
DIAGONALIZING THE GENOME I

SATYAN L. DEVADOSS AND JACK MORAVA

Abstract. We construct an equivariant blowup of the space of real symmetric matrices,
with a natural stratification indexed by trees, which keep track of eigenvalue coincidences.
We suggest, without much justification, that systems of oscillators parametrized by these
spaces may provide useful models in genomics.

1. Introduction

The space Qn of real symmetric n× n matrices (equivalently, of self-adjoint operators,

or quadratic forms in n variables) parametrizes, among other things, systems of coupled

harmonic oscillators, and is thus of fundamental importance in mathematical mechanics.

Nearly forty years ago, V.I. Arnol’d observed [4] that this (contractible) space has a very

interesting stratification defined by eigenvalue multiplicities, and he remarked its relevance

in applications to phenomena involving resonance [26]. In this paper we construct an

(Sn × SOn)-equivariant blowup

Q̃n

��

// Qn

��
Mor

0,n+1(R) // SPn(R)/Aff+

of Qn (modulo affine equivalence), which, roughly speaking, resolves these eigenvalue coa-

lescences. The space Q̃n has a stratification generalizing Arnol’d’s, replacing his eigenvalue

partitions with trees having those partitions as collections of leaves. Final remarks in Sec-

tion 6 suggest some applications to theoretical biology, in particular, to models for the

relation of genotype to phenotype.

The first section below summarizes some familiar facts about quadratic forms, and the

following three sections contain the new material of the paper: they are an introduction

to certain remarkable compact hyperbolic manifolds M0,n(R) and their orientation covers

Mor
0,n(R). The former spaces first appeared as the real points of moduli spaces of stable

genus zero algebraic curves marked with families of distinct smooth points (which can

also be interpreted as compactifications of the moduli spaces of ordered configurations
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2 SATYAN L. DEVADOSS AND JACK MORAVA

of points on the real projective line), but here we understand them as spaces of rooted

metric trees with labeled leaves, as in Figure 1. Among other things, they resolve the

singularities of the spaces of metric trees studied, from the phylogenetic point of view, by

Billera, Homes, and Vogtmann [6].

Figure 1. An example from Darwin’s notebook (1837); see section 6.2.

One of the objectives of this paper is to provide these tree spaces with natural pseudo-

metrics and measures. These spaces have some remarkable similarities [20] to the space

forms which captured the imagination of geometers in the nineteenth century: they are

K(π, 1) manifolds with very pretty tesselations. The work of Klein and others soon found

important applications in physics and mechanics, and applications of our generalized space

forms may only now be appearing on the horizon.

Acknowledgments. We would like to thank Charles Epstein for suggesting that speciation

might profitably be regarded as a kind of resonance [16], Amnon Ne’eman for advice on real

algebraic geometry, Sikimeti Mau for insights into configuration spaces, and especially Jim

Stasheff for continued interest and encouragement over many years. SD also thanks Lior

Pachter and the University of California, Berkeley, and Clemens Berger and the Université

de Nice for their hospitality during his sabbatical visits. JM was partially supported by

the DARPA FunBio program, and none of it would have ever been possible without Ben

Mann’s visionary work spearheading that project.

2. Quadratic forms and their eigenvalues

2.1. The geometry of spaces of matrices with conditions on their eigenvalues is compli-

cated. The orthogonal group SOn of isometries of Euclidean space Rn acts almost freely

on Qn by conjugation, and quadratic forms are classified up to isomorphism by elements
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of the resulting quotient. Since

dimQn − dim SOn =

(
n+ 1

2

)
−
(
n

2

)
= n ,

it is natural to think of an equivalence class as indexed by its configuration

Qn → SPn(R) : Q 7→ λ(Q) := {λ1 ≤ · · · ≤ λn}

of eigenvalues in the symmetric product SPn(R) := Rn/Sn. When these eigenvalues are

all distinct, the numbers

δk :=
λk+1 − λk
λn − λ1

> 0 for k ∈ {1, . . . , n− 1}

are well-defined and sum to 1, defining an element δ(Q) := (δ1, . . . , δn−1) in the interior

of the (n− 2)-simplex

∆n−2 := {(x1, . . . , xn−1) ∈ Rn−1≥0 |
∑

xi = 1} .

The contractible group

Aff+ := {x 7→ ax+ b | a ∈ R×+, b ∈ R}

of affine transformations of R acts freely on Qn, and the quotient of Qn by SOn is Aff+-

equivariantly isomorphic, by the map

Qn/SOn → R2 ×∆n−2 : λ(Q) 7→ (λn − λ1, λ1)× δ(Q) ,

to a product of the plane with a simplex. We can therefore interpret the quotient

Qn/Aff+ × SOn as a space of quadratic forms normalized by suitable conditions on the

trace and determinant.

2.2. The configuration space of n ordered, labeled distinct points on the real line can be

defined as

Confign(R) := Rn − {(x1, . . . , xn) ∈ Rn | ∃ i 6= j, xi = xj} .

Any n-tuple (v1, . . . , vn) ∈ Rn of distinct real numbers has an intrinsic order

vσ(1) < · · · < vσ(n)

which defines an element σ of the symmetric group Sn of permutations of n things, and

the construction in the preceding paragraph extends to an (Aff+× Sn)-equivariant home-

omorphism

Confign(R) ' R2 ×
o
∆n−2 × Sn .

The n!-sheeted ramified cover

Rn → SPn(R) ' Rn : (v1, . . . , vn) 7→ (e1, . . . , en)
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defined by the elementary symmetric functions∏
(t− vk) =

∑
(−1)kekt

k

is equivariant with respect to the action vk 7→ avk + b of the affine group on the left,

provided it acts by

ek 7→
∑
k≥l≥0

(
n− l
n− k

)
albk−lel

on the right. The diagram

∆n−2 ×Aff+
'←− SPn(R)

v 7→e−−−→ Rn

then defines an Aff+-equivariant map

(∆n−2, ∂∆n−2)×Aff+ → (Rn,Discn)

where the discriminant locus on the right is the inverse image of zero under

(ek) 7→
∏
i 6=k

(vi − vk)2 .

As the eigenvalues of a matrix coalesce, its image in (Qn/Aff+) × SOn approaches the

boundary of ∆n−2, which lies over the classical discriminant locus. The pullback

Q̃0
n

p1−−−−→ Confign(R)

p0

y y/Sn
Q0
n

/SOn−−−−→ Rn −Discn

defines a cover (with n! components) of the space Q0
n of quadratic forms with distinct

eigenvalues. Because Q̃n is defined as a fiber product, there is a canonical (Sn×SOn×Aff+)-

equivariant map

Q̃0
n → Q̃n → Qn

unramified away from the subspace of matrices with coincident eigenvalues. And because

both Qn and ∆n−2 are contractible, Q̃n is aspherical, with fundamental group isomorphic

to that of Mor
0,n+1(R) (defined in the following sections).

3. Navigation in tree-space

3.1. A metric tree is a tree with a nonnegative weight assigned to each of its internal

edges [5]. Billera, Holmes, and Vogtmann [6] have constructed a space BHVn of isometry

classes of rooted metric trees with n labeled leaves. When such a tree is binary, it has

n − 2 internal nodes, and hence 2n − 2 nodes in all. Diaconis and Holmes [15] have

shown that such trees, with all nodes labelled, are in bijection with the (2n− 3)!! possible

(unordered) pairings of those nodes. This enumeration defines coordinate patches for the
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space of such trees, parametrized by the weights of their internal edges. The resulting

space is contractible (in fact a cone), formed by gluing (2n − 3)!! orthants Rn−2≥0 , one for

each type of labeled binary tree. As the weights go to infinity, we get degenerate trees on

the boundaries of the orthants. Two boundary faces are identified when they contain the

same degenerate trees.

Boardman’s subspace Tn ⊂ BHVn of fully-grown rooted trees [7] consists of (equivalence

classes of) trees with weights in [0, 1], having at least one edge of weight one. If a tree is

not a corolla (with all internal weights zero), then the tree can be rescaled (by dividing

its weights by their maximum) to be full-grown. This defines a homeomorphism with the

(unreduced) smash product

BHVn ' (R≥0, 0) ∧ Tn

which sends a tree with edges of weight {wk} to the pair defined by max{wk} ∈ R+,

together with a full-grown rescaled version of that tree; the corolla is sent to the cone

point 0× {Tn}.

Theorem 1. The one-point compactification BHV+
n is homeomorphic to the (unreduced)

suspension of Tn.

Figure 2 displays T4, seen as the Peterson graph, with 10 vertices corresponding to rooted

trees with four leaves with one internal edge of weight 1; the 15 edges belong to trees with

two internal weights summing to 1.

Figure 2. The space T4 as the Peterson graph.

The subspace of BHVn of trees with weights that sum to one is also homeomorphic to

Tn, by rescaling the maximal edge weight to one. Tn also appears in [33] as the tropical

Grassmannian G′′′2,n+1. These spaces of trees have an important literature in representation

theory and combinatorics [32]. The symmetric group Sn acts on Tn by permuting the labels
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of the leaves; this restricts to an Sn−1-equivariant homotopy equivalence

Tn ∼ Sn−3 ∧ S+n−1 .

Corollary 2. The space BHV+
n is homotopy-equivalent to a wedge of (n− 1)! spheres of

dimension n− 2.

In fact, by dropping the distinction between root and leaf, the group action extends

to Sn+1. On the other hand, the suspension of BHV+
n is Sn-equivariantly homotopy-

equivalent to a version [10, Section 9] of the geometric realization of the poset of partitions

of n. The associated homology representations are fundamental in (among other things)

the theory of operads.

3.2. A tree embedded in the plane inherits an orientation. To define coordinate patches

on the space Kn of (isometry classes of) planar rooted metric trees with n leaves, labeled

{1, 2, . . . , n} clockwise, we need to assign weights to the internal edges, and it is convenient

to distinguish those weights from the lengths defined by a plane embedding; in particular,

terminal edges are to be understood as having infinite weight.

This data defines a parametrization of the space such planar trees by a Catalan number

(3.1) Cn−1 =
1

n

(
2n− 2

n− 1

)
=

2n−1

n!
(2n− 3)!!

of orthants Rn−2≥0 , which glue together to define the W-construction of Boardman and

Vogt [8]. Figure 3(a) shows the construction for n = 4 by glueing five quadrants (drawn

as squares), along with a labeling of one of the squares in (b). In general, all the orthants

will share a common vertex defined by the corolla.

3 421

3 421 3 421

3 421

( a ) ( b )

Figure 3. The piecewise-Euclidean geometry of K4.
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For any such tree there is a unique path ρk from the k-th leaf to its root. Let Wk be

sum of the weights of the internal edges shared by the paths ρk and ρk+1. Define

vk =
∑

0<i<k

exp(−Wi) for k ∈ {2, . . . , n} ,

and let v1 = 0; then the map

(3.2) d : Kn → Confign(R)/Aff+ : T 7→ {0 = v1 < v2 < · · · < vn (< vn+1 =∞)}

embeds Kn in a space of configurations of points on the line.

Figure 4(a) shows an example with seven leaves having five (colored) internal edges.

Here, we have W1 = d1 + d2, W2 = d2, W3 = 0, W4 = d3 + d4, W5 = d3 and W6 = d3 + d5.

When the tree is a corolla (no internal edges) with n leaves, then Wk = 0 for all k. This

corolla is mapped to the configuration (0, 1, 2, · · · , n − 1) of points in R. On the other

root

3 42 5 6 71

d1

d2 d3

d4 d5

root

3

4

2

5

6

71

( a ) ( b )

Figure 4. (a) Bracketings and planar trees and (b) polygons with diagonals.

hand, if Wk →∞, then (vk+1−vk)→ 0, and the corresponding points in the configuration

space collide. Completing the orthants Rn−2≥0 to cubes [0,∞]n−2 defines the manifold-with-

corners Kn of planar labeled trees, whose faces parametrize degenerate trees (with at least

one weight equal to ∞). Their structure will be considered in greater detail below.

3.3. This space of planar rooted trees is Stasheff’s polyhedron:

Theorem 3. The pseudometric space Kn of planar labeled trees is homeomorphic to the

associahedron: the convex polytope of dimension n − 2 whose face poset is isomorphic to

that of bracketings of n letters, ordered so a ≺ a′ if a is obtained from a′ by adding new

brackets.
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These polytopes were constructed independently by Haiman (unpublished) and Lee [27],

though Stasheff had defined the underlying abstract object twenty years previously, in his

work on associativity in homotopy theory [34]. Figure 5(a) shows the 2D associahedron K4

with a labeling of its faces, and (b) shows the 3D version K5. There are over a hundred

( a ) ( b )

Figure 5. Associahedra K4 and K5.

combinatorial and geometric interpretations of the Catalan numbers, which index the

vertices of the associahedra. Most important to us is the relationship between bracketings

of n letters, which capture collisions of points on the line, and rooted planar binary trees.

Figure 4(a) illustrates the bijection with rooted trees, while (b) shows the relationship to

polygons with diagonals.

Remark. Considering trees as nested bracketings on the interval, as in Figure 4(a), allows

a generalization of Equation (3.2), resulting in a map from graph associahedra to the

minimal blow-up Coxeter complexes [9].

The Boardman-Vogt construction is a decomposition of the associahedron into cubes,

exemplifying the general cubic barycentric subdivision of a polytope. Figure 6 shows the

decomposition for the examples from Figure 5, where one cube from each complex has

been highlighted. Each vertex of Kn, and hence each cube of the complex, is associated

to a planar binary tree with n leaves; there is thus a Catalan number of cubes in the

decomposition.

These spaces have some important symmetries. Relabeling the leaves of a tree in clock-

wise order (that is, turning over the piece of paper on which the tree is drawn) defines

an involution ε : Kn → Kn. A related construction interprets the root as a zeroth leaf,

shifting the resulting indexing by a one-step clockwise rotation r. This defines an action

of cyclic group Zn+1 on Kn which, together with the involutions above, extends to an
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( a ) ( b )

Figure 6. The cubical decomposition of associahedra.

action of the dihedral group Dn+1, presumably equivalent to that defined by Lee. This

points to the usefulness of trees with arbitrarily labeled leaves, indexed by elements of Sn
(if the root is distinguished) or by Sn+1 (if not).

4. Compactified configuration spaces

4.1. The moduli problem for algebraic curves has been a central problem in mathematics

since Riemann. It was solved in the 1970s by Deligne, Mumford, Knudsen [25] and others,

over the integers Z. A very special case of their general results constructs a moduli space

for real algebraic curves of genus zero marked with n > 3 distinct smooth points. That

solution can be regarded as a good compactification M0,n(R) of the space

M0,n(R) = Confign(RP1)/PGl2(R)

of n distinct points on the real projective line. One of the objectives of this note is to

provide this space with a natural metric, and thus an intrinsic measure.

Example. Figure 7(a) shows shows M0,5(R), obtained by blowing up three points on a

2-torus; part (b) shows M0,6(R) as a 3-torus, with the blowup along 3 points and 10 lines.

For a detailed construction of these spaces as blowups of tori, see [13, Section 4].

4.2. The map d of equation (3.2) embeds Kn in a configuration space of points on R.

Allowing arbitrary labelings of the leaves and root extends that construction to a surjection

D : Kn ×Dn+1 Sn+1 → M0,n+1(R)

to the moduli space for marked real genus zero curves, but this abbreviated description

omits the details [13, Section 3.1] of the identifications among the faces of the associahedra.

We reformulate that information here in the language of orbifolds.
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( b )( a )

Figure 7. (a) M0,5(R) and (b) M0,6(R) as blowups of tori.

The polyhedral structure on Kn makes it a CW complex: a suitably topologized disjoint

union of open cells corresponding to the interiors of its faces. The faces are indexed by

degenerate (rooted, labeled) metric trees T (ie, with at least one internal edge of infinite

weight).

Define the degeneration of T to be the disjoint union of subtrees Te obtained by ‘break-

ing’ T along the edges e of infinite weight — each such edge then corresponds to a new

leaf on each daughter tree. This defines an open cell

CellT :=
∏
e

o
K |Te|

for each face of Kn and hence a CW-decomposition

Kn =
∐

CellT .

With the morphisms defined below, the metric groupoid whose objects are pairs

T × σ ∈ Kn × Sn+1 .

will have a manifold as quotient space; but it will not an orbifold in the strictest sense

(because its underlying space is a manifold with corners).

Remark. These planar trees can be viewed as ribbon trees, with a natural cyclic order

around each vertex given by the planar embedding; see Figure 8(a). As the weight of an

internal edge increases, we think of the thickness of the ribbon as decreasing, as in part

(b). As the weight approaches ∞, the edge becomes a ribbonless segment.
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( a ) ( b )

Figure 8. A ribbon tree as the weight of an internal edge is altered.

4.3. To define the morphisms of the category, note that any internal edge e of T partitions

T into two subtrees, one containing the root. Let e∗(T ) denote the rooted planar tree

obtained by reversing the embedding of the part of the tree away from the root. A planar

rooted labeled tree is allowed to twist at an internal node v if the internal edge adjacent

to v (closer to the root) has infinite weight. Figure 9 shows two examples of twists, where

the green internal edge is degenerate.

The leaves of e∗(T ) inherit a natural order from its planar embedding, defining an

element τe ∈ Sn+1 which sends the original labeling to the new one. This produces a

homeomorphism

CellT × σ → Celle∗(T ) × (σ ◦ τe)

of the cell indexed by T with leaves labeled by σ, to the cell indexed by e∗(T ) with

labeling σ ◦ τe. There is a unique smallest topological groupoid with objects as above, and

these equivalences as (generating) morphisms. Its quotient manifold is the double cover

of M0,n+1(R) defined by Kapranov [23]. If we adjoin the reflection around the root to the

morphisms generating the category, we get M0,n+1(R) itself [14, Proposition 9].

There is an elegant construction of M0,n+1(R) and Kapranov’s double cover based on

blowups of RPn. The symmetric group Sn acts by reflections (ij) across the collection

{xi = xj} of hyperplanes in the subspace

x1 + x2 + · · ·+ xn = 0

of Rn. This braid arrangement decomposes the (n − 2)-sphere around the origin into n!

simplicial chambers, forming a type-A Coxeter complex. Kapranov showed that blowing

up certain cells of this complex yields his double cover of M0,n+1(R); a combinatorial

version of his construction is given in [14].

Example. Figure 10(a) shows the braid arrangement decomposing the 2-sphere into

4! = 24 chambers. Part (b) shows the blowups along eight (nonnormal) crossings of
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( a )

( b )

3 42 5 6 71 3 72 6 5 41

3 42 5 6 71 3 41 5 6 72

Figure 9. Two examples of twisting along degenerate edges.

this complex, where each hexagon is a crosscap, resulting in a nonorientable double cover

of M0,5(R). Taking the antipodal map results in M0,5(R), shown in (c), tiled by 12 asso-

ciahedra; compare this with Figure 7(a).

( a ) ( b ) ( c )

Figure 10. (a) Braid arrangement on the 2-sphere, (b) Kapranov’s cover,
and (c) the moduli space Mor

0,5(R).

5. The orientable double covers

5.1. Since M0,n+1(R) is a nonorientable manifold if n > 3, it has an orientable double

cover Mor
0,n+1(R). In order to construct this double cover, we modify the morphisms in

the discussion above. Let ρ ∈ Zn+1 denote a clockwise rotation

T 7 → ρ∗(T )
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of tree T by one step. Then, the category with the space Kn × Sn+1 of objects, and

morphisms generated by twists along degenerate edges and the action ρ of Zn+1 defined

by shifting the root (but not including twists around it) defines a presentation

Kn ×Zn+1 Sn+1 →Mor
0,n+1(R)

of the orientation cover of M0,n+1(R).

Example. The orientation cover Mor
0,5(R) can be constructed by regarding the hexagons

in Figure 7(b) not as crosscaps but as “holes” through the sphere. The holes are then

identified across the sphere, forming a surface of genus four. A construction of this cover

with high symmetry is provided in [3], based on a pentagonal decomposition of Kepler’s

great dodecahedron shown in Figure 11.

Figure 11. The great dodecahedron of Kepler.

5.2. The orientation cover Mor
0,n+1(R) is tiled by n! associahedra, and hence, from equa-

tion (3.1), by 2n−1(2n − 3)!! cubes. Forgetting the extra data encoded by the planar

structure o n its elements defines a smooth blowup

ψ : Mor
0,n+1(R) → BHV+

n .

of the compactified Biller-Holmes-Vogtmann [6, Section 3.1] space by a compact smooth

orientable aspherical manifold. Since Mor
0,n+1(R) is right-angled, 2n−2 associahedra meet

at each vertex, and the center of each associahedron corresponds to a different labeling

of the rooted planar corolla of n leaves. All such center vertices collapse into the unique

vertex of BHV+
n corresponding to the abstract rooted corolla. In fact, the map can locally

be viewed as origami flat folding of an (n − 2)-cube (cut into 2n−2 smaller cubes) into a

cube in BHV+
n , iteratively folding the cube in half and identifying the 2n−2 cubes as one.
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( a ) ( b )

Figure 12. (a) Glueing associahedra in M0,5(R), with (b) cubes identified
in BHV+

4 .

Example. Figure 12(a) shows four associahedra K4 which will glue together, providing

a local picture of M0,5(R). The cubical decomposition of each pentagon ensures that 22

smaller squares meet at a vertex of M0,5(R), as shown in the shading of Figure 12(b). The

map can be visualized as folding of the dissected square (shaded region of Figure 12) into

one square, as in Figure 13.

( a ) ( b ) ( c ) ( d )

Figure 13. The 2n−2 : 1 folding of cubes.

Theorem 4. The resulting Sn−1-equivariant composition

(5.1) Kn ×Zn+1 Sn+1 → Mor
0,n+1(R) → BHV+

n ' S1 ∧ Tn ∼ Sn−2 ∧ S+n−1

is 2n−2-to-1 on the interiors of the cubes.

The space BHVn is covered by (2n−3)!! orthants, and the map forgets the order of the

pairings in the Diaconis-Holmes labeling of binary trees. Dividing out the action of Sn−1
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in equation (5.1) defines a map

Kn × (Sn/Sn−1) → Sn−2 ;

this is just an n = (Sn/Sn−1)-fold copy, parametrized by the cyclic relabelings of the leaves

of trees in Kn, of the degree 2n−2 map

Kn/∂Kn → In−2/∂In−2 ' Sn−2

which collapses the boundary of the associahedron to a point, and folds the cubical de-

composition as described above.

Example. The space M0,4(R) is a circle, obtained by gluing the three intervals [0, 1],

[1,∞], [∞, 0] end-to-end, and in this case our orientation cover is the double cover defined

by gluing six copies of an interval in a circle. Our collapse maps this to a wedge S1∧T3 of

three circles, which may be confusing since S+2 consists of three points, but is the wedge

S0 ∨ S0 of two 0-spheres.

5.3. The piecewise Euclidean pseudometric defined by the W -construction blows up at

degenerate trees, and its associated measure is not a probability measure, though it can

easily be “mollified” (by some choice of cutoff) to be one. However, there may be something

more canonical. For the two-dimensional case, the logarithmic derivative

α(z0 : z1 : z2 : z3) := d log[z0 : z1 : z2 : z3] = A01 −A02 +A23 −A13

of the cross-ratio, where

Aik := (zi − zk)−1(dzi − dzk) ∈ Ω1(Confign(C))

is Arnol’d’s one-form, defines a candidate

ω(s, t) := α(1 : 0 :∞ : s) ∧ α(t : 1 :∞ : 0)

for a volume form on Mor
0,5(R). Its integral over

o
K4 = {0 < s < t < 1 <∞} is the period∫

0<t<s<1
s−1ds ∧ (1− t)−1dt = ζ(2) = −(2πi)2

24

of a certain motive [2, Section 25.1] studied by Goncharov and Manin [19]. This is gener-

alized by the map

Mor
0,n+1(R) ⊃ Kn →M0,4(R)n−2

where

(0 < x1 < . . . xn−2 < 1 <∞) 7→ ([0 : x1 : 1 :∞], . . . , [0 : xn−2 : 1 :∞]) ,

which pulls back the natural volume form on the target (n− 2)-torus. The details of the

symmetric group action are left to the reader.
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6. Toward possible applications

6.1. The constructions above allow us to extend the diagram defining the space Q̃n:

Q̃n
//

��

Qn

��
Mor

0,n+1(R)

��

// SPn(R)/Aff+ ∼ ∆n−2

/∂

��
BHV+

n ∼ S+n ∧ Sn−2
/Sn // Sn−2

(where /∂ : ∆n−2 → Sn−2 collapses the boundary of the simplex to a point). There are

thus many possible variations on this theme, such as those involving blowups based on

the Billera-Holmes-Vogtmann space as well as our resolution of it. We will return to this

in part II.

Quite a lot is now known about the homotopy theory of the spaces M0,n+1(R): in

particular, their tesselations imply their negative curvature in the sense of Alexandrov,

and hence that they are K(π, 1) manifolds, whose fundamental groups are the twisted

right-angled Coxeter groups of the associahedra [12]. Generators and relations [22] are

known for these groups, as is their cohomology [17, 31], which has some striking analogies

with that of the pure braid groups. By a well-known principle in algebraic geometry [21],

the mod two cohomology of M0,n+1(R) is isomorphic (after halving dimensions) to the

mod two reduction of the cohomology of the corresponding complex algebraic varieties,

while their rational cohomology is that of a product of planes with k2 punctures, for

k ≤ n/2− 1. Incidentally, the cohomology of the pure braid group on n strands is that of

the product of copies of C− {k} for k ≤ n.

6.2. One of the vexing problems in theoretical biology is the relation between genotype

(easily measurable by DNA sequencing) and phenotype (less easily defined, or measured):

this resembles old questions in quantum mechanics about observables and hidden variables.

Although it is in many ways quite naive to say so, there may be interesting connections

between models of evolution based on resonances in systems of linked oscillators, and the

inverse problem of reconstructing evolutionary trees by dissimilarity matrix techniques.

For a more general perspective, see [18]. In the language suggested here, this becomes a

question about maps between moduli spaces of quadratic forms.

Biologists study rare events over enormous time-scales. Descent diagrams such as Dar-

win’s Figure 1 go back to the beginning of modern thinking in the field: they represent
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incidence relations among experimentally-defined equivalence classes (species) in some hy-

pothetical effectively infinite-dimensional stratified space of all viable organisms. Branch-

ing in descent diagrams can be modeled by specialization in the sense of algebraic geometry,

defined (for example) by fixing some parameter. In the language of stratified spaces this

corresponds to moving from the interior of some region to its boundary: something like

a phase change (like water to ice). In such a cartoon description, a chicken is the Dirac

limit of a tyrannosaur, as many of its genetic parameters are set equal to zero.

At this level of vagueness, there is reason to work with codimension than with proba-

bility: evolutionary events are highly unlikely, and in reasonable models will have effective

probability zero; but in geometry any subspace of positive codimension has measure zero,

and hence probability zero. The modern theory of phase change in condensed matter

physics has developed powerful tools for the study of such transitions (viewed as moving

to the boundary of some phenotype), but in current work there is usually only one such

event in focus at a given moment. Evolution forces us to consider long concatenations of

these events, and trees are a natural tool for their book-keeping. A geometric object with

many strata (for example, a high-dimensional polyhedron, with faces of many dimensions)

has an associated incidence graph, with a vertex for each face, and a directed edge between

adjacent faces of lower dimension.1 From this point of view, trees (and more generally

graphs) can provide a kind of skeletal accounting of the relations between the components

of geometric objects which are not as simply related as manifolds are to their boundaries.

Mathematicians are aware that objects of universal significance (such as symmetric

groups) manifest themselves in unexpected contexts, and that their relevance to a subject

can be signaled by the appearance of simpler but related objects (such as partitions, or

Young diagrams). The immense utility of trees as a device for organizing evolutionary data

points in this way toward configuration spaces in genomics; but questions there are so little

understood that even very coarse models, such as those based on linear methods but with

a few extra bells and whistles coming from astute compactifications, may provide useful

insights. The dissimilarity matrices studied in phylogenetics have all entries nonnegative,

with zeroes down the diagonal; they define a very interesting subspace of quadratic forms.

The recent proof of a topological stability theorem [28, Remark 19] for the assignment of

trees to dissimilarity matrices was one of the main motivations for this paper: it points

toward the existence of a metric version, and fits very nicely in the framework presented

here. We will return to this in part II.

1Similarly, mathematics monographs often include, as part of the introduction, a graph or leitfaden
indicating the functional relations between subsections or chapters. Computer programs such as Mapper
[29] provide something similar for data clouds.
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