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Abstract

This paper investigates the problem of secure lossy source coding in the presence of an eavesdropper

with arbitrary correlated side informations at the legitimate decoder (referred to as Bob) and the eavesdropper

(referred to as Eve). This scenario consists of an encoder that wishes to compress a source to satisfy the

desired requirements on: (i) the distortion level at Bob and(ii) the equivocation rate at Eve. It is assumed that

the decoders have access to correlated sources as side information. For instance, this problem can be seen

as a generalization of the well-known Wyner-Ziv problem taking into account the security requirements.

A complete characterization of the rate-distortion-equivocation region for the case of arbitrary correlated

side informations at the decoders is derived. Several special cases of interest and an application example

to secure lossy source coding of binary sources in the presence of binary and ternary side informations are

also considered. It is shown that the statistical differences between the side information at the decoders and

the presence of non-zero distortion at the legitimate decoder can be useful in terms of secrecy. Applications

of these results arise in a variety of distributed sensor network scenarios.

I. I NTRODUCTION

Consider the problem of compressing correlated sources at sensor nodes in a distributed fashion where

the sensors may wish to communicate with each other on a wireless network. Assume also that each of

these sensors can have access to a correlated observation tothe source or random field of interest. This

observation can be used as side information available at thedecoder to minimize the distortion between

the original source and the estimate at the legitimate decoder (referred to as Bob). In addition to this,

we assume that each of the encoders (referred to as Alice) wishes to leak the least possible amount of

information about its source to an eavesdropper (referred to as Eve), e.g. an untrusted sensor, who may

capture such information during the communication betweennodes.
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The above scenario involves many of the major information-theoretic issues on source and channel

coding problems. In terms of source coding, Slepian-Wolf [1] and Wyner-Ziv [2] introduced the problem

of source coding with side information at the decoder. This topic has been the focus of intense study

and some remarkable progress has already been made in theoretical and practical aspects. On the other

hand, extensive research has been done during the recent years on secure communications over noisy

channels. The traditional focus was on cryptography, basedon computational complexity where security

only depends on the intractability assumption of NP-complete problems that must be solved prior to

decoding. Another approach is the information-theoretic notion of secrecy, introduced by Shannon in [3],

where security is measured through the equivocation rate (i.e. the remaining uncertainty about the message)

at the eavesdropper. The wiretap channel was introduced by Wyner [4], who showed that it is possible

to send information at a positive rate with perfect secrecy as long as the channel of the legitimate user

is less noisy than the channel of the eavesdropper. Csiszàr-Korner [5] extends this result to the setting

of general broadcast channels with any arbitrary equivocation rate. Several extensions of the wiretap and

fading channels have been done (cf. [6], [7] and references therein). So far, very few work has been

reported on source coding (or compression) problems with security constraints.

One can identify two approaches in the literature on secure source coding. In fact, it is assumed either

that there already exists a secure rate-limited channel between Alice and Bob, which allows the system

to use secret keys, or the decoders have access to side information about the source. In the scenario of

secret key sharing, both lossless and lossy compression have been studied in various contexts [8], [9], [10],

[11], [12], [13]. For the second scenario where side information is available at both decoders, the case of

lossless source coding has been recently studied in [14], [15], [16], [17]. Whereas the general lossy source

coding problem has not been fully solved, some particular cases can be derived as part of previous work.

It is important to mention here that if the side informationsbetween Bob and Eve are degraded then the

result follows as a special case of [18].

In this paper, we investigate the problem of secure lossy source coding of memoryless sources in the

presence of an eavesdropper with different correlated sideinformations at the decoders of Bob and Eve, as it

is shown in Fig. 1. In this setting the channels between encoder and decoders are assumed to be noiseless so

that they cannot provide any advantage to increase security. Our goal is to understand the minimum amount

of information that needs to be revealed to Eve to satisfy thedistortion constraint at Bob. We provide a

complete characterization of the rate-distortion-equivocation region for the case of arbitrary correlated side

informations. Several special cases of interest are also considered. As an application example, we consider

the case of secure lossy source coding of a binary source, where the side information at Bob (resp. Eve)

is the output of a binary erasure channel (resp. a binary symmetric channel) with the source as the input.

This model is of interest since neither Bob nor Eve can alwaysbe a lessnoisy decoder.

The organization of this paper is as follows. Section II states definitions along with the main results,

while Section III provides several special cases and discussion. The sketch of the proofs are relegated to
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Section IV. Finally, Section V presents an application example to binary sources and Section VI summarizes

the paper.

Notations

For any sequence(xi)i∈N∗ , notationxn
k stands for the collection(xk, xk+1, . . . , xn). xn

1 is simply

denoted byxn. By extension, for any subsetJ ⊂ {1, . . . , n}, notation xJ stands for the collection

(xj)j∈J . The cardinality of an alphabet is denoted by‖·‖. For everyǫ > 0, we denoteǫ-typical and

conditionalǫ-typical sets byT n
ǫ (X) andT n

ǫ (Y |xn), respectively. Following [19], entropy is denoted by

H(·) and mutual information byI(·; ·). LetX , Y andZ be three random variables on some alphabets with

probability distributionp. If p(x|y, z) = p(x|y) for eachx, y, z, then they form a Markov chain, which is

denoted byX −
− Y −
− Z. For eachx ∈ R, notation[x]+ stands formax(0;x). For eacha, b ∈ [0, 1],

a ⋆ b = a(1− b) + (1− a)b.

II. PROBLEM DEFINITION AND MAIN RESULTS

A. Problem Definition

In this section, we give a more rigorous formulation of the context depicted in Fig. 1. LetA, B and

E be three finite sets. Alice, Bob and Eve observe the sequencesof random variables(Ai)i∈N∗ , (Bi)i∈N∗

and(Ei)i∈N∗ respectively, which take values onA, B andE , resp. For eachi ∈ N
∗, the random variables

Ai, Bi andEi are distributed according to the joint distributionp(a, b, e) on A× B × E . Moreover, they

are independent across timei.

Let d : A × A → [0 ; dmax] be a finite distortion measurei.e., such that0 ≤ dmax < ∞. We also

denote byd the component-wise mean distortion onAn × An i.e., for eachan, bn ∈ An, d(an, bn) =

1
n

∑n

i=1 d(ai, bi).

Definition 1: An (n,R)-code for source coding in this setup is defined by

• An encoding function at Alicef : An → {1, . . . , 2nR},

• A decoding function at Bobg : {1, . . . , 2nR} × Bn → An.

An Alice

Bn

Bob Ân : d(An, Ân) . D

Eve

En

1
n
H(An|WEn) & ∆

W

(rateR)

Figure 1. Secure lossy source coding in the presence of side information at the decoders.
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Definition 2: A tuple (R,D,∆) ∈ R
3
+ is said to beachievableif, for any ǫ > 0, there exists an

(n,R+ ǫ)-code(f, g) such that:

E [d(An, g(f(An), Bn))] ≤ D + ǫ ,

1

n
H(An|f(An), En) ≥ ∆− ǫ .

The set of all achievable tuples is denoted byR∗ and is referred to as therate-distortion-equivocation

region.

B. Main Result

The proof of the following theorem is given in Sections IV-A and IV-B.

Theorem 1:RegionR∗ is the set of all tuples(R,D,∆) such that there exist random variablesU , V

on some finite setsU , V , respectively, and a function̂A : V ×B → A such thatU −
−V −
−A−
− (B,E)

form a Markov chain and

R ≥ I(V ;A|B) ,

D ≥ E[d(A, Â(V,B))] ,

∆ ≤
[

H(A|V B) + I(A;B|U)− I(A;E|U)
]

+
.

The first two inequalities in Theorem 1 are classical in rate-distortion theory. Let us give some intuition

on the third one. The first termH(A|V B) corresponds to the equivocation rate at Bob. Alice thus exploits

the available distortion at Bob to increase the equivocation rate at Eve. Moreover, for a given random

variableV , which determines the rateR and the distortion levelD, auxiliary variableU may be tuned

to make Bobmore capablethan Evei.e., maximizeI(A;B|U)− I(A;E|U). This quantity represents the

gain (or the loss) at Eve in terms of equivocation rate.

The following proposition gives upper bounds on the cardinalities of alphabetsU andV . The proof is

omitted here and will be provided in an extended version of this paper.

Proposition 1: In the single-letter characterization of the rate-distortion-equivocation regionR∗ given

by Theorem 1, it suffices to consider setsU andV such that‖U‖ ≤ ‖A‖+2 and‖V‖ ≤ (‖A‖+2)(‖A‖+1).

III. SPECIAL CASES OFINTEREST

In this section, we derive optimal regions of some special cases of Theorem 1.

A. Lossless Secure Source Coding

The lossless secure source coding problem corresponds to a zero distortion level at Bob (D = 0). In

this case, the following corollary, which can also be found in [14], [15], directly follows from Theorem 1

(simply setV = A):
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Corollary 1: A tuple (R, 0,∆) is achievable i.f.f. there exists a random variableU on some finite set

U , such thatU −
−A−
− (B,E) form a Markov chain and

R ≥ H(A|B) ,

∆ ≤
[

I(A;B|U) − I(A;E|U)
]

+
.

B. Bob Has No Side Information

Corollary 2: If Bob has no side information, then regionR∗ reduces to the set of all tuples(R,D,∆)

such that there exist random variablesU , Â on U andA, respectively, such thatU −
− Â−
−A−
−E form

a Markov chain and

R ≥ I(Â;A) ,

D ≥ E[d(A, Â)] ,

∆ ≤
[

H(A|Â)− I(A;E|U)
]

+
.

Note that, as opposed to the secure lossless source coding problem [15], in our situation, non-zero

secrecy is still achievable when Bob has no side information. In fact, Alice can exploit the available

distortion at Bob to increase the equivocation rate at Eve.

C. Bob Has Less Noisy Side Information Than Eve

Definition 3: The side informationB is less noisythan the side informationE if

I(U ;B) ≥ I(U ;E) ,

for each random variableU such thatU −
−A−
− (B,E) form a Markov chain.

Note that theless noisycondition is strictly weaker than thestochastically degradedone.

Corollary 3: If Bob has less noisy side information than Eve, then regionR∗ reduces to the set of

all tuples (R,D,∆) such that there exist a random variableV on some finite setV , and a function

Â : V × B → A such thatV −
−A−
− (B,E) form a Markov chain and

R ≥ I(V ;A|B) ,

D ≥ E[d(A, Â(V,B))] ,

∆ ≤
[

H(A|V B) + I(A;B)− I(A;E)
]

+
.

In this case, random variableU of Theorem 1 is set to a constant value and hence Wyner-Ziv coding [2]

achieves the optimal performance.
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D. Eve Has Less Noisy Side Information Than Bob

Corollary 4: If Eve has less noisy side information than Bob, then regionR∗ reduces to the set of

all tuples (R,D,∆) such that there exist a random variableV on some finite setV , and a function

Â : V × B → A such thatV −
−A−
− (B,E) form a Markov chain and

R ≥ I(V ;A|B) ,

D ≥ E[d(A, Â(V,B))] ,

∆ ≤ H(A|V E) .

In this case, random variableU of Theorem 1 is set to random variableV and hence Wyner-Ziv

coding [2] achieves the optimal performance. Therefore it is not surprising that the equivocation rate at

Eve corresponds to the case where Eve can reliably decodeV . Here, Alice can only exploit the available

distortion at Bob to achieve a non-zero equivocation rate atEve.

IV. SKETCH OF PROOF OFTHEOREM 1

A. Proof of Achievability

In this section, we prove the achievability part of Theorem 1i.e., we prove the following proposition:

Proposition 2: Let U , V be random variables on some finite setsU , V , respectively, such thatU −
−

V −
−A−
− (B,E) form a Markov chain, and̂A : V × B → A. If

R ≥ I(V ;A|B) ,

D ≥ E[d(A, Â(V,B))] ,

∆ ≤
[

H(A|V B) + I(A;B|U)− I(A;E|U)
]

+
,

then (R,D,∆) is achievable.

Proof: Let ǫ > 0 and define

∆∗ =
[

H(A|V B) + I(A;B|U)− I(A;E|U)
]

+
,

δ =
ǫ

5 ·max {dmax , ∆∗}
.

For a sufficiently largen, we build an(n,R+ ǫ)-code(f, g) which achieves the required distortion and

equivocation rate levels.

1) Codebook generation:Randomly pick2nS1 sequencesun(s1) fromT n
ǫ (U) and divide them into2nR1

equal size bins{B1(r1)}r1∈{1,...,2nR1}. Then, for each codewordun(s1), randomly pick2nS2 sequences

vn(s1, s2) from T n
ǫ (V |un(s1)) and divide them into2nR2 equal size bins{B2(s1, r2)}r2∈{1,...,2nR2}.

2) Encoding: Assume that sequenceAn is produced at Alice. Look for a codewordun(s1) such that

(un(s1), A
n) ∈ T n

ǫ (U,A). Then look for a codewordvn(s1, s2) such that(vn(s2), An) ∈ T n
ǫ (V,A|u

n(s1)).

Let B1(r1) andB2(s1, r2) be the bins ofun(s1) and vn(s1, s2), respectively. Alice sends the message

f(An) , (r1, r2) on the error-free channel.
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3) Decoding: Assume that Bob receives(r1, r2) from Alice and his side information sequenceBn.

Now look for the unique codewordun(s1) ∈ B1(r1) such that(un(s1), B
n) ∈ T n

ǫ (U,B). Then look for

the unique codewordvn(s1, s2) ∈ B2(s1, r2) such that(vn(s1, s2), Bn) ∈ T n
ǫ (V,B|un(s1)). Compute

the estimateg(r1, r2, Bn) ∈ An using the component-wise relationgi(r1, r2, Bn) , Â(vi(s1, s2), Bi) for

eachi = {1, . . . , n}.

4) Errors and constraints:

• For n large enough,Pr {(An, Bn) 6∈ T n
ǫ (A,B)} < δ.

• In the first encoding step, Alice needs to find (at least) one codewordun(s1) such that(un(s1), A
n) ∈

T n
ǫ (U,A). If S1 > I(U ;A), then the probability that this step fails can be upper bounded by δ for

a sufficiently largen. Similarly, the second encoding step requires the condition S2 > I(V ;A|U) to

succeed with a probability higher than1− δ.

• In the first decoding step, Bob looks for theuniquecodewordun(s1) ∈ B1(r1) such that(un(s1), B
n) ∈

T n
ǫ (U,B). If S1 −R1 < I(U ;B), then the probability that there exists another admissiblecodeword

can be lowered belowδ for a largen. Similarly, the second decoding step requires the condition

S2 −R2 < I(V ;B|U) to succeed with a probability higher than1− δ.

Defining the global transmitted rateR + ǫ = R1 + R2 and putting all inequalities together, we prove

that a sufficient condition for the above code to work with an error probability lower than5δ is given by:

R+ ǫ = R1 +R2

> I(U ;A)− I(U ;B) + I(V ;A|U)− I(V ;B|U)

(a)
= I(V ;A)− I(V ;B)

(b)
= I(V ;A|B) ,

where step(a), resp.(b), follows from the Markov chainU −
− V −
− (A,B), resp.V −
−A−
−B. This

condition is verified under the given assumption onR i.e., R ≥ I(V ;A|B).

5) Distortion at Bob: Denote byF the event “An error occurred during the encoding or decoding

steps.” We now check that our code achieves the required distortion level at Bob:

E [d(An, g(f(An), Bn))] ≤ Pr
{

F̄
}

E

[

d(An, g(r1, r2, B
n))

∣

∣

∣
F̄
]

+ Pr {F} dmax

≤
1

n

n
∑

i=1

E

[

d(Ai, Â(vi(s1, s2), Bi))
∣

∣

∣
F̄
]

+ ǫ

= E

[

d(A, Â(V,B))
]

+ ǫ

≤ D + ǫ .
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6) Equivocation Rate at Eve:The equivocation rate at Eve can be lower bounded as follows:

1

n
H(An|f(An), En) ≥

Pr
{

F̄
}

n
H(An|r1r2E

n, F̄ )

≥
1− 5δ

n

[

H(An)− I(An; r1E
n)− I(An; r2|r1E

n)
]

≥
1− 5δ

n

[

H(An)− I(An;UnEn)−H(r2)
]

= (1− 5δ)
[

H(A)− I(A;UE)−
1

n
H(r2)

]

≥ (1− 5δ)
[

H(A|UE)−R2

]

≥
[

H(A|UE)−R2

]

− 5δ
[

H(A|UE)−R2

]

.

If R2 > I(V ;A|U)− I(V ;B|U), the equivocation rate can thus be bounded as follows:

1

n
H(An|f(An), En) ≥

[

H(A|UE)−R2

]

− 5δ
[

H(A|UE)− I(V ;A|U) + I(V ;B|U)
]

+

≥
[

H(A|UE)−R2

]

− ǫ ,

where the last inequality follows after some straightforward derivation from the definition ofδ and the

Markov chainU −
− V −
−A−
−B.

Thus, each∆ ≤ H(A|UE) − R2 is achievable. The above constraint onR2 together with the latter

inequality yield the given sufficient condition.

Note that our coding scheme can be interpreted as a simple binning operation to transmitU , followed

by a Wyner–Ziv coding [2] to transmitA with side information(U,B) at Bob.

B. Proof of Converse

In this section, we prove the converse part of Theorem 1i.e., we prove the following proposition:

Proposition 3: Let (R,D,∆) be an achievable tuple. There exist two random variablesU , V and a

function Â : V × B → A, such thatU −
− V −
−A−
− (B,E) form a Markov chain and

R ≥ I(V ;A|B) ,

D ≥ E[d(A, Â(V,B))] ,

∆ ≤
[

H(A|V B) + I(A;B|U)− I(A;E|U)
]

+
.

Proof: Let ǫ > 0. There exists an(n,R + ǫ)-code(f, g) s.t.:

E [d(An, g(f(An), Bn))] ≤ D + ǫ ,

1

n
H(An|f(An), En) ≥ ∆− ǫ .
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Denote byW = f(An) the transmitted message. The following Markov chain holds for each subset

J ⊂ {1, . . . , n}:1

(W,AJ , BJ , EJ)−
−AJc −
− (BJc , EJc) . (1)

For eachi ∈ {1, . . . , n}, defineUi andVi such that

Ui = (W,Bn
i+1, E

i−1) , (2)

Vi = (W,Ai−1, Bi−1, Bn
i+1, E

i−1) . (3)

From Equation (1),Ui −
− Vi −
−Ai −
− (Bi, Ei) form a Markov chain.

1) Rate:

n(R+ ǫ) ≥ H(W )

(a)
= I(W ;AnBnEn)

(b)

≥ I(W ;AnEn|Bn)

(c)
=

n
∑

i=1

I(W ;AiEi|A
i−1BnEi−1)

=

n
∑

i=1

I(WAi−1Bi−1Bn
i+1E

i−1;AiEi|Bi)− I(Ai−1Bi−1Bn
i+1E

i−1;AiEi|Bi)

(d)
=

n
∑

i=1

I(WAi−1Bi−1Bn
i+1E

i−1;AiEi|Bi)

(e)

≥

n
∑

i=1

I(Vi;Ai|Bi) ,

where

• step(a) follows from W = f(An),

• step(b) from the non-negativity of mutual information,

• step(c) from the chain rule for conditional mutual information,

• step(d) from the independence of the random variablesA, B andE across time,

• step(e) from the non-negativity of mutual information and Equation(3).

Following the usual technique, we now define an independent random variableQ uniformly distributed

over the set{1, . . . , n}, andA = AQ, B = BQ, E = EQ, U = (Q,UQ), andV = (Q, VQ). U −
− V −


−A−
− (B,E) still form a Markov chain and(A,B,E) is distributed according to the joint distribution

p(a, b, e) i.e., the original distribution of(Ai, Bi, Ei). Then

R + ǫ ≥
1

n

n
∑

i=1

I(VQ;AQ|BQ, Q = i)

= I(VQ;AQ|BQQ)

= I(V ;A|B) . (4)

1 Jc denotes the complement ofJ in {1, . . . , n}: Jc
= {1, . . . , n} \ J .
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2) Distortion at Bob: Bob reconstructsg(W,Bn). The i-th coordinate of this estimate writes

gi(W,Bi−1, Bi, B
n
i+1) , Âi(Vi, Bi) .

The component-wise mean distortion at Bob is:

E
[

d(An, g(f(An), Bn))
]

=
1

n

n
∑

i=1

E[d(Ai, Âi(Vi, Bi))]

=
1

n

n
∑

i=1

E[d(AQ, ÂQ(VQ, BQ)) | Q = i]

= E
[

d(AQ, ÂQ(VQ, BQ))
]

= E
[

d(A, Â(V,B))
]

,

where we defined function̂A on V × B by

Â(V,B) = Â(Q, VQ, BQ) , ÂQ(VQ, BQ) .

Consequently,

E[d(A, Â(V,B))] ≤ D + ǫ . (5)

3) Equivocation Rate at Eve:

H(An|W,En) = H(An|W )− I(An;En|W )

= H(An|WBn) + I(An;Bn|W )− I(An;En|W )

(a)
= H(An|WBn) + I(An;Bn)− I(W ;Bn)− I(An;En) + I(W ;En)

(b)
=

n
∑

i=1

H(Ai|WAi−1Bn) + I(Ai;Bi)− I(Ai;Ei)− I(WBn
i+1;Bi) + I(WEi−1;Ei)

(c)
=

n
∑

i=1

H(Ai|WAi−1BnEi−1) + I(Ai;Bi)− I(Ai;Ei)− I(WBn
i+1;Bi)

+ I(WEi−1;Ei) + I(Ei;B
n
i+1|WEi−1)− I(Bi;E

i−1|WBn
i+1)

=

n
∑

i=1

H(Ai|WAi−1BnEi−1) + I(Ai;Bi)− I(Ai;Ei)

+ I(Ei;WBn
i+1E

i−1)− I(Bi;WBn
i+1E

i−1)

(d)
=

n
∑

i=1

H(Ai|ViBi) + I(Ai;Bi)− I(Ai;Ei) + I(Ei;Ui)− I(Bi;Ui)

(e)
=

n
∑

i=1

H(Ai|ViBi) + I(Ai;Bi|Ui)− I(Ai;Ei|Ui) ,

where

• step(a) follows from the Markov chainW −
−An −
− (Bn, En),

• step(b) from the chain rules for conditional entropy and mutual information, and the fact that random

variablesAi, Bi andEi are independent across time,
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• step(c) from the Markov chainAi−
−WAi−1 −
−Ei−1 (see Equation (1)) and Csiszar and Korner’s

equality [5],

• step(d) from the definitions of random variablesUi andVi (Equations (2) and (3), resp.),

• step(e) from the Markov chainUi −
−Ai −
− (Bi, Ei).

Now, using auxiliary random variableQ defined above,

1

n
H(An|W,En) =

1

n

n
∑

i=1

H(AQ|VQBQ, Q = i) + I(AQ;BQ|UQ, Q = i)− I(AQ;EQ|UQ, Q = i)

= H(A|V B) + I(A;B|U)− I(A;E|U) .

Moreover,H(An|W,En) ≥ 0, consequently,
[

H(A|V B) + I(A;B|U)− I(A;E|U)
]

+
≥ ∆− ǫ . (6)

This proves Proposition 3.

V. A PPLICATION EXAMPLE : CODING BINARY SOURCE WITH BEC AND BSC SIDE INFORMATIONS

Consider the source model depicted in Fig. 2 where the sourceis binary and the side informations at

Bob and Eve are the outputs of a binary symmetric channel (BSC) with crossover probabilityp ∈ [0, 1/2]

and a binary erasure channel (BEC) with erasure probabilityǫ ∈ [0, 1/2], respectively, with inputA. Let

h2 denotes the binary entropy function given byh2(x) = −x log2(x) − (1 − x) log2(1 − x). According

to the values of the parameters(p, ǫ) as summarized in Fig. 3, it is not difficult to show by means of

standard manipulations that the broadcast channel with input A and outputs(B,E) satisfies the following

properties:

(a) The side informationE is a stochastically degraded version ofB, i.e., there exists a random variable

Ẽ such thatA−
−B −
− Ẽ form a Markov chain andPẼ|A = PE|A,

(b) The side informationB is lessnoisy thanE, i.e., for all random variableU such thatU−
−A−
−(B,E),

I(U ;B) ≥ I(U ;E),

(c) The side informationB is more capable thanE, i.e., I(A;B) ≥ I(A;E),

(d) Any of the above relations hold between the side informationsB andE.

A

0

1

B

0

e

1

E

0

1

1− p

p

p

1− p

1− ǫ

ǫ

ǫ

1− ǫ

Figure 2. Considered model for source and side informations.
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(a) (b) (c) (d)

0 2p 4p(1− p) h2(p) 1 ǫ

Figure 3. The different regions as a function ofǫ.

Observe that this model is of interest since neither Bob nor Eve can always be a lessnoisy decoder

for all values of (p, ǫ). Thus in generalU is neither constant nor equal toV . We also remark that

Corollary 3 provides the rate-distortion-equivocation region whenǫ lies in regions(a) or (b). Otherwise,

only Theorem 1 applies for the general case.

From now on, let the distortion function at Bobd be the Hamming distance and assume for simplicity

that the source is uniform distributed, i.e.,Pr {A = 0} = Pr {A = 1} = 1/2. We know from the cardinality

constraints given in Proposition 1 that it suffices to consider setsU andV such that‖U‖ ≤ 4 and‖V‖ ≤ 12.

Moreover, from the following proposition, we can restrict our attention to the auxiliary variables(U, V )

obtained as the outputs of a degraded binary symmetric broadcast channel with inputA, as it is depicted in

Fig. 4. Notice thatV is identical to the auxiliary variable used by Wyner and Ziv [2] for the rate-distortion

function of a binary source in the case where there is no eavesdropper.

Proposition 4: In the case considered in this section, and depicted in Fig. 2, regionR∗ is the set of all

tuples(R,D,∆) such that there existα, β ∈ [0, 1/2] satisfying

R ≥ ε (1− h2(α)) ,

D ≥ ε α ,

∆ ≤
[

ε h2(α) + (1− ε)h2(α ⋆ β)− h2(p ⋆ α ⋆ β) + h2(p)
]

+
.

Proof: The achievability part of Proposition 4 is a direct application of Theorem 1: define auxiliary

random variablesU and V as depicted in Fig. 4, and function̂A on V by Â(v) = v. Expressions of

Proposition 4 follow after some straightforward derivations.

The converse part needs more arguments. The proof is omittedhere and will be provided in an extended

version of this paper.

A

0

1

V

0

1

U

0

1

1− α

α
α

1− α

1− β

β

β

1− β

Figure 4. Binary auxiliary random variables.
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Figure 5. Equivocation rate at Eve as a function of the distortion at Bob.

We now numerically compute some achievable values forp = 0.1 andε = h2(p) = 0.469 (see Fig. 5).

In the case of lossless compression (columns #1 and #2 of Table I), the auxiliary random variableV

is set to beA i.e., α = 0. The additional variableU actually enables a non-zero equivocation level, as

noted in [15]. Assume that the coding rate is limited to a maximum of 80% of the required rate for

perfect reconstruction of the source (column #3). This induces a distortion of1.5% at Bob and then an

equivocation rate of0.126 bits at Eve is achievable. This means that even a small increase in the distortion

at Bob can be fully exploited by Alice to achieve very significant gains (more than third times in this case)

in terms of equivocation rate at Eve. Moreover, in the situation considered in this paragraph, Wyner-Ziv

coding actually achieves the optimal performance for distortion levels higher than0.036 as shown in Fig. 5

VI. SUMMARY AND DISCUSSIONS

The problem of secure lossy source coding of memoryless sources in the presence of an eavesdropper

with different correlated side informations at the legitimate decoder (Bob) and the eavesdropper (Eve)

was investigated. A complete characterization of the rate-distortion-equivocation region was derived for

Table I

SOME ACHIEVABLE TUPLES AND CORRESPONDING AUXILIARY RANDOM VARIABLES.

Lossless secure source coding Slepian-WolfLossy secure source coding Wyner-Ziv

RateR 0.469 0.469 0.375 0.375

Distortion D 0 0 0.015 0.015

Equivocation Rate∆ 0.039 0 0.133 0.126

α 0 0 0.031 0.031

β 0.078 0 0.050 0
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the case of arbitrary correlated side information at the decoders. It was shown that both the available

distortion at the legitimate decoder and the statistical properties of the side informations can be exploited

by the encoder (Alice) to increase the equivocation rate at the eavesdropper.

An application example to secure lossy source coding of a binary source, where the side information at

Bob (resp. Eve) is the output of a binary erasure channel (resp. a binary symmetric channel) with the source

as the input, was considered. This model is of interest sinceneither Bob nor Eve can always be a lessnoisy

decoder and thus the encoding strategy needed to achieve theoptimal equivocation rate is rather tricky. In

the case where the source is uniformly distributed, we proved that it is optimal to consider binary auxiliary

random variables and provided corresponding expressions for the rate-distortion-equivocation region.

As future and on-going work, it would be of interest to extendthe results in the present work to the

more general setting in which the encoder wishes to maximizenot only the equivocation rate, but also an

arbitrary measure of the equivocation distortion at the eavesdropper.
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