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Abstract

This paper investigates the problem of secure lossy sowd|g in the presence of an eavesdropper
with arbitrary correlated side informations at the legaiedecoder (referred to as Bob) and the eavesdropper
(referred to as Eve). This scenario consists of an encodeémnitshes to compress a source to satisfy the
desired requirements on: (i) the distortion level at Bob @indhe equivocation rate at Eve. It is assumed that
the decoders have access to correlated sources as sidmatifor. For instance, this problem can be seen
as a generalization of the well-known Wyner-Ziv problemingkinto account the security requirements.
A complete characterization of the rate-distortion-eqoation region for the case of arbitrary correlated
side informations at the decoders is derived. Several apeases of interest and an application example
to secure lossy source coding of binary sources in the ptesainbinary and ternary side informations are
also considered. It is shown that the statistical diffeesnisetween the side information at the decoders and
the presence of non-zero distortion at the legitimate dexcodn be useful in terms of secrecy. Applications
of these results arise in a variety of distributed sensowowt scenarios.

|. INTRODUCTION

Consider the problem of compressing correlated sourcesraos nodes in a distributed fashion where
the sensors may wish to communicate with each other on aessaletwork. Assume also that each of
these sensors can have access to a correlated observatlus source or random field of interest. This
observation can be used as side information available atiékeder to minimize the distortion between
the original source and the estimate at the legitimate dmc@@ferred to as Bob). In addition to this,
we assume that each of the encoders (referred to as Alicéewito leak the least possible amount of
information about its source to an eavesdropper (refewweastEve), e.g. an untrusted sensor, who may

capture such information during the communication betwasashes.
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The above scenario involves many of the major informatlmentetic issues on source and channel
coding problems. In terms of source coding, Slepian-Wdlfddd Wyner-Ziv [2] introduced the problem
of source coding with side information at the decoder. Thjsid has been the focus of intense study
and some remarkable progress has already been made intitedosed practical aspects. On the other
hand, extensive research has been done during the recest geasecure communications over noisy
channels. The traditional focus was on cryptography, basedomputational complexity where security
only depends on the intractability assumption of NP-conepleroblems that must be solved prior to
decoding. Another approach is the information-theoretitam of secrecy, introduced by Shannonlin [3],
where security is measured through the equivocation raetie remaining uncertainty about the message)
at the eavesdropper. The wiretap channel was introduced ymei4], who showed that it is possible
to send information at a positive rate with perfect secrexyoag as the channel of the legitimate user
is less noisy than the channel of the eavesdropper. Cdgmaer [5] extends this result to the setting
of general broadcast channels with any arbitrary equivocatate. Several extensions of the wiretap and
fading channels have been done (cf. [6], [7] and referenkerein). So far, very few work has been
reported on source coding (or compression) problems withrifg constraints.

One can identify two approaches in the literature on secomecs coding. In fact, it is assumed either
that there already exists a secure rate-limited channeldegt Alice and Bob, which allows the system
to use secret keys, or the decoders have access to side atimnnabout the source. In the scenario of
secret key sharing, both lossless and lossy compressiende®n studied in various contexts [8], [9].[10],
[11], [12], [13]. For the second scenario where side infdiarais available at both decoders, the case of
lossless source coding has been recently studied In [13]], [16], [17]. Whereas the general lossy source
coding problem has not been fully solved, some particulaesaan be derived as part of previous work.
It is important to mention here that if the side informatidretween Bob and Eve are degraded then the
result follows as a special case 6f [18].

In this paper, we investigate the problem of secure lossycsoooding of memoryless sources in the
presence of an eavesdropper with different correlatedisfdemations at the decoders of Bob and Eve, as it
is shown in Fig[L. In this setting the channels between esrcand decoders are assumed to be noiseless so
that they cannot provide any advantage to increase secDtitygoal is to understand the minimum amount
of information that needs to be revealed to Eve to satisfydis®ortion constraint at Bob. We provide a
complete characterization of the rate-distortion-eqea@tin region for the case of arbitrary correlated side
informations. Several special cases of interest are alssidered. As an application example, we consider
the case of secure lossy source coding of a binary sourcegvihe side information at Bob (resp. Eve)
is the output of a binary erasure channel (resp. a binary sstnmrchannel) with the source as the input.
This model is of interest since neither Bob nor Eve can alwasys lessnoisy decoder.

The organization of this paper is as follows. Section Il edatlefinitions along with the main results,

while Section Il provides several special cases and d@ouos The sketch of the proofs are relegated to

September 2010 DRAFT



TO BE PRESENTED AT ALLERTON 2010 3

Section IV. Finally, Section V presents an application eghnto binary sources and Section VI summarizes

the paper.
Notations

For any sequencéz;);cn+, notationz} stands for the collectiotzy, i1, ..,2s). 7 IS simply
denoted byz™. By extension, for any subset C {1,...,n}, notationz; stands for the collection

(xj)jes. The cardinality of an alphabet is denoted |pyl. For everye > 0, we denotee-typical and
conditionale-typical sets byT?(X) and T (Y|z"), respectively. Following[[19], entropy is denoted by
H(-) and mutual information by (-; -). Let X, Y andZ be three random variables on some alphabets with
probability distributionp. If p(z|y, z) = p(z|y) for eachz, y, z, then they form a Markov chain, which is
denoted byX —e- Y —e- Z. For eachz € R, notation|[z]; stands formax(0; x). For eacha,b € [0,1],
axb=a(l—-0)+ (1—a)b.

Il. PROBLEM DEFINITION AND MAIN RESULTS
A. Problem Definition

In this section, we give a more rigorous formulation of theiteat depicted in Figl]ll. Le#, B and
£ be three finite sets. Alice, Bob and Eve observe the sequafcasndom variable$A;);cn+, (B;)ien~
and(E;);en~ respectively, which take values of, B and&, resp. For eachh € N*, the random variables
A;, B; and E; are distributed according to the joint distributiptu, b, e) on A x B x £. Moreover, they
are independent across time

Letd : A x A — [0;d4.] be a finite distortion measuriee., such that0 < d,,.. < oo. We also
denote byd the component-wise mean distortion gt x A" i.e, for eacha™, " € A", d(a™,b") =
% > i d(ai, bi).

Definition 1: An (n, R)-code for source coding in this setup is defined by

« An encoding function at Alicef : A" — {1,..., 2"},

« A decoding function at Boly : {1,...,2"%} x B" — A",

Bn

l
T An : d(A" A"y <D

Y. W
Am Alice
== (rate R)
Eve LHAMWE™) Z A
E’ﬂ

Figure 1. Secure lossy source coding in the presence of sfdariation at the decoders.
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Definition 2: A tuple (R, D,A) € R} is said to beachievableif, for any ¢ > 0, there exists an
(n, R + €)-code(f, g) such that:

E[d(A",g(f(A"),B"))] < D+e,

%H(A"|f(A"),E") > A—e.

The set of all achievable tuples is denoted®y and is referred to as theate-distortion-equivocation

region
B. Main Result

The proof of the following theorem is given in Sectidns 1V-AHIV-B|
Theorem 1:RegionR* is the set of all tuplegR, D, A) such that there exist random variablésV
on some finite set&/, V, respectively, and a functioA : V x B — A such that/ -~ V -~ A -~ (B, E)

form a Markov chain and

Y

I(V;AlB) ,

D > E[d(A,A(V,B))],

AN

H(AIVB) +1(4; BIU) = I(4; E|U)|

The first two inequalities in Theorelh 1 are classical in distertion theory. Let us give some intuition
on the third one. The first terfl (A|V B) corresponds to the equivocation rate at Bob. Alice thusaétepl
the available distortion at Bob to increase the equivoocatate at Eve. Moreover, for a given random
variable V', which determines the rat® and the distortion leveD, auxiliary variableU may be tuned
to make Bobmore capablghan Evei.e., maximizeI(A; B|U) — I(A; E|U). This quantity represents the
gain (or the loss) at Eve in terms of equivocation rate.

The following proposition gives upper bounds on the caritiea of alphabetd/ and). The proof is
omitted here and will be provided in an extended version of paper.

Proposition 1: In the single-letter characterization of the rate-distorequivocation regiorR* given

by Theoreni L, it suffices to consider sétaindV such that|i/|| < ||.Al|+2and||V| < (|| Al|+2)(]|.Al|+1).

IIl. SPECIAL CASES OFINTEREST

In this section, we derive optimal regions of some speciaésaf Theorerfi] 1.

A. Lossless Secure Source Coding

The lossless secure source coding problem corresponds @coadistortion level at Bob) = 0). In
this case, the following corollary, which can also be foundii4], [15], directly follows from Theorerl1

(simply setV = A):
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Corollary 1: A tuple (R,0,A) is achievable i.f.f. there exists a random variableon some finite set

U, such thatU -~ A - (B, E) form a Markov chain and

Y

H(A|B) ,
A < [I(A;B|U) - I(A;E|U)} .
+
B. Bob Has No Side Information

Corollary 2: If Bob has no side information, then regi@ reduces to the set of all tuplé®, D, A)
such that there exist random variablés A on/ and A, respectively, such thdf = A - A - E form

a Markov chain and

Y

I(4; 4) ,

Y]

E[d(A, A)]
A < [H(A|A) — I(A; B|U)
+
Note that, as opposed to the secure lossless source codibtemr [15], in our situation, non-zero
secrecy is still achievable when Bob has no side informationfact, Alice can exploit the available
distortion at Bob to increase the equivocation rate at Eve.
C. Bob Has Less Noisy Side Information Than Eve

Definition 3: The side informationB is less noisythan the side informatio if
1(U;B) > I(U; B)

for each random variabl& such that -e- A - (B, E) form a Markov chain.

Note that thdess noisycondition is strictly weaker than thetochastically degradedne.

Corollary 3: If Bob has less noisy side information than Eve, then reginreduces to the set of
all tuples (R, D, A) such that there exist a random variatleon some finite set’, and a function
A:V x B— A such thatV -e- A - (B, E) form a Markov chain and

R

Y

I(V;AlB)
D > E[d(A,A(V,B))],

A

IN

H(A|VB) + I(A; B) — I(A; E)] .
JF
In this case, random variabié of Theorentil is set to a constant value and hence Wyner-Zimngdd]

achieves the optimal performance.
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D. Eve Has Less Noisy Side Information Than Bob

Corollary 4: If Eve has less noisy side information than Bob, then redgionreduces to the set of
all tuples (R, D, A) such that there exist a random variatleon some finite set’, and a function
A:V x B— Asuch thatV - A - (B, E) form a Markov chain and

R

Y

I(V;AlB) ,

D > E[d(A,A(V,B))],

A

IN

H(A|VE) .

In this case, random variablg of Theorem[l is set to random variablé and hence Wyner-Ziv
coding [2] achieves the optimal performance. Therefors ihdt surprising that the equivocation rate at
Eve corresponds to the case where Eve can reliably de€oditere, Alice can only exploit the available
distortion at Bob to achieve a non-zero equivocation ratevat.

IV. SKETCH OF PROOF OFTHEOREM[]

A. Proof of Achievability

In this section, we prove the achievability part of Theofgiinel we prove the following proposition:
Proposition 2: Let U, V' be random variables on some finite séts), respectively, such thdf -

V = A - (B, E) form a Markov chain, andl : V x B — A. If
R > I(V;AlB),
D > E[d(4,A(V,B))],

A

IN

[H(AWB) + I(A; BIU) — I(A; E|U)} L

then (R, D, A) is achievable.

Proof: Let ¢ > 0 and define

A*

[H(A|VB) + I(4; BIU) - I(4; E|U)] ,
5-max {dmas , A*}

For a sufficiently large:, we build an(n, R + ¢)-code( f, g) which achieves the required distortion and

5 =

equivocation rate levels.
1) Codebook generatiorRandomly picke™t sequences™(s;) from 7*(U) and divide them int@"f

equal size bing By (r1)},,e(1,... 2nr1y- Then, for each codeword” (s1), randomly pick2™%2 sequences

.

v"(s1,52) from T7(V|u"(s;)) and divide them int@""> equal size bing Ba(s1,72)},,e(1,.. 202} -

2) Encoding: Assume that sequenc#” is produced at Alice. Look for a codeworid(s;) such that
(u™(s1), A™) € T™(U, A). Then look for a codeword™ (s1, s2) such tha(v™(s2), A™) € T (V, Alu™(s1)).
Let B;(r1) and Ba(s1,72) be the bins ofu”(s1) and v"(s1, s2), respectively. Alice sends the message

f(A™) & (r1,72) on the error-free channel.
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3) Decoding: Assume that Bob receive@,,r2) from Alice and his side information sequené®'.
Now look for the unique codeword™(s;) € By(r1) such that(u™(s1), B™) € T;*(U, B). Then look for
the unique codewor@™(s1,s2) € Ba(s1,r2) such that(v"(s1,s2), B™) € T2(V, Blu™(s1)). Compute
the estimatey(ry, 2, B") € A" using the component-wise relatigg(ry, r,, B") £ fl(vi(sl, s9), B;) for
eachi = {1,...,n}.

4) Errors and constraints:

« Forn large enoughPr {(A™, B") € T!*(A, B)} < 6.

« Inthe first encoding step, Alice needs to find (at least) omeamrdu™(s1) such thatu™(s1), A™) €

U, A). If S > I(U; A), then the probability that this step fails can be upper bednily ¢ for
a sufficiently largen. Similarly, the second encoding step requires the comditio> I(V; A|U) to
succeed with a probability higher than- 6.

« Inthe first decoding step, Bob looks for theiquecodewordu™(s;) € By (r;) such tha{u™(s1), B") €
T™(U, B). If S;1 — Ry < I(U; B), then the probability that there exists another admissibieword
can be lowered below for a largen. Similarly, the second decoding step requires the conditio
Sa — Ry < I(V; B|U) to succeed with a probability higher than- 6.

Defining the global transmitted rat® + ¢ = R; + R2 and putting all inequalities together, we prove

that a sufficient condition for the above code to work with ameprobability lower tharbd is given by:
R4+e¢ = Ri+ Ro
> I(U;A) - I(U; B) + I(V; AlU) — I(V; B|U)
= I(V;A)—-I(V;B)
= I(V;AlB),
where step(a), resp.(b), follows from the Markov chaiflV -=- V' -e- (A4, B), resp.V -e- A -~ B. This
condition is verified under the given assumption Bn.e, R > I(V; A|B).

5) Distortion at Bob: Denote by F' the event “An error occurred during the encoding or decoding

steps.” We now check that our code achieves the requiredrtiist level at Bob:

E[d(A", g(f(A"), B")) < Pr{F}E[d(A" g(ri,rs, B")) ‘F] FPr{F} dpas

IN

—ZE[dAl,A v; (81, $2), ’F}—i—e

= E[d4, AV, B)]| +
D+e.

IN
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6) Equivocation Rate at EveThe equivocation rate at Eve can be lower bounded as follows:

%H(A"|f(A"),E") > @H(A"WQE",F)

> 1 —n55 [H(A") — (A", E™) — I(A";T2|7”1En)}
> 2P han)  1(an U ) - ()]

= (1-56) [H(A) — (A UE) - %HW)}

> (1-50)[HAUE) - R

> [H(A|UE) - RQ] — 5 [H(A|UE) - RQ} .
If Ry > I(V;A|lU)— I(V;B|U), the equivocation rate can thus be bounded as follows:

L H(A"f(A"), B)

Y

[H(A|UE) - Rg} ~ 55 [H(A|UE) —I(V; AJU) + I(V; B|U)] X

Y

[H(A|UE) - Rg} e,

where the last inequality follows after some straightfaidveerivation from the definition of and the
Markov chainU - V -~ A -o- B.
Thus, eachA < H(A|UE) — R, is achievable. The above constraint & together with the latter
inequality yield the given sufficient condition.
|
Note that our coding scheme can be interpreted as a simphéngimperation to transmit/, followed

by a Wyner—Ziv coding[[2] to transmi#l with side information(U, B) at Bob.

B. Proof of Converse

In this section, we prove the converse part of Thedréne.Lwe prove the following proposition:
Proposition 3: Let (R, D,A) be an achievable tuple. There exist two random variabled” and a

function A : V x B — A, such thatl/ - V - A - (B, E) form a Markov chain and

Y

I(V;AlB) ,

Y

E[d(A, A(V,B))] ,

IN

H(A|VB)+ I(A; B|U) — I(A; E|U)
+
Proof: Let ¢ > 0. There exists arin, R + ¢)-code(f,g) s.t.:

Eld(A", g(f(A"), B"))] < D+e,

CHAMFAM,EY) > A
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Denote bylW = f(A™) the transmitted message. The following Markov chain hotasefach subset
Jc{l,....n}

(W’AJ’BJ7EJ)_6_AJC_e_(BJC’EJC), (1)

For eachi € {1,...,n}, defineU; andV; such that

Ui = (VV7 B?+17Ei71) ) (2)

V, = (WAL BB B ©)

From Equation[([1)[J; -o- V; - A; o (B;, E;) form a Markov chain.

1) Rate:
n(R+e¢) > H(W)
(i) I(W, AanEn)
®
> I(W;A"E™|B")
9N I(WAE AT B EY)
=1
= Y I(WA™'B"'B} B AE;|B;) — I(A7 BB, E'™ AiEy|B))
=1
@S (WA BT By, B AEB)
i=1
QI
> Y IV AilBi)
=1
where
« step(a) follows from W = f(A™),
« step(b) from the non-negativity of mutual information,
« step(c) from the chain rule for conditional mutual information,
« step(d) from the independence of the random variabdesB and E across time,

step(e) from the non-negativity of mutual information and Equati@).

Following the usual technique, we now define an independaram variable) uniformly distributed
over the se{1,...,n}, andA = Ag, B=Bg, E=Eg, U =(Q,Ug), andV = (Q,Vp). U =V —
o A -e (B, E) still form a Markov chain andA, B, F) is distributed according to the joint distribution

p(a, b, e) i.e, the original distribution of 4;, B;, F;). Then

R+ ¢

Y

1 & .
- > I(V; Aq|Bg,Q = i)
=1

= 1(V; AqlBqQ)

= I(V;AB) . (4)

1 Je denotes the complement dfin {1,...,n}: J¢={1,...,n}\ J.
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2) Distortion at Bob: Bob reconstructg (W, B™). Thei-th coordinate of this estimate writes
9i(W,B""',B;,B',) & A;(Vi,By) .
The component-wise mean distortion at Bob is:

Bld(A", (7 (A", B")] = Y Bld(Ai Ai(Vi, B)

where we defined functior on V' x B by

A(V,B) = A(Q, Vg, Bg) & Ag(Vg, Bg) -

Consequently,
E[d(A,A(V,B))] < D +e¢. (5)
3) Equivocation Rate at Eve:
H(A"\W,E™) = H(A"\W)—I(A™, E™"W)

= H(A"|WB") + I(A™; B"|W) — I(A™; E"|W)
W g(AMWB™) + I(A" B") — I(W; B) — I(A™ E™) + [(W; E")

Y ST H(AIWAT B 4+ I(A; By) — (A3 E;) — I(WBJ, 13 B,) + (WE™\ Ey)

=1

© ST H(AWAT B EY) + 1(Ay; By) — I(Ay; B;) — I(W Bl By)
=1

+ I(WE" Y E;) + I(E;; B) .\ |WE"™") — I(B;; E'" '\|WB, )
> H(A\WAT'B"E™Y) + I(A;; Bi) — I(Aj; E;)

i=1

+ I(B; WB L E'™) — (B WB L E'Y)
=1
© SO H(ANVIB) + T4 BU) — 1(As EiU;) |
i—1

where

« step(a) follows from the Markov chaiiV -e- A™ - (B™, E™),
« step(b) from the chain rules for conditional entropy and mutual imation, and the fact that random

variablesA;, B; and E; are independent across time,
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« step(c) from the Markov chaind; e- WA~! e Ei~! (see Equatior{1)) and Csiszar and Korner’s
equality [5],

« step(d) from the definitions of random variablég andV; (Equations[(R) and(3), resp.),

« step(e) from the Markov chairlJ; -e- A; - (B;, E;).

Now, using auxiliary random variabl@ defined above,

%H(AnlWa E™) = %ZH(AQWQBQaQ =)+ I(Aq; BqlUq, @ = 1) — I(Aqg; Eq|Uq, Q = i)

=1
= H(A|VB)+I(A;B|U) — I(A; E|U) .

Moreover,H (A™|W, E™) > 0, consequently,
[H(AWB) FI(A:B|U) - I(AElU)] >A—e. (6)
Jr

This proves Propositionl 3.
|

V. APPLICATION EXAMPLE: CODING BINARY SOURCE WITHBEC AND BSC SDE INFORMATIONS

Consider the source model depicted in Fijy. 2 where the sdsrbaary and the side informations at
Bob and Eve are the outputs of a binary symmetric channel [B8( crossover probability € [0, 1/2]
and a binary erasure channel (BEC) with erasure probakikty[0, 1/2], respectively, with inputd. Let
he denotes the binary entropy function given by(x) = —xlog,(z) — (1 — 2)log,(1 — x). According
to the values of the parametefs, ¢) as summarized in Fidl 3, it is not difficult to show by means of
standard manipulations that the broadcast channel witlt iApand outputg B, E) satisfies the following
properties:
(8) The side informatiot is a stochastically degraded versioni®fi.e., there exists a random variable
E such thatd - B -e- E form a Markov chain and’; , = P4,

(b) The side informatiotB is lessnoisy thai, i.e., for all random variablé/ such tha/ e A (B, E),
I(U; B) > I(U; E),

(c) The side informatiorB is more capable tha#, i.e, I(A; B) > I(A; E),

(d) Any of the above relations hold between the side inforomstB and E.

E
I-p A 1—e¢ B
0 0 0
\
€
/
1 1 1
1—p 1—e€

Figure 2. Considered model for source and side informations
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Figure 3. The different regions as a function eof

Observe that this model is of interest since neither Bob na¥ &an always be a lessnoisy decoder
for all values of (p,e). Thus in generalU is neither constant nor equal 6. We also remark that
Corollary[3 provides the rate-distortion-equivocatiogiom whene lies in regions(a) or (b). Otherwise,
only Theorenill applies for the general case.

From now on, let the distortion function at Bebbe the Hamming distance and assume for simplicity
that the source is uniform distributed, i.B;{A = 0} = Pr{A = 1} = 1/2. We know from the cardinality
constraints given in Propositigh 1 that it suffices to coes&btd/ andV such that|i/|| < 4 and||V| < 12.
Moreover, from the following proposition, we can restriatrattention to the auxiliary variabl€g/, V)
obtained as the outputs of a degraded binary symmetric basadhannel with inputi, as it is depicted in
Fig.[4. Notice thal/ is identical to the auxiliary variable used by Wyner and Z for the rate-distortion
function of a binary source in the case where there is no davpper.

Proposition 4: In the case considered in this section, and depicted in(FigedlonR* is the set of all

tuples(R, D, A) such that there exist, 8 € [0,1/2] satisfying

> e(1=he(a)),
> e,
< eho(a)+ (1 =€) ha(axB) — ha(pxax ) + ha(p) .

Proof: The achievability part of Propositidd 4 is a direct applicatof TheorenlIL: define auxiliary
random variabled/ and V' as depicted in FigJ4, and functioA on V by A(v) = v. Expressions of
Propositior ¥ follow after some straightforward derivaso

The converse part needs more arguments. The proof is orhigtedand will be provided in an extended

version of this paper. [ ]

1-4 l1-a

Figure 4. Binary auxiliary random variables.
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p =0.100, £€=0.469

optimal U, V
-—--u=Vv

0.45

0.4

0.35

0.3

< 0.25

0.2

0.15

0.1

0.05 -

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 5. Equivocation rate at Eve as a function of the distorat Bob.

We now numerically compute some achievable valuegpfer0.1 ande = ha(p) = 0.469 (see Fig[h).
In the case of lossless compression (columns #1 and #2 o€ Mabthe auxiliary random variabl&
is set to beA i.e, o = 0. The additional variablé/ actually enables a non-zero equivocation level, as
noted in [15]. Assume that the coding rate is limited to a mmaxn of 80% of the required rate for
perfect reconstruction of the source (column #3). This @edua distortion ofi..5% at Bob and then an
equivocation rate of.126 bits at Eve is achievable. This means that even a small isengathe distortion
at Bob can be fully exploited by Alice to achieve very sigrafit gains (more than third times in this case)
in terms of equivocation rate at Eve. Moreover, in the situmtonsidered in this paragraph, Wyner-Ziv

coding actually achieves the optimal performance for diito levels higher than.036 as shown in Fid.]5

VI. SUMMARY AND DISCUSSIONS

The problem of secure lossy source coding of memorylessesun the presence of an eavesdropper
with different correlated side informations at the leg#ites decoder (Bob) and the eavesdropper (Eve)

was investigated. A complete characterization of the ditsrtion-equivocation region was derived for

Table |
SOME ACHIEVABLE TUPLES AND CORRESPONDING AUXILIARY RANDOM \ARIABLES.

Lossless secure source coding  Slepian-Woltossy secure source coding  Wyner-Ziv
Rate R 0.469 0.469 0.375 0.375
Distortion D 0 0 0.015 0.015
Equivocation RateA 0.039 0 0.133 0.126
« 0 0 0.031 0.031
B 0.078 0 0.050 0
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the case of arbitrary correlated side information at theodecs. It was shown that both the available
distortion at the legitimate decoder and the statisticapprties of the side informations can be exploited
by the encoder (Alice) to increase the equivocation rathateavesdropper.

An application example to secure lossy source coding of arpirource, where the side information at
Bob (resp. Eve) is the output of a binary erasure channg (eebinary symmetric channel) with the source
as the input, was considered. This model is of interest giedther Bob nor Eve can always be a lessnoisy
decoder and thus the encoding strategy needed to achieoptingal equivocation rate is rather tricky. In
the case where the source is uniformly distributed, we prdlet it is optimal to consider binary auxiliary
random variables and provided corresponding expressmmthé rate-distortion-equivocation region.

As future and on-going work, it would be of interest to extahd results in the present work to the
more general setting in which the encoder wishes to maximigeonly the equivocation rate, but also an

arbitrary measure of the equivocation distortion at thessdropper.

REFERENCES

[1] D. Slepian and J. Wolf, “Noiseless coding of correlatedoimation sources,JEEE Trans. Inf. Theoryvol. 19, no. 4, pp.
471-480, 1973.
[2] A. Wyner and J. Ziv, “The rate-distortion function for w@e coding with side information at the decoddEEE Trans. Inf.
Theory vol. 22, no. 1, pp. 1-10, 1976.
[3] C. Shannon, “Communication theory of secrecy systeB§TJ vol. 28, pp. 656—715, 1949.
[4] A. Wyner, “The wire-tap channel, BSTJ vol. 54, no. 8, pp. 1355-1387, 1975.
[5] I. Csiszar and J. Korner, “Broadcast channels with carfichl messages|EEE Trans. Inf. Theoryvol. 24, no. 3, pp. 339-348,
1978.
[6] “Special issue on information theoretic securityZEE Trans. Inf. Theoryvol. 54, no. 6, pp. 2405-2818, 2008.
[7] Y. Liang, H. Poor, and S. Shamdnformation theoretic security Now Publishers, 2009.
[8] H. Yamamoto, “A source coding problem for sources witltiidnal outputs to keep secret from the receiver or wingéap,”
IEEE Trans. Inf. Theoryvol. 29, no. 6, pp. 918-923, 1983.
[9] ——, “A rate-distortion problem for a communication sgst with a secondary decoder to be hinderd&EE Trans. Inf.
Theory vol. 34, no. 4, pp. 835-842, 1988.
[10] ——, “Coding theorems for Shannon’s cipher system withrelated source outputs, and common informatidBEE Trans.
Inf. Theory vol. 40, no. 1, pp. 85-95, 1994.
[11] ——, “Rate-distortion theory for the Shannon cipherteys,” IEEE Trans. Inf. Theoryvol. 43, no. 3, pp. 827-835, 1997.
[12] R. Liu and W. TrappeSecuring wireless communications at the physical lay@pringer, 2010.
[13] N. Merhav, “On the Shannon cipher system with a capduitited key-distribution channel [EEE Trans. Inf. Theoryvol. 52,
no. 3, pp. 1269-1273, 2006.
[14] V. Prabhakaran and K. Ramchandran, “On secure diséibgource coding,” ifProc. ITW 2007, pp. 442—447.
[15] D. Gunduz, E. Erkip, and H. Poor, “Secure lossless casgion with side information,” ifProc. ITW 2008, pp. 169-173.
[16] ——, “Lossless compression with security constrainits,Proc. ISIT, 2008, pp. 111-115.
[17] R. Tandon, S. Ulukus, and K. Ramchandran, “Secure socoding with a helper,” irProc. Allerton 2009, pp. 1061-1068.
[18] N. Merhav, “Shannon’s secrecy system with informedeiegrs and its application to systematic coding for wirpegpchannels,”
IEEE Trans. Inf. Theoryvol. 54, no. 6, pp. 2723-2734, 2008.
[19] T. Cover and J. Thomaglements of information theory (2nd Ed)Wiley-Interscience, 2006.

September 2010 DRAFT



This figure "Delta=fD.PNG" is available in "PNG" format from:

http://arxiv.org/ps/1009.3891v1l



http://arxiv.org/ps/1009.3891v1

	I Introduction
	II Problem Definition and Main Results
	II-A Problem Definition
	II-B Main Result

	III Special Cases of Interest
	III-A Lossless Secure Source Coding
	III-B Bob Has No Side Information
	III-C Bob Has Less Noisy Side Information Than Eve
	III-D Eve Has Less Noisy Side Information Than Bob

	IV Sketch of Proof of Theorem ??
	IV-A Proof of Achievability
	IV-A1 Codebook generation
	IV-A2 Encoding
	IV-A3 Decoding
	IV-A4 Errors and constraints
	IV-A5 Distortion at Bob
	IV-A6 Equivocation Rate at Eve

	IV-B Proof of Converse
	IV-B1 Rate
	IV-B2 Distortion at Bob
	IV-B3 Equivocation Rate at Eve


	V Application Example: Coding Binary Source with BEC and BSC Side Informations
	VI Summary and Discussions
	References

