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Explicit incidence bounds over general finite fields

Timothy G. F. Jones ∗

Abstract

Let Fq be a finite field of order q = pk where p is prime. Let P and L be sets of points and lines

respectively in Fq×Fq with |P | = |L| = n. We establish the incidence bound I(P,L) ≤ γn
3
2
−

1
12838 ,

where γ is an absolute constant, so long as P satisfies the conditions of being an ‘antifield’. We
define this to mean that the projection of P onto some coordinate axis has no more than half-
dimensional interaction with large subfields of Fq. In addition, we give examples of sets satisfying
these conditions in the important cases q = p2 and q = p4.

Preliminary notation

This paper uses the following notation throughout. Given two real-valued functions f, g with domain
D, we write

• f ≪ g, f = O(g) or g = Ω(f) if there is a constant γ such that f(x) ≤ γg(x) for all x ∈ D. The
implicit constant γ may be different each time this notation is used.

• f ≈ g if f ≪ g and g ≪ f

Given two sets A,B ⊆ Fq, we define:

• the sumset A+B = {a+ b : a ∈ A, b ∈ B}

• the product set A ·B = {ab : a ∈ A, b ∈ B}

• the ratio set A
B =

{

ab−1 : a ∈ A, b ∈ B, b 6= 0
}

1 Introduction

1.1 Incidences

This paper is about incidences between points and lines in a plane. A point is incident to a line if it
lies on that line, and a single point can be incident to more than one line if they cross at that point.
An established problem is to find upper bounds for the number of incidences between finite sets of
points and lines of given cardinality.

Specifically, fix a field F and an integer n, and let P and L be finite sets of points and lines respectively
in the plane F × F with |P |=|L| = n. Define

I(P,L) = |{(p, l) ∈ P × L : p ∈ l}|
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to be the cardinality of the set of incidences between P and L. The problem is to establish up-
per bounds on I(P,L). A straightforward exercise in combinatorics [13] shows that one always has

I(P,L) ≪ n
3
2 . So non-trivial incidence bounds are those of the form I(P,L) ≪ n

3
2
−ǫ for positive ǫ.

1.2 Known bounds

Different bounds are known for different choices of the field F . Things are largely settled in the
settings F = R and F = C. The result ǫ = 1/6 was obtained in these settings, by Szeméredi and
Trotter [12] and Tóth [14] respectively. In both cases, the bound holds unconditionally and is sharp
up to multiplicative constants.

Much less is known in the finite field setting F = Fq. It is certainly not possible to have a non-trivial

bound that holds in all cases, as the trivial bound I(P,L) ≈ n
3
2 is achieved when P = F × F and L

is the set of lines determined by pairs of points in P . So one must impose some extra condition on P .

When F = Fp is a finite field of prime order this can be simply a cardinality condition. The best-
known result in this setting, due to Helfgott and Rudnev [6], requires simply that n is strictly less
than p, and guarantees that ǫ ≥ 1/10678 when this condition is satisfied. This result is unlikely to be
best-possible, and followed work of Bourgain, Katz and Tao [2] which established the existence of a
non-trivial ǫ > 0 so long as n < p2−δ(ǫ), but did not quantify it.

1.3 Bounds over general finite fields

The Helfgott-Rudnev bound is known only in Fp, and so one would like to extend it to general (i.e.
not necessarily prime) finite fields Fq. In particular, it would be good to extend to Fp2 , as this is the
finite analogue of C. However, general finite fields can have subfields, and so stronger conditions than
just cardinality are required on P . This is because, as with the example above, if K is a subfield of F
then the trivial bound I(P,L) ≈ n

3
2 can be achieved when P is the subplane K ×K.

It is therefore an interesting problem to find conditions on P ⊆ Fq ×Fq for which an explicit Helfgott-
Rudnev-type bound holds for any L with |L| = |P |. Progress on this problem sheds light on the
relationship between the algebraic structure of fields and the geometric structure of incidences. Ulti-
mately one would like to find an algebraic condition for P that is both necessary and sufficient for an
explicit incidence bound.

The natural condition to try imposing on P would be to insist that it is ‘not too close’ to being a
copy of a subplane, for example by ensuring that its projection onto one of either the x- or y-axis is
‘not too close’ to a copy of a subfield. However, the currently-known approaches for proving Helfgott-
Rudnev-type bounds rely on first applying a projective transformation to P , which could disrupt such
a condition. So any condition must, additionally, be preserved by projective transformation.

1.4 Results

We present an incidence result in Fq, which holds so long as P satisfies certain conditions. Informally,
these are that the projection A(P ) of P onto some co-ordinate axis has no more than ‘half-dimensional
interaction’ with ‘large’ subfields G of Fq, where ‘large’ will be defined relative to the cardinality
n = |P |.

By no more than ‘half dimensional interaction’, we mean that A(P ) does not intersect an affine copy
of G in more than |G|1/2 places, and intersects no more than |G|1/2 distinct translates of G. Since
the motivation is that such sets are a long way from being fields, we shall call them ‘antifields’ and
‘strong antifields’.
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Definition 1 (Antifields). Let F be a field and λ > 0.

1. Let A ⊆ F . Then

(a) A is a (1, λ)-antifield if |A ∩ (aG+ b)| ≤ max
{

λ, |G|
1
2

}

for all subfields G of F and all

a, b ∈ F .

(b) A is a (1, λ)-strong-antifield if it is a (1, λ)-antifield and, for every subfield G with |G| ≥

λ, it intersects strictly fewer than max
{

λ, |G|
1
2

}

/2 distinct translates G+ b of G.

2. Let P ⊂ F × F . Then

(a) P is a (2, λ)-antifield if the set {x : (x, y) ∈ P} is a (1, λ)-antifield

(b) P is a (2, λ)-strong-antifield if the set {x : (x, y) ∈ P} is a (1, λ)-strong-antifield

Note that since one can always apply a change of basis, the projection can in fact be onto any vector
multiple of Fq.

Parts 1.(a) and 2.(a) of the definition are motivated by work of Katz and Shen [7] generalising sum-
product bounds in Fp to Fq. Parts 1.(b) and 2.(b) are motivated by the need to avoid disruption by
projective transformations. A key idea, which shall be seen later, is that certain projective images of
a strong antifield will always be antifields.

We are now able to state the result:

Theorem 2. There is an absolute constant γ such that if F is a finite field, P and L are sets of points

and lines respectively in F×F with |P | = |L| = n, and P is additionally a
(

2, γn
2560
6419

)

-strong-antifield,

then I(P,L) ≪ n
3
2
− 1

12838 .

The majority of this paper is concerned with the proof of Theorem 2. But since it is not necessarily
obvious that many point sets should satisfy the conditions of the theorem, we shall first show that it
is easy to construct examples in the important cases q = p2 and q = p4. This is demonstrated by the
following two corollaries; the first corollary demonstrates the requirement for limited interaction with
subfields, and the second corollary demonstrates how one can ignore ‘small’ subfields.

Corollary 3 (Construction when q = p2). Let P ⊆ Fp2 × Fp2 with |P | = n, and define A = A(P ) =
{x : (x, y) ∈ P}. Let t be a defining element of Fp2 over Fp, so that Fp2 = Fp + tFp. Suppose that

|A| ≪ p and that A =
⋃

j∈J Aj where J ⊆ Fp with |J | ≪ max
{

p
1
2 , n

2560
6419

}

, and Aj ⊆ Fp + jt with

|Aj | ≪ max
{

p
1
2 , n

2560
6419

}

for each j ∈ J . Then we have I(P,L) ≪ n
3
2
− 1

12838 for all sets of lines L in

Fp2 × Fp2 with |L| = n.

Proof. We need to show that the hypotheses imply that P is a
(

2, γn
2560
6419

)

-strong-antifield. To do

this, we first need to show that P is simply a
(

2, γn
2560
6419

)

-antifield. Note that the only sets of the

form aFp + b with a, b ∈ Fp2 are given by Fp + jt and tFp + k, where j, k range over Fp. Note further
that (Fp + jt) ∩ (tFp + k) = {jt+ k}. We know by assumption that

|A ∩ (Fp + jt) | ≪ max
{

p
1
2 , n

2560
6419

}

for each j ∈ Fp. Observe that

|A ∩ (tFp + k) | =
∑

j∈Fp

|A ∩ (tFp + k) ∩ (Fp + jt)| = # {j ∈ Fp : |A ∩ (Fp + jt)|} ≤ |J | ≪ max
{

p
1
2 , n

2560
6419

}

.

So we conclude that P is a
(

2, γn
2560
6419

)

-antifield. Since |J | ≪ max
{

p
1
2 , n

2560
6419

}

it is also a
(

2, γn
2560
6419

)

-

strong-antifield, as required.
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Corollary 4 (Construction when q = p4). Let P ⊆ Fp4 × Fp4 with |P | = n ≫ p
6419
2560 , and define

A = A(P ) = {x : (x, y) ∈ P}. Let t be a defining element of Fp4 over Fp2 , so that Fp4 = Fp2 + tFp2 .

Suppose that |A| ≪ p2 and that A =
⋃

j∈J Aj where J ⊆ Fp2 with |J | ≪ max
{

p, n
2560
6419

}

, and

Aj ⊆ Fp + jt with |Aj | ≪ max
{

p, n
2560
6419

}

for each j ∈ J . Then we have I(P,L) ≪ n
3
2
− 1

12838 for all

sets of lines L in Fp4 × Fp4 with |L| = n.

Proof. We need to show that the hypotheses imply that P is a
(

2, γn
2560
6419

)

-strong-antifield. Note that

since n ≫ p
6419
2560 , we can ignore the subfield Fp and need check this only with respect to the subfields

Fp2 and Fp4 . This checking follows Corollary 3.

2 Structure for proving Theorem 2

The rest of the paper is concered with proving Theorem 2. This section outlines the structure of
the proof. It states results, which will be proved later, and shows how they fit together to give the
overall proof. There are two components to this. The first component is a key lemma that relates the
algebraic and geometric structure of antifields. The second component uses this key lemma, and a
method of Katz and Shen [7], as part of an otherwise technical generalisation of the Helfgott-Rudnev
proof.

2.1 The first component: Relating the algebraic and geometric stucture

of antifields

Recall that we defined both antifields and strong-antifields, that both are defined algebraically, and
that Theorem 2 is a statement about strong-antifields. The first component of the proof of Theorem
2 is to relate the algebraic and geometric structure of these objects by showing that under certain
projective transformations the image of a strong-antifield is an antifield.

The formal statement is expressed in terms of cross ratios. These are projective invariants, which
means that they are preserved by projective transformations of a line and so are important in projective
geometry.

Definition 5. Let F be a field and let a, b, c, d ∈ F with a 6= d and b 6= c. Then define the cross

ratio X(a, b, c, d) by

X(a, b, c, d) =
(a− b)(c− d)

(a− d)(c− b)

We can now state the key lemma:

Lemma 6. Let A ⊆ F be a (1, λ)-strong-antifield and let B ⊆ F . Suppose there is a cross-
ratio-preserving injection τ : B → A (i.e. an injection τ for which X(τ(b1), τ(b2), τ(b3), τ(b4)) =
X(b1, b2, b3, b4) whenever b1, b2, b3, b4 ∈ B). Then B is a (1, λ)-antifield.

2.2 The second component: Applying the first component in a technical

modification of the Helfgott-Rudnev proof

The structure of the second component broadly follows [6]. It begins by applying Lemma 6 in an
adaptation of an argument of Bourgain, Katz and Tao [2] to replace L and P with a construction of
lines and points of a certain form, at the expense of some incidences and of passing from a strong-
antifield to an antifield.
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Proposition 7. Let F be a field, and let P and L be a set of lines and points respectively in F × F
with |P | = |L| = n such that I(P,L) = n

3
2
−ǫ for some ǫ > 0. Let λ ≥ 0. Then, if P is a (2, λ)-strong-

antifield there exist:

1. Sets A,B ⊆ F with |A|, |B| ≪ n
1
2
+ǫ and 0 /∈ B

2. A set LA of lines through the origin with gradients in A.

3. A set LB of horizontal (i.e. gradient 0) lines with y-intercepts in B

4. A (2, λ)-antifield P ∗ with |P ∗| ≤ n, the points of which each lie on the intersection of a line in
LA with a line in LB.

such that I (P ∗, L(P ∗)) ≫ n
3
2
−5ǫ where L(P ∗) is the set of lines determined by pairs of points in P ∗.

Following [6] we then generalise the definition of incidences to colinear k-tuples for any integer k:

Definition 8 (Colinear k-tuples). Let F be a field. Let P be a finite set of points in F × F and let
L be a finite set of lines in F × F . We define the number of colinear k-tuples between P and L,
denoted Ik(P,L) by

Ik(P,L) =
∣

∣

{

(p1, . . . , pk, l) ∈ P k × L : p1, . . . , pk ∈ l
}∣

∣

This generalises the definition of incidences because I(P,L) = I1(P,L). Moreover, the following
lemma shows that Hölder’s inequality relates incidences to colinear k-tuples:

Lemma 9. Let F be a field and k ∈ N. Let P,L be sets of points and lines in F × F . Then we have

Ik (P,L) ≥
I(P,L)k

|P |k−1 .

Proof. Define f : P → N by f(p) =
∑

l∈L δlp where δlp = 1 if p ∈ L and 0 otherwise, i.e. f(p) is the

number of lines in L that are incident to p. Note that ‖f‖k =
(

∑

p∈P f(p)k
)

1
k

= Ik(P,L)
1
k . Hölder’s

inequality implies that ‖f‖1 ≤ ‖f‖k ‖1‖ k
k−1

, which is the same as I(P,L) ≤ Ik(P,L)
1
k |P |

k−1

k .

Applying Lemma 9 with k = 3 reinterprets Proposition 7 as a lower bound on colinear triples:

Corollary 10. With the notation in Proposition 7 and Definition 8, we also have I3 (P
∗, L(P ∗)) ≫

n
5
2
−15ǫ

So we have a lower bound on colinear triples in P ∗. Separately, the next proposition gives an upper
bound on this quantity, which is obtained by combinatorial methods. Its proof uses the method in [7]
to adapt the approach in [6].

Proposition 11. There is an absolute constant γ1 such that if:

• F is a field and A, B are finite subsets of F with 0 /∈ B.

• LA is the set of lines through the origin with gradients lying in A.

• LB is the set of horizontal lines crossing the y-axis at some b ∈ B.

• P is a set of points, each lying on the intersection of some line in LA with some line in LB.

• T := I3 (P,L(P )).
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• P is, additionally, a
(

2, γ1T
65

|A|130|B|194

)

-antifield.

Then:

T ≪ max
{

|A|
643
321 |B|

961
321 , |A|

535
267 |B|

799
267 , |A|

499
249 |B|

743
249

}

The results collected above then allow us to prove Theorem 2:

Proving Theorem 2 from the propositions Let |P | = |L| = n with I(P,L) = n
3
2
−ǫ. If ǫ >

1/12838 then we are already done, so assume that ǫ ≤ 1/12838. We shall find a constant γ such that

ǫ ≥ 1/12838 so long as P is a
(

2, γn
1
2
− 1299

12838

)

-strong-antifield.

So let us suppose that P is a
(

2, γn
1
2
− 1299

12838

)

-strong-antifield, where γ is a constant to be specified.

Apply Proposition 7 and Corollary 10 to obtain a particular
(

2, γn
1
2
− 1299

12838

)

-antifield P ∗ for which

T := I3 (P
∗, L(P ∗)) ≫ n

5
2
−15ǫ (1)

and for which Proposition 11 is applicable so long as

γn
1
2
− 1299

12838 ≤
γ1T

65

|A|130|B|194
(2)

where γ1 is an absolute constant. Note also that

|A|, |B| ≪ n
1
2
+ǫ (3)

Now, since ǫ ≤ 1/12838 and combining (1) and (3), we see that there is an absolute constant γ2 such
that

n
1
2
− 1299

12838 ≤ n
1
2
−1299ǫ ≤ γ2

T 65

|A|130|B|194

So we can ensure that (2) holds by taking γ = γ1

γ2
. We therefore have by Proposition 11 that

T ≪ max
{

|A|
643
321 |B|

961
321 , |A|

535
267 |B|

799
267 , |A|

499
249 |B|

743
249

}

(4)

Comparing (1) and (4), plugging in (3), and taking logs then yields ǫ ≥ 1/12838 as required.

2.3 The rest of this paper

The proof of Theorem 2 will be complete once Propositions 7 and 11 have been established. Lemma
Lemma 6 is used for proving Propositions 7. The proofs of these three results are the subject of the
rest of the paper:

• Section 3 presents the proof of Lemma 6

• Section 4 presents the proof of Proposition 7.

• Section 5 collects some technical lemmata that will be useful when proving Proposition 11, some
with proof and some without.

• Finally, Section 6 presents the proof of Proposition 11.
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3 Proving Lemma 6

This section is concerned the proof of Lemma 6. Recall the statement of the lemma:

Lemma 6 Let A ⊆ F be a (1, λ)-strong-antifield and let B ⊆ F . Suppose there is a cross-
ratio-preserving injection τ : B → A (i.e. an injection τ for which X(τ(b1), τ(b2), τ(b3), τ(b4)) =
X(b1, b2, b3, b4) whenever b1, b2, b3, b4 ∈ B). Then B is a (1, λ)-antifield.

For a set A, define X(A) = {X(a, b, c, d) : a, b, c, d ∈ A, a 6= d, b 6= c}. To prove Lemma 6 we will need
the following intermediate result:

Lemma 12. Let F be a field. Suppose A ⊆ F and there is a subfield G of F for which X(A) ⊆ G.
Then either |A ∩ (xG + y)| ≤ 2 for all x, y ∈ F , or there exist x, y ∈ F such that A ⊆ xG+ y.

Proof. We show that if |A ∩ (xG + y)| ≥ 3 then A ⊆ xG + y. Let a, b, c be three distinct elements
of A ∩ (xG+ y) and suppose for a contradiction that A * xG + y. Then we can find d ∈ A with
d /∈ xG + y. So we have

a = g1x+ y

b = g2x+ y

c = g3x+ y

d = g4x+ z

where g1, g2, g3, g4 ∈ G and z−y
x /∈ G. Moreover, since a, b, c are distinct, we know that g1, g2, g3 are

distinct. Finally, we know that a, b, c 6= d. We then know by assumption that

(a− b)(c− d)

(a− d)(c − b)
∈ G

But we also have

(a− b)(c− d)

(a− d)(c− b)
=

x(g1 − g2)(x(g3 − g4) + (y − z))

(x(g1 − g4) + (y − z))(x(g3 − g2))
=

(

g1 − g2
g3 − g2

)

g3 − g4 +
y−z
x

g1 − g4 +
y−z
x

Since g1, g2 and g3 are distinct, this means that

g3 − g4 +
y−z
x

g1 − g4 +
y−z
x

∈ G

and so there exists g5 ∈ G with
g3 − g4 +

y−z
x

g1 − g4 +
y−z
x

= g5

We now split into two cases, according to whether or not g5 = 1. If g5 = 1 then we obtain g3 = g1,
which contradicts the fact that these two elements are distinct. If g5 6= 1 then we obtain

y − z

x
=

g5(g1 − g4)− g3 + g4
1− g5

∈ G

which contradicts the fact that y−z
x /∈ G. Either way, we are done.
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Corollary 13. Let F be a field, G be a subfield of F , A ⊆ F be a (1, λ)-strong-antifield, and A′ ⊆ A

be such that |A′| ≥ max
{

λ, |G|
1
2

}

. Then X(A′) * G.

Proof. Suppose that there exists A′ ⊆ A with |A′| ≥ max
{

λ, |G|
1
2

}

and X(A′) ⊆ G. Then by Lemma

12, either A′ ⊆ aG+ b for some a, b ∈ F , or |A′ ∩ (aG+ b)| ≤ 2 for all a, b ∈ F .

In the former case, we have A′ ⊆ A ∩ (aG+ b) and so |A ∩ (aG+ b)| ≥ max
{

λ, |G|
1
2

}

. In the latter

case we have |A′∩(G+b)| ≤ 2 for all distinct translates G+b of G, which means that A′ and therefore

A intersects at least max
{

λ, |G|
1
2

}

/2 such translates.

Either way, we contradict the fact that A is a (1, λ)-strong-antifield and are therefore done.

We are now in a position to prove Lemma 6.

Proof of Lemma 6 Suppose for a contradiction that there is a subfield G of F and elements a, b ∈ F
such that

|B ∩ (aG+ b)| ≥ max
{

λ, |G|
1
2

}

Let B′ = B ∩ (aG + b). Then we have τ(B′) ⊆ A and |τ(B′)| = |B′| ≥ max
{

λ, |G|
1
2

}

, but also

X(τ(B′)) = X(B′) ⊆ G. This contradicts Corollary 13 and so we are done. This completes the proof
of Lemma 6.

4 Proof of Proposition 7

We will now use Lemma 6 to prove Proposition 7. Recall the statement of Proposition 7:

Proposition 7 Let F be a field, and let P and L be a set of lines and points respectively in
F × F with |P | = |L| = n such that I(P,L) = n

3
2
−ǫ for some ǫ > 0. Let λ ≥ 0. Then, if P is a

(2, λ)-strong-antifield there exist:

1. Sets A,B ⊆ F with |A|, |B| ≪ n
1
2
+ǫ and 0 /∈ B

2. A set LA of lines through the origin with gradients in A.

3. A set LB of horizontal (i.e. gradient 0) lines with y-intercepts in B

4. A (2, λ)-antifield P ∗ with |P ∗| ≤ n, the points of which each lie on the intersection of a line
in LA with a line in LB.

such that
I (P ∗, L(P ∗)) ≫ n

3
2
−5ǫ

where L(P ∗) is the set of lines determined by pairs of points in P ∗.

Recall that for a point p and a line l we define δpl to be 1 if p ∈ l and 0 otherwise. We initially follow
[2] and [6].
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The first step is to show that we may assume every point in P is incident to ≫ n
1
2
−ǫ and ≪ n

1
2
+ǫ

lines in L. Indeed, let P+ =
{

p ∈ P : p is incident to ≥ 4n
1
2
+ǫ lines l ∈ L

}

. Then:

I (P+, L) =
∑

p∈P+

∑

l∈L

δpl ≤
1

4n
1
2
+ǫ

∑

p∈P+

(

∑

l∈L

δpl

)2

=
1

4n
1
2
+ǫ

∑

l,l′∈L

∑

p∈P+

δplδpl′ ≤
n

3
2
−ǫ

2

Similarly, let P− =

{

p ∈ P : p is incident to ≤ n
1
2
−ǫ

3 lines l ∈ L

}

. Then:

I (P−, L) =
∑

p∈P−

∑

l∈L

δpl ≤
∑

p∈P−

n
1
2
−ǫ

3
≤

n
3
2
−ǫ

3

So between them P+ and P− contribute only five sixths of the n
3
2
−ǫ incidences. Without loss of

generality we shall discard them and assume from now on that |P | ≤ n, and that every point p ∈ P

is incident to ≫ n
1
2
−ǫ and ≪ n

1
2
+ǫ lines in L.

Let L1 be the set of “rich” lines in L defined by

L1 =

{

l ∈ L : l is incident to ≥
n

1
2
−ǫ

20
points p ∈ P

}

Let P1 be the set of points in P that are “bushy” relative to L1, defined by

P1 =

{

p ∈ P : p is incident to ≥
n

1
2
−ǫ

20
lines in L1

}

We need to check that P1 is non-empty. Note firstly that

I(P,L\L1) =
∑

p∈P

∑

l∈L\L1

δpl ≤
∑

l∈L\L1

n
1
2
−ǫ

20
≤

n
3
2
−ǫ

20

and therefore I(P,L1) ≫ I(P,L). Now note that

I(P\P1, L1) =
∑

p∈P\P1

∑

l∈L1

δpl <
∑

p∈P\P1

n
1
2
−ǫ

20
≤

n
3
2
−ǫ

20

This means that I(P1, L1) ≫ I(P,L1) ≫ I(P,L) and so P1 is certainly non-empty. Now for each
p ∈ P1 let Pp be the set of points in P that are joined to p by a line in L1. We have:

|Pp| =
∑

q∈P

∑

l∈L1

δplδql =
∑

l∈L1

δpl
∑

q∈P

δql ≫ n
1
2
−ǫ
∑

l∈L1

δpl ≫ n1−2ǫ

This means that:

|P1|n
1−2ǫ ≪

∑

p∈P1

|Pp| ≤
√

|P1|

√

∑

p,q∈P1

|Pp ∩ Pq|

where the second inequality follows by Cauchy-Schwartz. So we have:
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|P1|n
2−4ǫ ≪

∑

p,q∈P1

|Pp ∩ Pq| (5)

For each p ∈ P define xp to be the x-co-ordinate of p. And for each x ∈ F define P x = {p ∈ P : xp = x}.

It is easy to see that |P x|n
1
2
−ǫ ≪ I(P x, L) ≤ 2n and so we deduce that |P x| ≪ n

1
2
+ǫ for every x ∈ F .

Plugging this into (5) yields

|P1|n
2−4ǫ ≪

∑

p,q∈P1:xp 6=xq

|Pp ∩ Py |+
∑

p∈P1

∑

q∈Pxp

|Pp ∩ Pq| ≪
∑

p,q∈P1:xp 6=xq

|Pp ∩ Py|+ |P1|n
3
2
+ǫ

We can therefore fix two distinct points p, q ∈ P1 with xp 6= xq such that

|Pp ∩ Pq| ≫
n2−4ǫ

|P |
≫ n1−4ǫ

Now let P ′ = Pp ∩ Pq and note that

I(P ′, L) =
∑

p∈P ′

∑

l∈L

δpl ≥ |P ′|n
1
2
−ǫ ≫ n

3
2
−5ǫ

Since I(P xp , L) ≤ n we can discard all points in P xp other than p , and thereby assume P xp = {p}.

At this point we diverge from [2] and [6]. All we shall carry forward are the facts that:

1. I(P ′, L) ≫ n
3
2
−5ǫ.

2. P ′ is a (2, λ)-strong-antifield.

3. There are two points p, q, lying on distinct vertical lines, such that P ′ = Pp ∩ Pq where Pp is a

set of points lying on O(n
1
2
+ǫ) lines through p, and Pq is a set of points lying on O(n

1
2
+ǫ) lines

through q

4. No point in P ′ lies on the vertical line through p.

These facts are unaffected by translation of P ′ and so without loss of generality we shall assume that
p is in fact the origin.

Recall that the projective plane P2(F ) is defined to be F 3\ (0, 0, 0), modulo dilations. We embed
F × F in P2(F ) by identifying (x, y) ∈ F × F with (x, y, 1) ∈ P2(F ). This accounts for all elements
of P2(F ) apart from those of the form (x, y, 0); these are said to lie on the line at infinity. For our
purposes, the only such point we need consider is the point (1, 0, 0). Every line incident to this point
has gradient 0, and is therefore horizontal. A projective transformation is an invertible linear map
from P2(F ) to itself, i.e. a 3 × 3 non-singular matrix, and has the important property that it maps
points to points and lines to lines.

Returning to the proof, we apply the projective transformation τ given by

τ =





0 0 1
0 1 0
1 0 0





Note that:
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1. I(τ(P ′), L(τ(P ′))) ≥ I(τ(P ′), τ(L)) = I(P ′, L) ≫ n
3
2
−5ǫ

2. τ maps the y-axis to the line at infinity. In particular, it maps the origin (which we have
assumed to be p) to the point at infinity with gradient 0, and so the points in τ(Pp) lie on

O(n
1
2
+ǫ) horizontal lines.

3. Since P ′ has no points on the y-axis, the image τ(P ′) is contained in F × F .

4. Since q does not lie on the y-axis, the point τ(q) lies in F ×F and not the line at infinity. Every

point in τ(Pq) lies on one of O(n
1
2
+ǫ) lines through τ(q).

5. τ(x, y) =
(

1
x ,

y
x

)

for each point (x, y) with x 6= 0. So the map x 7→ x−1 is a cross-ratio-
preserving injection from {x : (x, y) ∈ τ(P ′)} to {x : (x, y) ∈ P ′}. Since P ′ is a (2, λ)-strong-
antifield, Lemma 6 implies that τ(P ) is a (2, λ)-antifield.

From the above we see that we have a (2, λ)-antifield P ∗ = τ(P ′) such that:

1. I(P ∗, L(P ∗)) ≫ n
3
2
−5ǫ

2. Each point in P ∗ lies on

(a) one of O(n
1
2
+ǫ) lines that pass through a single point s in F × F .

(b) one of O(n
1
2
+ǫ) horizontal lines.

The properties above are again invariant under translation and so without loss of generality we may
assume that s is the origin. And since each horizontal line in P ∗ contributes at most n incidences we
can discard points to assume that 0 /∈ B. We then take A to be the set of gradients of the O(n

1
2
+ǫ)

lines through the origin, and B to be the y-intercepts of the O(n
1
2
+ǫ) horizontal lines. This completes

the proof of the proposition.

5 Lemmata for proving Proposition 11

This section collects the technical lemmata that will be used to prove Proposition 11.

5.1 Pivoting results

We will make use of some ‘pivoting’ results. The first, Lemma 14, was applied in the Helfgott-Rudnev
proof [6], and before that in e.g. [5], [4], [8], [11] and [9]. It is stated here without proof.

Lemma 14 (Pivoting lemma 1). Let F be a field, let Z ⊆ F and let R(Z) = Z−Z
Z−Z . Let a, b ∈ F .

Then if |R(Z)| ≥ |Z|
2
there exist z1, z2, z3, z4 ∈ aZ + b such that for all Z ′ ⊆ Z with |Z ′| ≫ |Z| we

have |Z|
2
≈ |(z1 − z2)Z

′ + (z3 − z4)Z
′|

The next lemma is a quick and well-known result that is a necessary tool for the lemma that follows
it:

Lemma 15. Let F be a field, let Z ⊆ F and let R(Z) = Z−Z
Z−Z . If x /∈ R(Z) then |Z + xZ| ≈ |Z|2.

Proof. Clearly |Z + xZ| ≪ |Z|2, so we seek |Z + xZ| ≫ |Z|2. If there exist z1, z2, z3, z4 ∈ Z with
z2 6= z4 and z1 + xz2 = z3 + xz4, then we can write x = z1−z3

z2−z4
, which contradicts the fact that

x /∈ R(Z). So there is only one way of writing each elemnent v ∈ Z + xZ in the form v = z1 + xz2
with z1, z2 ∈ Z. We therefore have |Z + xZ| = |Z|(|Z|−1)

2 ≫ |Z|2, as required.
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Lemma 16, due to Katz and Shen [7], generalises an approach that is traditionally used in conjunction
with Lemma 14. The generalistation means that the result allows for the possibility of nontrivial
additive subgroups.

Lemma 16 (Pivoting lemma 2). Let F be a field and let Z ⊆ F be finite such that R(Z) = Z−Z
Z−Z is

not a subfield of F . Let a, b ∈ F . Then either

1. R(aZ+ b) is not closed under multiplication, in which case there exist x1, x2, z1, z2, z3, z4 ∈

Z such that |Z ′|
2
≤ |x1 (z1 − z2)Z

′ − x2 (z1 − z2)Z
′ + x1 (z3 − z4)Z

′| for all Z ′ ⊆ Z.

2. R(aZ+ b) is closed under multiplication but is not closed under addition, in which

case there exist y1, y2, y3, y4 ∈ Z such that |Z ′|2 ≤ |(y1 − y2)Z
′ + (y3 − y4)Z

′ + (y3 − y4)Z
′| for

all Z ′ ⊆ Z.

Proof. Note that R(aZ + b) = R(Z) so without loss of generality we may assume a = 1 and b = 0.

Case 1 Since R(Z) · R(Z) 6= R(Z) there are x1, x2, x3, x4, y1, y2, y3, y4 ∈ Z with

x1 − x2

x3 − x4

y1 − y2
y3 − y4

/∈ R(Z)

This can be written as

x1 − x2

x1

x1

x1 − x3

x1 − x3

x4

x4

x3 − x4

y1 − y2
y3 − y4

/∈ R(Z)

and so there are a1, a2, b1, b2, b3, b4 ∈ Z with a1−a2

a1

b1−b2
b3−b4

/∈ R(Z). We therefore have that for any
Z ′ ⊆ Z

|Z ′|
2
≈

∣

∣

∣

∣

Z ′ +
a1 − a2

a1

b1 − b2
b3 − b4

Z ′

∣

∣

∣

∣

≤ |a1(b1 − b2)Z
′ − a2(b1 − b2)Z

′ + a1(b3 − b4)Z
′|

This completes the proof of Case 1.

Case 2 We seek z1, z2, z3, z4 ∈ Z such that z1−z2
z3−z4

+ 1 /∈ R(Z). We will then be done, as for any
Z ′ ⊆ Z we will have

|Z ′|
2
≈

∣

∣

∣

∣

Z ′ +

(

x1 − x2

x3 − x4
+ 1

)

Z ′

∣

∣

∣

∣

≤ |(x1 − x2)Z
′ + (x3 − x4)Z

′ + (x3 − x4)Z
′|

Since R(Z) +R(Z) 6= R(Z) there are x1, x2, x3, x4, y1, y2, y3, y4 ∈ Z with

x1 − x2

x3 − x4
+

y1 − y2
y3 − y4

/∈ R(Z)

On the other hand, since R(Z) ·R(Z) = R(Z) there are z1, z2, z3, z4 ∈ Z with

x1 − x2

x3 − x4

y3 − y4
y1 − y2

=
z1 − z2
z3 − z4

Combining these two facts gives:

z1 − z2
z3 − z4

+ 1 =
x1 − x2

x3 − x4

y3 − y4
y1 − y2

+ 1 =
y3 − y4
y1 − y2

(

x1 − x2

x3 − x4
+

y1 − y2
y3 − y4

)

/∈ R(Z)

This completes the proof of Case 2 and therefore of the lemma.

We will also use the following lemma, due to Katz and Shen. A proof can be found in [7].

Lemma 17. If R(Z) ⊆ G for some subfield G of F , then Z ⊆ aG+ b for some a, b ∈ F

12



5.2 A lemma about sumsets

The following lemma was used in the Helfgott-Rudnev paper [6], and is originally due to Bourgain [1]:

Lemma 18. Let F be a field. Let X and Y be finite subsets of F and let K = maxy∈Y |X + yX |

Then there exist elements x1, x2, x3 ∈ X such that |(X − x1) ∩ (x2 − x3) Y | ≫ |Y ||X|
K .

Proof. Let E be the number of solutions to the equation x1 + yx2 = x3 + yx4 with x1, x2, x3, x4 ∈ X
and y ∈ Y . Then

E =
∑

y∈Y

∑

k∈X+yX

∣

∣

∣

∣

X ∩

(

X − k

y

)∣

∣

∣

∣

2

≥
∑

y∈Y

(

∑

k∈X+yX

∣

∣

∣X ∩
(

X−k
y

)∣

∣

∣

)2

|X + yX |
≥

|X |
4
|Y |

K

So there exist z1, z2 ∈ X such that the equation x1+yz1 = z2+yx2 has≫
|X|2|Y |

K solutions (x1, x2, y) ∈

X × X × Y . In other words, if X1 = X − z1 and X2 = X − z2 then there are ≫ |X|2|Y |
K solutions

(u, v, y) ∈ X1 ×X2 × Y to the equation v = yu. By averaging, there is an element u∗ = x∗ − z1 ∈ X1

with x∗ ∈ X such that v = yu∗ has ≫ |Y ||X|
K solutions. Thus:

|(X − z2) ∩ (x∗ − z1)Y | = |X2 ∩ u∗Y | ≫
|Y | |X |

K

5.3 Standard results from additive combinatorics

We record some standard results from additive combinatorics. The first, below, formalises a common
technique.

Lemma 19 (Popularity pigeonholing). Let X be a finite set and let f : X → [1, N ] be a function.

Then there is a subset Y ⊆ X with |Y | ≫
∑

x∈X
f(x)

N such that for any y ∈ Y we have f(y) ≫
∑

x∈X
f(x)

|X|

Proof. Let Y = {x ∈ X : f(x) ≥ α} where α =
∑

x∈X f(x)

2|X| . We seek to show that |Y | ≫
∑

x∈X f(x)

N .

We see this as follows:

∑

x∈X

f(x) =
∑

x:f(x)≥α

f(x) +
∑

x:f(x)<α

f(x) ≤ N |Y |+ α |X |

So we have

|Y | ≥

∑

x∈X f(x)− α |X |

N
=

∑

x∈X f(x)

2N
≫

∑

x∈X f(x)

N

We will use the following form of the Plünnecke-Ruzsa inequality, due to Ruzsa [10]:

Lemma 20 (Plünnecke-Ruzsa inequality). Let X,B1, . . . , Bk ⊆ Fp. Then
∣

∣

∣

∑k
j=1 Bj

∣

∣

∣
≪

∏
k
j=1

|X+Bj |

|X|k−1
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The following lemma is a version of the Balog-Szemerédi-Gowers theorem. A proof can be found in
[13], but this appears to have a typographical error which leads to an exponent of −4, rather than
the correct exponent of -5 below. See [3] for a proof yielding the exponent of −5.

Lemma 21 (Balog-Szemeredi-Gowers). Let X,Y be additive sets with |X | = |Y | = n. Suppose that
there is a subset G ⊆ X × Y such that

∣

∣X +G Y
∣

∣ < n and that |G| = αn2 for some α ∈ (0, 1). Then
there exist subset X ′ ⊆ X and Y ′ ⊆ Y with |X ′| , |Y ′| ≫ αn such that |X ′ + Y ′| ≪ α−5n

A proof of the following ‘covering’ result can be found in [11].

Lemma 22 (Covering lemma). Let G be a group and B,C ⊆ G be finite. Let ǫ ∈ (0, 1). Then the

number of translates of C required to cover (1 − ǫ) |B| elements of B is Oǫ

(

|B+C|
|C|

)

.

6 Proof of Proposition 11

Recall the statement of Proposition 11:

Proposition 11 There is an absolute constant γ1 such that if:

• F is a field and A, B are finite subsets of F with 0 /∈ B.

• LA is the set of lines through the origin with gradients lying in A.

• LB is the set of horizontal lines crossing the y-axis at some b ∈ B.

• P is a set of points, each lying on the intersection of some line in LA with some line in LB.

• T := I3 (P,L(P )).

• P is, additionally, a
(

2, γ1T
65

|A|130|B|194

)

-antifield.

Then:

T ≪ max
{

|A|
643
321 |B|

961
321 , |A|

535
267 |B|

799
267 , |A|

499
249 |B|

743
249

}

This section uses the results of Section 5 to prove Proposition 11.

6.1 Structure of the proof

We shall assume that P is a (2, λ) antifield for some λ, and then show that the conclusion of the

Proposition follows when λ ≈ T 65

|A|130|B|194 .

The proof of Proposition 11 uses the following three claims, whose proofs are deferred. Instead, we
shall first see how they are applied to prove the proposition. The proofs of the claims then follow.

Claim 23. There is a subset C ⊆ Fq with |C| ≫ T 5

|A|10|B|14 such that for each c ∈ C there is a pair of

(1, λ)-antifields A1
c , A

2
c ⊆ F with

|A1
c |, |A

2
c | ≫

T

|A||B|3
(6)
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∣

∣A1
c + cA2

c

∣

∣≪
|A|11 |B|15

T 5
(7)

Moreover, there exists a particular element c∗ ∈ C such that, writing A∗ = Ac∗ , we have

∣

∣A1
c ∩ A1

∗

∣

∣ ,
∣

∣A2
c ∩ A2

∗

∣

∣≫
T 4

|A|7|B|12
(8)

for all c ∈ C.

Claim 24. The following bounds hold for each c ∈ C

∣

∣A1
c +A1

c

∣

∣ ,
∣

∣A2
c +A2

c

∣

∣≪
|A|23 |B|33

T 11
(9)

∣

∣c∗A
2
c + cA2

c

∣

∣≪
|A|

59
|B|

87

T 29
(10)

∣

∣c∗A
2
∗ + cA2

c

∣

∣≪
|A|83 |B|132

T 44
(11)

∣

∣c∗A
2
∗ + cA2

∗

∣

∣≪
|A|119 |B|177

T 59
(12)

Claim 25. There exists an integer Γ with

Γ ≪
|A|

48
|B|

72

T 24
(13)

such that given any c ∈ ±C, x ∈ Fq, and D ⊆ A2
∗, a constant proportion of cD + x can be covered

with Γ translates of A1
∗

6.2 Proof of Proposition 11, assuming claims

Apply Lemma 18 with X = A2
∗, Y = 1

c∗
C and, by inequality (12), K ≪ |A|119|B|177

T 59 . This provides

a1, a2, a3 ∈ A2
∗ such that

∣

∣

∣

∣

(

A2
∗ − a1

)

∩

(

a2 − a3
c∗

)

C

∣

∣

∣

∣

≫

∣

∣A2
∗

∣

∣ |B′
2|

K
≫

T 65

|A|
130

|B|
194

For convenience, define Z =
(

A2
∗ − a1

)

∩
(

a2−a3

c∗

)

C, to give the lower bound

|Z| ≫
T 65

|A|130 |B|194
(14)

We seek an upper bound for |Z| with which to compare (14). There are three possible cases:

1. R(Z) is not closed under multiplication. By Lemma 16 there are then elements c1, c2, d1, d2, d3, d4 ∈
C such that for every Z ′ ⊆ Z with |Z ′| ≫ |Z| we have

|Z|
2
≪ |c1(d1 − d2)Z

′ − c2(d1 − d2)Z
′ + c1(d3 − d4)Z

′|

2. R(Z) is closed under multiplication but is not closed under addition. By Lemma 16
there are then elements c1, c2, c3, z4 ∈ C such that for every Z ′ ⊆ Z with |Z ′| ≫ |Z| we have

|Z|2 ≪ |(c1 − c2)Z
′ + (c1 − c2)Z

′ + (c3 − c4)Z
′|
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3. R(Z) is a field, G say. Lemma 17 implies that in this case we have Z ⊆ aG + b for some
a, b ∈ F . So, collecting together various facts, we have

• Z ⊆ A2
∗ − a1.

• A2
∗ is a (1, λ)-antifield, and therefore so is A2

∗ − a1.

• Z ⊆ aG+ b for some a, b ∈ F .

• |Z| ≫ T 65

|A|130|B|194
.

So for some λ ≈ T 65

|A|130|B|194
, the definition of a (2, λ)-antifield implies that |Z| ≤ |G|

1
2 = |R(Z)|

1
2 .

Lemma 14 then implies that there are elements c1, c2, c3, c4 ∈ C such that for every Z ′ ⊆ Z with
|Z ′| ≫ |Z| we have

|Z|
2
≪ |(c1 − c2)Z

′ + (c3 − c4)Z
′|

6.2.1 Dealing with Case 1

Given any Z ′ ⊆ Z with |Z ′| ≫ |Z| and any E ⊆ A2
∗ with |E| ≫

∣

∣A2
∗

∣

∣, apply Lemma 20 with
X = c1(d1 − d2)E and k = 3 to get

|Z|2 ≪ |c1(d1 − d2)Z
′ − c2(d1 − d2)Z

′ + c1(d3 − d4)Z
′|

≪
|E + Z ′| |c1E − c2Z

′| |d1E − d2E + d3Z
′ − d4Z

′|

|A2
∗|

2

By definition of Γ from Claim 25, there is a subset S1 ⊆ A2
∗ with |S1| ≫

∣

∣A2
∗

∣

∣ such that d1S1 can be

covered with Γ copies of A1
∗. Further, there is a subset S2 ⊆ S1 with |S2| ≫ |S1| ≫

∣

∣A2
∗

∣

∣ such that

−d2S2 can be covered with Γ copies of A1
∗. And there is a subset S3 ⊆ S2 with |S3| ≫

∣

∣A2
∗

∣

∣ such that
c1S3 can be covered with Γ copies of A1

∗. Set E = S3, so that d1E, −d2E and c1E can be covered
with Γ copies of A1

∗ each.

Similarly, recall that Z ⊆ A2
∗ − a1, and pick Z ′ ⊆ Z with |Z ′| ≫ |Z| such that d3Z

′,−d4Z
′ and −c2Z

′

can each be covered with Γ copies of A1
∗ each. Altogether, this means that:

|Z|
2
≪

Γ6 |E + Z ′|
∣

∣A1
∗ + A1

∗

∣

∣

∣

∣A1
∗ +A1

∗ +A1
∗ +A1

∗

∣

∣

|A2
∗|

2

≤
Γ6
∣

∣A2
∗ +A2

∗

∣

∣

∣

∣A1
∗ +A1

∗

∣

∣

∣

∣A1
∗ +A1

∗ +A1
∗ + A1

∗

∣

∣

|A2
∗|

2

Lemma 20 and the bound in Claim 25 then give

|Z|2 ≪
Γ6
∣

∣A2
∗ +A2

∗

∣

∣

∣

∣A1
∗ +A1

∗

∣

∣

∣

∣A1
∗ + c∗A

2
∗

∣

∣

4

|A2
∗|

5 ≪
|A|

383
|B|

573

T 191

Comparing with (14) gives T ≪ |A|
643
321 |B|

961
321 , which satisfies the bound in the statement of the

proposition.
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6.2.2 Dealing with Case 2

Given any any Z ′ ⊆ Z with |Z ′| ≫ |Z| and any E ⊆ A2
∗ with |E| ≫

∣

∣A2
∗

∣

∣ we can apply Lemma 20
with X = (c1 − c2)E and k = 2 to get

|Z|
2
≪ |(c1 − c2)Z

′ + (c1 − c2)Z
′ + (c3 − c4)Z

′|

≪
|E + Z ′ + Z ′| |c1E − c2E + c3Z

′ − c4Z
′|

|A2
∗|

≤

∣

∣A2
∗ +A2

∗ +A2
∗

∣

∣ |c1E − c2E + c3Z
′ − c4Z

′|

|A2
∗|

As in Case 1, pick Z ′ and E so that:

|Z|
2
≪

Γ4
∣

∣A2
∗ +A2

∗ +A2
∗

∣

∣

∣

∣A1
∗ +A1

∗ +A1
∗ +A1

∗

∣

∣

|A2
∗|

Lemma 20 then gives:

|Z|
2
≪

Γ4
∣

∣A1
∗ + c∗A

2
∗

∣

∣

7

|A1
∗|

2
|A2

∗|
4 ≪

|A|
275

|B|
411

T 137

Comparing with (14) gives T ≪ |A|
535
267 |B|

799
267 ,which satisfies the bound in the statement of the propo-

sition.

6.2.3 Dealing with Case 3

As with Cases 1 and 2, pick Z ′ so that

|Z|
2
≪ |(c1 − c2)Z

′ + (c3 − c4)Z
′| ≤ Γ4

∣

∣A1
∗ +A1

∗ +A1
∗ +A1

∗

∣

∣

Then Lemma 20 gives

|Z|
2
≪

Γ4
∣

∣A1
∗ + c∗A

2
∗

∣

∣

4

|A2
∗|

3 ≪
|A|

239
|B|

357

T 119

Comparing with (14) gives T ≪ |A|
499
249 |B|

743
249 , which satisfies the bound in the statement of the

proposition.

The proof of the proposition is therefore complete, subject to the proofs of Claims 23, 24 and 25,
which are given below.

6.3 Proof of Claim 23

Every point in P is the intersection of a horizontal line in LB (with y-co-ordinate lying in B) and a
line through the origin in LA (with gradient lying in A). Denote the lines in LB by hb for each b ∈ B
and the lines in LA by da for each a ∈ A. Furthermore, for each b ∈ B define the set Xb ⊆ F by

17



Xb = {x : (x, b) ∈ hb ∩ P}

Note that Xb is a (1, λ)-antifield for each b ∈ B as it is contained in the (1, λ)-antifield {x : (x, y) ∈ P}

Now, the set of lines L(P ) and the set of points P generate T colinear triples. So, by averaging, there
are two distinct elements b1, b2 ∈ B such that there are T

|B|2 colinear triples (p1, p2, p3) ∈ P × P × P

with p1 ∈ hb1 and p2 ∈ hb2 .

By Lemma 19 there is then a set B′ ⊆ B with |B′| ≫ T
|A|2|B|2

such that, for each b ∈ B′, there are

≫ T
|B|3

colinear triples (p1, p2, p3) ∈ P × P × P with p1 ∈ hb1 , p2 ∈ hb2 and p3 ∈ hb.

This is the same as saying that for each b ∈ B′ there are ≫ T
|B|3

elements x1 ∈ Xb1 and x2 ∈ Xb2 for

which

x1

(

1−
b− b1
b2 − b1

)

+ x2

(

b− b1
b2 − b1

)

∈ Xb

So for each b ∈ B′, we can apply the Balog-Szemeredi-Gowers theorem (Lemma 21) with X =
(

1− b−b1
b2−b1

)

Xb1 , Y = b−b1
b2−b1

Xb2 , n = |A|, G =
{

(x1, x2) ∈ Xb1 ×Xb2 : x1

(

1− b−b1
b2−b1

)

+ x2

(

b−b1
b2−b1

)

∈ Xb

}

and α = T
|A|2|B|3

to find subsets A1
b ⊆ Xb1 and A2

b ⊆ Xb2 with

•
∣

∣

∣A1
b +

(

b1−b2
b2−b − 1

)

A2
b

∣

∣

∣ =
∣

∣

∣(1− b−b1
b2−b1

)A1
b +

b−b1
b2−b1

A2
b

∣

∣

∣≪
|A|11|B|15

T 5

•
∣

∣A1
b

∣

∣ ,
∣

∣A2
b

∣

∣≫ T
|A||B|3

Moreover, note that A1
b and A2

b are both (1, λ)-antifields for each b ∈ B′ as they are contained in the
(1, λ)-antifields Xb1 and Xb2 respectively.

By dropping at most one element we may assume that b2 /∈ B′. Now let C′ =
{

b1−b2
b2−b − 1 : b ∈ B′

}

and note that the map b 7→ b1−b2
b2−b − 1 is a bijection. Define sets A1

c , A
2
c by Ai

c = Ai
b(c) for each c ∈ C′.

Then we have

• |C′| = |B′| ≫ T
|A|2|B|2

•
∣

∣A1
c + cA2

c

∣

∣≪ |A|11|B|15

T 5 for each c ∈ C′

•
∣

∣A1
c

∣

∣ ,
∣

∣A2
c

∣

∣≫ T
|A||B|3

for each c ∈ C′

Let Pc = A1
c ×A2

c , so that |Pc| ≫
T 2

|A|2|B|6
for each c ∈ C′. Cauchy-Schwartz implies that:

|C′|
T 2

|A|
2
|B|

6 ≪
∑

c∈C′

|Pc| ≤ |A|

√

∑

c,c′∈C′

|Pc ∩ Pc′ |

So there is a particular element c∗ ∈ C′ such that

∑

c∈C′

|Pc ∩ Pc∗ | ≫ |C′|
T 4

|A|
6
|B|

12 ≫
T 5

|A|
8
|B|

14

Lemma 19 then yields a subset C ⊆ C′ such that
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• |Pc ∩ Pc∗ | ≫
T 4

|A|6|B|12
for all c ∈ C

• |C| ≫ T 5

|A|10|B|14

Note that |Pc ∩ Pc∗ | =
∣

∣A1
c ∩ A1

c∗

∣

∣

∣

∣A2
c ∩ A2

c∗

∣

∣ to see that

∣

∣A1
c ∩ A1

c∗

∣

∣ ,
∣

∣A2
c ∩ A2

c∗

∣

∣≫
T 4

|A|
7
|B|

12

for each c ∈ C. This completes the proof of the claim.

6.4 Proof of Claim 24

The claim is proved by repeated application of Lemma 20 and inequalities (6), (7) and (8):

6.4.1 Proof of (9)

Lemma 20 and the inequalities (6) and (7) imply that

∣

∣A1
c +A1

c

∣

∣ ≤

∣

∣A1
c + cA2

c

∣

∣

2

|A2
c |

≪
|A|

23
|B|

33

T 11

Similarly for
∣

∣A2
c +A2

c

∣

∣, which completes the proof of (9).

6.4.2 Proof of (10)

Lemma 20, and inequalities (8) and (9), imply that

∣

∣c∗A
2
c + cA2

c

∣

∣ ≤

∣

∣c∗A
2
c + c∗

(

A2
c ∩ A2

∗

)∣

∣

∣

∣cA2
c + c∗

(

A2
c ∩ A2

∗

)∣

∣

|A2
c ∩A2

∗|

≪

∣

∣A2
c +A2

c

∣

∣

|A2
c ∩A2

∗|

∣

∣cA2
c + c∗

(

A2
c ∩ A2

∗

)∣

∣

≪
|A|

30
|B|

45

T 15

∣

∣cA2
c + c∗

(

A2
c ∩ A2

∗

)∣

∣

Now apply Lemma 20 again, with (7) and (8), to see that

∣

∣cA2
c + c∗

(

A2
c ∩ A2

∗

)∣

∣≪

∣

∣

(

A1
c ∩ A1

∗

)

+ cA2
c

∣

∣

∣

∣c∗
(

A2
c ∩ A2

∗

)

+
(

A1
c ∩ A1

∗

)∣

∣

|A1
c ∩ A1

∗|

≤

∣

∣A1
c + cA2

c

∣

∣

∣

∣A1
∗ + c∗A

2
∗

∣

∣

|A1
c ∩A1

∗|

≪
|A|

29
|B|

42

T 14

which completes the proof of (10)
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6.4.3 Proof of (11)

Lemma 20, and inequalities (7), (8), (9) and (10), imply that:

∣

∣c∗A
2
∗ + cA2

c

∣

∣ ≤

∣

∣c∗A
2
∗ + c∗

(

A2
c ∩ A2

∗

)∣

∣

∣

∣cA2
c + c∗

(

A2
c ∩ A2

∗

)∣

∣

|A2
c ∩ A2

∗|

≤

∣

∣A2
∗ +A2

∗

∣

∣

∣

∣c∗A
2
c + cA2

c

∣

∣

|A2
c ∩ A2

∗|

≪
|A|89 |B|132

T 44

which completes the proof of (11)

6.4.4 Proof of (12)

Lemma 20, and inequalities (7), (8), (9) and (11), imply that

∣

∣c∗A
2
∗ + cA2

∗

∣

∣≪

∣

∣c∗A
2
∗ + c

(

A2
c ∩ A2

∗

)∣

∣

∣

∣cA2
∗ + c

(

A2
c ∩ A2

∗

)∣

∣

|A2
c ∩ A2

∗|

≤

∣

∣c∗A
2
∗ + cA2

c

∣

∣

∣

∣A2
∗ +A2

∗

∣

∣

|A2
c ∩ A2

∗|

≪
|A|

119
|B|

177

T 59

This completes the proof of (12), and therefore of the whole claim.

6.5 Proof of Claim 25

Given D ⊆ A2
∗, x ∈ Fq and c ∈ C, use the covering lemma (Lemma 22) to cover a constant proportion

of cD + x with
∣

∣cD +
(

A1
c ∩A1

∗

)∣

∣

|A1
c ∩ A1

∗|
≤

∣

∣cA2
∗ +

(

A1
c ∩A1

∗

)∣

∣

|A1
c ∩ A1

∗|

translates of A1
c ∩ A1

∗, and hence with the same number of translates of A1
∗. Lemma 20 and the

inequalities (7),(8) and (9) then give:

∣

∣cA2
∗ +

(

A1
c ∩A1

∗

)∣

∣

|A1
c ∩ A1

∗|
≪

∣

∣cA2
∗ + c

(

A2
c ∩ A2

∗

)∣

∣

∣

∣

(

A1
c ∩ A1

∗

)

+ c
(

A2
c ∩ A2

∗

)∣

∣

|A1
c ∩A1

∗| |A
2
c ∩ A2

∗|

≤

∣

∣A2
∗ +A2

∗

∣

∣

∣

∣A1
c + cA2

c

∣

∣

|A1
c ∩A1

∗| |A
2
c ∩ A2

∗|

≪
|A|

48
|B|

72

T 24

The proof is similar when c ∈ −C. This completes the proof of the claim.
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