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THE WORD PROBLEM AND THE AHARONI-BERGER-ZIV

CONJECTURE ON THE CONNECTIVITY OF INDEPENDENCE

COMPLEXES

JONATHAN ARIEL BARMAK †

Abstract. For each finite simple graph G, Aharoni, Berger and Ziv consider a recur-
sively defined number ψ(G) ∈ Z ∪ {+∞} which gives a lower bound for the topological
connectivity of the independence complex IG. They conjecture that this bound is opti-
mal for every graph. We use a result of recursion theory to give a short disproof of this
claim.

The map ψ is defined as follows: ψ(∅) = −2; if G is a non-empty discrete graph,
ψ(G) = +∞; if G is non-discrete with edge set E, ψ(G) = max{min{ψ(G − e), ψ(G r

e) + 1} | e ∈ E}. Here G− e denotes the subgraph of G obtained by removing the edge e
and G r e denotes the subgraph of G induced by the vertices which are not adjacent to
any of the vertices of e.

The independence complex IG of a finite simple graph G is the simplicial complex whose
simplices are the non-empty independent subsets of vertices of G. From an exact sequence
of [6] (Claim 3.1) and from Van-Kampen and Hurewicz Theorems it is easy to deduce
that IG is ψ(G)-connected [2, Theorem 2.3]. It is conjectured in [2, Conjecture 2.4] that
IG is not (ψ(G) + 1)-connected, unless it is contractible. This was proved to be true in
the particular case of chordal graphs [5]. However we will see that the conjecture is false
in general, although we will not exhibit an explicit example. The following well-known
result ([3, Corollary 3.9]) is a consequence of the non-existence of an effective way for
determining whether a group Γ given by a finite presentation is trivial or not [1, 7] and
a construction that associates to each presentation of Γ a 2-dimensional complex with
fundamental group isomorphic to Γ (see [4] for example).

Theorem ∗. There exists no algorithm that can decide whether a finite simplicial complex

is simply connected or not.

The truthfulness of the Aharoni-Berger-Ziv Conjecture would provide an algorithm
(Turing machine) capable of determining if IG is simply connected for every finite simple
graph G (just computing ψ(G) and checking if it is positive). On the other hand, given
a finite simplicial complex K, there is a graph G such that IG is isomorphic to the first
barycentric subdivision of K. The vertices of G are the simplices of K and its edges are
the pairs of simplices such that none of them is a face of the other. In particular, the
conjecture contradicts Theorem ∗.
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