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Covariant Dirac Operators on Quantum Groups

Antti J. Harju∗

Abstract

We give a construction of a Dirac operator on a quantum group based on any simple Lie algebra
of classical type. The Dirac operator is an element in the vector space clq(g) ⊗ Uq(g), where the
first tensor factor is a deformation of the classical Clifford algebra. The tensor space clq(g)⊗Uq(g)
is given a structure of the adjoint module of the quantum group and the Dirac operator is invariant
under this action. This work generalizes the operator introduced by Bibikov and Kulish in [1].
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Introduction

The Dirac operator on a semisimple Lie group G is an element in the noncommutative Weyl algebra
cl(g)⊗U(g), where U(g) is the enveloping algebra for the Lie algebra of G. The vector space g generates
a Clifford algebra cl(g) whose structure is determined by the Killing form of g. Since g acts on itself
by the adjoint action, cl(g) ⊗ U(g) is a g-module. The Dirac operator on G spans a one dimensional
invariant submodule of cl(g) ⊗ U(g) which is of the first order in cl(g). Kostant’s Dirac operator [13]
has an additional cubical term in cl(g) which is constant in U(g).

The noncommutative Weyl algebra acts on a Hilbert space which is also a g-module. Since the
Dirac operator is the invariant subspace it follows that it commutes with the action of g and hence
the Dirac operator acts as a constant on each irreducible component in the representation of g on
the Hilbert space. The spectrum of the Dirac operator captures the metric properties of the the
Riemannian manifold G [3].

In [1] Bibikov and Kulish considered the quantum group deformation of su(2) and constructed a
Dirac operator which is invariant under the adjoint action of the quantum group. In this approach,
however, the spectrum of the operator grows exponentially as a function of the highest weight of the
representation of the quantum group. This Dirac operator cannot be applied in the noncommutative
differential calculus because the metric properties do not deform in a reasonable way. This led to a
new approach to build a Dirac operator on a quantum group as an operator on a Hilbert space with
a classical spectrum and in this case the axioms of the noncommutative geometry were fulfilled. This
was first applied for Uq(su(2)) in [2, 4]. More generally a geometric Dirac operator was constructed
using the Drindfeld’s twist in [15] where it was defined for any compact quantum group.

The purpose of this paper is to study further the approach of the reference [1]. We are looking for an
operator in the vector space clq(g)⊗Uq(g), where clq(g) is a trivial q-deformation of the Clifford algebra
which transforms covariantly under the action of the quantum group. Furthermore, we postulate the
following defining principles for the covariant Dirac operator D:

1. D transforms covariantly in the one dimensional trivial module under the adjoint action of Uq(g).

2. D commutes with the representation of Uq(g).
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For the Lie algebras the property 2. is a consequence of 1. However, if we let a quantum group act
on the tensor product clq(g) ⊗ Uq(g) with its coproduct, we need to choose the module structures in
clq(g) and Uq(g) carefully to make an operator with property 1. verify 2. This is not a general fact
and will be discussed in Section 2.

Even though this Dirac operator is not suitable for a spectral triple, it can be used to study
topological properties of quantum groups. The covariant Dirac operator can be used in a Fredholm
or Kasparov module and it carries K-theoretical and homological (in the sense of cyclic cohomology)
information of a quantum group.

We consider the adjoint representation of the quantum group and define a bilinear form in this
module which is invariant under the action. The braiding operator Ř commutes with the coproduct
of Uq(g) and it can be considered as a q-analogue of the permutation of a tensor product. We let Ř
act on a tensor product of adjoint representations and use the spectral decomposition of this action
to define the q-Clifford algebra. The eigenvectors of Ř split into two parts which can be considered
as q-deformations of symmetric and antisymmetric tensor products. We identify the ’q-symmetric’
tensors with their image in the bilinear form. The practical difficulty in this approach is that there is
no general formulas for the spectral decompositions. However, the explicit form of the Ř-matrix is well
known and so one can solve the eigenvalue problem with some mathematical software for any chosen
quantum group and apply our results.

We give a constructive proof for the existence of the covariant Dirac operator with the properties
1. and 2. on any quantum group based on any complex simple Lie algebra of classical type. The
deformation parameter q is supposed to be strictly positive real number. We write an explicit formula
for the operator on Uq(sl(n)).

Conventions. Let g be a simple finite dimensional Lie algebra with a set of simple roots ∆ = {αi :
1 ≤ i ≤ n} and Cartan matrix aij . Let q 6= 1 be a complex number. The quantum group Uq(g) is the
unital associative algebra with generators ti, t

−1
i , ei, fi (1 ≤ i ≤ n) subject to [6, 10]

[ti, tj] = 0, tit
−1
i = 1 tiejt

−1
i = q

aij

i ej , tifjt
−1
i = q

−aij

i fj ,

[ei, fj ] = δij
ti − t

−1
i

qi − q
−1
i

,

1−aij∑

s=0

(−1)s
[
1− aij
s

]

qi

esieje
1−aij−s

i = 0 =

1−aij∑

s=0

(−1)s
[
1− aij
s

]

qi

f s
i fjf

1−aij−s

i (i 6= j),

where qi = qdi , di’s being the coprime integers such that diaij is a symmetric matrix and the q-binomial
coefficients are defined by

[m]qi = (qi − q
−1
i )(q2i − q

−2
i ) · · · (qmi − q

−m
i ), [0]qi = 1

[
m
n

]

qi

=
[m]qi

[n]qi [m− n]qi
.

In the limit q → 1 the algebra Uq(g) reduces to U(g). Uq(g) is a Hopf algebra with a coproduct
△ : Uq(g) → Uq(g) ⊗ Uq(g), an antipode S : Uq(g) → Uq(g) and a counit ǫ : Uq(g) → C. The vectors
ti and t−1

i are grouplike so that ǫ(ti) = ǫ(t−1
i ) = 1 whereas ǫ(ei) = ǫ(fi) = 0. The coproduct △ is

noncocommutative and there exists a universal R-matrix such that

R△(x)R−1 = σ△(x),

where σ permutes the tensor product. The R-matrix is an infinite sum defined in some completion of
the tensor product Uq(g)⊗Uq(g) but only a finite number of terms are nonzero in any finite dimensional
representation. Here we always assume that the parameter q is a strictly positive real number. In this
case the braiding operator Ř = σR is a selfadjoint operator in any finite dimensional representation.
In the limit q → 1, Ř becomes the permutation operator.
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If V is a module for the algebra Uq(g) then a weight of v ∈ V is a linear functional µ ∈
U∗
q (t

±1, . . . , t±n) defined in a dual space of the quantized Cartan subalgebra so that x.v = qµ(x)v
for all x ∈ Uq(t

±1, . . . , t±n).
As was shown in [14, 16] the theory of finite dimensional representations of semisimple Lie algebra

g and quantum group Uq(g) are identical in the case q is not a root of unity. A highest weight module
Lq
λ of Uq(g) is finite dimensional if and only if λ ∈ P+. If λ ∈ P+ then the dimension of each weight

space is equal to the dimension of the corresponding weight space in the highest weight module module
Lλ of U(g). The category of representations is semisimple with simple objects Lq

λ, λ ∈ P
+.

The adjoint action of the quantum group on itself is an algebra homomorphism Uq(g) × Uq(g) →
Uq(g) defined by

x
ad
◮ y = x′yS(x′′). (1)

One can find a finite dimensional submodule in Uq(g) which is isomorphic to the adjoint representation
of the quantum group [5]. Let q = eh, Z = h−1(RtR− 1) where Rt = σRσ and

Zlk = (πlk ⊗ id)Z ∈ C⊗ Uq(g) ≃ Uq(g), (2)

where πlk are the matrix elements of the defining representation of Uq(g). Denote by π∗ the dual
representation

π∗
il(x) = πli(S(x)).

The vectors Zlk transform covariantly under the adjoint action

x
ad
◮ Zlk = Zijπ

∗
il(x

′)πjk(x
′′), for all x ∈ Uq(g).

According to the termionology of [5], a (weak) quantum Lie algebra is an invariant submodule in
Uq(g) which is a deformation of g and transforms covariantly under the adjoint action. Denote by
{ui} and {u

∗
i } the basis vectors of the defining representation and its dual and by {vi} the basis of the

adjoint representation. Using the matrix coefficients of the module isomorphism va 7→ Kij
a (u∗i ⊗ uj)

we define

Za = Kij
a (πij ⊗ id)Z.

Za’s span a quantum Lie algebra Lq(g) inside Uq(g) which is isomorphic to the adjoint representation
of Uq(g).

1 Covariant Clifford algebra

Let g be a simple Lie algebra of classical type. Denote by (U, π) and (U∗, π∗) the defining representation
of Uq(g) and its dual. The adjoint representation is an invariant submodule V ⊂ U∗ ⊗ U . The action
is given by

x
ad
⊲ (u∗l ⊗ uk) = πli(S(x

′))u∗i ⊗ πjk(x
′′)uj

for all x ∈ Uq(g) and v = u∗l ⊗ uk ∈ V .

Proposition. There exists a nondegenerate bilinear form Bq : V ⊗ V → C which is invariant under
the adjoint action of Uq(g), i.e.

Bq(x
ad
⊲ (v ⊗ w)) := Bq(x

′ ad
⊲ v ⊗ x′′

ad
⊲ w) = ǫ(x)Bq(v ⊗ w).
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Bq is unique up to a multiplicative constant.

Proof. There exists a module isomorphism f : V → V ∗ defined as follows. The action of Ř gives a
module isomorphism Ř : U∗⊗U → U⊗U∗. Composing this with the identification U⊗U∗ ≃ (U∗⊗U)∗

and restricting the composition to the invariant submodule V defines the module isomorphism f .
Choose a basis {vi} of V and let {v∗i } be the dual basis. The canonical pairing defined on the

generators by eval(v∗j ⊗ vk) = v∗j (vk) = δjk is nondegenerate. Thus, the composition

Bq : V ⊗ V
∼
→ V ∗ ⊗ V

eval
→ C,

v ⊗ w 7→ eval(f(v)⊗ (w))

is nondegenerate. Bq is invariant because

Bq(x
′ ad
⊲ v ⊗ x′′

ad
⊲ w) = eval(x′

ad
⊲ f(v)⊗ x′′

ad
⊲ w) = f(v)(S(x′)x′′

ad
⊲ (w)) = ǫ(x)Bq(v ⊗ w),

for all x ∈ Uq(g) and v, w ∈ V .
Let φ be the map V → V ∗ which sends v ∈ V to the functional φ(v)(w) = Bq(v ⊗w) ∈ V

∗. Using
the Hopf algebra axioms we see that φ is a module homomorphism:

φ(x
ad
⊲ v)(w) = φ(x′

ad
⊲ v)(ǫ(x′′)w) = φ(x′

ad
⊲ v)((x′′S(x′′′))

ad
⊲ w)

=Bq(x
′ ad
⊲ v ⊗ x′′

ad
⊲ (S(x′′′)

ad
⊲ w)) = ǫ(x′)Bq(v ⊗ S(x

′′)
ad
⊲ w)

= φ(v)(S(x)
ad
⊲ w)

for all x ∈ Uq(g) and v, w ∈ V . Furthermore, φ is a module isomorphism because Bq is nondegenerate.
If θ is another module isomorphism θ : V → V ∗ we can define a module isomorphism θ−1 ◦ φ : V → V
which commutes with the action of the quantum group. g is simple and so the adjoint module V is
irreducible and the uniqueness follows from the Schur’s lemma. �

In practical calculations the form Bq is easiest to find by fixing the costants directly from the
invariance condition.

Let Ři = σiRi ( 1 ≤ i ≤ N − 1) be the linear operator where Ri is the R matrix acting on the i’th
and (i + 1)’th component in the tensor product space V ⊗N and σi permutes the tensor components.
The braiding operator Ři commutes with the action of Uq(g) on the tensor product and thus the
eigenspaces of Ři are invariant subspaces of Uq(g). Ři is a selfadjoint operator and its eigenvalues are
real. Furthermore, the eigenvalue of a nonzero eigenspace is not equal to zero for any q > 0 because
Ři is an isomorphism. Thus, the tensor product splits into parts consisting of the vectors with strictly
positive eigenvalues and strictly negative eigenvalues for any allowed value of q. In the classical limit
q → 1 these eigenspaces become the symmetric and antisymmetric tensor products in the i’th and
(i+ 1)’th component.

Given a spectral resolution of Ři denote by {ai,k : k ∈ I} the negative eigenvalues and by {bi,k :
k ∈ J} the positive eigenvalues of Ři. The brading operators form a generalized Hecke-algebra with
relations

ŘiŘi+1Ři = Ři+1ŘiŘi+1

ŘiŘj = ŘjŘi,∏

k∈I

(Ři − ai,k)
∏

l∈J

(Ři − bi,l) = 0

for all 1 ≤ i, j ≤ n− 1 and |i− j| > 1.
Let T (V ) be the tensor algebra of V . We define the covariant Clifford algebra as a projection of

T (V ) on the q-antisymmetric tensor products by

clq(g) = T (V )/I
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where the ideal I is defined by

I = {(id−Bi
q)v : v ∈ Ker(Ři − bi,k) for some i ∈ N, k ∈ J}.

Bi
q is the invariant pairing of i’th and (i+1)’th tensor component. clq(g) transforms covariantly under

the adjoint action of Uq(g) because Bi
q is invariant and the operators Ři − bi,k commutes with the

action of Uq(g).
A finite dimensional classical Clifford algebra considered as an assosiative algebra is isomorphic to

a finite dimensional matrix algebra with entries in C. The obstruction to infinitesimal deformation of
associative algebras is given by the condition H2(A,A) = 0 in the Hochschild cohomology group [7, 8].
For any associative separable semisimple algebra A and two sided module P the cohomology groups
Hn(A,P ) (n > 0) are trivial. Especially the classical Clifford algebras are rigid algebras i.e., do not
deform. The deformations clq(g) are isomorphic to matrix algebras.

It follows that the irreducible representations of clq(g) can be constructed as in the classical case

(see, e.g. [9]). If V is 2n-dimensional, then there exists linearly independent vectors ψ̂1, . . . , ψ̂2n ∈ clq(g)

which generate clq(g) as an algebra and satisfy {ψ̂i, ψ̂j} = 0 = {ψ̂i+n, ψ̂j+n} and {ψ̂i, ψ̂n+j} = δij for

all 1 ≤ i, j ≤ n. The vectors ψ̂1, . . . , ψ̂n generate a subalgebra which we denote by clq(ψ̂1, . . . , ψ̂n). If

J is the smallest left ideal in clq(g) containing the elements ψ̂n+1, . . . , ψ̂2n then the vector space

S = clq(ψ̂1, . . . , ψ̂n)/J

is an irreducible clq(g)-module. The vectors {ψi : 1 ≤ i ≤ n} can be considered as creation operators
and {ψi : n + 1 ≤ i ≤ 2n} as annihilation operators in a finite dimensional Fock space which satisfy
the CAR algebra relations.

If V is (2n+ 1)-dimensional then one can choose ψ̂1, . . . , ψ̂2n ∈ clq(g) as above and form the Clif-

ford module S. Now clq(g) contains an additional element ψ̂2n+1 anticommuting with each ψ̂i and

ψ̂2
2n+1 = −1. This polarizes S into two eigenspaces with eigenvalues ±i. Thus, S is an irreducible

clq(g)-module.

Proposition. There exists a representation of Uq(g) on S which is compatible with the action of the
Clifford algebra clq(g) in the sense that

x′.ψ.S(x′′).Ψ = (x
ad
⊲ ψ).Ψ (3)

for any x ∈ Uq(g), ψ ∈ clq(g) and Ψ ∈ S.

Proof. The Clifford algebra cl(g) is a Hopf module algebra for the envoloping algebra U(g) and the
generators of U(g) act as derivations on cl(g). The isomorphism of associative algebras φ : cl(g) →
Mat(n×n) induces a Hopf module algebra structure on Mat(n×n). All the derivations of Mat(n×n)
are matrix commutators. Thus there exists a representation χ of U(g) on Cn so that the action on
Mat(n× n) = Cn ⊗ (Cn)∗ is defined by

x ⊲ (w ⊗ f) = χ(x′)w ⊗ χ∗(x′′)f = χ(x′)w ⊗ f ◦ χ(S(x′′)), (4)

for all w ⊗ f ∈Mat(n× n).
The algebra cl(g) is generated by the vectors ψ′

i which span the adjoint representation as a vector
space. Let Mat0(n×n) denote the subspace of Mat(n×n) spanned by φ(ψ′

i)’s. This is also a submodule
of Uq(g) isomorphic to the adjoint representation. The fact that cl(g) and Mat(n× n) are equivalent
Hopf module algebras implies the following: The projection of Mat0(n × n) ⊗ Mat0(n × n) on the
symmetric tensor products is a module homomorpshim

φ(ψ′
i)⊗ φ(ψ

′
j) 7→ φ(ψ′

i)φ(ψ
′
j) + φ(ψ′

j)φ(ψ
′
i) = B(ψ′

i, ψ
′
j)1,

5



which gets values in the trivial module C1, i.e. B is an invariant bilinear form.
Since the categories of the representations of U(g) and Uq(g) have the same morphisms, we have a

Uq(g)-module homomorphism φq : clq(g)→ Mat(n×n) so that the action on the matrix algebra is the
action (4) applied to the coproduct, antipode and a representation χq of Uq(g). Furhermore, if ψi’s
are the generators of clq(g) the matrices φq(ψi) span a submodule Mat0q(n × n), which is isomorphic
to the adjoint representation of Uq(g). The projection on the q-symmetric subspace (the invariant
eigenspace of Ř with positive eigenvalues) is a module homomorphism and gets values in the trivial
module C1. It follows from the homomorpshim property that the trivial module is determined by an
invariant bilinear form which is unique. Thus, the map φq is a Hopf module algebra isomorphism and
satisfies

φq(x
ad
⊲ ψ) = χq(x

′)φq(ψ)χq(S(x
′′)).

The representation χq is given by n× n matrices and thus can be embedded into the Clifford algebra
clq(g) to define (3). �

2 Covariant Dirac operator

Let (V, ρ) and (V ∗, ρ∗) denote an adjoint representation of Uq(g) and its dual. We first define an
invariant one dimensional subspace in the vector space V ⊗ V ∗ and then define D in the image of
this subspace in a module isomorphism from V ⊗ V ∗ to clq(g) ⊗ Uq(g). The module structure of
clq(g)⊗ Uq(g) is chosen so that D commutes with the representation.

Proposition. Let {vi} and {v
∗
i } be bases of V and V ∗. The vector D̃ ∈ V ⊗ V ∗ defined by

D̃ =
∑

i

vi ⊗ v
∗
i

is invariant under the action of Uq(g).

Proof. For all x ∈ Uq(g)

x
ad
⊲ D̃=

∑

i,k,l

ρki(x
′)vk ⊗ ρ

∗
li(x

′′)v∗l

=
∑

i,k,l

ρki(x
′)ρil(S(x

′′))vk ⊗ v
∗
l

=
∑

k,l

ρlk(x
′S(x′′))vk ⊗ v

∗
l

=
∑

k,l

ǫ(x)δklvk ⊗ v
∗
l = ǫ(x)D̃. �

The representation is dependent on the choice of a Hopf structure for the quantum group. If we fix
a Hopf structure, then by definition, the adjoint action on a tensor product ψ ⊗ Z ∈ clq(g)⊗ Uq(g) is

x
ad
⊲ (ψ ⊗ Z) := x′

ad
⊲ ψ ⊗ x′′

ad
◮ Z. (5)

Let clVq (g) be a submodule of clq(g) which is isomorphic to the adjoint representation. If φ1 : V →

clVq (g) and φ2 : V ∗ → Lq(g) ⊂ Uq(g) are module isomorphisms we could try to define the Dirac operator

by A = (φ1 ⊗ φ2)(D̃). This is certainly invariant under the action (5) of the quantum group. Let us
write A =

∑
i,j αijψi⊗Zj for some complex numbers αij . Assume that the elements of clq(g)⊗Uq(g)

act on a vector space H = S⊗W , whereW is a finite dimensional Uq(g)-module and S is an irreducible

6



Clifford module with compatible quantum group action. Even though A is invariant it fails to commute
with the representation of Uq(g) on H . This can be seen using x = x′ǫ(x′′) and ǫ(x) = S(x′)x′′ twice

x.A.h= (x′ ⊗ x′′).(
∑

i,j

αijψi ⊗ Zj).h =
∑

i,j

αij(x
′ ad
⊲ ψi ⊗ x

′′′ ad
◮ Zj).(x

′′ ⊗ x′′′′).h

6= ǫ(x′)(
∑

i,j

αijψi ⊗ Zj).(x
′′ ⊗ x′′′).h = A.x.h

for some x ∈ Uq(g) and h ∈ H because of the noncocommutativity of the coproduct. This problem
can be cured by forcing the quantum group act on the modules clq(g) and Uq(g) with opposite Hopf
algebra conventions.

Let us choose the primary Hopf algebra structure for Uq(g) by

△(ei) = ei ⊗ ti + 1⊗ ei, △(fi) = fi ⊗ 1 + t−1
i ⊗ fi, △(ti) = ti ⊗ ti

S(ti) = t−1
i , S(ei) = −eit

−1
i , S(fi) = −tifi

The Sweedler’s notation △(x) = x′ ⊗ x′′ is always applied to this one. Denote by {Zi} a basis of the
quantum Lie algebra Lq(g). The adjoint action of the quantum group on Lq(g) is given by (1).

The following opposite Hopf algebra can also be applied to construct a representations on tensor
products and duals

△
←−
(x) = x′′ ⊗ x′,

S←−(ti) = t−1
i , S←−(ei) = −t

−1
i ei, S←−(fi) = −fiti

Denote by V op the adjoint representation applied to the opposite Hopf algebra conventions. The action
is defined by

x
o−ad
⊲ (u∗l ⊗ uk) = πli(S←−(x

′′))u∗i ⊗ πjk(x
′)uj (6)

for all x ∈ Uq(g) and u∗l ⊗ uk ∈ V op ⊂ U∗ ⊗ U . Ř←− = σRt is a brading operator which commutes
with the opposite coproducts. Denote by Bq the bilinear form invariant under the opposite adjoint
representation and by clq(g) the corresponding Clifford algebra which, by construction, transforms
covarianly under the following action of Uq(g)

x
o−ad
⊲ ψi1ψi2 · · ·ψin = (x(n)

o−ad
⊲ ψi1) · · · (x

(1) o−ad
⊲ ψin).

Theorem. Let cl1q(g) ≃ V
op denote the embedding of V op in clq(g). Define

D = (φ1 ⊗ φ2)(D̃) ∈ clq(g)⊗ Lq(g)

where φ1 : V → cl1q(g) and φ2 : V ∗ → Lq(g) are module isomorphisms. D spans a one dimensional
invariant subspace in clq(g)⊗ Uq(g) and the representation of Uq(g) and the action of D on the vecor
space H = S ⊗W commute if the actions of Uq(g) and clq(g) on S are compatible.

Proof. D clearly spans a one dimensional invariant subspace because D̃ does. Let us write D =∑
i,j αijψi ⊗ Zj . Let Ψ⊗ w ∈ S ⊗W and x ∈ Uq(g). Using the Hopf algebra properties

ǫ(x) = S(x′)x′′ = S←−(x
′′)x′

7



we find that

xD.(Ψ ⊗ w) = x(
∑

i,j

αijψi ⊗ Zj).(Ψ ⊗ w)

= (
∑

i,j

αijǫ(x
′)x′′ψi ⊗ x

′′′ǫ(x′′′′)Zj).(Ψ ⊗ w)

= (
∑

i,j

αijx
(3)ψi S←−(x

(2))x(1) ⊗ x(4)ZjS(x
(5))x(6)).(Ψ ⊗ w)

= (
∑

i,j

αij(x
′′ o−ad

⊲ ψi)⊗ (x′′′
ad
◮ Zj))(x

′ ⊗ x′′′′).(Ψ ⊗ w)

= ǫ(x′′)D(x′ ⊗ x′′′).(Ψ⊗ w) = Dx.(Ψ ⊗ w). �

We can also add a cubical term in clq(g) to the Dirac operator. The tensor product V op ⊗ V op

contains a submodule isomorphic to the adjoint representation which lies in the q-antisymmetric part
and thus is mapped nontrivially into the algebra clq(g). Let A ⊂ clq(g) denote this submodule and
φ3 : V ∗ → A a module isomorphism. The cubical part of the Dirac operator is defined by

Dc = m(φ1 ⊗ φ3)(D̃)⊗ 1,

where m is the product of clq(g). Dc is invariant and commutes with the representation.
D spans an invariant subspace in clq(g) ⊗ Uq(g) which is a q-deformation of the noncommutative

Weyl algebra cl(g)⊗ U(g). In the limit q → 1 we get the classical Dirac operator on a Lie group with
a suitable choice of the coefficients.

Example: Uq(sl(n)). The defining representation of Uq(sl(n)) on U = Cn =
⊕n

i=1 Cui can be written
by

ei.uk = δk,i+1uk−1, fi.uk = δk,iuk+1, ti.uk = qδk,i−δk,i+1uk.

Let Φ = {ξi − ξj : i 6= j; 1 ≤ i, j ≤ n} be the set of roots of the Lie algebra sl(n). The adjoint
representation of Uq(sl(n)) is the invariant subspace of U∗ ⊗ U with the highest weight ξ1 − ξn ∈ Φ.
The highest weight vector is u∗n ⊗ u1.

Let us choose two sets of basis vectors for U∗ ⊗ U :

u+ξk−ξl
= u−ξk−ξl

= u∗l ⊗ uk, 1 ≤ k 6= l ≤ n

u+0,k = q−1(uk ⊗ u
∗
k − uk+1 ⊗ u

∗
k+1)

u−0,k = uk ⊗ u
∗
k − uk+1 ⊗ u

∗
k+1, 1 ≤ k ≤ n− 1.

We consider the (n2 − 1)-dimensional vector space spanned by {u+ξk−ξl
, u+0,k} as a module where the

quantum group acts with the primary Hopf algebra conventions. Let us denote this module by V .
Similarly, {u−ξk−ξl

, u−0,k} is a module (V op) where the action is given by the opposite Hopf algebra. The
quantum group acts on these vectors as follows

ei ⊲ u
±
ξk−ξl

= δk,i+1u
±
ξk−1−ξl

− q±1δi,lu
±
ξk−ξl+1

, l > k or k > l + 1

ei ⊲ u
±
ξk+1−ξk

= q±1δi,ku
±
0,k

ei ⊲ u
±
0,k = q∓1δk,i+1u

±
ξk−1−ξk

− (q + q−1)δi,ku
±
ξk−ξk+1

+ q±1δk,i−1u
±
ξk+1−ξk+2

fi ⊲ u
±
ξk−ξl

= δi,ku
±
ξk+1−ξl

− q∓δl,i+1u
±
ξk−ξl−1

, k > l or l > k + 1

fi ⊲ u
±
ξk−ξk+1

= −δi,ku
±
0,k

fi ⊲ u
±
0,k = −q∓2δk,i+1u

±
ξk−ξk−1

+ (1 + q∓2)δi,ku
±
ξk+1−ξk

− δk,i−1u
±
ξk+2−ξk+1

ti ⊲ u
±
ξk−ξl

= q〈ξk−ξl,αi〉u±ξk−ξl
, ti.u

±
0,k = u±0,k, (7)
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where ⊲ means
ad
⊲ or

o−ad
⊲ . The dual module V ∗ of the module V is given by

ei.u
∗
ξk−ξl

= −qδi,ku
∗
ξk+1−ξl

+ q2δi,l−1u
∗
ξk−ξl−1

, k > l or l > k + 1

e∗i .u
∗
ξk−ξk+1

= δi,k(−qu
∗
0,k−1 + (q + q−1)u∗0,k − q

−1u∗0,k+1)

e∗i .u
∗
0,k = −q3δi,ku

∗
ξk+1−ξk

f∗
i .u

∗
ξk−ξl

= −q−1δi,k−1u
∗
ξk−1−ξl

+ q−2δi,lu
∗
ξk−ξl+1

, l > k or k > l+ 1

f∗
i .u

∗
ξk+1−ξk

= q−2δi,k(u
∗
0,k−1 − (1 + q−2)u∗0,k + q−2u∗0,k+1)

f∗
i .u

∗
0,k = δi,ku

∗
ξk−ξk+1

t∗i .u
∗
ξk−ξl

= q−〈ξk−ξl,αi〉u∗ξk−ξl
, t∗i .u

∗
0,k = u∗0,k.

Let clq(sl(n)) denote the Clifford algebra transforming covariantly under the opposite adjoint rep-
resentation. The module cl1q(sl(n)) is spanned by the vectors {ψξk−ξl , ψ0,k} in clq(sl(n)), where the

vectors ψξk−ξl and ψ0,k are the images of u−ξk−ξl
and u−0,k in the embedding of V op → clq(sl(n)).

Let us choose a basis for Lq(sl(n)) by

Tξk−ξl = Zlk, 1 ≤ k 6= l ≤ n

T0,k = q−1(Zkk − Zk+1,k+1),

where Zij ∈ Uq(sl(n)) are given by (2). These vectors transforms in the adjoint action (1) precisely as
the vectors {u+ξk−ξl

, u+0,k} in (7). To write down explicite formulas for these vectors one can use the
R-matrix from [12].

Next we need module isomorphisms φ1 : V → cl1q(sl(n)) and φ2 : V ∗ → Lq(sl(n)). The first
isomorpshism is the diagonal map

φ1(u
+
ξk−ξl

) = αk,lψξk−ξl , φ1(u
+
0,k) = αk

0ψ0,k

where the coefficients are defined, up to a multiplicative constant, by

αk,l = αk+1,l, αk,l = q2αk,l+1, αk,k+1 = q−2αk+1,k, αk
0 = αk,k+1.

The second isomorphism is given by

φ2(u
∗
ξk−ξl

) = βk,lTξl−ξk , φ2(u
∗
0,k) =

n−1∑

l=1

βk,l
0 T0,l

and the coefficients can be fixed from the relations

βk,l = βk+1,l, βk,l = q−2βk,l+1, βk,k+1 = q2βk+1,k

βk,l
0 = q−2(k−1) (−2(n− 1− k))q(2(l − 1))q

(−2(n− 1))q
βk,k+1 (l ≤ k)

βk,l
0 =

(−2(n− 1− l))q(−2(k − 1))q
(−2(n− 1))q

βk,k+1 (k ≤ l)

(±m)q = 1 + q±2 + . . .+ q±2m.

The Dirac operator is defined by

D =
∑

k 6=l

αk,lβk,lψξk−ξl ⊗ Tξl−ξk +

n−1∑

k=1

αk
0ψ0,k ⊗ (

n−1∑

l=1

βk,l
0 T0,l).
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The spectrum. To understand the behaviour of the spectrum of D it is sufficient to study Uq(sl(2)).
The quantum Lie algebra Lq(sl(2)) is spanned by

hTα = −q(q − q−1)e

hT0 = q−1(t−1 − t+ q(q − q−1)2fe)

hT−α = −(q − q−1)ft,

where ξ1 − ξ2 = α is the simple root. The R←−-matrix in the opposite adjoint representation (7) is

R←−= e11 ⊗ (q2e11 + e22 + q−2e33) + e22 ⊗ 1 + e33 ⊗ (q−2e11 + e22 + q2e33)

+ (q2 − q−2)e21 ⊗ e12 − (1− q−2)e12 ⊗ e23 − (1 + q−2)(q2 − q−2)e32 ⊗ e12

+ (q2 − q−2)e32 ⊗ e23 + (q − q−1)2(1 + q−2)e31 ⊗ e13.

There are three invariant eigenspaces in V op ⊗ V op for the operator Ř←−. The q-antisymmetric part is

three dimensional and its eigenvalue is −q−2. There are also one and five dimensional q-symmetric
eigenspaces with eigenvalues q−4 and q2. The invariant q-antisymmetric subspace has a basis

Aα = ψα ⊗ ψ0 − q
2ψ0 ⊗ ψα

A0 = −(1 + q2)ψα ⊗ ψ−α − (q2 − 1)ψ0 ⊗ ψ0 + (1 + q2)ψ−α ⊗ ψα

A−α = ψ0 ⊗ ψ−α − q
2ψ−α ⊗ ψ0.

The coefficients are chosen so that these transform as the opposite adjoint representation in (7). We
shall use the same symbols for these vectors after they have been embedded into the algebra clq(sl(2)).

The invariant bilinear form Bq : V
op ⊗ V op → C is given by

Bq(ψα ⊗ ψ−α) = b, Bq(ψ0 ⊗ ψ0) = (1 + q2)b, Bq(ψ−α ⊗ ψα) = q2b,

and the rest of the generators are in the kernel of Bq. b is an arbitrary constant. The following Clifford
algebra relations can be written down immediately from the spectral decomposition by identifying the
q-symmetric vectors with their image in Bq:

ψαψα = ψ−αψ−α = 0

q4ψαψ−α − q
2ψ0ψ0 + ψ−αψα = 0

q2ψαψ0 + ψ0ψα = 0

q2ψ0ψ−α + ψ−αψ0 = 0

ψαψ−α + ψ−αψα = (1 + q2)b.

Let us normalize the form Bq so that b = (1 + q2)−1. The irreducible representation of clq(sl(2))
on S =

⊕
i=0,1 Cvi which is compatible with the defining representation of the quantum group (the

n = 1 representation in (8)) is given by

ψα.v0 = 0, ψα.v1 = v0

ψ0.v0 = qv0, ψ0.v1 = −q−1v1

ψ−α.v0 = v1, ψ−α.v1 = 0.

Let Wn be the (n+ 1)-dimensional Uq(sl(2))-module of the highest weight n defined by [11]

e.vp = [n− p+ 1]vp−1, e.v0 = 0,

f.vp = [p+ 1]vp+1, f.vp = 0, t.vp = qn−2pvp (8)

where 0 ≤ p ≤ n and [k] = (qk − q−k)/(q − q−1).
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For each n ∈ N one can define a vector space Hn = S⊗Wn. As a Uq(sl(2))-module this decomposes
as

1⊗ n = n+1⊕ n-1.

The covariant Dirac operator with a cubical term is defined by

D= (1 + q−2)(ψα ⊗ 1)(A−α ⊗ 1 + 1⊗ hT−α) + (1 + q−2)(ψ−α ⊗ 1)(q2Aα ⊗ 1 + 1⊗ hTα)

+ (ψ0 ⊗ 1)(A0 ⊗ 1 + 1⊗ hT0),

where we have fixed the coefficients of the Dirac operator and its cubical part, of course, any other
choice can be made. The Dirac operator has (n+ 2) and n-dimensional eigenspaces H+

n and H−
n and

its action on Hn is given by

D.h+ = (q−n − qn − (q−3 + q−1 + 2q + q3 + q5))h+, h+ ∈ H
+
n

D.h− = (−(q−n−2 − qn+2)− (q−3 + q−1 + 2q + q3 + q5))h−, h− ∈ H
−
n .

The spectrum grows exponentially as a function of n. The operator in [1] has the same spectrum as
D except for the term independent of n which comes from the cubical term.
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