗A ∼Q D,

the pair (Y, T + B′
q +D) is log smooth, and D does not contain any component of

T + B′
q. Let g = f|T : T −→ S. Since (S,B|S) is canonical and C ≤ B|S, there is a

g-exceptional divisor F ≥ 0 on T such that

KT + C ′ = g∗(KS + C) + F,

where C ′ = g−1
∗ C. We claim that C ′ ≤ B′

q|T . Assuming the claim, let us show how
it implies the theorem.
By Lemma 3.3, there exists a very ample divisor H ′ on Y such that for all divisors

Σ′ ∈ |qm(KT + (B′
q + (1+ 1

m
)f ∗A)|T )| and U ′ ∈ |H ′

|T |, and for every positive integer
k we have

kΣ′ + U ′ ∈ |kqm(KY + Γq +
1
m
f ∗A) +H ′|T .

Pick a Q-divisor G ∈ V such that B + 1
m
G ≥ 0, ⌊B + 1

m
G⌋ = 0 and A − G is

ample. In particular, (S, (B + 1
m
G)|S) is klt. Let H = f∗H

′, and let W1 ∈ |qA|S|
and W ′

2 ∈ |H ′
|T | be general sections. Pick a positive integer k ≫ 0 such that, if

we denote l = kq, W = kW1 + g∗W
′
2 and Φ = B|S + 1

m
G|S + 1

l
W , then the divisor

A0 =
1
m
(A−G)− m−1

ml
H is ample and the pair (S,Φ) is klt.

Pick Σ ∈ |m(KS + A|S + C)|. Since C ′ ≤ B′
q|T , we have that

qg∗Σ + qm(F +B′
q|T − C ′) + g∗W1 ∈ |qm(KT + (B′

q + (1 + 1
m
)f ∗A)|T )|.

Then there exists Υ′ ∈ |lm(KY +Γq +
1
m
f ∗A)+H ′|, which does not contain T in its

support, such that

Υ′
|T = lg∗Σ + lm(F +B′

q|T − C ′) + kg∗W1 +W ′
2.

Pushing forward via g and denoting Υ = f∗Υ
′ ∈ |lm(KX + f∗Γq +

1
m
A) + H|, we

have

Υ|S = lΣ + lm(g∗B
′
q|T − C) +W.
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Denoting B0 =
m−1
ml

Υ+ (m− 1)(∆− f∗Γq) +B + 1
m
G, and noting that ∆− f∗Γq =

B − f∗B
′
q, we have

B0|S =
m− 1

m
Σ + (m− 1)

(
g∗B

′
q|T − C + (∆− f∗Γq)|S

)

+
m− 1

ml
W +B|S +

1

m
G|S ≤ Σ +m(B|S − C) + Φ,

and since

m(KX +∆) = KX + S + (m− 1)(KX +∆+ 1
m
A) + 1

m
A+B

∼Q KX + S + m−1
ml

Υ+ (m− 1)(∆− f∗Γq) +
1
m
A− m−1

ml
H +B

= KX + S + A0 +B0,

we deduce Σ +m(B|S − C) ∈ |m(KX +∆)|S by Lemma 3.2. The lemma follows.
Now we prove the claim stated above. As

KT +B′
|T = g∗(KS +B|S) + E|T ,

and since (Y, T + B′ + Fq) is log smooth and B′ and E do not have common com-
ponents, it follows that B′

|T and E|T do not have common components, and in

particular, E|T is g-exceptional and g∗B
′
|T = B|S.

Since Mob
(
qm(KY + Γ + 1

m
f ∗A)

)
is basepoint free and T is not a component of

Fq, it follows that
1
qm

Fix |qm(KY + Γ + 1
m
f ∗A)|T = Fq|T and

B′
q|T = B′

|T − (B′ ∧ Fq)|T = B′
|T −B′

|T ∧
1

qm
Fix |qm(KY + Γ + 1

m
f ∗A)|T .

Furthermore, we have

g∗ Fix |qm(KY + Γ + 1
m
f ∗A)|T = Fix |qm(KX +∆+ 1

m
A)|S,

so

g∗C
′ = C ≤ B|S −B|S ∧

1

qm
Fix |qm(KX +∆+ 1

m
A)|S = g∗B

′
q|T .

Therefore C ′ ≤ B′
q|T , since B′

q|T ≥ 0 and C ′ = g−1
∗ C. �

Corollary 3.5. Let (X,S+
∑p

i=1 Si) be a log smooth projective pair, where S and all
Si are distinct prime divisors. Let V =

∑p

i=1RSi ⊆ DivR(X), and let B ∈ L(V ) be
a Q-divisor such that (S,B|S) is canonical. Let A be an ample Q-divisor on X and
denote ∆ = S+A+B. Let m be a positive integer such that mA and mB are integral,
and such that S 6⊆ Bs |m(KX +∆)|. Denote Φm = B|S −B|S ∧

1
m
Fix |m(KX +∆)|S.

Then
|m(KS + A|S + Φm)|+m(B|S − Φm) = |m(KX +∆)|S.

Proof. The inclusion |m(KS + A|S + Φm)| +m(B|S − Φm) ⊆ |m(KX +∆)|S follows
from Theorem 3.4, whereas the inverse inclusion is obvious since m(B|S − Φm) ≤
Fix |m(KX +∆)|S. �
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Lemma 3.6. Let X be a smooth projective variety and let S be a smooth prime
divisor on X. Let D ⊆ Div(X) be such that S * B(D), and let A be an ample
Q-divisor. Then there exists a sufficiently divisible positive integer q such that

1

q
Fix |q(D + A)|S ≤ FixS(D).

Proof. Let P be a prime divisor on S and let γ = multP FixS(D). It is enough to
show that there exists a sufficiently divisible positive integer q such that

multP
1

q
Fix |q(D + A)|S ≤ γ.

Assume first that γ > 0. Let ε > 0 be a rational number such that εD+A is ample,
and pick a positive integer m such that

1− ε

m
multP Fix |mD|S ≤ γ.

Let q be a sufficiently divisible positive integer such that the divisor q(εD + A) is
very ample, and 1

q(1−ε)
Fix |q(1− ε)D|S ≤ 1

m
Fix |mD|S. Then

1

q
multP Fix |q(D + A)|S =

1

q
multP Fix |q(1− ε)D + q(εD + A)|S

≤
1

q
multP Fix |q(1− ε)D|S ≤

1− ε

m
multP Fix |mD|S ≤ γ.

Now assume that γ = 0. Let n = dimX and let H be a very ample divisor on X .
Pick a positive integer q such that qA and qD are integral, and such that

C = qA−KX − S − nH

is ample. By Lemma 2.3, there exists a Q-divisor D′ ≥ 0 such that D′ ∼Q D,
S 6⊆ SuppD′ and multP (D

′
|S) <

1
q
. Let f : Y −→ X be a log resolution of (X,S+D′)

which is obtained as a sequence of blowups along smooth centres. Let T = f−1
∗ S,

and let E ≥ 0 be the f -exceptional integral divisor such that

KY + T = f ∗(KX + S) + E.

Then, denoting F = qf ∗(D + A)− ⌊qf ∗D′⌋ + E, we have

F ∼Q qf ∗A+ {qf ∗D′}+ E = KY + T + f ∗(nH + C) + {qf ∗D′},

and in particular |F|T | = |F |T by Lemma 3.1(1). Denote g = f|T : T −→ S and
let P ′ = g−1

∗ P . Since F|T ∼Q KT + g∗(nH|S) + g∗(C|S) + {qf ∗D′}|T and g is an
isomorphism at the generic point of P ′, Lemma 3.1(2) implies that F|T is free at
the generic point of P ′. In particular, if V ∈ |F | is a general element, then P *
Supp f∗V .
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Let U = V + ⌊qf ∗D′⌋ ∈ |qf ∗(D +A) +E|. Since E is f -exceptional, this implies
that f∗U ∈ |q(D + A)|, and since f∗⌊qf

∗D′⌋ ≤ qD′, we have

multP (f∗U)|S = multP (f∗V )|S +multP (f∗⌊qf
∗D′⌋)|S ≤ multP qD′

|S < 1.

Thus, multP (f∗U)|S = 0 and the lemma follows. �

4. BS
A(V ) is a rational polytope

In all results of this section we work in the following setup, and we write “Setup
4.1n” to denote “Setup 4.1 in dimension n.”

Setup 4.1. Let (X,S +
∑p

i=1 Si) be a log smooth projective pair of dimension n,
where S and all Si are distinct prime divisors. Let V =

∑p
i=1RSi ⊆ DivR(X), let

A be an ample Q-divisor on X , and let W ⊆ DivR(S) be the subspace spanned by
the components of

∑
Si|S. For Q-divisors E ∈ EA|S

(W ) and B ∈ BS
A(V ), let

F(E) = Fix(KS + A|S + E) and FS(B) = FixS(KX + S + A+B).

Denote
Φm(B) = B|S −B|S ∧ 1

m
Fix |m(KX + S + A+B)|S

for every sufficiently divisible positive integer m, and let Φ(B) = B|S−B|S ∧FS(B).
Note that Φ(B) = lim supΦm(B).

Lemma 4.2. Let the assumptions of Setup 4.1n hold. Then Φm(B) ∈ EA|S
(W ) and

Φm(B) ∧ F(Φm(B)) = 0.

Proof. Trivially Φm(B) ∈ EA|S
(W ). For the second claim, note that

|m(KS + A|S + Φm(B))|+m(B|S − Φm(B)) ⊇ |m(KX + S + A +B)|S,

so

Fix |m(KS + A|S + Φm(B))|+m(B|S − Φm(B)) ≤ Fix |m(KX + S + A+ B)|S.

Thus, if T is a component of Φm(B), then by definition

multT Φm(B) = multT B|S − 1
m
multT Fix |m(KX + S + A+B)|S,

and therefore multT Fix |m(KS + A|S + Φm(B))| = 0. Hence multT Fix |km(KS +
A|S + Φm(B))| = 0 for every k ∈ N, which implies

Φm(B) ∧ 1
km

Fix |km(KS + A|S + Φm(B))| = 0.

Letting k −→ ∞ yields the lemma. �

Lemma 4.3. Let the assumptions of Setup 4.1n hold. Let 0 < ε ≪ 1 be a rational
number such that D + 1

4
A is ample for any D ∈ V with ‖D‖ < ε, and ε(KX + S +

A+B) + 1
4
A is ample for any B ∈ L(V ).

Let F ⊆ EA|S
(W ) be a rational polytope such that E ∧ F(E) = 0 for any E ∈ F ,

and assume that there exists a positive integer k such that F(E) = 1
m
Fix |m(KS +
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A|S +E)| for all E ∈ F and all positive integers m such that mE/k is integral. Let
C = {(L,E) ∈ L(V )× F | E ≤ L|S}.
Let (B,C) ∈ C and (Γ,Ψ) ∈ face

(
C, (B,C)

)
, and assume there exist a positive

integer m and a rational number 0 < φ ≤ 1 such that mA/k, mΓ/k and mΨ/k
are integral, and ‖Γ − B‖ < φε

2m
and ‖Ψ − C‖ < φε

2m
. For every 0 < δ ≪ ε

m
, let

(Bδ, Cδ) ∈ C be a rational point such that ‖B−Bδ‖ < δ
2
, ‖C−Cδ‖ < δ

2
, Bδ ∈ BS

A(V )
and 0 ≤ Cδ ≤ Φ(Bδ). Assume that (S,Γ|S) and all (S,Bδ|S) are terminal, and that
for any prime divisor T on S we have

multT (B|S − C) > φ or multT (B|S − C) ≤ multT (Γ|S −Ψ).

Then Γ ∈ BS
A(V ) and Ψ ≤ Φ(Γ).

Proof. Let T be a prime divisor on S. We claim that S * B(KX +S+A+Γ+ 1
2m

A)
and that for all δ we have

multT FixS(KX + S + A+ Γ + 1
2m

A) ≤ multT
(
Γ|S −Ψ

)
+multT F(Cδ) + δ.

Assuming the claim, let us show how it implies the lemma.
Note that C is a rational polytope. If T is a component of Ψ, then T is a com-

ponent of C as (Γ,Ψ) ∈ face
(
C, (B,C)

)
. Thus T ⊆ SuppCδ for δ ≪ 1, and so

multT F(Cδ) = 0 since Cδ ∈ F . Hence, letting δ −→ 0 in the claim, we get

Γ|S ∧ FixS(KX + S + A + Γ + 1
2m

A) ≤ Γ|S −Ψ.

By Lemma 3.6, there exists a sufficiently divisible positive integer ℓ such that

Γ|S ∧ 1
ℓ
Fix |ℓ(KX + S + A+ Γ + 1

m
A)|S ≤ Γ|S ∧ FixS(KX + S + A+ Γ + 1

2m
A),

and moreover, we may assume that S * Bs |ℓ(KX+S+A+Γ+ 1
m
A)|. Then Theorem

3.4 implies that Γ ∈ BS
A(V ) as Ψ ∈ EA|S

(W ), and furthermore,

mF(Ψ) +m(Γ|S −Ψ) = Fix |m(KS + A|S +Ψ)|+m(Γ|S −Ψ) ≥ mFS(Γ).

Since Ψ ∈ F , it follows that Ψ ∧ F(Ψ) = 0. Therefore Γ|S −Ψ ≥ Γ|S ∧ FS(Γ), and
so Ψ ≤ Φ(Γ).
Now we prove the claim. Fix δ. Since ‖Γ−Bδ‖ ≤ ε

m
, the divisorsH = Γ−Bδ+

1
4m

A
and G = ε

m
(KX + S + A + Bδ) +

1
4m

A are ample. By assumption, and by Lemmas
2.3 and 3.6, there exists a sufficiently divisible positive integer q such that S *
Bs |q(KX + S + A+Bδ)|,

1
q
Fix |q(KS + A|S + Cδ)| = F(Cδ), and

1
q
Fix |q(KX + S + A+Bδ +H + 1

2m
A)|S ≤ FixS(KX + S + A +Bδ +

1
2m

A).

By Lemma 3.6, there is an integer w ≫ 0 such that

1
wq

Fix |wq(KX + S + A +Bδ +
1
q
A)|S ≤ FS(Bδ),

so, by assumption, we have

Cδ ≤ Φ(Bδ) ≤ Bδ|S − Bδ|S ∧ 1
wq

Fix |wq(KX + S + A+Bδ +
1
q
A)|S.
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Since the pair (S,Bδ|S) is terminal, Theorem 3.4 implies

|q(KS + A|S + Cδ)|+ q(Bδ|S − Cδ) ⊆ |q(KX + S + A+Bδ)|S,

thus

FS(Bδ) ≤
1
q
Fix |q(KX + S + A+Bδ)|S

≤ Bδ|S − Cδ +
1
q
Fix |q(KS + A|S + Cδ)| = Bδ|S − Cδ + F(Cδ).

As Γ+ 1
2m

A = Bδ+H+ 1
4m

A, we haveB(KX+S+A+Γ+ 1
2m

A) ⊆ B(KX+S+A+Bδ),

and so S * B(KX + S + A+ Γ + 1
2m

A). Furthermore,

FixS(KX + S + A+ Γ + 1
2m

A) ≤ 1
q
Fix |q(KX + S + A+Bδ +H + 1

4m
A)|S

≤ FixS

(
(1− ε

m
)(KX + S + A+Bδ) +G

)

≤
(
1− ε

m

)
FS(Bδ) ≤ (1− ε

m
)(Bδ|S − Cδ) + F(Cδ),

and since (1 − ε
m
)multT (Bδ|S − Cδ) ≤ (1 − ε

m
)multT (B|S − C) + δ, it is enough to

show that (
1− ǫ

m

)
multT (B|S − C) ≤ multT (Γ|S −Ψ).

This is obvious if multT (B|S−C) ≤ multT (Γ|S−Ψ). Otherwise, multT (B|S−C) > φ

and multT (B|S − C) ≤ multT (Γ|S −Ψ) + φε

m
by assumption, so we have

(1− ε
m
)multT (B|S − C) ≤ multT (Γ|S −Ψ) + φε

m
− ε

m
multT (B|S − C)

≤ multT (Γ|S −Ψ)− ε
m

(
multT (B|S − C)− φ

)
≤ multT (Γ|S −Ψ).

This completes the proof. �

The main result of this section is:

Theorem 4.4. Assume Theorem An−1 and Theorem Bn−1, and let the assumptions
of Setup 4.1n hold. Let G be a rational polytope contained in the interior of L(V ),
and assume that (S,G|S) is terminal for every G ∈ G. Denote P = G ∩ BS

A(V ).
Then:

(1) P is a rational polytope,
(2) Φ extends to a rational piecewise affine function on P, and there exists a

positive integer ℓ such that Φ(P ) = Φm(P ) for every P ∈ P and every
positive integer m such that mP/ℓ is integral.

Proof. Theorem Bn−1 implies that EA|S
(W ) is a rational polytope, and hence, if

E1, . . . , Ed are its extreme points, the ring R(S;KS +A|S +E1, . . . , KS +A|S +Ed)
is finitely generated by Theorem An−1. Therefore, by Lemma 2.22(1), F extends to
a rational piecewise affine function on EA|S

(W ), and there exists a positive integer k

such that F(E) = 1
m
Fix |m(KS +A|S +E)| for every E ∈ EA|S

(W ) and every m ∈ N
such that mE/k is integral. Let

F = {E ∈ EA|S
(W ) | E ∧ F(E) = 0}.
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Then F is cut out from EA|S
(W ) by a finite number of rational hyperplanes and

rational half-spaces, thus there are finitely many rational polytopes Fi such that
F =

⋃
i Fi. For every i, set

Q′
i = {(P, F ) ∈ P ×Fi | P ∈ DivQ(X), F ∈ DivQ(S), F ≤ Φ(P )},

and let Qi be the convex hull of Q′
i. We first show that Q′

i is dense in Qi. Let
(P0, F0), (P1, F1) ∈ Q′

i, and for a rational number 0 ≤ t ≤ 1, let Pt = (1− t)P0+ tP1

and Ft = (1− t)F0 + tF1. Let T be a prime divisor in W . If multT Ft = 0 for some
0 < t < 1, then multT Ft = 0 for all rational t ∈ [0, 1], and in particular multT Ft ≤
multT Φ(Pt). Otherwise, we have multT Ft > 0 for all 0 < t < 1, and it follows from
the definition of F that multT F(Ft) = 0 for all t ∈ [0, 1]. Let m be a positive integer
such that mPj/k and mFj/k are integral. By Lemma 3.6, there exists a sufficiently
divisible positive integer q such that 1

q
Fix |q(KX +A+Pj +

1
m
A)|S ≤ FS(Pj). Then

Theorem 3.4 implies

mF(Fj) +m(Pj|S − Fj) = Fix |m(KS + A|S + Fj)|+m(Pj|S − Fj) ≥ mFS(Pj),

and therefore multT
(
Pj|S −FS(Pj)

)
≥ multT Fj . Convexity of FS yields multT Ft ≤

multT
(
Pt|S − FS(Pt)

)
≤ multT Φ(Pt) for all t, and thus (Pt, Ft) ∈ Q′

i.
We claim that Qi is a rational polytope. Granting the claim, let us show how it

implies the theorem.
Let Pi ⊆ V be the image ofQi through the first projection. For any Q-divisor P ∈

P and for any sufficiently divisible positive integer m, we have
(
P,Φm(P )

)
∈
⋃

iQi

by Lemma 4.2. Compactness implies
(
P,Φ(P )

)
∈
⋃

i Qi, and therefore P =
⋃

iPi,
so (1) follows.
For (2), denote PQ = P ∩ DivQ(X) and PS = S + PQ, and note that PS lies in

the hyperplane (S = 1) ⊆ RS + V . Fix a prime divisor T ∈ W , and consider the
map ΦT : PS −→ [−1, 0] defined by ΦT (S + P ) = −multT Φ(P ) for every P ∈ PQ.
Let RT be the closure of the set

R′
T = {S + P ∈ PS | ΦT (S + P ) 6= 0} ⊆ PS.

Note that the condition ΦT (S+P ) 6= 0 implies ΦT (S+P ) = −multT
(
P|S−FS(P )

)
,

and since FS is a convex map on P, the set RT is convex and ΦT is convex on RT .
We first show that RT is a union of some S+Pi, and therefore that it is a rational

polytope since it is convex. Fix P ∈ PQ such that S+P ∈ R′
T . Then

(
P,Φ(P )

)
∈ Q′

i

for some i, and since multT Φ(P ) 6= 0, we have multT C 6= 0 for every point (B,C)
in the relative interior of Qi. Therefore multT F(C) = 0 for all (B,C) ∈ Qi by the
definition of F . Fix (B,C) ∈ Q′

i, and let m be a positive integer such that all mB/k
and mC/k are integral. By Lemma 3.6, there exists a sufficiently divisible positive
integer q such that 1

q
Fix |q(KX +A+B + 1

m
A)|S ≤ FS(B), so Theorem 3.4 implies

mF(C) +m(B|S − C) = Fix |m(KS + A|S + C)|+m(B|S − C) ≥ mFS(B),
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and hence multT
(
B|S − FS(C)

)
≥ multT C ≥ 0. Therefore, for every B ∈ Pi we

have ΦT (S +B) = −multT
(
B|S − FS(B)

)
, and S + Pi ⊆ RT .

Now, let (Pj, Fj) be the extreme points of all Qi for which S+Pi ⊆ RT . Since Qi

is the convex hull of Q′
i, it follows that (Pj, Fj) ∈

⋃
Q′

i, and in particular multT Fj ≤
multT Φ(Pj) = −ΦT (S+Pj). Fix P ∈ PQ such that S+P ∈ R′

T . Then
(
P,Φ(P )

)
∈

Q′
i for some i by the argument above, hence there exist rj ∈ R+ such that

∑
rj = 1

and
(
P,Φ(P )

)
=

∑
rj(Pj, Fj). Thus ΦT (S+P ) = −

∑
rj multT Fj, so by convexity

we have
∑

rjΦT (S + Pj) ≥ ΦT (S + P ) = −
∑

rj multT Fj ≥
∑

rjΦT (S + Pj).

Therefore ΦT (S + Pj) = −multT Fj ∈ Q and ΦT (S + P ) =
∑

rjΦT (S + Pj). By
Lemma 2.9, ΦT extends to a rational piecewise affine map on RT , and thus on P.
Therefore, Φ also extends to a rational piecewise affine map on P.
In particular, Φ(P ) ∈ Q for every P ∈ PQ, and by subdividing P, we may assume

that Φ extends to a rational affine map on P. By Gordan’s lemma, the monoid
R+PS ∩ Div(X) is finitely generated, and let qi(S + Qi) be its generators for some
qi ∈ Q+ and Qi ∈ PQ. Pick a positive integer w such that wqiΦ(Qi) ∈ Div(S) for
every i, and set ℓ = wk.
Fix B ∈ PQ and a positive integer m such that m

ℓ
B ∈ Div(X). If αi ∈ N are

such that m
ℓ
(S + B) =

∑
αiqi(S + Qi), then

ℓ
m

∑
αiqi = 1 as PS ⊆ (S = 1), and

therefore m
ℓ
Φ(B) =

∑
αiqiΦ(Qi). Hence m

k
Φ(B) =

∑
αiwqiΦ(Qi) ∈ Div(S), so

F(Φ(B)) = 1
m
Fix |m(KS + A|S +Φ(B))| by assumption. In particular,

Φ(B) ∧ Fix |m(KS + A|S +Φ(B))| = 0

as Φ(B) ∈
⋃

i Qi. By Lemma 3.6, there exists a positive integer q such that Φ(B) ≤
B|S − B|S ∧ 1

qm
Fix |qm(KX + S + A+B + 1

m
A)|S, and thus

Fix |m(KS + A|S +Φ(B))|+m(B|S −Φ(B)) ≥ Fix |m(KX + S + A+B)|S

≥ m(B|S ∧ 1
m
Fix |m(KX + S + A +B)|S) = m(B|S − Φm(B))

by Theorem 3.4. This implies Φm(B) ≥ Φ(B). But, by definition, Φ(B) ≥ Φm(B),
and (2) follows.
Now we prove the claim stated above. Let ε be as in Lemma 4.3. The set

Ci = {(L, F ) ∈ G × Fi | F ≤ L|S}

is a rational polytope which contains Qi. Fix a point (B,C) ∈ Qi, and let Π be the
set of prime divisors T on S such that multT (B|S −C) > 0. If Π 6= ∅, pick a positive
rational number

φ < min{multT (B|S − C) | P ∈ Π} ≤ 1,

and set φ = 1 if Π = ∅. By Lemma 2.10, there exist points (Γj,Ψj) ∈ face
(
Ci, (B,C)

)

and positive integers mj divisible by k, such that mjA/k, mjΓj/k and mjΨj/k are
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integral, (B,C) is a convex combination of all (Γj ,Ψj), and

‖B − Γj‖ <
φε

2mj

and ‖C −Ψj‖ <
φε

2mj

.

Note that Ψj ∈ Fi since (Γj,Ψj) ∈ Ci. By Lemma 4.3, Γj ∈ BS
A(V ) and Ψj ≤ Φ(Γj).

Thus (Γj,Ψj) ∈ Qi, and so (B,C) ∈ Qi. Therefore, Qi is a closed set and moreover,
every extreme point of Qi is rational.
Assume that there exist infinitely many extreme points vℓ = (Bℓ, Cℓ) of Qi, with

ℓ ∈ N. Since Qi is compact and Ci is a rational polytope, by passing to a subsequence
there exist v∞ = (B∞, C∞) ∈ Qi and a positive dimensional face F of Ci such that

v∞ = lim
ℓ→∞

vℓ and face(Ci, vℓ) = F for all ℓ ∈ N.

In particular, v∞ ∈ F . Let Π∞ be the set of all prime divisors T on S such that
multT (B∞|S − C∞) > 0. If Π∞ 6= ∅, pick a positive rational number

φ < min{multT (B∞|S − C∞) | P ∈ Π∞} ≤ 1,

and set φ = 1 if Π∞ = ∅. Then, by Lemma 2.10 there exist m ∈ N divisible
by k, and v′∞ = (B′

∞, C ′
∞) ∈ face(Ci, (B∞, C∞)) such that m

k
v′∞ is integral and

‖B∞ − B′
∞‖ < φε

2m
and ‖C∞ − C ′

∞‖ < φε

2m
. Lemma 4.3 yields v′∞ ∈ Qi. Pick j ≫ 0

so that

‖vj − v′∞‖ ≤ ‖vj − v∞‖+ ‖v∞ − v′∞‖ <
φε

2m
,

and that multT (Bj, Cj) > φ if T ∈ Π∞. Note that vj is contained in the interior of

F . Therefore, there exists a positive integer m′ ≫ 0 divisible by k, such that m+m′

k
vj

is integral, and such that if we define

v′j =
m+m′

m′
vj −

m

m′
v′∞ ∈ v′∞ + R+(vj − v′∞),

then v′j = (B′
j, C

′
j) ∈ F . Note that m′

k
v′j is integral, vj =

m′

m+m′ v
′
j +

m
m+m′ v

′
∞, and

‖v′j − vj‖ =
m

m′
‖v′j − v′∞‖ <

φε

2m′
.

Furthermore, if T is a prime divisor on S such that T /∈ Π, then

multT (Bj|S − Cj) =
m′

m+m′
multT (B

′
j|S − C ′

j) ≤ multT (B
′
j|S − C ′

j).

Thus, v′j ∈ Qi by Lemma 4.3, and since vj is in the interior of [v′j , v
′
∞], we have that

vj is not an extreme point of Qi, a contradiction which proves the claim. �

Corollary 4.5. Assume Theorem An−1 and Theorem Bn−1.
Let (X,S +

∑p

i=1 Si) be a log smooth projective pair of dimension n, where S and
all Si are distinct prime divisors. Let V =

∑p
i=1RSi ⊆ DivR(X) and let A be an

ample Q-divisor on X. Then BS
A(V ) is a rational polytope, and

BS
A(V ) = {B ∈ L(V ) | σS(KX + S + A +B) = 0}.
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Proof. Fix B ∈ BS
A(V ). Let G ∈ V be a Q-divisor such that B − G is contained in

the interior of L(V ) and A+G is ample. Then, in order to prove the first claim, it
is enough to show that B − G ∈ BS

A+G(V ), and by compactness, that BS
A+G(V ) is

locally a rational polytope around B −G. Thus, after replacing B by B −G and A
by A+G, we can assume that B is in the interior of L(V ).
By Lemma 2.2, there exist a log resolution f : Y −→ X of (X,S + B) and Q-

divisors C,E ≥ 0 on Y with no common components such that the components of
C are disjoint, ⌊C⌋ = 0, T = f−1

∗ S * SuppC, and

KY + T + C = f ∗(KX + S +B) + E.

Let W ′ ⊆ DivR(Y ) be the subspace spanned by the components of C and by all
f -exceptional prime divisors. Then there exists an f -exceptional Q-divisor F ≥ 0
such that f ∗A−F is ample, C+F lies in the interior of L(W ′) and (T, (C+F )|T ) is
terminal. Then it is enough to show that BT

f∗A−F (W
′) is locally a rational polytope

around C + F , so after replacing X by Y , S by T , B by C + F , A by f ∗A− F and
V by W ′, we may assume that there exists 0 < η ≪ 1 such that (S, (B + Θ)|S) is
terminal for every Θ ∈ V with ‖Θ‖ ≤ η. Let P = {B′ ∈ L(V ) | ‖B′−B‖ ≤ η}, and
note that P is a rational polytope since we are working with the sup-norm. Then
P ∩ BS

A(V ) is a rational polytope by Theorem 4.4. In particular, it is closed, and
thus B ∈ BS

A(V ). This proves the first claim.
Now we prove the second claim. DenotingQ = {B ∈ L(V ) | σS(KX+S+A+B) =

0}, clearly Q ⊇ BS
A(V ). For the inverse inclusion, fix B ∈ Q, and let H be a very

ample divisor which is general in the linear system |H|. Then (X,S +
∑p

i=1 Si +H)
is log smooth and H * Supp(S +

∑p
i=1 Si). Let V ′ = RH + V ⊆ DivR(X). Then

B + tH ∈ BS
A(V

′) for any rational 0 < t < 1 by Lemma 2.15, hence B ∈ BS
A(V

′)
since BS

A(V
′) is closed by the first part of the proof. Therefore B ∈ BS

A(V ) . �

5. Effective non-vanishing

Lemma 5.1. Let (X,B) be a log smooth pair, where B is a Q-divisor such that
⌊B⌋ = 0. Let A be a nef and big Q-divisor, and assume that there exists an R-
divisor D ≥ 0 such that KX + A +B ≡ D.
Then there exists a Q-divisor D′ ≥ 0 such that KX + A+B ∼Q D′.

Proof. Let V ⊆ Div(X)R be the vector space spanned by the components of KX ,
A, B and D, and let φ : V −→ N1(X)R be the linear map sending a divisor to its
numerical class. Since φ−1(φ(KX + A + B)) is a rational affine subspace of V , we
can assume that D is an effective Q-divisor.
Let f : Y −→ X be a log resolution of (X,B + D). Then there exist Q-divisors

B′, E ≥ 0 with no common components such that

KY +B′ = f ∗(KX +B) + E.
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After replacing (X,B) by (Y,B′), A by f ∗A, and D by f ∗D + E, we may assume
that (X,B +D) is log smooth.
Let m be a positive integer such that m(A + B) and mD are integral. Denoting

F = (m− 1)D +B, L = m(KX + A +B)− ⌊F ⌋ and L′ = mD − ⌊F ⌋, we have

L ≡ L′ = D −B + {F} ≡ KX + A+ {F}.

Thus, Kawamata-Viehweg vanishing implies that H i(X,L) = H i(X,L′) = 0 for
all i > 0, and since the Euler characteristic is a numerical invariant, this yields
h0(X,L) = h0(X,L′). As mD is integral and ⌊B⌋ = 0, it follows that

L′ = mD − ⌊(m− 1)D +B⌋ = ⌈D −B⌉ ≥ 0,

and thus h0
(
X,m(KX +A+B)

)
= h0(X,L+ ⌊F ⌋) ≥ h0(X,L) = h0(X,L′) > 0. �

Lemma 5.2. Let X be a smooth projective variety of dimension n and let x ∈ X.
Let D ∈ Div(X) and assume that s is a positive integer such that h0(X,D) >

(
s+n

n

)
.

Then there exists D′ ∈ |D| such that multx D
′ > s.

Proof. Let m ⊆ OX be the ideal sheaf of x. Then we have

h0(X,OX/m
s+1) = dimC C[x1, . . . , xn]/(x1, . . . , xn)

s+1 =

(
s+ n

n

)
,

hence h0(X,D) > h0(X,OX/m
s+1). Therefore the exact sequence

0 −→ m
s+1 ⊗OX(D) −→ OX(D) −→ (OX/m

s+1)⊗OX(D) ≃ OX/m
s+1 −→ 0

yields h0
(
X,ms+1⊗OX(D)

)
> 0, so there exists a divisor D′ ∈ |D| with multiplicity

at least s+ 1 at x. �

Lemma 5.3. Assume Theorem An−1 and Theorem Bn−1.
Let (X,B) be a log smooth pair, where B is an R-divisor such that xBy = 0. Let

A be an ample Q-divisor on X, and assume that KX + A+ B is a pseudo-effective
divisor such that KX + A+B 6≡ Nσ(KX + A+B).
Then there exists an R-divisor F ≥ 0 such that KX + A+B ∼R F .

Proof. Denote ∆ = A+B. By Lemma 2.13, there exist sufficiently divisible positive
integers m and k such that h0(X, ⌊mk(KX +∆)⌋ + kA) >

(
nk+n

n

)
. Fix a point

x ∈ X \ SuppNσ(KX + ∆). Then, by Lemma 5.2 there exists an R-divisor G ≥ 0
such that G ∼R mk(KX +∆)+kA and multx G > nk, so setting D = 1

mk
G, we have

D ∼R KX +∆+
1

m
A and multxD >

n

m
.

For any t ∈ [0, m], define At =
m−t
m

A and Ψt = B + tD, so that

(1 + t)(KX +∆) ∼R KX + A +B + t
(
D − 1

m
A
)
= KX + At +Ψt.
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Let f : Y −→ X be a log resolution of (X,B +D) constructed by first blowing up
X at x. Then for every t ∈ [0, m], there exist R-divisors Ct, Et ≥ 0 with no common
components such that Et is f -exceptional and

KY + Ct = f ∗(KX +Ψt) + Et.

The exceptional divisor of the initial blowup gives a prime divisor P ⊆ Y which
is not contained in SuppNσ(f

∗(KX + ∆)), such that multP (KY − f ∗KX) = n − 1
and multP f ∗Ψt = multxΨt. Since multxΨm > n, it follows that multP Em = 0 and
multP Cm > 1. Note that ⌊C0⌋ = 0, and denote

Bt = Ct − Ct ∧Nσ(KY + f ∗At + Ct).

Observe that

Nσ(KY + f ∗At + Ct) = Nσ(f
∗(KX + At +Ψt)) + Et

= (1 + t)Nσ

(
f ∗(KX +∆)

)
+ Et,

hence Bt is a continuous function in t. Moreover P * SuppNσ(KY + f ∗Am +Bm),
and in particular multP Bm > 1. Pick 0 < ε ≪ 1 such that multP Bm−ε > 1, and let
H ≥ 0 be an f -exceptional Q-divisor on Y such that ⌊B0 +H⌋ = 0 and f ∗Am−ε−H
is ample. Then there exists a minimal λ < m − ε such that ⌊Bλ +H⌋ contains a
prime divisor S. Note that Bλ ∧ Nσ(KX + f ∗Aλ + Bλ) = 0, and since ⌊H⌋ = 0, it
follows that S * SuppNσ(KY + f ∗Aλ +Bλ).
Let A′ = f ∗Aλ −H = f ∗(m−ε−λ

m
A) + (f ∗Am−ε −H). Then A′ is ample, and since

σS(KY + A′ + Bλ + H) = σS(KY + f ∗Aλ + Bλ) = 0, Corollary 4.5 implies that
S * B(KY + A′ + Bλ + H) = B(KY + f ∗Aλ + Bλ). In particular, there exists an
R-divisor F ′ ≥ 0 such that KY + f ∗Aλ +Bλ ∼R F ′, and thus

KX +∆ ∼R
1

1 + λ
f∗(KY + f ∗Aλ + Cλ) ∼R

1

1 + λ
f∗(F

′ + Cλ − Bλ) ≥ 0.

This finishes the proof. �

Lemma 5.4. Assume Theorem An−1 and Theorem Bn−1.
Let (X,S +

∑p
i=1 Si) be a log smooth projective pair of dimension n, where S

and all Si are distinct prime divisors. Let A be an ample Q-divisor on X, let
W = RS +

∑p

i=1RSi ⊆ DivR(X), and assume Υ ∈ L(W ) and 0 ≤ Σ ∈ W are such
that multS Υ = 1, multS Σ > 0, σS(KX + A + Υ) = 0 and KX + A + Υ ∼R Σ. Let
Υm ∈ W be a sequence such that KX +A+Υm is pseudo-effective and limΥm = Υ.
Then for infinitely many m there exists Υ′

m ∈ W such that Υm is contained in
the interior of [Υ,Υ′

m] and KX + A+Υ′
m is pseudo-effective.

Proof. Denote V =
∑p

i=1RSi ⊆ DivR(X). Let Σm = Σ+Υm−Υ ∼R KX +A+Υm,
and let Γm = Σm − σS(Σm)S. Then Γm is pseudo-effective. Pick 0 < ε ≪ 1 such
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that A+ Φ is ample for every Φ ∈ W with ‖Φ‖ ≤ ε, and let

Z =
∑

multSi
Υ=1

Si −
∑

multSj
Υ=0

Sj.

Then the divisor A′ = A+εZ is ample, and Corollary 4.5 implies that Υ−εZ−S ∈
BS
A′(V ). Note that KX + S + A′ ∼R Σ− (Υ− εZ − S), and let

P = Σ− (Υ− εZ − S) + BS
A′(V ) ⊆ W and D = R+P ⊆ W.

Then Σ ∈ P, and Corollary 4.5 implies that P is a rational polytope. Moreover,
multS D = multS Σ > 0 for any D ∈ P and, in particular, P does not contain the
origin. Thus D is a rational polyhedral cone.
We claim that, after passing to a subsequence, we have that Γm ∈ D for all m > 0

and limΓm = Σ. Granting the claim, let us show how it implies the lemma.
Since D is a rational polyhedral cone, for any m ≫ 0 there exist Ψm ∈ D and

0 < µm < 1 such that Γm = µmΣ + (1 − µm)Ψm. In particular, Ψm is pseudo-
effective, and hence so is the divisor Σ′

m = Ψm + 1
1−µm

(Σm − Γm). Note that Σm =

µmΣ+ (1− µm)Σ
′
m, and let Υ′

m ∈ W be such that Υm = µmΥ+ (1− µm)Υ
′
m. Then

KX + A+Υ′
m ∼R Σ′

m is pseudo-effective as desired.
Now we prove the claim. Note that {Σ + Θ | Θ ∈ L(V ), ‖Θ‖ ≤ ε} ⊆ D, and

therefore the dimension ofD is equal to dimW . If Σ belongs to the interior ofD, then
Σm ∈ D for m ≫ 0 and, in particular, σS(Σm) = 0. Therefore, Γm = Σm and the
claim follows. Otherwise, Σ belongs to the boundary of D. Let Hi be the supporting
hyperplanes of maximal faces of D containing Σ, for i = 1, . . . , ℓ ≤ dimW − 1. Let
Wi ⊇ D be half-spaces bounded by Hi, and denote Q =

⋂ℓ

i=1Wi. If Σm ∈ Q
for infinitely many m, then Σm ∈ D, and again Γm = Σm. Thus, after taking a
subsequence, we may assume that Σm /∈ Q for all m.
Since multS Σ > 0, for every m there exist βm ∈ R>0 and δm < 1 such that

βmmultS Γm − δmmultS Σ = 0 and ‖βmΓm − δmΣ‖ < ε,

and let Rm = Υ + βmΓm − δmΣ. Then multS Rm = multS Υ = 1, Rm − εZ − S
belongs to the interior of L(V ), and note that

(1− δm)Σ + βmΓm ∼R KX + A+Rm = KX + S + A′ + (Rm − εZ − S).

Since σS

(
(1 − δm)Σ + βmΓm

)
≤ (1 − δm)σS(Σ) + βmσS(Γm) = 0, Corollary 4.5

implies that Rm − ǫZ − S ∈ BS
A′(V ) and in particular (1 − δm)Σ + βmΓm ∈ D.

As Σ ∈ Hi for every i, the convex cone R>0Σ + R>0Γm intersects Wi for every
i. This implies that Γm ∈ Wi, and thus Γm ∈ Q. Therefore, after passing to a
subsequence we may assume that there is i0 ∈ {1, . . . , ℓ}, such that for all m there
exists Pm ∈ [Σm,Γm] ∩Hi0 . In particular limPm = Σ, and thus Pm ∈ D for m ≫ 0.
This implies σS(Pm) = 0, and finally Γm = Pm ∈ D and lim Γm = Σ. �

Theorem 5.5. Theorem An−1 and Theorem Bn−1 imply Theorem Bn.
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Proof. Let

PA(V ) = {B ∈ L(V ) | KX + A +B ≡ D for some R-divisor D ≥ 0}.

We claim that PA(V ) is a rational polytope. Assuming the claim, let B1, . . . , Bq be
the extreme points of PA(V ), and choose ε > 0 such that A+ εBi is ample for every
i. Since KX + A +Bi = KX + (A + εBi) + (1 − ε)Bi and ⌊(1− ε)Bi⌋ = 0, Lemma
5.1 implies that there exist Q-divisors Di ≥ 0 such that KX +A+Bi ∼Q Di. Thus
Bi ∈ EA(V ) for every i, and therefore PA(V ) ⊆ EA(V ) as EA(V ) is convex. Since
obviously EA(V ) ⊆ PA(V ), the theorem follows.
In order to prove the claim, we first show that PA(V ) is closed. Next, we prove

that it is a polytope around every point in it, and compactness then implies that it
is a polytope. Finally, at the end of the proof we show that it is a rational polytope.
Fix B ∈ PA(V ) and denote ∆ = A+B. In particular, KX +∆ is pseudo-effective.

Pick a divisor G ∈ V such that A + G is ample and B − G is in the interior of
L(V ). Then it is enough to show that PA+G(V ) is a polytope around B − G, so
after replacing A by A +G and B by B −G, we may assume that ⌊B⌋ = 0.
If KX +∆ 6≡ Nσ(KX + ∆), then by Lemma 5.3 there exists an R-divisor F ≥ 0

such that KX +∆ ∼R F , and in particular B ∈ PA(V ). If KX +∆ ≡ Nσ(KX +∆),
then it follows immediately that B ∈ PA(V ). This implies that PA(V ) is compact.
We now show that PA(V ) is a polytope around B. We distinguish two cases. Let

us first assume that KX +∆ 6≡ Nσ(KX +∆). Let F ≥ 0 be an R-divisor such that
KX + ∆ ∼R F , and let f : Y −→ X be a log resolution of (X,B + F ). Then there
are divisors C,E ≥ 0 on Y with no common components such that

KY + C = f ∗(KX +B) + E.

Let G ≥ 0 be an f -exceptional divisor such that f ∗A−G is ample and ⌊C +G⌋ = 0.
Let V ′ ⊆ DivR(Y ) be the vector space spanned by the components of C,E, f ∗F and
G. It suffices to show that Pf∗A−G(V

′) is a polytope around C + G. Thus after
replacing X by Y , A by f ∗A−G, B by C +G, F by f ∗F +E and V by V ′, we may
assume that (X,B + F ) is log smooth and that F ∈ V .
Let us assume there exists an infinite sequence of distinct extreme points Bm ∈

PA(V ) such that limBm = B. For any t ≥ 0, define Φt = B + tF , so that

(1 + t)(KX +∆) ∼R KX + A+B + tF = KX + A+ Φt.

Note that ⌊Φ0⌋ = 0 and

Nσ(KX + A+ Φt) = (1 + t)Nσ(KX +∆).

Thus, if we denote

Υt = Φt − Φt ∧Nσ(KX + A+ Φt),

then Υt is a continuous function in t. Write F =
∑ℓ

j=1 fjFj , where Fj are prime

divisors and fj > 0 for all j. Since F 6≡ Nσ(F ), by Lemma 2.14 there exists
j ∈ {1, . . . , ℓ} such that σFj

(F ) = 0. Thus multFj
Υt = multFj

B+tfj, so there exists
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a minimal µ > 0 such that ⌊Υµ⌋ contains a prime divisor S such that S ⊆ SuppF ,
and note that σS(KX + A+Υµ) = 0. Let

Σ = (1 + µ)F − Φµ ∧Nσ

(
(1 + µ)F

)
.

Then we have Σ ≥ 0, multS Σ > 0 and KX + A+Υµ ∼R Σ.
For every m ∈ N, define Φµ,m = Bm + µ(F +Bm − B). Then

lim
m→∞

Φµ,m = Φµ and (1 + µ)(KX + A +Bm) ∼R KX + A+ Φµ,m.

Let

Λ = Φµ∧Nσ(KX +A+Φµ) and Λm = Φµ,m ∧
∑

Z⊆SuppΛ

σZ(KX +A+Φµ,m)Z.

Note that 0 ≤ Λm ≤ Nσ(KX + A + Φµ,m), and therefore KX + A + Φµ,m − Λm

is pseudo-effective. By Lemma 2.12 we have Λ ≤ lim inf Λm, and in particular,
SuppΛm = SuppΛ for m ≫ 0. Therefore, there exists an increasing sequence of
rational numbers εm > 0 such that lim εm = 1 and Λm ≥ εmΛ.
Define Υµ,m = Φµ,m − εmΛ. Note that KX + A+Υµ,m is pseudo-effective and

lim
m→∞

Υµ,m = Φµ − Λ = Υµ.

Therefore, by Lemma 5.4 there exist m ≫ 0, Υ′
m ∈ V and 0 < αm ≪ εm such that

KX + A +Υ′
m is pseudo-effective and Υµ,m = αmΥµ + (1− αm)Υ

′
m.

Setting B′
m = 1

1−αm
(Bm − αmB), we have Bm = αmB + (1 − αm)B

′
m, and an easy

calculation shows that

KX + A+B′
m ∼R

1

1 + µ

(
KX + A +Υ′

m +
εm − αm

1− αm

Λ
)
.

In particular, KX+A+B′
m is pseudo-effective. Since L(V ) is a rational polytope, we

may assume that B′
m ∈ L(V ). In particular, B′

m ∈ PA(V ) and Bm is not an extreme
point of PA(V ), a contradiction. Therefore, PA(V ) is a polytope in a neighbourhood
of B.
Now assume that KX +∆ ≡ Nσ(KX +∆). If PA(V ) is not a polytope around B,

then there exists an infinite sequence of distinct extreme points Bm ∈ PA(V ) such
that limBm = B. Since L(V ) is a rational polytope, there exists 0 < δ ≪ 1 such
that Cm,t = Bm + t(Bm − B) ∈ LA(V ) for any m ≫ 0 and 0 ≤ t ≤ δ. Let Dm ≥ 0
be R-divisors such that KX + A + Bm ≡ Dm. There exists an ample R-divisor H
such that

SuppNσ(KX +∆) ⊆ B(KX +∆+H),

and since H + (KX +∆−Dm) ≡ H + (B −Bm) is ample for all m ≫ 0, we have

SuppNσ(KX +∆) ⊆ B
(
Dm +H + (KX +∆−Dm)

)
⊆ B(Dm) ⊆ SuppDm.

Thus, if m is sufficiently large, there exists 0 < t ≪ 1 such that

KX + A + Cm,t ≡ (1 + t)Dm − t(KX +∆) ≡ (1 + t)Dm − tNσ(KX +∆) ≥ 0,
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and in particular Cm,t ∈ PA(V ). But then Bm = 1
1+t

Cm,t +
t

1+t
B implies that Bm is

not an extreme point of PA(V ), a contradiction.
Therefore PA(V ) is a polytope. Let B1, . . . , Bq be its extreme points. Then there

exist R-divisors Di ≥ 0 such that KX + A + Bi ≡ Di. Let W ⊆ DivR(X) be the
vector space spanned by V and by the components of KX +A and

∑
Di. Note that

for every τ = (t1, . . . , tq) ∈ Rq
+ such that

∑
ti = 1, we have Bτ =

∑
tiBi ∈ PA(V )

and KX +A+Bτ ≡
∑

tiDi ∈ W . Let φ : W −→ N1(X)R be the linear map sending
a divisor to its numerical class. Then W0 = φ−1(0) is a rational affine subspace of
W and

PA(V ) = {B ∈ L(V ) | B = −KX −A+D +R, where 0 ≤ D ∈ W,R ∈ W0}.

Therefore, PA(V ) is cut out from L(V ) ⊆ W by finitely many rational half-spaces,
and thus is a rational polytope. �

6. Finite generation

Lemma 6.1. Let (X,
∑p

i=1 Si) be a log smooth projective pair, and denote V =∑p
i=1RSi ⊆ DivR(X). Let C ⊆ V be a rational polyhedral cone, let C =

⋃p
j=1 Cj be a

rational polyhedral decomposition, and denote S = C∩Div(X) and Sj = Cj∩Div(X)
for all j. Assume that:

(1) there exists M > 0 such that, if
∑

αiSi ∈ Cj for some j and some αi ∈ N
with

∑
αi ≥ M , then

∑
αiSi − Sj ∈ C;

(2) the ring resSj
R(X,Sj) is finitely generated for every j = 1, . . . , p.

Then the divisorial ring R(X,S) is finitely generated.

Proof. For every i = 1, . . . , p, let σi ∈ H0(X,OX(Si)) be a section such that div σi =
Si. Let R ⊆ R(X ;S1, . . . , Sp) be the ring spanned by R(X,S) and σ1, . . . , σp, and
note that R is graded by

∑p
i=1NSi. By Lemma 2.19(1), it is enough to show that

R is finitely generated.
For any α = (α1, . . . , αp) ∈ Np, denote Dα =

∑
αiSi and deg(α) =

∑
αi, and for

a section σ ∈ H0(X,OX(Dα)), set deg(σ) = deg(α). For each j = 1, . . . , p, there
exists a finite set Hj ⊆ R(X,Sj) such that the ring resSj

R(X,Sj) is generated by the
set {σ|Sj

| σ ∈ Hj}. Since the vector space H0(X,OX(Dα)) is finitely generated for
every α ∈ Np, there is a finite set H ⊆ R such that {σ1, . . . , σp}∪H1∪· · ·∪Hp ⊆ H,
and that H0(X,Dα) ⊆ C[H] for every α ∈ Np with deg(α) ≤ M , where C[H] is the
ring of polynomials in the elements of H. Observe that C[H] ⊆ R, and it is enough
to show that R = C[H].

Let χ ∈ R. By definition of R, we may write χ =
∑

i σ
λ1,i

1 . . . σ
λp,i
p χi, where

χi ∈ H0(X,OX(Dαi
)) for some Dαi

∈ S and λj,i ∈ N. Thus, it is enough to show
that χi ∈ C[H] and after replacing χ by χi, we may assume that χ ∈ H0(X,Dα),
for some Dα ∈ S. The proof is by induction on degχ. If degχ ≤ M , then χ ∈ C[H]
by definition of H. Now assume deg χ > M . Then there exists 1 ≤ j ≤ p such that
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Dα ∈ Sj, and thus, by definition of H, there are θ1, . . . , θz ∈ H and a polynomial
ϕ ∈ C[X1, . . . , Xz] such that χ|Sj

= ϕ(θ1|Sj
, . . . , θz|Sj

). Therefore, from the exact
sequence

0 −→ H0(X,OX(Dα − Sj))
·σj

−→ H0(X,OX(Dα)) −→ H0(Sj,OSj
(Dα))

we obtain

χ− ϕ(θ1, . . . , θz) = σj · χ
′

for some χ′ ∈ H0(X,OX(Dα − Sj)). Note that Dα − Sj ∈ S by assumption, and
since degχ′ < deg χ, by induction we have χ′ ∈ C[H]. Therefore χ = σj · χ

′ +
ϕ(θ1, . . . , θz) ∈ C[H], and we are done. �

Lemma 6.2. Assume Theorem An−1 and Theorem Bn−1.
Let (X,S +

∑p
i=1 Si) be a log smooth projective pair of dimension n, where S

and all Si are distinct prime divisors. Let V =
∑p

i=1RSi ⊆ DivR(X), let A be
an ample Q-divisor on X, let B1, . . . , Bm ∈ ES+A(V ) be Q-divisors, and denote
Di = KX + S + A+Bi.
Then the ring resS R(X ;D1, . . . , Dm) is finitely generated.

Proof. For every i, there is a Q-divisor Gi ∈ V such that A−Gi is ample and Bi+Gi

is in the interior of L(V ). Let A′ be an ample Q-divisor such that every A−Gi−A′

is also ample, and pick Q-divisors Ai ≥ 0 such that Ai ∼Q A − Gi − A′, ⌊Ai⌋ = 0,
(X,S+

∑p
i=1 Si+

∑m
i=1Ai) is log smooth, and the support of

∑m
i=1Ai does not contain

any of the divisors S, S1, . . . , Sp. Let V
′ ⊆ DivR(X) be the vector space spanned by

V and by the components of
∑m

i=1Ai. Let ε > 0 be a rational number such that
A′′ = A′ − ε

∑m
i=1Ai is ample, and such that every B′

i = Bi + Gi + Ai + ε
∑m

i=1Ai

is in the interior of L(V ′). Let D′
i = KX + S + A′′ +B′

i. Then Di ∼Q D′
i, and after

replacing A by A′′, Bi by B′
i, and V by V ′, by Lemma 2.19 we may assume that Bi

is in the interior of L(V ) for every i.
Let B ≥ 0 be a Q-divisor such that ⌊B⌋ = 0 and B ≥ Bi for all i. By Lemma

2.2, there exists a log resolution f : Y −→ X such that

KY + T + C = f ∗(KX + S +B) + E,

where C,E ≥ 0 have no common components, E is f -exceptional, the components
of C are disjoint, and T = f−1

∗ S * SuppC. In particular, there are Q-divisors
0 ≤ Ci ≤ C and f -exceptional divisors Ei ≥ 0 such that

KY + T + Ci = f ∗(KX + S +Bi) + Ei.

Let V ′ ⊆ DivR(Y ) be the subspace spanned by the components of C and by all f -
exceptional prime divisors. There exists an f -exceptional Q-divisor F ≥ 0 such that
f ∗A− F is ample, C + F is in the interior of L(V ′) and (T, (C + F )|T ) is terminal.
After replacing X by Y , S by T , A by f ∗A−F , Bi by Ci+F and V by V ′, we may
assume that all (S,Bi|S) are terminal.
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Let G ⊆ ES+A(V ) be the convex hull of all Bi, and note that (S,G|S) is terminal
for every G ∈ G. Denote F = R+(KX + S + A + G). Then, by Corollary 2.21 it
suffices to prove that resS R(X,F) is finitely generated.
Let Φm and Φ be the functions defined in Setup 4.1. By Theorem 4.4, P =

G∩BS
A(V ) is a rational polytope, andΦ extends to a rational piecewise affine function

on P. Thus, there exists a finite decomposition P =
⋃

Pi into rational polytopes
such that Φ is rational affine on each Pi. Denote C = R+(KX + S + A + P) and
Ci = R+(KX + S + A + Pi). Since resS H

0(X,D) = 0 for every D ∈ F \ C, and
as C is a rational polyhedral cone, it suffices to show that resS R(X, C) is finitely
generated, and therefore, to prove that resS R(X, Ci) is finitely generated for each i.
Hence, after replacing G by Pi, we can assume that Φ is rational affine on G.
For i = 1, . . . , q, let Fi = gi(KX+S+A+Gi) be generators of F , where Gi ∈ G and

gi ∈ Q+. By Theorem 4.4, there exists a positive integer ℓ such that Φm(G) = Φ(G)
for every G ∈ G and every m ∈ N such that m

ℓ
G ∈ Div(X). Pick a positive integer

k such that all kgi
ℓ

∈ N and kgi
ℓ
Gi ∈ Div(X). For each α = (α1, . . . , αq) ∈ Nq, denote

gα =
∑

αigi, Gα =
1

gα

∑
αigiGi, Fα =

∑
αiFi = gα(KX + S + A+Gα),

and note that kgα
ℓ
Gα ∈ Div(X) and Φ(Gα) =

1
gα

∑
i αigiΦ(Gi). Then, by Corollary

3.5 we have

resS H
0(X,mkFα) = H0

(
S,mkgα(KS + A|S + Φmkgα(Gα))

)

= H0
(
S,mkgα(KS + A|S +Φ(Gα))

)

for all α ∈ Nq and m ∈ N, and thus

resS R(X ; kF1, . . . , kFq) = R(S; kg1F
′
1, . . . , kgqF

′
q),

where F ′
i = KS + A|S +Φ(Gi). Since the last ring is a Veronese subring of the ad-

joint ring R(S;F ′
1, . . . , F

′
q), it is finitely generated by Theorem An−1 and by Lemma

2.19(1). Therefore resS R(X ;F1, . . . , Fq) is finitely generated by Lemma 2.19(2), and
since there is the natural projection of this ring onto resS R(X,F), this proves the
lemma. �

Theorem 6.3. Theorem An−1 and Theorem Bn imply Theorem An.

Proof. Let V ⊆ DivR(X) be the subspace spanned by the components of all Bi, and
let P ⊆ V be the convex hull of all Bi. By Theorem Bn, P

′ = P∩EA(V ) is a rational
polytope, and denote G = R+(KX+A+P) andH = R+(KX+A+P ′). By Gordan’s
lemma, there are generators Hi = hi(KX + A + B′

i) of the monoid H ∩ Div(X) for
i = 1, . . . , ℓ, where hi ∈ Q+ and Bi ∈ P ′ ∩ DivQ(X). Then, since H0(X,D) = 0 for
every D ∈ G\H, the ring R(X,G) is finitely generated if and only if R(X,H) is, and
there is the natural projection map R(X ;H1, . . . , Hℓ) −→ R(X,H). Therefore, by
Lemma 2.19 and Corollary 2.21, it is enough to show thatR(X ;H ′

1, . . . , H
′
ℓ) is finitely

generated, where H ′
i = KX + A + B′

i. After replacing B1, . . . , Bk by B′
1, . . . , B

′
ℓ, we
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may assume that there exist divisors Fi ≥ 0 such that Fi ∼Q KX +A+Bi for all i.
By Lemma 2.19, it suffices to prove that R(X ;F1, . . . , Fk) is finitely generated.
Let f : Y −→ X be a log resolution of

(
X,

∑
i(Bi + Fi)

)
. For every i, there are

Q-divisors Ci, Ei ≥ 0 with no common components such that Ei is f -exceptional
and

KY + Ci = f ∗(KX +Bi) + Ei.

LetH ≥ 0 be an f -exceptional Q-divisor such that f ∗A−H is ample and ⌊Ci +H⌋ =
0 for all i. Pick A′ ∼Q f ∗A − H such that A′ ≥ 0, SuppA′ is a prime divisor, and
SuppA′ * Supp

∑
i(f

∗Fi + Ei). Then

KY + A′ + (Ci +H) ∼Q f ∗(KX + A+Bi) + Ei ∼Q f ∗Fi + Ei,

so, by Lemma 2.19, after replacing X by Y , A by A′, Bi by Ci + H , and Fi by
f ∗Fi +Ei, we may assume that

(
X,

∑
i(Bi + Fi)

)
is log smooth, A ≥ 0, SuppA is a

prime divisor, and SuppA * Supp
∑

i Fi.
Let W be the subspace of DivR(X) spanned by V and the components of all Fi,

and let S1, . . . , Sp be the prime divisors in W . Denote by T = {(t1, . . . , tk) | ti ≥
0,
∑

ti = 1} ⊆ Rk the standard simplex, and for each τ = (t1, . . . , tk) ∈ T , set

Bτ =

k∑

i=1

tiBi and Fτ =

k∑

i=1

tiFi ∼R KX + A+Bτ .

Denote

B = {Fτ +B | τ ∈ T , 0 ≤ B ∈ W,Bτ +B ∈ L(W )},

and for every j = 1, . . . , p, let

Bj = {Fτ +B | 0 ≤ B ∈ W,Bτ +B ∈ L(W ), Sj ⊆ ⌊Bτ +B⌋}.

Then C = R+B and Cj = R+Bj are rational polyhedral cones, and denote S =
C ∩ Div(X) and Sj = Cj ∩ Div(X). We claim that:

(1) C =
⋃p

j=1 Cj ,
(2) there exists M > 0 such that, if

∑
αiSi ∈ Cj for some j and some αi ∈ N

with
∑

αi ≥ M , then
∑

αiSi − Sj ∈ C;
(3) the ring resSj

R(X,Sj) is finitely generated for every j = 1, . . . , p.

This claim readily implies the theorem: indeed, Lemma 6.1 shows that R(X,S) is
finitely generated. Pick divisors Fk+1, . . . , Fm such that F1, . . . , Fm are generators
of S. Then R(X ;F1, . . . , Fm) is finitely generated by Corollary 2.21, and finally
Lemma 2.19(1) implies that R(X ;F1, . . . , Fk) is finitely generated.
We now prove the claim. In order to see (1), fix G ∈ C\{0}. Then, by definition,

there exist τ ∈ T , B ∈ W and r > 0 such that B ≥ 0, Bτ + B ∈ L(W ) and
G = r(Fτ +B). Setting

λ = max{t ≥ 1 | Bτ + tB + (t− 1)Fτ ∈ L(W )}
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and B′ = λB + (λ− 1)Fτ , we have

λG = r(Fτ +B′),

and there exists j0 such that Sj0 ⊆ ⌊Bτ +B′⌋. Therefore G ∈ Cj0 , which proves (1).
For (2), note first that there exists ε > 0 such that ‖Bi‖ ≤ 1 − ε for all i, and

thus ‖Bτ‖ ≤ 1−ε for any τ ∈ T . Since the polytopes Bj ⊆ W are compact, there is
a positive constant C such that ‖H‖ ≤ C for any H ∈ Bj , and for all j = 1, . . . , p.
Let M be a positive integer such that M ≥ qC/ε. Let G =

∑
αiSi ∈ Sj be such

that
∑

αi ≥ M . Since q‖G‖ ≥
∑

αi, we have

‖G‖ ≥
M

q
≥

C

ε
.

By definition, G = rG′ with G′ ∈ Bj and r > 0. In particular, r = ‖G‖/‖G′‖ ≥ 1
ε

since ‖G′‖ ≤ C by definition of C. Furthermore, G′ = Fτ + B for some τ ∈ T and
0 ≤ B ∈ W such that Bτ +B ∈ L(W ) and Sj ⊆ ⌊B +Bτ⌋. In particular,

multSj
B = 1−multSj

Bτ ≥ ε ≥
1

r
,

and thus

G− Sj = r
(
Fτ +B − 1

r
Sj

)
∈ C.

Finally, to show (3), fix 1 ≤ j ≤ p, and let {E1, . . . , Eℓ} be a set of generators of
Sj . Then, for every i = 1, . . . , ℓ there exist ki ∈ Q+, τi ∈ T ∩ Qk and 0 ≤ Bi ∈ W
such that Bτi +Bi ∈ L(W ), Sj ⊆ ⌊Bτi +Bi⌋ and

Ei = ki(Fτi +Bi) ∼Q ki(KX + A+Bτi +Bi).

Denote E ′
i = KX + A + Bτi + Bi. Then the ring resSj

R(X ;E ′
1, . . . , E

′
ℓ) is finitely

generated by Lemma 6.2, and it has a Veronese subring of finite index which is iso-
morphic to a Veronese subring of finite index of resSj

R(X ;E1, . . . , Eℓ). Since there
is the natural projection resSj

R(X ;E1, . . . , Eℓ) −→ resSj
R(X,Sj), we conclude by

Lemma 2.19. �

Finally, we have:

Proof of Theorem 1.1. By [FM00, Theorem 5.2] and by induction on dimX , we may
assume that KX + ∆ is big. Write KX + ∆ ∼Q A + B, where A is an ample Q-
divisor and B ≥ 0. Pick a rational number 0 < ε ≪ 1. Setting ∆′ = (∆+ εB)+ εA,
we have KX + ∆′ ∼Q (ε + 1)(KX + ∆). Therefore, the rings R(X,KX + ∆) and
R(X,KX +∆′) have isomorphic truncations, so the result follows from Theorem A
and Lemma 2.19. �
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[CL10] A. Corti and V. Lazić, New outlook on Mori theory, II, arXiv:1005.0614v2.
[Cor05] A. Corti, 3-fold flips after Shokurov, Flips for 3-folds and 4-folds (Alessio Corti, ed.),

Oxford University Press, 2005, pp. 13–40.
[Cor10] , Finite generation of adjoint rings after Lazić: an introduction,
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[Laz09] V. Lazić, Adjoint rings are finitely generated, arXiv:0905.2707v3.
[Mor82] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of

Math. (2) 116 (1982), no. 1, 133–176.
[Nak04] N. Nakayama, Zariski-decomposition and Abundance, MSJ Memoirs, vol. 14, Mathe-

matical Society of Japan, Tokyo, 2004.
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