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FINE COMPACTIFIED JACOBIANS

MARGARIDA MELO AND FILIPPO VIVIANI

Abstract. We study Esteves’s fine compactified Jacobians for nodal
curves. We give a proof of the fact that, for a one-parameter regular local
smoothing of a nodal curve X, the relative smooth locus of a relative fine
compactified Jacobian is isomorphic to the Néron model of the Jacobian
of the general fiber, and thus it provides a modular compactification
of it. We show that each fine compactified Jacobian of X admits a
stratification in terms of certain fine compactified Jacobians of partial
normalizations of X and, moreover, that it can be realized as a quotient
of the smooth locus of a suitable fine compactified Jacobian of the total
blowup of X. Finally, we determine when a fine compactified Jacobian
is isomorphic to the corresponding Oda-Seshadri’s coarse compactified
Jacobian.

Contents

Introduction 1
1. Preliminaries and notations 5
2. Graph-theoretic results 15
3. Fine compactified Jacobians and Néron models 24
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Introduction

0.1. Motivation
The Jacobian variety of a smooth curve is an abelian variety that carries

important information about the curve itself. Its properties have been widely
studied along the decades, giving rise to a significant amount of beautiful
mathematics.

However, for singular (reduced) curves, the situation is more involved
since the generalized Jacobian variety is not anymore an abelian variety,
once it is, in general, not compact. The problem of compactifying it is, of
course, very natural, and it is considered to go back to the work of Igusa
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in [Igu56] and Mayer-Mumford in [MM64] in the 50’s–60’s. Since then,
several solutions appeared, differing from one another in various aspects as
the generality of the construction, the modular description of the boundary
and the functorial properties.

For families of irreducible curves, after the important work of D’Souza in
[DS79], a very satisfactory solution has been found by Altman and Kleiman
in [AK80]: their relative compactification is a fine moduli space, i.e. it
admits a universal, or Poincaré, sheaf after an étale base change.

For reducible curves, the problem of compactifying the generalized Jaco-
bian variety is much more intricate from a combinatorial and also functorial
point of view. The case of a single curve over an algebraically closed field
was dealt with by Oda-Seshdari in [OS79] in the nodal case and by Seshadri
in [Ses82] in the general case. For families of reducible curves, a relative
compactification is provided by the work of Simpson in [Sim94], which in
great generality deals with coherent sheaves on families of projective varie-
ties. A different approach is that of considering the universal Picard scheme
over the moduli space of smooth curves and compactify it over the moduli
space of stable curves. This point of view was the one considered by Ca-
poraso in [Cap94] and by Pandharipande in [Pan96] (the later holds more
generally for bundles of any rank) and by Jarvis in [Jar00]. A common fea-
ture of these compactifications is that they are constructed using geometric
invariant theory (GIT), hence they only give coarse moduli spaces for their
corresponding moduli functors.

The problem of constructing fine compactified jacobians for reducible
curves remained open until the work of Esteves in [Est01]. Given a fam-
ily f : X → S of reduced curves endowed with a vector bundle E of integral
slope, called polarization, and with a section σ, Esteves constructs an alge-
braic space JσE over S, which is a fine moduli space for simple torsion-free
sheaves on the family satisfying a certain stability condition with respect to
E and σ (see 1.17). The algebraic space JσE is always proper over S and, in
the case of a single curve X defined over an algebraically closed field, it is
indeed a projective scheme (see [Est09, Thm. 2.4]).

Recently, fine compactified Jacobians of singular curves have played an
important role in the celebrated proof of the Fundamental Lemma (see
[Lau06], [LN08], [Ngo10]).

0.2. Results
The aim of the present work is to discuss in detail several aspects of

Esteves’s fine compactified Jacobians for a connected nodal curve X over
an algebraically closed field k. We introduce the notation JPX(q) for the fine
compactified Jacobians of X, where P is a smooth point of X and q = {q

Ci
}

is a collection of rational numbers, one for each irreducible component Ci of

X, summing up to an integer number |q| :=
∑

Ci

q
Ci

∈ Z (see 1.17).

We begin by giving a different proof (see Theorem 3.1) of an unpublished
result from Busonero’s PhD thesis ([Bus08]), which states that the fine com-
pactified Jacobians JPX(q) are of Néron-type, according to the terminology
of [Cap08b, Def. 2.3.5] and [Cap, Def. 1.4 and Prop. 1.6]. Explicitly,
this means the following: given a one-parameter regular local smoothing
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f : X → S = Spec(R) of X with a section σ such that P = σ(Spec(k)) (see
1.5), whereR is a DVR with residue field k and quotient fieldK, consider the
relative fine compactified Jacobian Jσf (q), having special fiber isomorphic to

JPX(q) and general fiber isomorphic to Pic|q|(XK). Then the S-smooth locus
of Jσf (q), which consists of the sheaves on X whose restriction to X = Xk
is locally free (see Fact 1.19), is naturally isomorphic to the Néron model

N(Pic|q|XK) of the degree |q| Jacobian of the general fiber XK of f . A
consequence of this property is that fine compactified Jacobians provide a
geometrically meaningful compactification of Néron models of nodal curves.
In particular, one gets that, independently of the choice of the polarization
q and of the smooth point P ∈ Xsm, the number of irreducible components

of the fine compactified Jacobians JPX(q) is always equal to the complexity
c(ΓX) of the dual graph ΓX of the curve X, or equivalently to the cardinality
of the degree class group ∆X (see 1.2).

Next, we show in Theorem 4.1 that the fine compactified Jacobians JPX(q)
of X admit a canonical stratification

JPX(q) =
∐

∅⊆S⊆Xsing

JPX,S(q)

where JPX,S(q) is the locally closed subset consisting of sheaves I ∈ JPX(q)

that are not free exactly at S ⊆ Xsing and JPX,S(q) is not empty if and
only if the partial normalization XS of X at S is connected. We show that
the closure of JPX,S(q) in JPX(q) is equal to the union of the strata JPX,S′(q)

such that S ⊆ S′ and that it is canonically isomorphic to a fine compactified
Jacobian JPXS

(qS) for a suitable polarization qS ofXS (see 1.7). In particular,

each stratum JPX,S(q) is a disjoint union of c(ΓXS
) copies of the generalized

Jacobian J(XS) of XS .
In Theorem 5.2, we describe JPX(q) as a quotient of the smooth locus of

a fine compactified Jacobian JP
X̂
(q̂) for a suitable polarization q̂ on the total

blowup X̂ of X (see 1.7). In Theorem 5.4, we show that a similar relation
holds for the relative fine compactified Jacobians of suitable one-parameter

regular local smoothings of X and X̂ . In particular, the fine compactified

Jacobian JPX(q) is a quotient of the special fiber of the Néron model of X̂ in
degree |q|.

We point out that some of the above results were inspired by the work of
Caporaso in [Cap08a], where the author studies the coarse canonical degree-

d compactified Jacobians P dX (see 1.18(v)) for a special class of stable curves
X, called d-general (see Remark 6.6).

Finally, in Theorem 6.1, we determine for which polarizations q and points
P ∈ Xsm, the natural map (see 1.17)

Φ : JPX(q) −→ UX(q)

from Esteves’s fine compactified Jacobians to the corresponding Oda-Sesha-
dri’s coarse compactified Jacobian is an isomorphism. In particular, we prove
that this problem depends only on q and not on P and that the sufficient
conditions on q found by Esteves in [Est09] are also necessary.
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0.3. Outline of the paper
The paper is organized as follows. In Section 1, we collect all the notations

and basic properties about nodal curves and their combinatorial invariants
(dual graph, degree class group, polarizations) that we are going to use in
the sequel. Moreover, we review the theory of Néron models for Jacobians
and the main properties of Esteves’s fine compactified Jacobians as well as
Oda-Seshadri’s, Seshadri’s, Caporaso’s and Simpson’s coarse compactified
Jacobians for nodal curves. We also compare these constructions among
each others and we establish formulae linking the different notations.

Section 2 is entirely devoted to the proof of a technical result in graph
theory, that is a key ingredient for the results in the subsequent sections.

In Section 3 we prove that fine compactified Jacobians are of Néron type.
In Section 4 we describe a stratification of JPX(q) in terms of fine com-

pactifed Jacobians of partial normalizations of X.
Section 5 is devoted to show how to realize fine compactified Jacobians

of X as quotients of the Néron model of the total blowup X̂ of X.
In Section 6 we characterize those polarizations for which Esteves’s fine

compactified Jacobians are isomorphic to Oda-Seshadri’s coarse compacti-
fied Jacobians.

0.4. Further questions and future work
In the present paper we deal with nodal curves mainly because of the

combinatorial tools that we use to prove our results, e.g. the dual graph as-
sociated to a nodal curve. It is likely, however, that some of our results could
be extended to more general singular curves, e.g. curves with locally planar
singularities (see [AKI77] for the relevance of locally planar singularities in
the context of compactified Jacobians of singular curves).

The results of this paper show that the fine compactified Jacobians JPX(q)
of a nodal curveX share very similar properties regardless of the polarization
q and the choice of the smooth point P ∈ Xsm. The following question arises
naturally

Question 0.5. For a given nodal curve X, how do the fine compactified
Jacobians JPX(q) change as the polarization q and the smooth point P ∈ Xsm

vary?

This question is currently being investigated together with Eduardo Esteves
and Marco Pacini.

Note also that, by our comparison’s result between fine compactified Ja-
cobians and coarse compactified Jacobians (see Theorem 6.1), the above
problem is also closely related to the problem of studying the variation of
GIT in the Oda-Seshadri’s construction of coarse compactified Jacobians of
X. In turn, this problem seems to be related to wall-crossing phenomena
for double Hurwitz numbers (see [GJV05] and [CJM]). We plan to explore
this fascinating connection in the future.

After this paper was posted on arXiv, Jesse Kass informed us that, in his
PhD thesis [Kas09], he has studied Esteves’s fine compactified Jacobians for
singular (not necessarily nodal) curves and their relation with Néron models
of Jacobians. In particular, he gave a different proof of Theorem 3.1 (see
[Kas09, Lemma 3.26]). Moreover, our stratification of the fine compactified
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Jacobians of nodal curves (see Section 4) is similar to the stratification by
local type that the author describes in [Kas09, Sec. 5.3].

Acknowledgements. The present collaboration started during our stay
at IMPA, Rio de Janeiro, in July-August 2009. We would like to thank
IMPA for the hospitality and in particular Eduardo Esteves for the kind
invitation and for sharing with us many enlightening ideas and suggestions.
We would also like to thank Marco Pacini for many useful conversations,
Eduardo Esteves for some comments on an early draft of this manuscript
and Jesse Kass for sending us a copy of his PhD thesis [Kas09].

1. Preliminaries and notations

Throughout this paper, R will be a discrete valuation ring (a DVR)
with algebraically closed residue field k and quotient field K. We set B =
Spec(R).

1.1. Nodal curves
By a genus g nodal curve X we mean a projective and reduced curve of

genus g over k having only nodes as singularities. We will denote by ωX
the canonical or dualizing sheaf of X. We denote by γX (or simply γ) the
number of irreducible components of X and by C1, . . . , Cγ its irreducible
components.

A subcurve Y ⊂ X is a closed subscheme of X that is a curve, or in other
words Y is the union of some irreducible components of X. We say that
Y is a proper subcurve, and we write Y ( X, if Y is a subcurve of X and
Y 6= X. For any proper subcurve Y ( X, we set Y c := X \ Y and we call
it the complementary subcurve of Y . For a subcurve Y ⊂ X, we denote by
gY its arithmetic genus and by δY := |Y ∩ Y c| the number of nodes where
Y intersects the rest of the curve. Then, the adjunction formula gives

wY := deg(ωX)|Y = 2gY − 2 + δY .

We denote by Xsing the set of nodes of X and we set δ = δX := |Xsing|. The
set of nodes Xsing admits a partition

Xsing = Xext

∐
Xint,

where Xext is the subset of Xsing consisting of the nodes at which two dif-
ferent irreducible components of X meet (we call these external nodes), and
Xint is the subset of Xsing consisting of the nodes which are self-intersection
of an irreducible component of X (we call these internal nodes).

We denote by ΓX the dual graph of X. With a slight abuse of notation,
we identify the edges E(ΓX) of ΓX with the nodes Xsing of X and the
vertices V (ΓX) of ΓX with the irreducible components of X. Note that
the subcurves of X correspond to the subsets of V (ΓX) via the following
bijection: we associate to a set of vertices W ⊆ V (ΓX) the subcurve X[W ]
of X given by the union of the irreducible components corresponding to the
vertices which belong to W . Given a smooth point P ∈ Xsm, we denote
with vP the vertex corresponding to the unique irreducible component of X
on which P lies.

A node N ∈ Xext is called a separating node if X −N is not connected.
Since X is itself connected, X −N would have two connected components.
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Their closures are called the tails attached to N . We denote by Xsep ⊂ Xext

the set of separating nodes of X. Following [Est09, Sec. 3.1], we say that a
subcurve Y of X is a spine if Y ∩ Y c ⊂ Xsep. Note that the union of spines
is again a spine and the connected components of a spine are spines. A tail
(attached to some separating node N ∈ Xsep) is a spine Y such that Y and
Y c are connected and conversely.

Given a subset S ⊂ Xsing, we denote by XS the partial normalization of

X at S and by X̂S the partial blowup of X at S, where by blowup of X
at a node n we mean the curve obtained from Xn by attaching a P1 in the
preimages of n. Note that we have a commutative diagram:

(1) XS
� � iS //

νS     A
AA

AA
AA

A X̂S

πS~~~~}}
}}

}}
}

X

The inclusion iS realizes XS as the complementary subcurve in X̂S to the
exceptional divisor ES of the morphism πS , i.e. the union of all the excep-
tional components lying above the nodes of S. We denote the total blowup

of X by X̂ and the natural map to X by π : X̂ → X.
For a given subcurve Y of X denote by YS ⊂ XS the preimage of Y under

νS . Note that YS is the partial normalization of Y at S ∩ Y and that every
subcurve Z ⊂ XS is of the form YS for some uniquely determined subcurve
Y ⊂ X, namely Y = νS(Z).

The dual graph ΓXS
of XS is equal to the graph ΓX \ S obtained from

ΓX by deleting all the edges belonging to S. The dual graph Γ
X̂S

of X̂S is

equal to the graph (̂ΓX)S obtained from ΓX by adding a new vertex in the
middle of every edge belonging to S.

1.2. Degree class group
We call the elements d = (d1, . . . , dγ) of Zγ multidegrees. We set |d| :=∑γ
1 di and call it the total degree of d. For a line bundle L ∈ PicX

its multidegree is degL := (degC1
L, . . . ,degCγ

L) and its (total) degree is
degL := degC1

L+ . . .+ degCγ
L.

Given d ∈ Zγ we set PicdX := {L ∈ PicX : degL = d}. Note that

Pic0X := {L ∈ PicX : degL = (0, . . . , 0)} is a group (called the generalized
Jacobian of X and denoted by J(X)) with respect to the tensor product of
line bundles and each Picd(X) is a torsor under Pic0(X). We set PicdX :=
{L ∈ PicX : degL = d} =

∐
|d|=d Pic

dX.

For every component Ci of X denote

δi,j :=





|Ci ∩ Cj | if i 6= j,

−δi if i = j.

For every i = 1, . . . , γ set ci := (δ1,i, . . . , δγ,i) ∈ Zγ . Then |ci| = 0 for all
i = 1, . . . , γ and the matrix MX whose columns are the ci can be viewed
as an intersection matrix for X. Consider the sublattice ΛX of Zγ of rank
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γ − 1 spanned by the ci

ΛX :=< c1, . . . , cγ > .

Definition 1.3. We say that two multidegrees d and d′ are equivalent,
and write d ≡ d′, if and only if d − d′ ∈ ΛX . The equivalence classes of
multidegrees that sum up to d are denoted by

∆d
X := {d ∈ Zγ : |d| = d}/≡.

Note that ∆X := ∆0
X is a finite group and that each ∆d

X is a torsor under
∆X . The group ∆X is known in the literature under many different names
(see [BMS] and the references therein); we will follow the terminology intro-
duced in [Cap94] and call it the degree class group of X.

We shall denote the elements in ∆d
X by lowercase greek letters δ and write

d ∈ δ meaning that the class [d] of d is δ.
A well-known theorem in graph theory, namely Kirchhoff’s Matrix Tree

Theorem, asserts that, if X is connected, the cardinality of ∆X (and hence
of each ∆d

X) is equal to the complexity c(ΓX) of the dual graph ΓX of X,
that is the number of spanning trees of ΓX . Note that c(ΓX) > 0 if and only
if X is connected.

In the sequel, we will use the following result which gives a formula for

the complexity of Γ̂S (see the notation in 1.1):

Fact 1.4. [BMS06, Thm. 3.4] For any S ⊂ E(Γ), we have that

c(Γ̂S) =
∑

∅⊆S′⊆S

c(Γ \ S′).

1.5. Néron models of Jacobians
A one-parameter regular local smoothing of X is a morphism f : X → B

where X is a regular surface, such that the special fiber Xk is isomorphic to
X and the generic fiber XK is a smooth curve.

Fix f : X → B a one-parameter regular local smoothing of X. Let Picf
denote the relative Picard functor of f (often denoted PicX/B in the litera-

ture, see [BLR80, Chap. 8] for the general theory). Picdf is the subfunctor

of line bundles of relative degree d. Picf (resp. Picdf ) is represented by a

scheme Picf (resp. Picdf ) over B, see [BLR80, Thm. 8.2]. Note that Picf
and Picdf are not separated over B if X is reducible.

For each multidegree d ∈ Zγ , there exists a separated closed subscheme

Pic
d
f ⊂ Picdf parametrizing line bundles of relative degree d whose restriction

to the closed fiber has multidegree d. In other words, the special fiber of

Pic
d
f is isomorphic to Picd(X) while, clearly, the general fiber is isomorphic

to Picd(XK). Note that Pic
0
f is a group scheme over B and that the Pic

d
f ’s

are torsors under Pic
0
f . It is well-known (see [Cap08a, Sec. 3.9]) that if

d ≡ d′ then there is a canonical isomorphism (depending only on f)

ιf (d, d
′) : Pic

d
f −→ Pic

d′

f

which restricts to the identity on the generic fiber. The isomorphism ιf (d, d
′)

is given by tensoring with a line bundle on X of the form OX (
∑

i niCi), for
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suitably chosen integers ni ∈ Z such that
∑

i ni = 0. We shall therefore

identify Pic
d
f with Pic

d′

f for all pairs of equivalent multidegrees d and d′.

Thus for every δ ∈ ∆d
X we define

(2) Picδf := Pic
d
f

for every d ∈ δ.
For any integer d, denote by N(Picd XK) the Néron model over B of

the degree-d Picard variety PicdXK of the generic fiber XK . Recall that
N(Picd XK) is smooth and separated over B, the generic fiber N(Picd XK)K
is isomorphic to PicdXK and N(PicdXK) is uniquely characterized by the
following universal property (the Néron mapping property, cf. [BLR80, Def.
1]): everyK-morphism uK : ZK −→ N(Picd XK)K = Picd XK defined on the
generic fiber of some scheme Z smooth over B admits a unique extension to
a B-morphism u : Z −→ N(Picd XK). Moreover, N(Pic0 XK) is an B-group
scheme while, for every d ∈ Z, N(PicdXK) is a torsor under N(Pic0XK).

The Néron models N(Picd XK) can be described as the biggest separated
quotient of Picdf ([Ray70, Sec. 4.8]). Indeed, since Picdf is smooth over B

and its general fiber is isomorphic to Picd(XK), the Néron mapping property
yields a map

(3) q : Picdf → N(Picd XK).

The scheme Picdf can be described as

Picdf
∼=

∐
d∈Zγ : |d|=d Pic

d
f

∼K
,

where ∼K denotes the gluing of the schemes Pic
d
f along their general fibers,

which are isomorphic to Picd(XK). On the other hand, the Néron model
N(Picd XK) can be explicitly described as follows

Fact 1.6. [Cap08a, Lemma 3.10] We have a canonical B-isomorphism

(4) N(PicdXK) ∼=

∐
δ∈∆d

X
Picδf

∼K
.

Therefore, the above map q sends each Pic
d
f isomorphically into Pic

[d]
f and

identifies Pic
d
f with Pic

d′

f if and only if d ≡ d′.
Note that, from Fact 1.6, it follows that the special fiber of the Néron

model N(PicdXK), which we will denote by Nd
X , is isomorphic to a disjoint

union of c(ΓX)’s copies of the generalized Jacobian J(X) of X.

1.7. Polarizations

Definition 1.8. A polarization on X is a γ-tuple of rational numbers q =
{q
Ci
}, one for each irreducible component Ci of X, such that |q| :=

∑
i qCi

∈

Z.

Given a subcurve Y ⊂ X, we set q
Y

:=
∑

j qCj
where the sum runs

through all the irreducible components Cj of Y . Note that giving a po-
larization q is the same as giving an assignment (Y ⊂ X) 7→ q

Y
which is
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additive on Y , i.e. such that if Y1, Y2 ⊂ X are two subcurves of X with-
out common irreducible components then q

Y1∪Y2
= q

Y1
+ q

Y2
and such that

q
X

∈ Z.

If Y ⊂ X is a subcurve of X such that q
Y
−
δY
2

∈ Z, then we define the

restriction of the polarization q to Y as the polarization q
|Y

on Y such that

(5) (q
|Y
)Z = q

Z
−

|Z ∩ Y c|

2
,

for any subcurve Z ⊂ Y .
Given a subset S ⊂ Xsing and a polarization q on X, we define a polariza-

tion qS (resp. q̂S) on the partial normalization XS (resp. the partial blowup

X̂S) of X at S (see the notation in 1.1).

Lemma-Definition 1.9. The formula

qS
YS

:= q
Y
−

|SYe |

2
− |SYi |,

for any subcurve YS ⊂ XS, where S
Y
e := S ∩Y ∩Y c and SYi := S ∩ (Y \Y c),

defines a polarization on XS.

Proof. We have to show that qS is additive, i.e. that for any two subcurves

YS and ZS of XS without common components it holds qS
YS∪ZS

= qS
YS

+

qS
ZS

. This follows from the additivity of q and the easily checked formulas:

(6)

{
|SY ∪Z
i | = |SYi |+ |SZi |+ |S ∩ Y ∩ Z|,

|SY ∪Z
e | = |SYe |+ |SZe | − 2|S ∩ Y ∩ Z|.

We conclude by observing that qS
XS

= q
X
− |S| ∈ Z. �

The proof of the following Lemma-Definition is trivial.

Lemma-Definition 1.10. The formula

q̂S
Z
=

{
0 if Z ⊆ ES,

q
πS(Z)

if Z 6⊆ ES,

for any subcurve Z ⊂ X̂S, defines a polarization on X̂S.

In the special case of the total blowup X̂ = X̂Xsing
, we set q̂ := q̂Xsing .

In the last part of the paper, we will need the concept of generic and
non-degenerate polarizations. First, imitating [Est09, Def. 3.4], we give the
following

Definition 1.11. A polarization q is called integral at a subcurve Y ⊂ X

if q
Z
−
δZ
2

∈ Z for any connected component Z of Y and of Y c.

Using the above definition, we can give the following

Definition 1.12.

(i) A polarization q is called general is it is not integral at any proper
subcurve Y ( X.
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(ii) A polarization q is called non-degenerate if it is not integral at any
proper subcurve Y ( X which is not a spine of X.

1.13. Semistable, torsion-free, rank 1 sheaves
Let X be a connected nodal curve of genus g. Let I be a coherent sheaf

on X. We say that I is torsion-free (or depth 1 or of pure dimension or
admissible) if its associated points are generic points ofX. Clearly, a torsion-
free sheaf I can be not free only at the nodes of X; we denote by NF (I) ⊂
Xsing the subset of the nodes of X where I is not free (NF stands for not
free). We say that I is of rank 1 if I is invertible on a dense open subset
of X. We say that I is simple if End(I) = k. Each line bundle on X is
torsion-free of rank 1 and simple.

For each subcurve Y of X, let IY be the restriction I|Y of I to Y modulo
torsion. If I is a torsion-free (resp. rank 1) sheaf on X, so is IY on Y . We
let degY (I) denote the degree of IY , that is, degY (I) := χ(IY )− χ(OY ).

It is a well-known result of Seshadri (see [Ses82]) that torsion-free, rank 1
sheaves on X can be described either via line bundles on partial normaliza-
tions of X or via certain line bundles on partial blowups of X. The precise
statement is the following

Proposition 1.14.

(i) For any S ⊂ Xsing, the commutative diagram (1) induces a commuta-
tive diagram

(7) Pic(XS)

(νS)∗

∼=

&&LLLLLLLLLLL
Pic(X̂S)prim

(πS)∗wwwwppppppppppp

i∗Soooo

TorsS(X)

where Pic(X̂S)prim denotes the line bundles on X̂S that have degree −1
on each exceptional component of the morphism πS and TorsS(X) de-
notes the set of torsion-free, rank 1 sheaves I on X such that NF(I) =
S. Moreover we have that
(a) The maps i∗S and (πS)∗ are surjective;
(b) The map (νS)∗ is bijective with inverse given by sending a sheaf

I ∈ TorsS(X) to the line bundle on XS obtained as the quotient
of (νS)

∗(I) by its torsion subsheaf.
(ii) The above diagram (7) is equivariant with respect to the natural ac-

tions of the generalized Jacobians of XS, X̂S and X and the natural
morphisms:

(8) J(XS) J(X̂S)
i∗
Soooo

J(X)

ν∗
S

ccccHHHHHHHHH π∗
S

∼=
;;vvvvvvvvv
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Explicitly, for any L ∈ Pic(X̂S)prim, M ∈ Pic(XS), α ∈ J(X) and

β ∈ J(X̂S), we have that

(9)





i∗S(β ⊗ L) = i∗S(β)⊗ i∗S(L),

(πS)∗(π
∗
Sα⊗ L) = α⊗ (πS)∗(L),

(νS)∗(ν
∗
Sα⊗M) = α⊗ (νS)∗(M).

In particular, the action of J(X) on TorsS(X) factors through the map
ν∗S : J(X) ։ J(XS).

(iii) For any subcurve Y ⊂ X and any M ∈ Pic(XS), it holds

degY (νS)∗(M) = degYS M + |SYi |,

where SYi := S ∩ (Y \ Y c) (as in Lemma-Definition 1.9).

Proof. Part (i) is due to Seshadri [Ses82] (see also [Ale04, Lemma 1.5]).
Part (ii) follows from the multiplicativity of pull-back map i∗S and the

projection formula applied to the morphisms νS and πS .
Part (iii): First of all observe that the restriction ((νS)∗M)|Y is equal to

the pushforward via (νS)|YS : YS → Y of the restriction M|YS =MYS . Since
(νS)|YS is a finite map, we get the equality χ(((νS)∗M)|Y ) = χ(MYS ) which,
combined with Riemann-Roch, gives that
(*)
deg((νS)∗M)|Y+1−g(Y ) = χ(((νS)∗M)|Y ) = χ(MYS ) = degYS M+1−g(YS).

Since YS is the normalization of Y at S ∩ Y , we have that g(YS) = g(Y )−
|S ∩ Y | which, combined with (*), gives that

(**) deg((νS)∗M)|Y = degYS M + |S ∩ Y |.

Clearly, the torsion subsheaf of ((νS)∗M)|Y is equal to
⊕

n∈S∩Y ∩Y c

kn, where

kn is the skyscraper sheaf supported on n and with stalk equal to the base
field k. Therefore

(***) degY ((νS)∗M) = deg((νS)∗M)Y = deg((νS)∗M)|Y − |S ∩ Y ∩ Y c|.

We conclude by putting together (**) and (***). �

Later, we will need the concepts of semistability, P -quasistability and
stability of a torsion-free, rank 1 sheaf on X with respect to a polarization
on X and to a smooth point P ∈ Xsm. Here are the relevant definitions.

Definition 1.15. Let q be a polarization on X and let P ∈ Xsm be a smooth
point of X. Let I be a torsion-free, rank-1 sheaf on X of degree d = |q|.

(i) We say that I is semistable with respect to q (or q-semistable) if for
every proper subcurve Y of X, we have that

(10) degY (I) ≥ q
Y
−
δY
2

(ii) We say that I is P -quasistable with respect to q (or q-P-quasistable)
if it is semistable with respect to q and if the inequality (10) above is
strict when P ∈ Y .

(iii) We say that I is stable with respect to q (or q-stable) if it is semistable
with respect to q and if the inequality (10) is always strict.
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In what follows we compare our notation with the other notations used
in the literature.

Remark 1.16.
(i) Given a vector bundle E on X, we define the polarization qE on X by

setting

qE
Y
= −

deg(E|Y )

rk(E)
+

degY (ωX)

2
,

for each subcurve Y (or equivalently for each irreducible component Ci)
of X. Then it is easily checked that the above notions of semistability
(resp. P -quasistability, resp. stability) with respect to qE agree with
the notions of semistability (resp. P -quasistability, resp. stability)
with respect to E in the sense of [Est01, Sec. 1.2]. Note that, for any

subcurve Y ⊂ X such that q
Y
−
δY
2

∈ Z, we have that (qE)|Y = qE|Y .

(ii) In the particular case where

(11) q
Y
= d ·

degY (ωX)

2g − 2
,

for a certain integer d ∈ Z, the inequality (10) reduces to the well-
known basic inequality of Gieseker-Caporaso (see [Cap94]). In this
case, q will be called the canonical polarization of degree d.

Given a sheaf I semistable with respect to a polarization q, there are
connected subcurves Y1, . . . , Yq covering X and a filtration

0 = I0 $ I1 $ . . . ,$ Iq−1 $ Iq = I

such that the quotient Ij/Ij+1 is a stable sheaf on Yj with respect to q
|Yj

for

each j = 1, . . . , q. The above filtration is called a Jordan-Hölder filtration.
The sheaf I may have many Jordan-Hölder filtrations but the collection of
subcurves S(I) := {Y1, . . . , Yq} and the isomorphism class of the sheaf

Gr(I) := I1/I0 ⊕ I2/I1 ⊕ . . .⊕ Iq/Iq−1

depend only on I, by the Jordan-Hölder theorem. Notice that Gr(I) is also
q-semistable and that

Gr(I) ∼=
⊕

Z∈S(I)

Gr(I)Z .

A q-semistable sheaf I is called polystable if I ∼= Gr(I).
We say that two q-semistable sheaves I and I ′ on X are S-equivalent if

S(I) = S(I ′) and Gr(I) ∼= Gr(I ′). Note that in each S-equivalence class
of q-semistable sheaves, there is exactly one q-polystable sheaf.

1.17. Fine and coarse compactified Jacobians
For any smooth point P ∈ X and polarization q on X, there is a k-

projective variety JPX(q), which we call fine compactified Jacobian, parametriz-
ing q-P-quasistable sheaves on the curve X (see [Est01, Thm. A, p. 3047]

and [Est09, Thm. 2.4]). More precisely, JPX(q) represents the functor that
associates to each scheme T the set of T -flat coherent sheaves I on X × T
such that I|X×t is q-P-quasistable for each t ∈ T , modulo the following
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equivalence relation ∼. We say that two such sheaves I1 and I2 are equiv-
alent, and denote I1 ∼ I2, if there is an invertible sheaf N on T such that
I1 ∼= I2 ⊗ p∗2N , where p2 : X × T → T is the projection map.

There are other two varieties closely related to JPX(q) (see [Est01, Sec.
4]): the variety JsX(q) parametrizing q-stable sheaves and the variety JssX (q)
parametrizing q-semistable simple sheaves. We have open inclusions

JsX(q) ⊂ JPX(q) ⊂ J ss
X(q),

where the last inclusion follows from the fact that a q-P-quasistable sheaf is
simple, as it follows easily from [Est01, Prop. 1]. It turns out that JsX(q) is
separated but, in general, not universally closed, while JssX (q) is universally
closed but, in general, not separated (see [Est01, Thm. A]).

According to [Ses82, Thm. 15, p. 155], there exists a projective variety
UX(q), which we call coarse compactified Jacobian, coarsely representing
the functor U that associates to each scheme T the set of T -flat coherent
sheaves I on X × T such that IX×t is q-semistable for each t ∈ T . More
precisely, there is a map U → UX(q) such that, for any other k-scheme Z,
each map U → Z is induced by composition with a unique map UX(q) → Z.
Moreover, the k-points on UX(q) are in one-to-one correspondence with the
S-equivalence classes of q-semistable sheaves on X, or equivalently with q-
polystable sheaves on X since in each S-equivalence class of q-semistable
sheaves there exists exactly one q-polystable sheaf. By convention, when we
write I ∈ UX(q), we implicitly assume that I is polystable. We denote by

U sX(q) ⊂ UX(q)

the open subset parametrizing q-stable sheaves.

Since JPX(a, χ) represents a functor, there exists a universal q-P-quasistable
sheaf on X×JX(q) (uniquely determined up to tensoring with the pull-back
of a line bundle on JX(q)), and hence a well-defined induced map

(12) Φ : JPX(q) −→ UX(q).

This map is surjective (by [Est01, Thm. 7]) and its fibers parametrize
S-equivalence classes of q-P-quasistable sheaves. The map Φ fits in the
following diagram

(13) JsX(q)
� � //

Φs∼=
��

JPX(q)

Φ
����

� � // JssX (q)

Φss{{{{vv
vv

vv
vv

v

U sX(q)
� � // UX(q)

To compare our notations with the others used in the literature, we ob-
serve the following

Remark 1.18.

(i) Given a vector bundle E on X and a smooth point P ∈ Xsm, the
variety JPX(q

E) coincides with the variety JPE in Esteves’s notation (see

[Est01]). Similarly, the variety JsX(q
E) (resp. JssX (qE)) coincides with

JsE (resp. JssE ) in Esteves’s notation.
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(ii) Let φ be an element of ∂C1(ΓX ,Q) ⊂ C0(ΓX ,Q) (see [Ale04, Sec. 1]),
i.e. a collection of rational numbers {φv} for any vertex v of ΓX such

that
∑

v∈V (ΓX )

φv = 0. We can associate to φ a polarization φ such that

|φ| = 0 by putting

(14) φ
Cv

= φv

if Cv is the irreducible component of X corresponding to the vertex
v of ΓX . Then the Oda-Seshadri’s compactified Jacobian Jac(X)φ is
isomorphic to UX(φ) (see [OS79] and [Ale04]).

Conversely, given a polarization q, consider a polarization d such
that |q| = |d| and such that d is integral, i.e. dY ∈ Z for any subcurve
Y ⊆ X. Define a new polarization φ by φ

Y
:= q

Y
−dY for any subcurve

Y ⊆ X. In particular, we have that |φ| = 0. Define an element φ ∈
∂C1(ΓX ,Q) ⊂ C0(ΓX ,Q) by the equation (14). Then the variety UX(q)
is isomorphic to Jac(X)φ. Note that this is independent of the choice of
the auxiliary integral polarization d because we have an isomorphism
Jac(X)φ ∼= Jac(X)φ+ψ for any ψ ∈ ∂C1(ΓX ,Z) ⊂ C0(ΓX ,Z).

(iii) Given a pair (a, χ), where χ ∈ Z and a = {aCi
} is a polarization such

that |a| = 1, consider the polarization q defined by

q
Y
= aY χ+

degY (ωX)

2
,

for every subcurve Y ⊂ X. Then the variety UX(q) coincides with the
variety UX(a, χ) in Seshadri’s notation (see [Ses82]).

(iv) Given an ample line bundle L on X and an integer d ∈ Z, consider the
polarization q defined by

q
Y
=

degY (ωX)

2
+

degY (L)

deg(L)
(d− g + 1),

for every subcurve Y ⊆ X. Then the Simpson’s moduli space Jac(X)d,L
of S-equivalence classes of torsion-free, rank one sheaves of degree d
that are slope-semistable with respect to L is isomorphic to UX(q) (see
[Sim94] and [Ale04]).

(v) In the particular case where q is the canonical polarization of degree d

(see 1.16(ii)), the variety UX(q) coincides with the variety P dX in Capo-
raso’s notation (see [Cap94]) and it will be called the coarse canonical

degree d compactified Jacobian of X. Moreover, we set Jd,PX := JPX(q)
and call it the fine canonical degree d compactified Jacobian of X with
respect to P . This notation agrees with the one introduced in [CCE08,

Sec. 2.4]. In particular, we have a surjective map Jd,PX ։ P dX .

In what follows, we will need the following results concerning the smooth
loci of JPX(q) (or JsX(q) or JssX (q)) and UX(q) whose proof can be found in
[CMKV]:

Fact 1.19.

(i) The variety JPX(q) (resp. JsX(q), resp. JssX (q)) is smooth at I if and
only if I is a line bundle on X.
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(ii) The variety UX(q) is smooth at a polystable sheaf I if and only if I is
locally free at all non-separating nodes of X.

Now fix a one-parameter regular local smoothing f : X → B = Spec(R)
of X (see 1.5).

As explained in [Ale04, Thm. 5.2], there exists a B-scheme Uf (q) whose
special fiber is isomorphic to UX(q) and whose general fiber is isomorphic

to Pic|q|(XK). Denote by U sf (q) the open subset of Uf (q) whose special fiber

is isomorphic to U sX(q) ⊂ UX(q).
Assume moreover that f admits a section σ. In particular, P := σ(Spec k)

is a smooth point of Xk = X. Then, according to [Est01, Thm. A], there
exist B-schemes Jsf (q), J

σ
f (q) and J

ss
f (q) together with open inclusions

Jsf (q) ⊂ Jσf (q) ⊂ Jssf (q),

such that the general fibers over B of the above schemes is Pic|q|(XK) while
the special fibers are isomorphic to, respectively, JsX(q), J

P
X(q) and JssX (q).

The above diagram (13) becomes the special fiber of the following diagram
of B-schemes

(15) Jsf (q)
� � //

Φs
f

∼=
��

Jσf (q)

Φf
����

� � // Jssf (q)

Φss
f{{{{ww

ww
ww

ww
w

U sf (q)
� � // Uf (q)

2. Graph-theoretic results

2.1. Notations. Let Γ be a finite graph with vertex set V (Γ) and edge set
E(Γ). We allow loops or multiple edges, although, in what follows, loops

will play no role, i.e. we could consider the graph Γ̃ obtained from Γ by
removing all the loops and obtain exactly the same answers we get for Γ.

We will be interested in two kinds of subgraphs of Γ:

• Given a subset T ⊂ E(Γ), we denote by Γ \ T the subgraph of Γ
obtained from Γ by deleting the edges belonging to T . Thus we have
that V (Γ \ T ) = V (Γ) and E(Γ \ T ) = E(Γ) \ T . The subgraphs of
the form Γ \ T are called complete subgraphs.

• Given a subset W ⊂ V (Γ), we denote by Γ[W ] the subgraph whose
vertex set is W and whose edges are all the edges of Γ that join two
vertices in W . The subgraphs of the form Γ[W ] are called induced
subgraphs and we say that Γ[W ] is induced from W .

If W1 and W2 are two disjoint subsets of V (Γ), then we set val(W1,W2) :=
|E(Γ[W1], Γ[W2])|, where E(Γ[W1],Γ[W2]) is the subset of E(Γ) consisting
of all the edges of Γ that join some vertex of W1 with some vertex of W2.
We call val(W1,W2) the valence of the pair (W1,W2). For a subset W ⊂
V (Γ), we denote by W c := V (Γ) \W its complementary subset. We set
val(W ) = val(W c) := val(W,W c) and call it the valence of W . In particular
val(∅) = val(V (Γ)) = 0. Note that for w ∈ V (Γ), the valence val(w) is the
number of edges joining w with a vertex of Γ different from w i.e. loops are
not taken into account in our definition of valence.
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Given a subset S ⊆ E(Γ), we define the valence of the pair (W1,W2) of
disjoint subsets W1,W2 ⊂ V (Γ) with respect to S to be valS(W1,W2) :=
|S ∩ E(Γ[W1],Γ[W2])|. Obviously, we always have that valS(W1,W2) ≤
val(W1,W2) with equality if S = E(Γ).

Note that the valence is additive: if W1,W2,W3 are pairwise disjoint
subsets of V (Γ), we have that

(16) val(W1 ∪W2,W3) = val(W1,W3) + val(W2,W3).

A similar property holds for valS.

2.2. 0-cochains. Given an abelian group A (usually A = Z,Q), we define the

space C0(Γ, A) of 0-cochains with values in A as the free A-module AV (Γ)

of functions from V (Γ) to A. If d ∈ C0(Γ, A), we set




dv := d(v) ∈ A for any v ∈ V (Γ),

dW :=
∑

w∈W

dw ∈ A for any W ⊆ V (Γ),

|d| := dV (Γ) ∈ A.

For any element a ∈ A, we set

C0(Γ, A)a := {d ∈ C0(Γ, A) : |d| = a} ⊆ C0(Γ, A).

Given a subset W ⊂ V (Γ), we will denote by χ(W ) ∈ C0(Γ,Z) the

characteristic function of W , i.e. the element of C0(Γ,Z) uniquely defined
by

(17) χ(W )
v
=

{
1 if v ∈W,

0 otherwise.

The space of 0-cochains with values in A is endowed with an endomor-
phism, called Laplacian and denoted by ∆0 (see for example [BdlHN97, Pag.
169]), defined as

(18) ∆0(d)v := −dv val(v) +
∑

w 6=v

dw val(v,w).

It is easy to check that Im(∆0) ⊂ C0(Γ, A)0. In the case where A = Z and
Γ is connected, the kernel ker(∆0) consists of the constant 0-cochains and
therefore the quotient

Pic(Γ) :=
C0(Γ,Z)0
Im(∆0)

is a finite group, called the Jacobian group (see [BdlHN97]).
For any d ∈ Z, the set C0(Γ,Z)d is clearly a torsor for the group C0(Γ,Z)0.

Therefore, the subgroup Im(∆0) acts on the sets C0(Γ,Z)d and

(19) |Pic(Γ)| =

∣∣∣∣
C0(Γ,Z)d
Im(∆0)

∣∣∣∣ .

Remark 2.3. Let X be a connected nodal curve and consider the dual graph
of X, ΓX . Then ΓX is connected and it is easy to check that Pic(ΓX) ∼= ∆X
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(see 1.2). Moreover, for any d ∈ Z, there is a bijection C0(Γ,Z)d
Im(∆0)

↔ ∆d
X . In

particular, if Γ is connected, we have that:

(20) c(Γ) =

∣∣∣∣
C0(Γ,Z)d
Im(∆0)

∣∣∣∣ .

For later use, we record the following formula (for any W,V ⊆ V (Γ)):

∆0(χ(V ))W =
∑

w∈W


−χ(V )

w
val(w) +

∑

v 6=w

χ(V )
v
val(v,w)


 =

=
∑

w∈V ∩W


− val(w) +

∑

w 6=v∈V

val(v,w)


 +

∑

w∈W\V

∑

v∈V

val(v,w) =

=
∑

w∈V ∩W

[
−

∑

v∈V c

val(v,w)

]
+

∑

w∈W\V

∑

v∈V

val(v,w)

= − val(V ∩W,V c) + val(W \ V, V ) =

= − val(V ∩W,W\V )−val(V ∩W, (V ∪W )c)+val(W\V, V ∩W )+val(W\V, V \W ) =

(21) = − val(V ∩W, (V ∪W )c) + val(W \ V, V \W ).

2.4. Quasistable 0-cochains Bv0
Γ\S(q)

Throughout this subsection, we fix the following data:

(1) A finite graph Γ;
(2) v0 ∈ V (Γ);
(3) S ⊂ E(Γ);
(4) q ∈ C0(Γ,Q) such that q := |q| ∈ Z.

Since we will be using two different graphs throughout this section, Γ and
Γ \ S, we will adopt the following convention on the notation used. Given
two disjoint subsetsW1,W2 ⊆ V (Γ) = V (Γ\S), we will be considering three
different notions of valence, namely:




val(W1,W2) := |E(Γ[W1],Γ[W2])|,

valS(W1,W2) := |S ∩ E(Γ[W1],Γ[W2])|,

valΓ\S(W1,W2) := |E((Γ \ S)[W1], (Γ \ S)[W2])|.

Note that val(W1,W2) = valS(W1,W2) + valΓ\S(W1,W2). As usual, we set
val(W ) := val(W,W c) and similarly for valS and valΓ\S .

We now introduce the main characters of this subsection.

Definition 2.5.

(i) A 0-cochain d ∈ C0(Γ,Z) is said to be semistable on Γ\S with respect
to q if the following two conditions are satisfied:
(a) |d| = q − |S|;

(b) dW+|S∩E(Γ[W ])| ≥ q
W
− val(W )

2 for any proper subsetW ⊂ V (Γ).

We denote the set of all such 0-cochains by BΓ\S(q).

(ii) A 0-cochain d ∈ C0(Γ,Z) is said to be v0-quasistable on Γ \ S with
respect to q if d ∈ BΓ\S(q) and the inequality in (ib) above is strict
when v0 ∈W . We denote the set of all such 0-cochains by Bv0

Γ\S(q).
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Remark 2.6. Let d ∈ BΓ\S(q) and W a proper subset of V (Γ). By applying
the condition (ib) of Definition 2.5 to W c ⊂ V (Γ) and using (ia), we get
that

q
W
−

val(W )

2
+valΓ\S(W ) = q

W
+

val(W )

2
−valS(W ) ≥ dW + |S∩E(Γ[W ])|.

If moreover d ∈ Bv0
Γ\S(q) then the above inequality is strict if v0 6∈W .

We want to determine the cardinality of the set Bv0
Γ\S(q). We begin with

the following necessary condition in order that Bv0
Γ\S(q) is not empty. Later

(see Corollary 2.10), we will see that it is also a sufficient condition.

Lemma 2.7. If Bv0
Γ\S(q) 6= ∅ then Γ \ S is connected.

Proof. By contradiction, assume that Γ\S is not connected andBv0
Γ\S(q) 6= ∅.

This means that there exist d ∈ Bv0
Γ\S(q) and a proper subset W ⊂ V (Γ)

such that valΓ\S(W ) = 0. By the Definition 2.5 and Remark 2.6, we get
that

q
W
−
val(W )

2
≤ dW+|S∩E(Γ(W ))| ≤ q

W
−
val(W )

2
+valΓ\S(W ) = q

W
−
val(W )

2
.

This contradicts the fact that one of the above two inequalities must be
strict, according to whether v0 ∈W or v0 ∈W c. �

In what follows, we are going to consider the 0-cochains C0(Γ \ S,Z)
endowed with the Laplacian operator ∆0 as in (18) with respect to Γ \ S.
Note that, although C0(Γ \ S,Z) = C0(Γ,Z) is independent of the chosen
S ⊂ E(Γ), the Laplacian ∆0 depends on S.

Proposition 2.8. If Γ \ S is connected, then the composed map

π : Bv0
Γ\S(q) ⊆ C0(Γ \ S,Z)q−|S| ։

C0(Γ \ S,Z)q−|S|

Im(∆0)
.

is bijective.

Proof. Consider the auxiliary map

π : BΓ\S(q) ⊆ C0(Γ \ S,Z)q−|S| ։
C0(Γ \ S,Z)q−|S|

Im(∆0)
.

Clearly we have that π = π|Bv0
Γ\S

(q). We divide the proof in three steps.

STEP I: π is injective.
By contradiction, assume that there exist d 6= e ∈ Bv0

Γ\S(q) such that

π(d) = π(e). This is equivalent to the existence of an element t ∈ C0(Γ\S,Z)
such that ∆0(t) = d−e. Since d, e ∈ Bv0

Γ\S(q), by Definition 2.5 and Remark

2.6, we get that for any proper subset W ⊂ V (Γ):

dW − eW <

(
q
W

+
val(W )

2
− valS(W )

)
−

(
q
W

−
val(W )

2

)
=

(22) = val(W )− valS(W ) = valΓ\S(W ),

where the inequality is strict since either v0 ∈W or v0 ∈W c.
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Consider now the (non-empty) subset

V0 := {v ∈ V (Γ) = V (Γ \ S) : tv = min
w∈V (Γ)

tw := l} ⊆ V (Γ) = V (Γ \ S).

If V0 = V (Γ \ S) then t is a constant 0-cochain in Γ \ S, and therefore
0 = ∆0(t) = d − e, which contradicts the hypothesis that d 6= e. Therefore
V0 is a proper subset of V (Γ \ S).

From the definition (18), using the additivity of valΓ\S and the fact that
tv ≥ l for any v ∈ V (Γ \ S) with equality if v ∈ V0, we get

∆0(t)V0 =
∑

v∈V0


−l · valΓ\S(v) +

∑

w 6=v

tw valΓ\S(v,w)


 =

=
∑

v∈V0


−l · valΓ\S(v) +

∑

w∈V0\{v}

l · valΓ\S(v,w) +
∑

w∈V c
0

tw valΓ\S(v,w)


 =

=
∑

v∈V0


−l · valΓ\S(v) + l · valΓ\S(v, V0 \ {v}) +

∑

w∈V c
0

tw valΓ\S(v,w)


 =

=
∑

v∈V0


−l · valΓ\S(v, V c

0 ) +
∑

w∈V c
0

tw valΓ\S(v,w)


 =

=
∑

v∈V0,w∈V c
0

(tw − l) valΓ\S(v,w) ≥

(23) ≥
∑

v∈V0,w∈V c
0

valΓ\S(v,w) = valΓ\S(V0, V
c
0 ) = valΓ\S(V0).

Using the fact that ∆0(t) = d− e, the above inequality (23) contradicts the
strict inequality (22) for W = V0, which holds since V0 is a proper subset of
V (Γ \ S).

STEP II: π is surjective.
We introduce two rational numbers measuring how far is an element d ∈

C0(Γ \ S,Z)q−|S| from being in BΓ\S(q). For any d ∈ C0(Γ \ S,Z)q−|S| and
any W ⊆ V (Γ) (non necessarily proper), set

(24)





ǫ(d,W ) := dW + |S ∩ E(Γ[W ])| − q
W

−
val(W )

2
+ valS(W ),

η(d,W ) := −dW − |S ∩E(Γ[W ])| + q
W

−
val(W )

2
.

Using the two relations
{
dW + dW c + |S| = q

W
+ q

W c,

|S| = |S ∩ E(Γ[W ])|+ |S ∩E(Γ[W c])|+ valS(W ),

it is easy to check that

(25) ǫ(d,W ) = η(d,W c).
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We set also for any d ∈ C0(Γ \ S,Z)q−|S|

(26)





ǫ(d) := max
W⊆V (Γ)

ǫ(d,W ),

η(d) := max
W⊆V (Γ)

η(d,W ).

From equation (25), we get that

(27) ǫ(d) = η(d).

We will use often in what follows that the invariants ǫ and η satisfy the
following additive formula: for any disjoint subsetsW1,W2 ⊂ V (Γ), we have
that

(28)

{
ǫ(d,W1 ∪W2) = ǫ(d,W1) + ǫ(d,W2) + valΓ\S(W1,W2),

η(d,W1 ∪W2) = η(d,W1) + η(d,W2) + valΓ\S(W1,W2).

Let us prove the second additive formula; the proof of the first one is similar
and left to the reader. Using the additivity (16) of val and valS , we compute:

η(d,W1∪W2) = −dW1∪W2
−|S∩E(Γ[W1∪W2])|+qW1∪W2

−
val(W1 ∪W2)

2
=

= −dW1
−dW2

−|S∩E(Γ[W1])|−|S∩E(Γ[W2])|−valS(W1,W2)+qW1
+q

W2
+

−
valW1 + valW2 − 2 val(W1,W2)

2
= η(d,W1) + η(d,W2)− valS(W1,W2)+

+val(W1,W2) = η(d,W1) + η(d,W2) + valΓ\S(W1,W2).

For an element d ∈ C0(Γ \ S,Z)q−|S|, consider the following sets:
{
S+
d := {W ⊆ V (Γ) : ǫ(d,W ) = ǫ(d)},

S−
d := {W ⊆ V (Γ) : η(d,W ) = η(d)}.

From formula (25) and the equality ǫ(d) = η(d), it follows easily that

(29) W ∈ S+
d ⇔W c ∈ S−

d .

The sets S±
d are stable under intersection:

(30) W1,W2 ∈ S±
d ⇒W1 ∩W2 ∈ S±

d .

We will prove this for S+
d ; the proof for S−

d works exactly the same. Let

Π1 :=W1 \ (W1∩W2). Using the additivity formula (28) applied to the pair
(W2,Π1) of disjoint subsets of V (Γ) and the fact that W2 ∈ S+

d , we get that

0 = ǫ(d)− ǫ(d,W2) ≥ ǫ(d,Π1 ∪W2)− ǫ(d,W2) = ǫ(d,Π1) + valΓ\S(Π1,W2).

Using this inequality, the additivity formula (28) for the disjoint pair (W1 ∩
W2,Π1) of subsets of V (Γ) and the fact that W1 ∈ S+

d , we get that

ǫ(d) = ǫ(d,W1) = ǫ(d, (W1 ∩W2) ∪Π1) =

= ǫ(d,W1 ∩W2) + ǫ(d,Π1) + valΓ\S(Π1,W1 ∩W2)

≤ ǫ(d,W1 ∩W2) + ǫ(d,Π1) + valΓ\S(Π1,W2) ≤ ǫ(d,W1 ∩W2).

By the maximality of ǫ(d), we conclude that ǫ(d) = ǫ(d,W1 ∩W2), i.e. that
W1 ∩W2 ∈ S+

d .
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Since the sets S±
d are stable under intersection, they admit minimum

elements:

(31) Ω±(d) :=
⋂

W∈S±
d

W ⊆ V (Γ).

Note that (29) implies that Ω+(d)c ∈ S−
d . Since Ω−(d) is the minimum

element of S−
d , we get that Ω−(d) ⊆ Ω+(d)c, or in other words

(32) Ω+(d) ∩ Ω−(d) = ∅.

We set

Ω0(d) := V (Γ) \ (Ω+(d) ∪ Ω−(d)),

so that V (Γ) is the disjoint union of Ω+(d), Ω−(d) and Ω0(d).
From (27) and the fact that ǫ(d, V (Γ)) = η(d, V (Γ)) = ǫ(d, ∅) = η(d, ∅) =

0, we get that ǫ(d) = η(d) ≥ 0. From 2.5(i) and the definition of Ω±(d), it
follows that

(33) d ∈ BΓ\S(q) ⇔ ǫ(d) or η(d) = 0 ⇔ Ω+(d) or Ω−(d) = ∅.

Fix now an element d ∈ C0(Γ \ S,Z)q−|S| such that d 6∈ BΓ\S(q). Set

(34) e := d+∆0(χ(Ω
+(d))).

Claim: The 0-cochain e satisfies one of the two following properties:

(i) ǫ(e) < ǫ(d),
(ii) ǫ(e) = ǫ(d) and Ω+(e) ) Ω+(d).

Note that the Claim concludes the proof of Step II. Indeed, if e satisfies
condition (ii), we can iterate the substitution (34) until we reach an element
e′ which satisfies condition (i), i.e. ǫ(e′) < ǫ(d), and such that e′−d ∈ Im∆0.
Now observe that, if we set N to be equal to two times the least common
multiple of all the denominators of the rational numbers {q

v
}v∈V (Γ), then

N ·ǫ(f) ∈ Z, for any f ∈ C0(Γ\S,Z). Therefore, by iterating the substitution

(34), we will finally reach an element e′′ such that ǫ(e′′) = 0, i.e. e′′ ∈
BΓ\S(q), and such that e′ − d ∈ Im∆0. This proves that π is surjective.

Let us now prove the Claim. Take any subset W ⊂ V (Γ) and decompose
it as a disjoint union

W =W+
∐

W−
∐

W 0,

where W± =W ∩ Ω±(d) and W 0 =W ∩Ω0(d). Note that

(35) ǫ(d,W+) ≤ ǫ(d),

with equality if and only ifW+ = Ω+(d) because of the minimality property
of Ω+(d). Applying (28) to the disjoint pair (Ω0(d),W+), we get

ǫ(d,W 0) = ǫ(d,W 0 ∪ Ω+(d))− ǫ(d,Ω+(d))− valΓ\S(W
0,Ω+(d)) ≤

(36) ≤ − valΓ\S(W
0,Ω+(d)),

where we used that ǫ(d,W 0 ∪ Ω+(d)) ≤ ǫ(d) = ǫ(d,Ω+(d)). Applying once
more formula (28) to the disjoint pair (W−,Ω+(d) ∪Ω0(d)), we get

ǫ(d,W−) = ǫ(d,W− ∪ Ω+(d) ∪ Ω0(d))− ǫ(d,Ω+(d) ∪ Ω0(d))−
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(37) − valΓ\S(W
−,Ω+(d) ∪ Ω0(d)) ≤ − valΓ\S(W

−,Ω+(d) ∪Ω0(d)),

where we used that (see (27) and (25))

ǫ(d,W− ∪ Ω+(d) ∪ Ω0(d)) ≤ ǫ(d) = η(d) = η(d,Ω−(d)) = ǫ(d,Ω−(d)c) =

= ǫ(d,Ω+(d) ∪ Ω0(d)).

Moreover, if the equality holds in (37), then by (25)

η(d) = ǫ(d,W− ∪ Ω+(d) ∪Ω0(d)) = η(d,Ω−(d) \W−),

which implies that Ω−(d) \W− ∈ S−
d and hence that W− = ∅ because of

the minimality property of Ω−(d). Using the formula

ǫ(e,W ) = ǫ(d,W ) + ∆0(χ(Ω
+(d)))W

and (21), the above inequalities (35), (36), (37) give:
(38)



ǫ(e,W+) = ǫ(d,W+)− valΓ\S(W
+,Ω+(d)c) ≤ ǫ(d)− valΓ\S(W

+,Ω+(d)c),

ǫ(e,W 0) = ǫ(d,W 0) + valΓ\S(W
0,Ω+(d)) ≤ 0,

ǫ(e,W−) = ǫ(d,W−) + valΓ\S(W
−,Ω+(d)) ≤ − valΓ\S(W

−,Ω0(d)),

Using twice the additive formula (28) for the disjoint unionW =W+
∐
W 0

∐
W−

and the above inequalities (38), we compute

ǫ(e,W ) = ǫ(e,W+)+ǫ(e,W 0)+ǫ(e,W−)+valΓ\S(W
+,W 0)+valΓ\S(W

+,W−)+

+valΓ\S(W
0,W−) ≤ ǫ(d)−valΓ\S(W

+,Ω0(d)\W 0)−valΓ\S(W
+,Ω−(d)\W−)+

(39) − valΓ\S(W
−,Ω0(d) \W 0) ≤ ǫ(d).

In particular, we have that ǫ(e) ≤ ǫ(d). If the inequality in (39) is attained
for some W ⊆ V (Γ), i.e. if ǫ(e) = ǫ(d), then also the inequalities in (35) and
(37) are attained for W , and we observed before that this implies that

(40)

{
W+ = Ω+(d),

W− = ∅.

Moreover, all the inequalities in (39) are attained for W and, substituting
(40), this implies that

(41)

{
valΓ\S(Ω

+(d),Ω0(d) \W 0) = 0,

valΓ\S(Ω
+(d),Ω−(d)) = 0.

Since Γ \ S is connected by hypothesis and Ω+(d) is a proper subset of
V (Γ \ S) = V (Γ) because we fixed d 6∈ BΓ\S(q) (see (33)), we deduce that
(using (41)):

0 < valΓ\S(Ω
+(d)) = valΓ\S(Ω

+(d),Ω−(d) ∪ Ω0(d)) = valΓ\S(Ω
+(d),W 0).

This gives that W 0 6= ∅, which implies that W =W+ ∪W 0 )W+ = Ω+(d)
by (40). Since this holds for all W ⊆ V (Γ) such that ǫ(e,W ) = ǫ(d)(= ǫ(e)),
it holds in particular for Ω+(e). Therefore, we get that Ω+(e) ) Ω+(d) and
the claim is proved.

STEP III: Im(π) = Im(π).
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Let d ∈ BΓ\S(q), which by (33) is equivalent to have that ǫ(d) = η(d) = 0.
Let

S−
d,v0

:= {W ⊆ V (Γ) : η(d,W ) = η(d) = 0 and v0 ∈W}.

The same proof as in Step II gives that S−
d,v0

is stable for the intersection

(see (30)). Therefore, the set S−
d,v0

admits a minimum element

Ω−(d, v0) :=
⋂

W∈S−
d,v0

W ⊆ V (Γ).

Note that, by the definition 2.5(ii), it follows that

(42) d ∈ Bv0
Γ\S(q) ⇔ d ∈ BΓ\S(q) and Ω−(d, v0) = V (Γ).

Fix now an element d ∈ BΓ\S(q) \B
v0
Γ\S(q) and consider the element

e := d−∆0(χ(Ω
−(d, v0))).

Claim: The 0-cochain e satisfies the following two properties:

(i) η(e) = 0;
(ii) Ω−(e, v0) ) Ω−(d, v0).

The Claim concludes the proof of Step III. Indeed, property (i) says that
e ∈ BΓ\S(q) by (33) and therefore, by iterating the above construction, we

will find an element e′ ∈ BΓ\S(q) such that d− e′ ∈ Im(∆0) and Ω−(e, v0) =

V (Γ), which implies that π(d) = π(e′) and e′ ∈ Bv0
Γ\S(q) by (42). This shows

that Im(π) = Im(π), q.e.d.
Let us now prove the Claim. Given any subsetW ⊆ V (Γ), we decompose

it as a disjoint union

W =W−
∐

W+,

where W− := W ∩ Ω−(d, v0) and W+ := W \ Ω−(d, v0). Applying for-
mula (28) to the disjoint pair (W+,Ω−(d, v0)) and using that η(d) = 0 and
Ω−(d, v0) ∈ S−

d,v0
, we get

η(d,W+) = η(d,W+∪Ω−(d, v0))−η(d,Ω
−(d, v0))−valΓ\S(W

+,Ω−(d, v0)) ≤

(43) − valΓ\S(W
+,Ω−(d, v0)).

Applying again formula (28) to the disjoint pair (W+,W−) and using η(d) =
0 and (43), we get

η(d,W ) = η(d,W−) + η(d,W+) + valΓ\S(W
+,W−) ≤

(44)
≤ 0−valΓ\S(W

+,Ω−(d, v0))+valΓ\S(W
+,W−) = − valΓ\S(W

+,Ω−(d, v0)\W
−).

Using the formula

(45) η(e,W ) = η(d,W ) + ∆0(χ(Ω
−(d, v0)))W

and (21), the above inequality (44) gives:

η(e,W ) = η(d,W )− valΓ\S(W
−, (Ω−(d, v0) ∪W

+)c)+

(46)
+ valΓ\S(W

+,Ω−(d, v0) \W
−) ≤ − valΓ\S(W

−, (Ω−(d, v0) ∪W
+)c) ≤ 0,
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which proves part (i) of the Claim. Assume moreover that the inequality
in (46) is attained for some W ⊆ V (Γ) such that v0 ∈ W . Then all the
inequalities must be attained also in (44) and in particular η(d,W−) = 0.
Since v0 ∈W ∩Ω−(d, v0) =W−, we deduce that W− ∈ S−

d,v0
and hence, by

the minimality of Ω−(d, v0), we get that W− = Ω−(d, v0). It follows that
Ω−(e, v0) ⊇ Ω−(d, v0). Using again formulas (45) and (21), together with
the fact that Ω−(d, v0) ∈ S

−
d,v0

, we compute

η(e,Ω−(d, v0)) = η(d,Ω−(d, v0))− valΓ\S(Ω
−(d, v0),Ω

−(d, v0)
c) =

= − valΓ\S(Ω
−(d, v0),Ω

−(d, v0)
c) < 0,

because Γ\S is connected by hypothesis and Ω−(d, v0) is a proper subset of
V (Γ \ S) = V (Γ) by our initial assumption d ∈ BΓ\S(q) \B

v0
Γ\S(q) (see (42))

together with the fact that v0 ∈ Ω−(d, v0). Therefore Ω−(d, v0) 6∈ S−
e,v0 and

hence Ω−(e, v0) ) Ω−(d, v0), i.e. we get part (ii) of the Claim. �

Remark 2.9. The previous result was obtained for S = ∅ in [Bus08, Lemma
3.1.5], building upon ideas from [Cap94, Prop. 4.1]. Marco Pacini ([Pac])
has communicated to us a different proof of the above result.

By putting together Lemma 2.7, Proposition 2.8 and equation (20), we
deduce the following

Corollary 2.10. The cardinality of set Bv0
Γ\S(q) is equal to the complexity

c(Γ\S) of Γ\S. In particular, Bv0
Γ\S(q) 6= ∅ if and only if Γ\S is connected.

3. Fine compactified Jacobians and Néron models

Let f : X → B = Spec(R) be a one-parameter regular local smoothing of
X = Xk (see 1.5). Assume that f has a section σ and fix a polarization q
on X (see 1.7) such that d := |q|. Consider the B-scheme Jσf (q) of 1.17 and

denote by Jσf (q)sm its smooth locus over B.

Theorem 3.1. Let f : X −→ B be a one-parameter regular local smoothing
of X = Xk. Let σ be a section of f and q a polarization on X such that

d := |q|. Then Jσf (q)sm is isomorphic to the Néron model N(PicdXK) of the
degree-d Jacobian of the generic fiber XK of f .

Proof. According to Fact 1.19(i), Jσf (q)sm parametrizes line bundles on X
of relative degree d and whose special fiber is q-P-quasistable, where P :=
σ(Spec k) ∈ Xsm. If we denote by v0 the vertex of the dual graph ΓX of X
corresponding to the irreducible component to which P belongs, then the
q-P-quasistable multidegrees on X correspond to the 0-cochains belonging
to Bv0

ΓX
(q) in the notation of Definition 2.5. Therefore, we get a canonical

B-isomorphism

(47) Jσf (q)sm
∼=

∐
d∈B

v0
ΓX

(q) Pic
d
f

∼K
,

where ∼K denotes the gluing along the general fibers of Pic
d
f which are

isomorphic to Picd(XK). Since the general fiber of Jσf (q)sm is isomorphic to
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Picd(XK), the Néron mapping property gives a map (see Fact 1.6):

r : Jσf (q)sm
∼=

∐
d∈B

v0
ΓX

(q) Pic
d
f

∼K
−→ N(PicdXK) ∼=

∐
δ∈∆d

X
Picδf

∼K
.

Since we have a natural inclusion i : Jσf (q)sm →֒ Picdf which is the identity

on the general fibers, the map r factors through the map q of (3). Therefore

the map r sends each Pic
d
f into Pic

[d]
f . Since the natural map Bv0

ΓX
(q) → ∆d

X

is a bijection according to Proposition 2.8, we conclude that the map r is
an isomorphism.

�

Remark 3.2.

(i) In the terminology of [Cap08b, Def. 2.3.5] and [Cap, Def. 1.4 and Prop.
1.6], the above Theorem 3.1 says that the fine compactified Jacobians
JPX(q) are always of Néron-type (or N-type).

(ii) Using Theorem 6.1 and Remark 6.9, the above Theorem 3.1 recovers

[Cap, Thm 2.9], which is a generalization of [Cap08a, Thm. 6.1]: P dX
is of Néron-type if X is weakly d-general.

4. A stratification of the fine compactified Jacobians

In the present section we shall exhibit a stratification of JPX(q) in terms
of fine compactified Jacobians of partial normalizations of X.

For each subset S ⊆ Xsing, denote with JPX,S(q) the subset of JPX(q) cor-
responding to torsion-free sheaves which are not free exactly at S. Each
JPX,S(q) is a locally closed subset of JPX(q) that we endow with the reduced

schematic structure. Similarly, we endow the closure JPX,S(q) of each stra-

tum JPX,S(q) with the reduced schematic structure. We have the following
stratification

(48) JPX(q) =
∐

S⊆Xsing

JPX,S(q).

Theorem 4.1. The stratification of JPX(q) given in (48) satisfies the follow-
ing properties:

(i) Each stratum JPX,S(q) is a disjoint union of c(ΓXS
) torsors for the

generalized Jacobian J(XS) of the partial normalization of X at S. In
particular, JPX,S(q) is non-empty if and only if XS is connected.

(ii) The closure of each stratum is given by

JPX,S(q) =
∐

S⊂S′

JPX,S′(q).

(iii) The pushforward (νS)∗ along the partial normalization map νS : XS →
X gives isomorphisms:

{
JPXS

(qS)sm ∼= JPX,S(q),

JPXS
(qS) ∼= JPX,S(q),
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where qS is the polarization on XS defined in Lemma-Definition 1.9
and P is seen as a smooth point of XS using the isomorphism (XS)sm ∼=
Xsm.

Remark 4.2. It is easy to see that if q is the canonical polarization of degree

d (see Remark 1.16(ii)) then qS is again a canonical polarization for every
S ⊆ Xsing if and only if d = g − 1. This explains why the stratification

found by Caporaso for P g−1
X in [Cap09, Sec. 4.1] can work only in degree

d = g − 1. In the general case, even if one is interested only in coarse or
fine compactified Jacobians with respect to canonical polarizations, non-
canonical polarizations naturally show-up in the above stratification.

Before proving the theorem, we need to analyze the multidegrees of the
sheaves I belonging to the strata JPX,S(q).

4.3. Multidegrees of sheaves I ∈ JPX(q)
For a torsion-free, rank 1 sheaf I on X, the subset NF (I) ⊂ Xsing where

I is not free (see 1.13) admits a partition

NF (I) = NFe(I)
∐

NFi(I),

where NFe(I) := NF(I) ∩Xext and NFi(I) := NF(I) ∩Xint.
Given a sheaf I on X, we define its multidegree deg(I) as the 0-cochain

in C0(ΓX ,Z) such that deg(I)
v
:= degX[v](I) for every v ∈ V (ΓX). Given

a subset W ⊂ V (ΓX), we define

deg(I)
W

:=
∑

v∈V (ΓX[W ])

deg(I)
v
=

∑

v∈V (ΓX[W ])

degX[v](I).

In what follows we analyze the difference between degX[W ](I) and deg(I)
W

where I is a torsion-free, rank 1 sheaf on X.

Lemma 4.4. Let Y be a subcurve of X and let Y1, · · · , Ym be the irreducible
components of Y . Then

degY (I) =
m∑

i=1

degYi(I) + |NFe(I) ∩X \ Y c|.

Proof. We will first prove that if Y and Z are two subcurves of X without
common irreducible components then

(49) degY ∪Z(I) = degY (I) + degZ(I) + |NF (I) ∩ Y ∩ Z|.

Using Proposition 1.14(i), there exists a line bundle L on XS where S =
NF(I) such that I = (νS)∗(L). By Proposition 1.14(iii), we have the equal-
ities

(a)





degY ∪Z I = degYS∪ZS
L+ |SY ∪Z

i |,

degY I = degYS L+ |SYi |,

degZ I = degZS
L+ |SZi |.

Since L is a line bundle, we have that

(b) degYS∪ZS
L = degL|YS∪ZS

= degL|YS +degL|ZS
= degYS L+degZS

L.
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We have already observed in (6) that

(c) |SY ∪Z
i | = |SYi |+ |SZi |+ |S ∩ Y ∩ Z|.

The equation (49) is easily proved by putting together equations (a), (b)
and (c).

The proof of the lemma is now by induction on the number m of irre-
ducible components of Y . If m = 1 then the formula follows from the fact
that X \ Y c

1 contains only internal nodes. As for the induction step, using
(49), we can write
(*)
degY (I) = degY1∪···∪Ym−1

(I)+degYm(I)+ |NFe(I)∩ (Y1∪· · ·∪Ym−1)∩Ym|.

By the induction hypothesis, we have that

(**) degY1∪···∪Ym−1
(I) =

m−1∑

i=1

degYi(I)+ |NFe(I)∩X \ (Y1 ∪ · · · ∪ Ym−1)
c|.

Since an external node in X \ Y c either does not belong to Y1 ∪ · · · ∪ Ym−1

or is node at which Ym intersects Y1 ∪ · · · ∪ Ym−1, we have that

(***) |NFe(I) ∩X \ Y c| = |NFe(I) ∩X \ (Y1 ∪ · · · ∪ Ym−1)
c|+

+|NFe(I) ∩ (Y1 ∪ · · · ∪ Ym−1) ∩ Ym)|.

We conclude by putting together (*), (**), (***). �

For every subset S ⊆ Xsing, denote by BP
X,S(q) the set of possible multi-

degrees of sheaves I ∈ JPX,S(q). Write S = Se
∐
Si, where Se := S ∩ Xext

and Si = S ∩Xint. We need the following version of the dual graph of X:

the loop-less dual graph of X, denoted by Γ̃X , is the graph obtained from

ΓX by removing all the loops. In particular, V (Γ̃X) = V (ΓX) while E(Γ̃X)
can be identified with Xint.

Proposition 4.5. For any S ⊆ Xsing we have that

BP
X,S(q) = BvP

Γ̃X\Se

(q).

In particular, the cardinality of BP
X,S(q) is equal to c(Γ̃X \Se) = c(ΓX \S) =

c(ΓXS
).

Proof. Consider the loop-less dual graph Γ̃X of X and a sheaf I ∈ JPX(q).

Then, Lemma 4.4 translated in terms of Γ̃X says that, for every W ⊂

V (ΓX) = V (Γ̃X), the multidegree deg(I) of I satisfies:

degX[W ](I) = deg(I)
W

+ |NFe(I) ∩ Γ̃X [W ]|.

In particular, deg(I) = |deg(I)| + |NFe(I)|. Using this formula together

with the fact that, for every W ⊂ V (ΓX) = V (Γ̃X), δX[W ] = val
Γ̃X

(W ) we

deduce that a torsion-free, rank 1 sheaf I is P -quasistable with respect to
q (in the sense of Definition 1.15(ii)) if and only if its multidegree deg(I) ∈

C0(Γ̃X ,Z) is vP -quasistable with respect to q (in the sense of Definition
2.5(ii)). The last assertion follows from Corollary 2.10 together with the
easy facts that the operation of removing loops from a graph does not change
its complexity and that Γ \ S = ΓXS

.
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�

Proof of Theorem 4.1. Part (i): By Proposition 1.14(i), the subvariety of
JPX,S(q) consisting of sheaves with a fixed multidegree d is isomorphic to

Picd
′
(XS), where d

′ is related to d according to the formula of Proposition

1.14(iii). Each Picd
′
(XS) is clearly a torsor for J(XS). We conclude by the

fact that the set BP
X,S(q) of multidegrees of sheaves belonging to JPX,S(q) has

cardinality c(ΓXS
) by Proposition 4.5.

Part (ii): The inclusion

JPX,S(q) ⊂
∐

S⊂S′

JPX,S′(q)

is clear since under specialization the set NF(I) can only increase. In order
to prove the reverse inclusion, it is enough to show that if I ∈ JPX(q) is such

that n ∈ NF(I) then there exists a sheaf I ′ ∈ JPX(q) specializing to I and

such that NF(I ′) = NF(I) \ {n}.
Suppose first that n is an external node and, up to reordering the com-

ponents of X, assume that n ∈ C1 ∩ C2. By looking at the miniversal
deformation ring of I (see e.g. [CMKV]), we can find a torsion free, rank
1 sheaf I ′ specializing to I with NF(I ′) = NF(I) \ {n} and such that the
multidegree of I ′ is related to the one of I by means of the following

(50) degCi
I ′ =

{
degC1

I + 1 if i = 1,

degCi
I if i 6= 1.

Since the condition of being q-P-quasistable is an open condition, we get

that I ′ is q-P-quasistable and we are done.
Suppose now that n is an internal node. By looking at the miniversal

deformation ring of I, we can find a torsion-free rank 1 sheaf I ′ specializing
to I with NF(I ′) = NF(I)\{n} and such that the multidegree of I ′ is equal
to the one of I. Clearly I ′ is q-P -quasistable and we are done.

Part (iii): First of all, observe that the pushforward map (νS)∗ is a closed
embedding since it is induced by a functor between the categories of torsion-
free rank one sheaves on XS and on X which is fully faithful, as it follows
from [EGK00, Lemma 3.4] (note that the result in loc. cit. extends easily
from the case of integral curves to the case of reduced curves). 1 Therefore,
in order to conclude the proof of part (iii), it is enough to show that the
map (νS)∗ induces a bijection on geometric points.

Consider first the bijection of Proposition 1.14(i). We claim that a line
bundle L ∈ Pic(XS) is q

S-P -quasistable on XS if and only if (νS)∗L is q-P -
quasistable on X. This amounts to prove that for any subcurve Y ⊂ X we
have

degYS L ≥ qS
YS

−
δYS
2

⇐⇒ degY (νS)∗L ≥ q
Y
−
δY
2
,

1We are grateful to Eduardo Esteves for pointing out to us this argument.
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and similarly with the strict inequality > (since P ∈ Y if and only if P ∈ YS).
This equivalence follows from the equalities





degYS L = degY (νS)∗L− |SYi |,

qS
YS

= q
Y
−

|SYe |

2
− |SYi |,

δYS = δY − |SYe |,

where the first equality follows from Proposition 1.14(iii), the second follows
from the definition of qS (see Lemma-Definition 1.9) and the third is easily
checked. Therefore, using Fact 1.19(i), the push-forward via the normaliza-
tion map νS induces a morphism

(51) (νS)∗ : J
P
XS

(qS)sm → JPX,S(q),

which is bijective on geometric points. This proves the first isomorphism in
Part (iii).

Let us now prove the second isomorphism of Part (iii). To that aim,
consider two subsets ∅ ⊆ S ⊆ S′ ⊆ Xsing. We have a commutative diagram

XS′

νS′\S //

νS′ !!C
CC

CC
CC

C
XS

νS}}||
||

||
||

X

where νS′\S is the partial normalization of XS at the nodes corresponding
to S′ \S. By abuse of notation, we denote by P the inverse image of P ∈ X
in XS and in XS′ . We claim that the above diagram induces, via push-
forwards, a commutative diagram

(52) JPXS′
(qS

′
)sm

(νS′)∗

∼=

&&LLLLLLLLLL

(νS′\S)∗

∼=
// JPXS ,S′\S(q

S)

(νS)∗

∼=

xxqqqqqqqqqq

JPX,S′(q)

where all the maps are isomorphisms. Indeed, from (51) with S replaced
by S′, it follows that the map (νS′)∗ is an isomorphism. Similarly, if we
apply (51) with X replaced by XS , S replaced by S′ \ S and q replaced

by qS , we obtain that (νS′\S)∗ is an isomorphism since it is easily checked

that (XS)S′\S
∼= X ′

S and (qS)S
′\S = qS

′
. Since the diagram (52) is clearly

commutative, we get that (νS)∗ is well-defined and that it is an isomorphism.
From the fact that the map (νS)∗ in diagram (52) is an isomorphism,

using the stratification (48) and the one in part (ii), we deduce that the
natural map
(53)

(νS)∗ : J
P
XS

(qS) =
∐

S⊆S′⊆Xsing

JPXS ,S′\S(q
S) →

∐

S⊆S′⊆Xsing

JPX,S′(q) = JPX,S(q)

is bijective on geometric points, which concludes the proof.
�
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Corollary 4.6. For the stratification in (48), it holds:

(i) JPX,S(q) has pure codimension equal to |S|.

(ii) JPX,S(q) ⊃ JPX,S′(q) if and only if S ⊆ S′.

(iii) The smooth locus of JPX,S(q) is equal to JPX,S(q).

Proof. Part (i) follows from Theorem 4.1(i) together with the equality

dim J(X)− dim J(XS) = g(X) − g(XS) = |S|,

where we used that XS is connected.
Part (ii) follows from Theorem 4.1(ii).
Part (iii) follows from Theorem 4.1(iii). �

Remark 4.7. A result similar to Corollary 4.6 was proved by Caporaso in

[Cap08a, Thm. 6.7] for the compactified Jacobian P dX (see Remark 1.18(v))
of a d-general curve X in the sense of Remark 6.6. Indeed, by using Theorem
6.1, our Corollary 4.6 recovers [Cap08a, Thm. 6.7] and extends it to the case
of X weakly d-general in the sense of Remark 6.9.

5. Fine compactified Jacobians as quotients

5.1. Recall from 1.1 that we denote by X̂S (resp. X̂) the partial blowup
of X at S ⊆ Xsing (resp. the total blowup of X) and the natural blow-

down morphisms by πS : X̂S → X (resp. π : X̂ → X). Moreover, for each
S ⊆ Xsing, we have a commutative diagram

(54) X̂
πS

//

π
��?

??
??

??
? X̂S

πS
~~}}

}}
}}

}

X

where πS is the blow-down of all the exceptional subcurves of X̂ lying over
the nodes of Xsing \ S.

Given a polarization q on X, consider the polarizations q̂S (resp. q̂) on

X̂S (resp. X̂) introduced in Lemma-Definition 1.10. Given P ∈ Xsm, we

denote also with P the inverse image of P in X̂S and in X̂, in a slight abuse
of notation.

Given S ⊆ Xsing, denote by JP
X̂S

(q̂S)prim the open and closed subset of

JP
X̂S

(q̂S)sm consisting of all line bundles that have degree −1 on all the

exceptional components of X̂S . Note that JP
X̂S

(q̂S)prim may be empty for

some S ⊆ Xsing.

Theorem 5.2.

(i) For any S ⊆ Xsing, J
P
X̂S

(q̂S)prim is a disjoint union of c(ΓXS
) torsors

for the generalized Jacobian J(X̂S) ∼= J(X̂) ∼= J(X). In particular

JP
X̂S

(q̂S)prim is non-empty if and only if XS is connected.



FINE COMPACTIFIED JACOBIANS 31

(ii) The pull-back via the map πS induces an open and closed embedding

(55) (πS)∗ : JP
X̂S

(q̂S)prim →֒ JP
X̂
(q̂)sm.

Via the above identification, JP
X̂
(q̂)sm decomposes into a disjoint union

of open and closed strata

(56) JP
X̂
(q̂)sm =

∐

∅⊆S⊆Xsing

JP
X̂S

(q̂S)prim.

(iii) The push-forward along the map π induces a surjective morphism

π∗ : J
P
X̂
(q̂)sm ։ JPX(q),

which is compatible with the stratifications (48) and (56) in the sense
that it induces a cartesian diagram

JP
X̂S

(q̂S)prim
� � (π

S)
∗

//

(πS)∗
����

JP
X̂
(q̂)sm

π∗
����

JPX,S(q)
� � // JPX(q)

Moreover, the map (πS)∗ on the left hand-side of the above diagram is

given by taking a quotient by the algebraic torus G|S|
m of dimension |S|.

Proof. Let us start by proving Part (ii). First of all, observe that the pull-
backs via the maps of diagram (54) induce canonical isomorphisms between
the generalized Jacobians

π∗ : J(X)
∼=

−→ J(X̂S)
∼=

−→ J(X̂),

so that we will freely identify them during this proof.

Let us prove that the map (55) is well-defined, that is, given a P -q̂S-

quasistable line bundle L on X̂S , then (πS)∗L is a P -q̂-quasistable line bundle

on X̂ . Clearly we have that deg(πS)∗L = degL = |q̂S| = |q̂|. Moreover, if

Z is a subcurve of X̂ and we denote by πS(Z) its image in X̂S , then it is
easily checked that δZ ≥ δπS(Z), which implies that

degZ(π
S)∗L = degπS(Z) L ≥ q̂S

πS(Z)
−
δπS(Z)

2
≥ q̂Z −

δZ
2
,

where the first inequality is strict if P ∈ πS(Z) which happens if and only
if P ∈ Z. Hence, (πS)∗L is a P -q̂-quasistable.

The map (55) is equivariant with respect to the action of the generalized

Jacobians J(X̂S) ∼= J(X̂) and both the sides are disjoint union of torsors

for these generalized Jacobians. Therefore, JP
X̂S

(q̂S)prim is mapped via (55)

isomorphically onto a disjoint union of connected components of JP
X̂
(q̂)sm.

The image of JP
X̂S

(q̂S)prim inside JP
X̂
(q̂)sm consists of all P -q̂-quasistable line

bundles on X̂ that have degree −1 on the exceptional components lying over
the nodes belonging to S and degree 0 on the other exceptional components.
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In order to prove that the decomposition description (56) holds, it remains

to show that any line bundle L on X̂ which is P -q̂-quasistable must have

degree −1 or 0 on each exceptional component E of X̂ . Indeed, by applying

(10) to E and to Ec = X̂ \E and using that δE = 2, we get that degE L
must be equal to −1, 0 or 1. However, since P ∈ Ec, strict inequality must
hold when applying (10) to Ec, so degE L can not be equal to 1. Part (ii) is
now complete.

CLAIM: The commutative diagram (1) induces a commutative diagram

(57) JPXS
(qS)sm

∼=

(νS)∗ %%J
JJJJJJJJJ

JP
X̂S

(q̂S)prim

(πS)∗yyyyssssssssss

i∗
Soooo

JPX,S(q)

where (νS)∗ is an isomorphism and the maps i∗S and (πS)∗ are surjective.
The fact that the map (νS)∗ is well-defined and is an isomorphism is proved
in Theorem 4.1(iii). Therefore, the commutativity of the diagram, together
with the fact that it is well-defined, will follow from Proposition 1.14(i) if

we show that i∗S is well-defined, i.e. if L is a P -q̂S-quasistable line bundle

on X̂S having degree −1 on each exceptional component of X̂S then i∗S(L)

is a P -qS-quasistable line bundle on XS . Indeed, we have that

deg i∗S(L) = degL− |S| = |q̂S | − |S| = |q| − |S| = |qS |.

Moreover, for any subcurve YS ⊆ XS , it is easily checked that (in the nota-
tions of Lemma-Definition 1.9)





degYS i
∗
S(L) = degiS(YS) L,

qS
YS

= q
Y
−

|SYe |

2
− |SYi | = q̂S

iS(YS)
−

|SYe |

2
− |SYi |,

δYS = δY − |SYe | = δiS(YS) − 2|SYi | − |SYe |.

Using the above relations, it turns out that the inequality (10) for the sub-
curve YS ⊆ XS and the line bundle i∗SL follows form the same inequality

(10) applied to the subcurve iS(YS) ⊆ X̂S and the line bundle L. Hence i∗S
is well-defined.

In order to conclude the proof of the claim, it remains to prove that the
map i∗S is surjective. Clearly JPXS

(qS)sm is a disjoint union of torsors for

J(XS) of the form Picd
′
(XS) for some suitable multidegrees d′; the number

of such components is c(ΓXS
) by Theorem 4.1. Similarly, JP

X̂S

(q̂S)prim is a

disjoint union of torsors for J(X̂S) of the form Picd(X̂S) for some suitable

multidegrees d on X̂S ; call nS the number of such components. It is clear
that the map i∗S is equivariant with respect to the actions of J(XS) and

J(X̂S) and of the natural surjective map

(58) J(X̂S) ։ J(XS).
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This implies that each connected component Picd(X̂S) of JP
X̂S

(q̂S)prim is

sent surjectively onto the connected component Pic
dXS (XS) of JPXS

(qS)sm,
where dXS

is the restriction of the multidegree d to XS . Since d has degree

−1 on each exceptional component of X̂S , the multidegree d is completely
determined by its restriction dXS

. This means that different components of

JP
X̂S

(q̂S)prim are sent to different components of JPXS
(qS). In particular, we

get that

(*) nS ≤ c(ΓXS
).

Let us now show that nS = c(ΓXS
), which will conclude the proof of

the Claim and also the proof of Part (i). By Theorem 3.1 and Fact 1.6,
it follows that the number of connected components of JP

X̂
(q̂)sm is equal to

c(ΓX̂). Using the decomposition (56) and the inequality (*), we get that

(**) c(ΓX̂) =
∑

∅⊆S⊆Xsing

nS ≤
∑

∅⊆S⊆Xsing

c(ΓXS
).

Fact 1.4 applied to the graph Γ = Γ
X̂

and S = E(ΓX) gives that equality
must hold in (**) and hence, a fortiori, also in (*) for every S ⊂ Xsing. Part
(i) follows.

Finally, let us prove Part (iii). The image of the stratum JP
X̂S

(q̂S)prim ⊂

JP
X̂
(q̂)sm via π∗ coincides with its image via the map (πS)∗, which by the

above Claim, is equal to JPX,S(q). Therefore π∗ is surjective and compatible

with the filtrations (48) and (56). For all the subsets S ⊆ Xsing such that

JP
X̂S

(q̂S)prim 6= ∅, the map (πS)∗ is given by taking the quotient by the kernel

of the surjection (58), which is equal to G|S|
m since XS is connected by Part

(i). The proof is now complete.
�

5.3. Relating one-parameter regular local smoothings of X and of X̂
Let f : X −→ SpecR = B be a one-parameter regular local smoothing of

X (see 1.5) and assume that f admits a section σ.
Then, as shown in [Cap08a, Sec. 8.4], there exists a one-parameter regular

local smoothing f̂ : X̂ → B1 of X̂ endowed with a section σ̂ in such a way
that there is a commutative diagram

(59) X̂

f̂
��

// X

f

��
B1

//

σ̂

JJ

B

σ

UU

which, moreover, is a cartesian diagram on the general fibers of f and f̂ .
For the reader’s convenience, we review Caporaso’s construction. Let t

be a uniformizing parameter of R (i.e. a generator of the maximal ideal of
R) and consider the degree-2 extension K →֒ K1 := K(u) where u2 = t.
Denote by R1 the integral closure of R inside K1 so that B1 := Spec(R1) →
B = Spec(R) is a degree-2 ramified cover. Note that R1 is a DVR having
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quotient field K1 and residue field k = k. Consider the base change

f1 : X1 := X ×B B1 → B1,

and let σ1 : B1 → X1 be the section of f1 obtained by pulling back the section
σ of f . The special fiber of X1 is isomorphic to X and the total space X1

has a singularity formally equivalent to xy = u2 at each of the nodes of the
special fiber. It is well-known that the relatively minimal regular model of

f1 : X1 → B1, call it f̂ : X̂ → B1, is obtained by blowing-up X1 once at each
one of these singularities. Moreover, the section σ1 of f1 admits a lifting to

a section σ̂ of f̂ since the image of σ1 is contained in the smooth locus of X1.

It is easy to check that the general fiber of f̂ is equal to X̂K1 = XK ×K K1

while its special fiber is equal to X̂k = X̂ . In other words, f̂ : X̂ → B1 is

a one-parameter regular local smoothing of X̂. By construction, it follows
that we have a commutative diagram as in (59) which, moreover, is cartesian

on the general fibers of f and f̂ .

Theorem 5.4. In the set up of 5.3, let q be a polarization on X of total

degree d = |q| and let q̂ be the associated polarization on X̂ (see 1.7). Then
there is a surjective B1-morphism

τ
f̂
: J σ̂

f̂
(q̂)sm ∼= N(Picd X̂K1) −→ Jσf (q)×B B1,

which is an isomorphism over the general point of B1.

Proof. Let P := σ̂(k1) ∈ X̂sm and denote by v0 the vertex of the dual graph

ΓX̂ of X̂ corresponding to the irreducible component of X̂ containing P . The

fact that J σ̂
f̂
(q̂)sm ∼= N(Picd X̂K1) is an immediate consequence of Theorem

3.1. By (47), we have

J σ̂
f̂
(q̂)sm ∼=

∐
d∈B

v0
Γ
X̂
(q̂) Pic

d

f̂

∼K1

,

where ∼K1 denotes the gluing along the general fibers of Pic
d

f̂
which are

isomorphic to Picd(X̂K1), where d = |q̂| = |q|. We will start by showing the
existence of a B1-morphism

τ
d

f̂
: Pic

d

f̂
−→ Jσf (q)×B B1

for every d ∈ Bv0
Γ
X̂
(q̂). By the universal property of fiber products, the

existence of τ
d

f̂
is equivalent the existence of a morphism µ

d

f̂
: Pic

d

f̂
→ Jσf (q)

making the following diagram commute

Pic
d

f̂

!!

µ
d

f̂

((
Jσf (q)×B B1 //

��

Jσf (q)

��
B1

// B
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Now, since Jσf (q) is a fine moduli space, such a morphism µ
d

f̂
is uniquely

determined by a family of (1, σ)-quasistable torsion-free sheaves on Pic
d

f̂
×BX

with respect to q (since all the singular fibers of Pic
d

f̂
×BX → Pic

d

f̂
are iso-

morphic to X, we are slightly abusing the notation here: Pic
d

f̂
may very well

not be a DVR): we fix our notation according to the following commutative
diagram, where both the outward and the left inward diagrams are cartesian
and the morphism π̂ is the morphism induced by the inner commutativity

of the diagram on the fiber product Pic
d

f̂
×BX .

Pic
d

f̂
×BX

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

f̃

��:
::

:
::

::
::

::
::

::
::

::

Pic
d

f̂
×B1X̂1

π̂
eeLLLLLLLLLL

//

f̄
��

X̂1
//

f̂

��

X

f

��
Pic

d

f̂
//

(1,σ̂)

SS(1,σ)

YY

B1
//

σ̂

TT

B

σ

UU

The morphism π̂ is then a B-morphism that is an isomorphism over the
general point of B while over the closed point of B consists of blowing down

all the exceptional components of the morphism π : X̂ → X. Since f̂ is a
family of projective curves with reduced and connected fibers having geomet-
rically integral irreducible components and admitting a section σ̂, it follows

from the work of Mumford in [Mum66] that the relative Picard functor of f̂
is representable (see [FGA], Theorems 9.2.5 and 9.4.18.1). Therefore, there

exists a Poincaré sheaf P on Pic
d

f̂
×B1X̂1 (see [FGA], Exercise 9.4.3), i.e. a

sheaf whose restriction to a fiber of f̄ at a point [C,L] of Pic
d

f̂
is isomorphic

to L. The above description of π̂ together with Theorem 5.2(iii) implies
that I := π̂∗(P) is a family of (1, σ)-quasistable torsion-free sheaves with re-

spect to q over the family f̃ . This yields uniquely a morphism µ
d

f̄
as already

observed.
By construction, over the general point SpecK1 of B1, the morphism τ

d

f̂

restricts to the natural isomorphism

Picd(X̂K1) = Picd(XK ×K K1)
∼=

−→ Picd(XK)×K K1.

Therefore, as d varies on Bv0
Γ
X̂
(q̂), we can glue the morphisms τ

d

f̂
along the

general fiber to obtain the desired B1-morphism τ
f̂
. By construction the

B1-morphism τ
f̂
is an isomorphism over the general point of B1 and, by

Theorem 5.2(iii), it is surjective over the closed point of B1. This concludes
the proof of the statement.

�
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6. Comparing fine and coarse compactified Jacobians

In this section, we investigate when a fine compactified Jacobian is iso-
morphic to its coarse compactified Jacobian. Indeed, it turns out that the
sufficient condition given by Esteves in [Est09, Thm. 4.4] is also necessary
(for nodal curves).

Throughout the whole section we will use the terminology introduced in
paragraph 1.7 above.

Theorem 6.1. Let X be a nodal curve and q a polarization on X. The
following conditions are equivalent

(i) The polarization q is non-degenerate;

(ii) For every P ∈ Xsm the map Φ : JPX(q) → UX(q) is an isomorphism;

(iii) There exists a point P ∈ Xsm such that the map Φ : JPX(q) → UX(q) is
an isomorphism;

(iv) The number of irreducible components of UX(q) is equal to the com-
plexity c(ΓX) of the dual graph ΓX of X.

Proof. The implication (i) ⇒ (ii) follows from [Est09, Thm. 4.4]. In fact,
note that, although the theorem of loc. cit. is stated in a weaker form,

namely assuming the stronger hypothesis that q
Y
−
δY
2

6∈ Z for all subcurves

Y ( X which are not spines, a closer look at its proof reveals that the
theorem holds under the weaker hypothesis that q is not integral at all the
subcurves Y ( X which are not spines.

(ii) ⇒ (iii) is clear.
(iii) ⇒ (iv) follows from the fact that the number of irreducible compo-

nents of JPX(q) is equal to c(ΓX). Indeed, according to Theorem 4.1, the

number of irreducible components of JPX(q) is equal to the number of irre-

ducible components of JPX(q)sm, which, according to Proposition 4.5 applied
to the case S = ∅, is equal to c(ΓX).

(iv) ⇒ (i): Fix a one-parameter regular local smoothing f : X → B =
Spec(R) of X (see 1.5). Such a one-parameter smoothing determines a
commutative diagram:

(60) Nd
X

s

��
JssX (q)sm

�

t
99 99sssssssssss

p // UX(q)

JssX (q)0sm

3 Sj′

eeKKKKKKKKKK

p′
// UX(q)sm

S3
j

eeKKKKKKKKKK

u

\\9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

that we now explain. Nd
X := N(Picd XK)k is the special fiber of the Néron

model of Picd(XK) relative to f , where d := |q|. UX(q)sm denotes the smooth
locus of UX(q) and j is its open immersion into UX(q). JssX (q)sm denotes
the variety parametrizing line bundles on X that are q-semistable and p is
the natural map sending a q-semistable line bundle into its class in UX(q),
or in other words p is induced by the universal family of q-semistable line
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bundles over JssX (q)sm ×X. JssX (q)0sm is, by definition, equal to

JssX (q)0sm := UX(q)sm ×UX(q) J
ss
X (q)sm,

and j′, p′ are the induced maps. The maps t and u are the special fibers of
two maps over B induced by the Néron mapping property: indeed JssX (q)sm
(resp. UX(q)sm) is the special fiber of a B-scheme Picssf (resp. Uf (q)sm)

smooth over B whose generic fiber is Picd(XK). Note also that the map
t is the restriction to JssX (q)sm ⊂ Picd(X) of the special fiber of the map

q : Picdf → N(Picd(XK)) (see (3)). From the explicit description of the map

q given in 1.5 and the fact that every element in the degree class group ∆d
X

of X can be represented by a q-semistable line bundle on X (as it follows
from Proposition 2.8), we deduce that t is surjective. Finally, the map s is
induced by the fact that Uf (q) is separated over B and N(Picd(XK)) is the
biggest separated quotient of the non-separated B-scheme Picssf (see 1.5).

Claim 1: p′ is surjective.
Consider a polystable sheaf I ∈ UX(q)sm. According to Fact 1.19(ii),

the set of nodes NF(I) at which I is not free is contained in Xsep. The
surjectivity of p′ is equivalent to showing that there exists a q-semistable
line bundle L in the same S-equivalence class of I. By decreasing induction
on the cardinality of NF(I), it is enough to show that given n ∈ NF(I)
there exists I ′ ∈ UX(q)sm such that I ′ is S-equivalent to I and NF(I ′) =
NF(I)\{n}. Let T1 and T2 be the tails attached to n, and set Ii := ITi . Since
n is a separating node, it follows from [Est01, Example 38] that I = I1⊕I2.
To conclude, it is enough to take a non-trivial extension

0 → I1 → I ′ → I2 → 0.

Claim 2: If u is surjective then Im p ⊆ UX(q)sm.

If u is surjective then, using that p′ is surjective by the Claim 1, we get
that t ◦ j′ = u ◦ p′ is surjective. From the diagram (60) we easily get that
Im(s ◦ t ◦ j′) ⊆ UX(q)sm. This, together with the surjectivity of t ◦ j′ implies
that Im s ⊆ UX(q)sm. Since Im p ⊆ Im s because t is surjective, we get the
conclusion.

Let us now conclude the proof of the implication (iv) ⇒ (i). Assume
that the number of irreducible components of UX(q) is equal to c(ΓX). This
means that u is surjective (and hence an isomorphism). By Claim 2, we
deduce that Im p ⊆ UX(q)sm. We claim that this implies that q is non-
degenerate. Indeed, if this were not the case then, by Lemma 6.2 below,

there would exist a q-semistable line bundle L such that degZ L = q
Z
−
δZ
2

for some proper subcurve Z ( X which is not a spine. But then clearly
Z ∩ Zc ⊂ NF(Gr(L)) 6⊂ Xsep which would imply that p(L) = [Gr(L)] 6∈
UX(q)sm by Fact 1.19(ii). �

Lemma 6.2. If a polarization q on X is not general then there exists a
subcurve Z ( X with both Z and Zc connected and a q-semistable line

bundle L on X such that degZ L = q
Z
−
δZ
2
. Moreover, if q is not non-

degenerate, then we can choose Z not to be a spine.
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Proof. By assumption, q is integral at a proper subcurve Y ( X. Chose a

connected component of Y and call it Z ′. Set Z to be one of the connected
components of Z ′c. Clearly Z and Zc are connected.

If moreover q is not non-degenerate then there exists a subcurve Y ( X

as before which, moreover, is not a spine. Then we can chose a subcurve Z ′

as before in such a way that is it not a spine. This easily implies that Z is
not a spine as well.

From the assumption that q is integral at Y and from the construction of

Z, we deduce that q
Z
−
δZ
2

∈ Z and that q
Zc −

δZc

2
= |q| − q

Z
−
δZ
2

∈ Z.

Consider the restriction q
|Z

of the polarization q at Z (see 1.7). Since Z is

connected, the complexity of its dual graph ΓZ is at least one and therefore
Proposition 4.5 implies that, for any chosen smooth point P ∈ Xsm, there
exists a line bundle L1 on Z that is q

|Z
-P-quasistable, and in particular

q
|Z
-semistable. This means that for any subcurve W1 ⊂ Z it holds:

(61)



degZ L1 = |q
|Z
| = q

Z
−
δZ
2
,

degW1
L1 ≥ (q

|Z
)W1 −

|W1 ∩ Z \W1|

2
= q

W1
−

|W1 ∩ Z
c|

2
−

|W1 ∩ Z \W1|

2
=

= q
W1

−
δW1

2
.

Analogously, consider the polarization q̃ on Zc given by

q̃
R
:= q

R
+

|R ∩ Z|

2
for any subcurve R ⊂ Zc.

Since Zc is connected, there exists a line bundle L2 on Z
c that is q̃-semistable,

i.e. such that for any subcurve W2 ⊂ Zc it holds:
(62)



degZc L2 = |q̃| = q
Zc +

δZc

2
,

degW2
L2 ≥ q̃

W2
−

|W2 ∩ Zc \W2|

2
= q

W2
+

|W2 ∩ Z|

2
−

|W2 ∩ Zc \W2|

2
=

= q
W2

−
δW2

2
+ |W2 ∩ Z|.

Now let L be a line bundle on X such that LZ = L|Z = L1 and LZc =
L|Zc = L2 (obviously such an L exists). Using equations (61) and (62), we
have that

(63) degL = degZ L1 + degZc L2 = q
Z
−
δZ
2

+ q
Zc +

δZc

2
= |q|.

For any subcurve W ⊂ X, let W = W1 ∪ W2 where W1 := W ∩ Z and
W2 := W ∩ Zc. Using equations (61) and (62), we compute

(64) degW L = degW1
L1+degW2

L2 ≥ q
W1

−
δW1

2
+q

W2
−
δW2

2
+|W2∩Z| ≥

≥ q
W

−
δW1

2
−
δW2

2
+ |W1 ∩W2| = q

W
−
δW
2
.
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The above equations (63) and (64) says that L is q-semistable. On the other

hand, from equation (61) we get degZ L = q
Z
−
δZ
2
.

�

6.3. Relation between non-degenerate and general polarizations
The aim of this subsection is to discuss the relation between a polarization

q being non-degenerate and the stronger condition of being general (see Def.
1.12). We begin by describing the geometric meaning of being general.

Proposition 6.4. The following conditions are equivalent

(i) q is general (see Def. 1.12(i));
(ii) Every q-semistable sheaf is q-stable, i.e. U sX(q) = UX(q);
(iii) Every q-semistable simple sheaf is q-stable, i.e. JsX(q) = JssX (q);
(iv) Every q-semistable line bundle is q-stable.

Proof. (i) ⇒ (ii): If q is general then the right hand side of the inequality
(10) is never an integer. Hence the inequality in (10), if satisfied, is always
strict, from which the conclusion follows.

The implications (ii) ⇒ (iii) ⇒ (iv) are clear.
(iv) ⇒ (i): If q is not general, then Lemma 6.2 implies that there exists

a q-semistable line bundle L on X that is not q-stable.
�

Remark 6.5. The implication (i) ⇒ (iii) was proved in [Est09, Prop. 3.5].

Remark 6.6. The canonical polarization of degree d on X of Rmk. 1.16(ii)
is general if and only X is d-general in the sense of [Cap08a, Cor.-Def. 4.13]
(see also [Cap, Def. 1.13]), as it follows easily by comparing the definition
of loc. cit. with the above Proposition 6.4.

In the remaining of this subsection, we want to give an answer to the
following

Question 6.7. How far is a non-degenerate polarization from being general?

Denote by X2 any smoothing of X at the set of separating nodes Xsep of

X. Given a subcurve Z ⊂ X2, denote by Z the subcurve of X to which Z
specializes. Observe that gZ = gZ and δZ = δZ . A subcurve Y ⊂ X is of

the form Y = Z for some subcurve Z ⊂ X2 if and only if

(65) Y ∩ Y c ∩Xsep = ∅.

Given a polarization q on X, we define a polarization q2 on any smoothing

X2 by q2
Z

:= q
Z

for any subcurve Z ⊂ X2. Observe that, although the

smoothing X2 is not unique, its combinatorial type (i.e. its weighted dual
graph) and the polarization q2 are uniquely determined.

Proposition 6.8. A polarization q on X is non-degenerate if and only if, for

every (or equivalently, for some) smoothing X2 of X at its set of separating
nodes, the induced polarization q2 on X2 is general.

Proof. Assume that q is non-degenerate on X. Let Z be a proper subcurve

of any fixed smoothing X2 and W a connected component of Z or Zc. We
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want to show that q2
W

−
δW
2

6∈ Z. Consider the subcurve Z ⊂ X. Clearly

Z is a proper subcurve and is not a spine because of (65). Moreover W is

a connected component of Z or Z
c
. Therefore, because of the assumption

and the definition of q2, we get q2
W

−
δW
2

= q
W

−
δW
2

6∈ Z.

Conversely, assume that q2 is general for some fixed smoothing X2 and,
by contradiction, assume also that q is not non-degenerate on X. Then there
exists some subcurve Y of X such that

(66)





Y is connected,

Y ∩ Y c 6⊂ Xsep (i.e. Y is not a spine),

q is integral at Y.

If we chose Y maximal among the subcurves satisfying the properties (66),
then we claim that Y ∩ Y c ∩ Xsep = ∅. Indeed, if this is not the case,
then there exists a separating node n ∈ Y ∩ Y c. Since Y is connected,
one of the two tails attached to n, call it T , is a connected component of
Y c. Consider the subcurve Y ′ := Y ∪ T . It is easily checked that Y ′ is
connected, Y ′ ∩ Y ′c = (Y ∩ Y c) \ {n} 6⊂ Xsep and that q is integral at Y ′.

Therefore Y ′ satisfies the properties (66) and, since Y ( Y ′, this contradicts
the maximality of Y .

Since the chosen maximal subcurve Y satisfies property (65), we known
that there exists a subcurve Z ( X2 such that Z = Y . But then the same
argument as before gives that q2 is integral at Z, which contradicts the

initial assumption on q2.
�

Remark 6.9. The canonical polarization of degree d on X of Rmk. 1.16(ii) is
non-degenerate if and only X is weakly d-general in the sense of [Cap, Def.
1.13], as it follows easily by comparing the definition of loc. cit. with the
above Proposition 6.8. Using this, the equivalence (i) ⇔ (iv) of our Theorem
6.1 recovers [Cap, Thm. 2.9] in the case of the canonical polarization of
degree d.
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Mathematik 21, Springer 1980.

[Bus08] Busonero, S.: Compactified Picard schemes and Abel maps for singular curves.
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aldo 1, 00146 Roma (Italy)

E-mail address: viviani@mat.uniroma3.it


	Introduction
	1. Preliminaries and notations
	2. Graph-theoretic results
	3. Fine compactified Jacobians and Néron models
	4. A stratification of the fine compactified Jacobians
	5. Fine compactified Jacobians as quotients
	6. Comparing fine and coarse compactified Jacobians
	References

