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Abstract—Diversity—multiplexing tradeoff (DMT) was charac-  whereC' is the instantaneous channel capacity (i.e. capacity
terized asymptotically (SNR-=> infinity) for i.i.d. Rayleigh fading  of a given channel realization), anfd-(R) is its cumulative

channel by Zheng and Tse [1]. The SNR-asymptotic DMT gictrit it ; o : ; .
overestimates the finite-SNR one [2]. This paper outlines a distribution function (CDF). Defining the multiplexing gai

number of additional limitations and difficulties of the DMT )

framework and discusses their implications. Using the reqa r= 11)11;0 R/In~y (2)
results on the size-asymptotic (in the number of antennas)utage K

capacity distribution, the finite-SNR, size-asymptotic DMI' is  where~ is the average SNR at the receiver, and the diversity
derived for a broad class of fading distributions. The SNR range  gain aé

over which the finite-SNR DMT is accurately approximated by . InP,yu

the SNR-asymptotic one is characterized. The multiplexingyain d=— lim 3
definition is shown to affect critically this range and thus $ould

be carefully selected, so that the SNR-asymptotic DMT is an the SNR-asymptoticy( — oo) tradeoff for the independent
accurate approximation at realistic SNR values and thus has identically distributed (i.i.d.) Rayleigh fading chanmeith the

operational significance to be used as a design criteria. The : : _
finite-SNR diversity gain is shown to decrease with correlabn coherence time in symbofB > m +n —1 can be compactly

and power imbalance in a broad class of fading channels, and €Xpressed as [1],
such an effect is described in a compact, closed form. Compée d(r) = —01 . 4
characterization of the outage probability (or outage capaity) (r) = (n=r)(m —=r), r=0,1,..min(m,n)  (4)

requires not only the finite-SNR DMT, but also the SNR offset, . .
which is introduced and investigated as well. This offset, hich wherem,n are the number of transmit (Tx), receive (Rx)

is not accounted for in the DMT framework, is shown to have a antennas, for integer values gfand using the linear interpo-
significant impact on the outage probability for a broad clas lation in-between. The motivation for the definitionsofn (2)
of fading channels, especially when the multiplexing gainsi is that the mean (ergodic) capacifyscales asnin(m, n)In~y
small. The analytical results and conclusions are validatk via gt high SNR,

extensive Monte-Carlo simulations. Overall, the size-asgptotic

DMT represents a valuable alternative to the SNR-asymptoti C ~ min(m,n)Invy, asy — oo (%)
one.

and the motivation for the definition of in (@) is that P,

Index Terms—Diversity-multiplexing tradeoff, outage proba- scales asy_d at high SNR,

bility/capacity, MIMO fading channel, spatial correlatio n.
Pout ~ C/’yda asW — 00 (6)

I. INTRODUCTION wherec is a constant independent of the SNRhe DMT in

ULTI-antenna (MIMO) systems are able to provid@v\;}?l‘c‘ bﬁenstle\i(;ended to multiple-acchess chgnnels .in [?]
either high spectral efficiency (spatial multiplexing) e the ~-asymptotic approach provides a significant

or low error rate (high diversity) via exploiting multiple'ns'ght into MIMO channels and also into performance of

degrees of freedom available in the channel, but not bo\fﬂriouS sys_tems_that epro_i'F SUCh. channels, it has als_o a
simultaneously as there is a fundamental tradeoff betwe mber of I|m|tat|0n§. Spemﬂcally, it does not say any@hln
the two. This diversity-multiplexing tradeoff (DMT) is litas;'jl out operdatlonal gﬁr;ﬂc;smcehof andél ath rea“hs.t'(;] (."e'h
characterized using the concepts of multiplexing and ditxer ;KIVRtO mo edratte) ) ;tﬁt er wortst, E}’:’ '9 3'3 t'?h
gains [1]. Fundamentally, this is a tradeoff between thegeit required 1o approac e asymptoteslin @), (3), wi

probability P,.,;, i.e. the probability that the fading channel igeasonable accuracy, so t_hat, for examplesan be used to

not able to support the transmission rdte and the rateR, gccurately estimaté,; using [6) and[{#)? It Was.observed

which can be expressed via the outage capacity distributioff [,2]’ based on a lower .b.ound Offout for_ Rayleigh and
Rician channels, that the finite-SNR DMT lies well below the

P,ut(R) =Pr[C < R] = Fo(R) (1) curve in [4), and the convergence of the finite-SNR DMT to
the asymptotic value in[{4) as the SNR grows is slow, so
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that [4) becomes an accurate approximation for the finitealue inequalities, that full-rank correlation does ndeef the
SNR DMT only at unrealistically high SNR. Therefore, propeDMT for any fading distribution.
modifications to the asymptotic results and definitions are Other directions of active research in this area include
required to improve its accuracy for realistic SNR valuethe DMT studies of frequency-selective channels [11], of
Using the SNR-asymptoticy(— oo) DMT to compare two channels with antenna selection [12], of half/full dupleiay
systems may give incorrect results at low to moderate SN&hannels under various protocols [13]-[15], of ARQ chasanel
The estimates of finite-SNR DMT based on lower bound&7] and the impact of partial channel state informationhat t
on the outage probability in correlated Rayleigh and Riciagnansmitter [16]. Finally, inspired by the DMT framework, a
channels obtained in [2] are not in an explicit closed-formumber of space-time coding technigques have been proposed
(e.g.[@)) and require a numerical procedure to evaluateghwhthat achieve the diversity-multiplexing tradeoff [18]2]2 In
limits the insight that can be extracted from such results. particular, using an explicit code construction, it has rbee
Another approach to the problem has been presenteddigmonstrated in [19] that the DMT fdr > m is the same as
[4], [5], where the rate is not required anymore to satisfihat with? > m+n—1, i.e. the minimum number of symbols
the condition in [[2), but rather belongs to a rate regionequired to achieve the DMT is: rather thanm +n — 1.
k< R/lny < k+1,k=0,1,..min(m,n). Based on the Inthe present paper, we adopt a different approach to DMT
concept of rate regions, it has been demonstrated that thanalysis, which allows us to evaluate a finite-SNR DMT in a
exists a tradeoff between the outage probability and the r&losed form for a broad class of fading channels. To evaluate
termed “throughput-reliability tradeoff (TRT)”, which nabe the DMT for arbitrary SNR in a certain channel, one would
expressed, for the i.i.d. Rayleigh fading channel, in a cachp need to known the outage capacity distributié(R) of

form as that channel. While some results of this kind are available
lim In Poyt — (k)R — _g(k) @ in the literature, their complexity prevents any analftica
o0 Iny g\, development, which is the ultimate reason for using> oo

in most studies. On the other hand, a number of compact
analytical results, which hold at finite SNR, have recently
aHpeared on the outage capacity distribution of asymjaiibtic

whereg(k) = mn — k(k + 1), ¢(k) = m +n — (2k + 1).
While the rigorous result still requires — oo, the TRT
is more accurate at finite SNR values compared’io (4), a ; .
. : - arge systems, i.e. when either— oo or m — oo, or both
it provides a reasonably-accurate finite-SNR answer to t 1-[30]. For a broad class of fading distributions (undad
important question “what does a 3dB buy in MIMO channels? )

: .-~ technical conditions), it turns out to be Gaussian with tleam
[5]. However, [T) does overestimate the outage probalality : . o
low to moderate SNR values [4] and the variance determined by the SNR and specifics of the
. . channel.

i \{Vhéle th? c(jnrlgmall DhMI (l;(_)rmulstlon cl)f Zheng anfi Ts{e 'S" We exploit these size-asymptotic results to derive the
Imited to 1.1.d. Rayleigh fading channels, a generalaatto iversity-multiplexing tradeoff at finite SNR and also for

a C"'?‘SS .Of channels _satisfying a _number of conditions on 0 0ad class of fading distributions (e.g. not necessarily
distribution function (including Rician, Nakagami, and il Rayleigh i.i.d. channels), which we term here “size-asyotipt

Iﬁdmg’ Wlh':fh maytbg non—lde?t]:c;'ill orﬁorr:elaged, provf;ait DMT” to distinguish it from the SNR-asymptotic one inl (4).
e correlation matrices are of full rank) has been preseinte The advantage of this approach is that its results apply at

56]' In p?rt#:ulj[a\trhlt g;c\l/lsTbeenf_sh(_)wnﬂt]hat ful!l—rank (ito_rtﬁda ¢ any finite SNR and, thus, have operational significance at
0€s notafiect tne , canfirming the earlier result in [ realistic SNR values. Furthermore, since the fading digtion

Rati/]le'th gnd R'g';n clhgnhnelhs, andl thgfc thle :D’\:th'hs the_ SaMEllowed to belong to a broad class rather than being ndyrow
in the Rician and Rayleigh channels. Similarly to the orgin defined, the results are robust from the practical viewpoint

SNR-asymptotic DMT, the results in [6] requine— oo. Since all practical systems operate at finite SNR, the SNR-

An in-depth study of the DMT in the uncorrelated Riciar}jls mbtotic DMT in serves onlv as an approximation. It is
channel have been presented in [7], confirming the earlit(ﬁry P Gy y bp '

. : . us important to evaluate the rate of convergence to thié lim
result in [6] that the SNR-asymptotic DMT of Rayleigh an?n (4). Our approach demonstrates that the convergencesof th

Rician channels are the same. While most of the results in kfli. . SNR DMT to the SNR-asymptotic one [ (4) as the SNR

still requirey — oo, a finite-SNR DMT has been presented fobrows is very slow (as/(In y)2) for moderately-large systems

SIMO/MISO channels. The SNR-asymptotic DMT of doubleénd also depends on the system size m and multiplexing

scatter_ing MIMQ ch_annels under Ra)_/leigh fading has beﬁr&in r+ while the convergence to the SNR asymptotelih (4)

found in [8], Wh'Ch’ in the case of a single double-;cat@rlqs achieved at high but realistic SNR values (e.g. 20dB) for

Process (equivalent to the single keyhole channel in [28]), smaller systems (e.@.x 2) and larger, it is only achieved at

given by [9] unrealistically high SNR (e.g. 80dB) for larger systemg(e.
d(r) = min(m,n)(1 —7), 0<r <1, 8 1Q x 10). On the (_)ther hand, the size-asymptot_ic cgpacity

distributions result in compact closed-form approximasiof

i.e the DMT curve of the single keyhole channel is signifithe DMT at realistic SNR values, which are also sufficiently

cantly lower comparing to that of the full-rank Rayleightiiag accurate for small systems (e2)x 2ﬁ.

channels (compar€l(8) tl(4): while the maximum dlverSIty3 This follows from our results on the size-asymptotic DMT &cson IlI,

gain in 8) is min(m,n),. it is m - n in @). It was aI.SO and also from earlier results in [23]-[30] on the outage citpadistribution
elegantly demonstrated in [8], based on asymptotic simgulader fixed rate (which correspondsite= 0).



The multiplexing gain definition is shown to affect critigal e The SNR offset, which is a missing link between the
the rate of convergence of the finite-SNR DMT to the SNRdiversity gain and the outage probability, is introduced an
asymptotic one: when the multiplexing gain is defined via theharacterized via the size-asymptotic theory for a broadscl
mean (ergodic) capacity, the convergence (within readenabf fading channels. The diversity gain along is shown to be
accuracy) takes place at realistic SNR values. Furthernimreinadequate in characterizing the outage probability. @/thle
this case the diversity gain can also be used to estimate theltiplexing gain definition via the mean capacity resuftsi
outage probability with reasonable accuracy. The multiplp moderate SNR offset, the other definitions (via the high-SNR
gain definition via the high-SNR asymptote of the meaapproximations of the mean capacity) result in a very high
capacity (as in [1]) results in very slow rate of convergenc@NR offset (Theorem 4, Proposition 3).
for moderate to large systems and, hence, the SNR-asymptotie A number of limitations and difficulties of the DMT
DMT cannot be used at realistic SNR values. For this defirfiramework at finite SNR are discussed. This includes a sig-
tion, the high-SNR threshold required to achieve the DMT inificant impact of the multiplexing gain definition on the
(4) within reasonable accuracy increases exponentialthén finite-SNR DMT (unlike the SNR-asymptotic one), very slow
number of antennas and in the multiplexing gain. Furtheemorconvergence of the finite-SNR DMT to the SNR-asymptotic
the SNR-asymptotic diversity gain ibl(3) cannot be usedealoone, and anomalous behavior of the outage probability at low
to estimateP,,; in (@) at any SNR (even very large) sinceo moderately high SNR under the DMT framework. (Section
the constant, termed “SNR offset”, can be very large (e.glll-A).

10*) for moderate to large systems. The SNR offset can bee Correlation and power imbalance are shown to have a
somewhat eliminated by proper modifications [df (2) dnd (3)egative impact on the finite-SNR DMT, which is charac-
which speed up the convergence in SNR, but the problem stétized for a broad class of fading channels via the measure
persists. On the contrary, the size-asymptotic approadbhwhof correlation and power imbalance introduced in [26], [29]
we advocate here provides not only the finite-SNR DMT, b§Theorems 5, 6)

also the SNR offset and thus an accurate estimate of the e The outage capacity distribution of rank-deficient (double
outage probability (unless the SNR is very high). The finitescattering, multi-keyholes, relay) correlated channeltget to
SNR diversity gain is shown to decrease with correlation ardbroad class of fading distributions is obtained in the-size
power imbalance in the channel according to the measwgymptotic regime (Theorem 3).

of the latter two introduced in [26], [29], i.e. unlike the The rest of the paper is organized as follows. In section
SNR-asymptotic DMT, the size-asymptotic DMT adequately, we introduce the basic system model and briefly review
describes the outage probability in correlated channels. Fthe asymptotic outage capacity distributions (Theorengs.1-
thermore, the effect of correlation and power imbalancehen tSection 11l discusses the main limitations and difficultisfs
finite-SNR DMT is described in a compact, closed form for the DMT framework and presents the size-asymptotic, finite-
broad class of fading distributions. SNR DMT and SNR offset for a broad class of full-rank and

Systems with unequal number of Tx and Rx antennagnk-deficient fading channels (Theorems 4-6, PropositRin

exhibit qualitatively-different behavior from those widgual 4). Finally, section IV concludes the paper. The proofs are
number of antennas: while the size-asymptotic DMT of thevllected in Appendix.

latter converges to the SNR-asymptotic DMT as the SNR
grows, that of the former does not. The size-asymptotic DMT
does however provide an accurate approximation of the true
DMT at low to moderately-high SNR, even for a modest
number of antennas. In this case, the size-asymptotic DMTThe standard baseband discrete-time system model is
is complementary to the SNR-asymptotic one: while the dattadopted here,
is accurate at very high SNR, the former is accurate at low r=Hs+¢, 9)
to moderately-high SNR. Combining these two, one obtains a
DMT estimate that is accurate at the whole SNR range. wheres andr are the Tx and Rx vectors correspondingly,
Systems/codes are often designed and compared basedois the n x m frequency-flat, block-fading channel matrix,
their SNR-asymptotic DMT [18]-[22]. However, better DMTi.e. the matrix of the complex channel gains between each
does not imply better outage probability at finite SNR, beeauTx and each Rx antennap and n are the numbers of
of the contribution of the SNR offset ignored in the DMTTx and Rx antennas, ang is the additive white Gaussian
framework. Likewise, equal DMT does not imply equal outageoise (AWGN), which is assumed to k&\(0,21), i.e.
probability. These qualitative observations are subisttedt independent and identically distributed (i.i.d.) in eachrizh.
in the paper via a quantitative analysis based on the siZehe assumptions on the distribution &f follow those of
asymptotic theory. The main results are summarized as ftte asymptotic capacity distributions (discussed beldw:
lows: entries ofH are assumed to be either (i) i.i.d. but otherwise
e The size-asymptotic, finite-SNR DMT is derived for arbitrary fading (this includes Rayleigh fading as a specia
broad class of full-rank and rank-deficient fading channelsase) [27], (ii) unitary-independent-unitary (UIU) [28(ii)
which is not only accurate at realistic SNR values, but is algorrelated Rayleigh-fading with separable correlationcttire
an important part in an accurate characterization of thagmut [24], [30], or (iv) follow the statistics of the correlateddble-
probability. (Theorems 4-6, Propositions 3, 4). scattering or keyhole channel [26], [29].

Il. SYSTEM MODEL AND OUTAGE CAPACITY
DISTRIBUTION



When full channel state information (CSlI) is available & thconsidered in [1], [2]), and also includes the channels not
Rx end but no CSI at the Tx end, the instantaneous channehsidered in [6].

capacity (i.e. the capacity of a given channel realizafibn Theorem 2:Let H be ann x m matrix of a Rayleigh-

|r:;2nats/s/Hz is given by the celebrated log-det formula ’[311]ading channel with separable (Kronecker) correlationcstr

[32] N ture, such thal(vec(H)vec(H*)) = RT @ R,., whereR, —
C = Indet (I + EHH ) ; (10) n-'EMH*H), R, = m 'E(HH") are transmit and receive

correlation matrices respectively, operataic(H) creates a

where is the avitage SNR ber Rx antenna (contributed t@é)lumn vector by stacking the elements Hf columnwise,
all Tx antennas), *” denotes conjugate transpose.

o is the Kronecker product, art! is the transpose .
For largem, n, the distribution ofC' takes on a remarkably ® P t P R+
. X Then, asm — oo, and
simple form in a number of casks

Theorem 1:Let H be ann x m channel matrix whose Jim[[Refl, /| R¢[| = 0, (15)
entries are i.i.d. zero mean random variables with uniiavere _
andE |Hy|* = 2. Asm,n — oo and 8 = m/n is a constant, Where || ||, and [| || are spectral and Frobenius norms re-
the instantaneous capacity [1110) is asymptoticallyrtin:) ~ SPectively, the instantaneous capacitylinl (10) is asyriyatiy

Gaussian, with the following mea@ and variancer?: Gaussian with the following meafi and variances?
C o gm(1+2 (2.5 C = Indet (1+9R,) ~nln (1), (16)
n B 4 B’
1. (v B (v 1 n X\
sif(1e9-17(36)) - £7(38) a0 2o L ymype. M\ L g
=15 0)) "5 (50) @) e R Y o) e IR A7)
) 1 v 2 where A}, k = 1..n, are the eigenvalues oR,, a =
og=—In|1-5 [@F (B’ 5)} ’ (12) (det RT)_l/" is the SNR offset, and the approximation holds
at high SNR, whemyA7 . > 1, under the normalization

where F(z,2) = (Va(l+v2)? +1—/z(1 - 22 +1)%. 'R, =n.
Proof: see [[27], Theorem 2.76]. (] Proof: see [24], [25]. ]

Moreover, from [[28], Theorem 5], the instantaneous capac-When bothm,n — oo and 8 = m/n is a constant, it
ity of a channel whose channel matrix has independent but h@s been shown that under certain general conditions on the
necessarily identically distributed entries is also astatigally ~ channel correlation, the instantaneous capacity of a Reyle
Gaussian, as botm,n — oo, with the mean and variancefading channel with the Kronecker correlation structuralo
defined by[(Tl1) and (12) respectively, if the channel gain masymptotically Gaussian [30]. Note that the UIU channels
trix E |hi;|* is asymptotically mean double-regular (see [[28Eonsidered in [[28], Theorem 5] and those in [30] do not
Definition 3]). This implies that the instantaneous capaoit overlap, unles®; =1, R, = I (uncorrelated case).
a broad class of so-called unitary-independent-unitafju ~ Theorems 1 and 2 apply to full-rank channels. Rank-

channels [28] is also asymptotically Gaussian. deficient channels can be considered via the multi-keyhole
At moderate to high SNR{11)_(12) can be approximatgtodel in [26], [29]. Using [[26], Theorems 4, 7], Comment 5
a§ in [25], and Von-Neumann trace inequality [37], the follogi
_ ) N theorem follows.
C =~ min(m,n)ln (—) , ) L
a Theorem 3:Consider a rank-deficient channel of the form
—In(1-5), pB<1 H = S0 byhyyhf, rank(H) = M < min(m,n), where
020 ~ % ln% + % ,B=1, (13) bx are complex modal amplitude#,; and h,; are modal
~In(1-1/8), B>1 Tx and Rx channel vectors, which are independent of each
other, with correlation matriceR,;;, = E{htkhzgc}, R, =
wherea is the SNR offset, E{h,;h'_}. Assume the following conditions hold:
eB(1— BV g <1 (@ hy = Ry, gu, hoi = R}, g4, Whereg,;, andg, . are
a={ e, B=1 (14) zero mean, unit variance, complex circular symmetric ramdo
e(1—1/B8)P"1, B>1 vectors with i.i.d. entries (not necessarily Gaussian),

_ (b) mars(|g]>) < oo for somed > 0 and ma(|g|*) > 0,
Note that Theorem 1 applies to a broad class of Cha”n%eremg(x) - E(zr— Ea:)5 is the central moment of of
not only Rayleigh or Rician ones (only these channels wegeyeqr s andg is any entry ofg,;. of g

4 Other asymptotic results are also available in the liteeattiowever, we HRt b || ||R kH
will rely only on these theorems in the present paper. (C) li R = R =0, Vk.
5 Similar approximations, but without/, /4 term, can be found elsewhere m—oo || Rex|| n—oo Ry ||
in the literature. They, however, become accurate for Sagmitly larger SNR, A he i . f thi h li
~ > 20...30dB, while the approximation in{13) is already accurateyat S m,n — oo, the Instantaneous capacity ot this channel Is

5dB. asymptotically Gaussian with the following mean and vari-




ance, significantly improved ifr is defined viaC, or viaIn(y/a),

_ M 9 v Whic is motivated by[(13) and takes into account the SNR
C = Zk:l ln (1 + |bk| ’7) =~ Mhl (a) ) Oﬁ:se a,
2 2 ., min(m,n)R 1)
2 _ M |br|” v Btk 2, Brk 2 = ?
G <1+ by ) \m2 Rek [+ T3 (R .
r= (22)
M T
= 30 (B R+ 2 R, as) n(/a)
=1 \m "

where [Z1) defines the rate via the mean capacity per degree
where~ is the total SNR (combined from all Rx antennashf freedom,R = rC/min(m,n). Note that, at finite SNR,
a = [T, |be] "> is the SNR offset3,, = ma(lgix|*), Bk = = = 0 corresponds taR = 0. While the SNR-asymptotic
m2(|grk|2), andg (i, is any entry ofg, ... The approxima- DMT is the same for all 3 definitions of the multiplexing gain,
tion holds at moderate to high SNR, Wherrlbmin|2 > 1. If there is a significant difference at finite SNR, both in terms
gk, S are Gaussian, thefy, = 8,5 = 1. of diversity gain and SNR offset. The difference in diversit
Proof: see Appendix. m gains does not disappear unless the SNR is unreasonably high
d the difference in SNR offsets does not disappear at any

It should be noted that the channel model in Theorem R, does not matter how high. This motivates the study of

coincides with the amplify-and-forward relay channel whefy 6 ione 1o select the best one at finite SNR.
each relay node has a single antenna and the relay noisé is
negligible (see [41] for examples of such cases). Therefore Diversity gain and SNR offseAnother finite-SNR difficulty
under this condition, the relay channel will have the samg that when P,,, behaves as in[{6), which serves as a
outage capacity and the DMT as the multi-keyhole one. A@taseline model for the finite-SNR DMT analysis, the finite-
ditionally, from [[29], Theorem 2], the channel in Theorem 3NR diversity gaind, = —Inc¢/Inv + d includes the effect
converges to a Rayleigh-fading onel&s— oo, whose outage of the SNR offsetc and is not equal to the “true” diversity
capacity is also asymptotically Gaussian [30]. The coaditi gaind, unlesdn+ is very (unrealistically) high. The difference
(c) in Theorem 3 implies that the channel is “asymptoticallpetweend andd., can be significant when the SNR offseis
uncorrelated” in the sense that the measure of correlatidn ssignificant (i.e. either too high or too low). A definition dfe
power imbalance approaches zero [[25], Comment 5]. finite-SNR diversity gain introduced in [2] partially elimates
Using the asymptotic outage capacity distributions abovijs problem and captures the differential effect of diitgrs
the outage probability can now be compactly expressed asi.e. how much increase in SNR is required to decref8sg
— by certain amount,
Paalf) = @ (1) (19)
out o dl _ _6111 Pout
1 oo 9 7 Oln~y
where Q(z) = ﬁfz exp(—t2?/2)dt. It follows from (I9)

that reliable transmission (Iow,.;) is possible wheng < WhenFou: is asin [6) and:, d are SNR independent, = d,
= i.e. this definition recovers precisely the “true” diveysgain

C — o¢ and, for a given rate, the larger the mean capaGity "*©: " . , SR o
and the smaller the varianee,, the smallerP,; is. In the a/t f|.n|t.e SNR._Furthermore, since thg differential divergiain
following sections, we exploi{{19) to evaluate the finitsfs @~ IS Insensitive to the SNR offsetin (6), the convergence
DMT. to the SNR-asymptotic value is faster. For sufficiently high
SNR, both definitions of the diversity gain (ih_{23) and](20))
give similar results and, when the limit exist&n, o dy =
limy 00 d; [7]. However, P,,; cannot be reliably estimated
S o ) _ from d’, alone since it captures only the differential effect of
We begin with a motivation of the size-asymptotic a”alysiﬁcreasing SNR and is independent of the offsethich may

as an alternative to the SNR-asymptotic one by pointing ogynificantly affectP,.; (see, for example, Fig. 1). Motivated
some limitations and difficulties of the DMT framework Wherby (©), we define the SNR offset for giveR,.; as

applied to finite (realistic) SNR values.

(23)

1. FINITE-SNR DMT VIA SIZE-ASYMPTOTIC CAPACITY
DISTRIBUTION

Cy = Pouwd; (24)
A. Limitations and difficulties of the DMT framework at f|n|t®n the other hand’ given both the diversity gain and the
SNR SNR offset, the outage probability can be estimated from

Multiplexing gain definitions:While a finite-SNR DMT (6). Thus, the SNR offset provides the missing link between
analysis requires using finite-SNR analogs of the definitiothe DMT and outage probabilify and also indicates how far

in @), (@), their straightforward extensions, i.e. away the rough estimat®,,; ~ 1/7¢ is. Using the size-
asymptotic results above, the SNR offset can be evaluatiéd wi
R In Pyt (20)
r=—, = - )
In~y K In~y 6 [33] gives a detailed discussion of the importance of SNRatfin the

produce a number of difficulties pointed out below. In par-tic capacity analysis of MIMO systems. Note that this offset issing in [3).

. .7 while, for most channels at finite SNR{, and c, are not SNR-
lar, the convergence of the finite-SNR DMT to the asymptoqﬁdependent constants but rather sIowa-varyirig fundtiof the SNR, the

one in [4) as the SNR grows is very slow and can kBMT framework can still be used.



.. . 0
sufficient accuracy, even for small to moderate-size system 10"

as demonstrated below. 1/y R || _° Monte-Caro

RS r=—: ! | —— Size-asymptotic
Outage probability in the DMT frameworkWhile the S, Ny |« Exact

diversity gain provides some indication of the performance 5 10”1/ N rr;in(m n)R ,,,,,,,,,,,,

its usefulness lies in its relation with the outage proligbil % D=

(or the average error rate) as the latter is the ultimateoperf 2 Leree 3 Ny ¢

mance indicator, not the diversity gain itself. To demoatstr o 4 R \

the impact of multiplexing gain definitions and to test the 10 [/ -._R -~ NS ]

suitability of size-asymptotic capacity distribution toeplict E In(y/e) ®®;

the outage probability of finite-size systems under the DMT D ..

framework, Fig. 1 and 2 compare the outage probability vs. | s|[ I N B B VN o |

SNR from the asymptotic result ih {([19) (evaluated based’on TN

ando? given by Theorem 1) to Monte-Carlo (MC) simulations i i ‘ ‘ L °eN

i i i
0 10 20 30 40 50 60 70

for i.i.d. Rayleigh-fading channel using the multiplexiggin SR [dE]

definitions in [20){(2R). A good agreement between the size-

asymptotic and MC results is observed even for small system . _ . o
. _ — 9 d . h h . .Fig. 2. Outage probability vs. SNR for various definitiongte# multiplexing
size m = n = 2, demonstrating that the size-asymptoliGai. ,, — 1, — 2, = 1,d(r) = 1; solid line - asymptotic from{A1)[{12),

theory is practically relevant. Fig. 1, 2 also demonstrate (&), circles - Monte-Carlo simulations @ @ials); dashed line Pyt = 1/7.

limitation of the DMT framework with the multiplexing gain The SNR offset is small in this case £ 1) and the convergence is achieved
definiti . d122 hich is th | beh .at realistic SNR. Asymptotic approximation is accurate dfrmultiplexing
efiniuons n KZO) an [:(Z )’ which 1s the anomalous be aV'QEin definitions. The exact outage is obtained by integnatib the Wishart

of the outage probability (increasing with the SNR) for lowigenvalue density (see e.g. [31]).

to moderate SNR range. This is due to the fact that the rate

R < C on the corresponding interval, but it increases faster

than C' with the SNR, so thaﬁ— R\ /oc decreases; after Proposition 1: Consider a finite SNR DMT, such that
the anomalous region this tendency is reversed. This newér) < co asr — 0. Assume thatim._,o Fo(¢) = 0 and that
happens if multiplexing gain is defined via the mean capacitiye outage probability is as ifl(6). Thet(y) — 0 asr — 0,
as in [21). Also note a high SNR offset £ 10%, see[(6)) in i.e. unbounded SNR offset for smai.

P,,; for R = rln~y andn = 10. This makes it impossible Proof: see Appendix. ]

to estimateP,,; from the diversity gain alone, i.e. using . . .
Py ~ 1/7 (as suggested in [35]), no matter how high the Majority of known channels satisfy the conditions of Propo-

SNR is . The rough estimatioff,; ~ 1,/~v¢ works only if c sition 1, i.e. the diversity gain is bounded for smajland

is on the order of unity. When this is not the caskas to be ;_herﬁr?ggbyrgt of rzlglo C'Zarsmmeallncag]aeigy {: zerso..sPrgpo:U
accounted for as well. Impf whenr | ; ways i very

significant SNR offset under the model i (6). We conclude
that when comparing two systems, > d, does not imply

10° ,,,,, o ,,,,,,,, | © Monte-Carlo Pout,1 < P, 2 atfinite SNR, since it may be that > ¢, and
. | i | — Size-asymptotic the latter effect is dominant. Likewisé; = d> does not imply
10_2 3 | """"" T Pout1 = Pour2 at any SNR, unless; = co. Hence, using
> 107 ‘ N < s the DMT curves alone to compare two systems may produce
% 10° L4 : S incorrect results, even at very high SNR. This suggestshieat
5 10 | SNR offsete should also be included in the DMT framework.
e, Fig. 3 shows the offset(r) vs. r evaluated for & x 2 i.i.d.
210 ¢ Rayleigh-fading channel at = 10dB. It follows thatc ~ 1 at
g 10° r > 1.5 and the rough estimatg,,; ~ 1/7%") is reasonably
107 & accurate. Howeverg rapidly decreases at < 1 and it is
. impossible to estimate,,; from the rough approximation
10} B O P | above in this range. This observation may have significant
10f bbbl b b b b L NS consequences for the design of DMT-achieving codes (see
0 10 20 30 4OSNS? dB]60 7080 90 100 [18]-[22] for examples of such designs).

The problem of significant SNR offset is somewhat elim-
Fig. 1. Outage probability vs. SNR for various definitiongte# multiplexing Inqted’ for .mOQerate to high, by using the multiplexing
gain;n = m = 10,7 = 9,d(r) = 1; solid line - asymptotic from{d1)[{12), gain definition in [2R), as: becomes a moderate constant,
)'ﬁ"f'e}f. 'hMSO,{I‘;e‘Cﬁa”? C(S‘ml‘;)'f;iogs aq’t”it?'s)3 dashed t'_i”e Fou — _but the anomalous behavior of the outage probability is not
. Note hi offsetd =~ . Asymptotic approximation Is accurate _;. - . . . . . .

o multip?exing Jain defintions buﬁ'zo';’ o Ver‘;,phigh oy eliminated so that its estimation from the diversity gaions

at v < 30dB is not possible. Using the definition i {21)
eliminates most of the problem, leaving only the moderate
offsetc ~ 1/5. For smaller systems (Fig. 2), this problem is
not that severe and the SNR offset disappears at 15dB,

The following proposition formalizes this limitation of éh
DMT framework for a broad class of fading channels.



but the anomalous behavior of the outage probability at loalso of channel correlation. As will be demonstrated below,
to moderate SNR for all definitions of the multiplexing gairunder certain circumstancéisn.,_, . d, = d* (r), so that the

but in (23) is still present. size-asymptotic DMT converges to the SNR-asymptotic one
for integerr.
10° To simplify the analysis and to get some insight, we use
‘ ‘ ‘ below high but finite SNR approximations, i;e>> 1, but not
4 ~ — oo. These approximations, as it is demonstrated below,
10 hold true already at low or moderate SNR levels and allow one
to quantify the effect of SNR on the DMT and, in particular,
@ 107 to establish the SNR levels at which the asymptotic resalts i
g [1] are sufficiently accurate.
z 10° Theorem 4:Consider a full-rank, ii.d.,n x n arbitrary
@ fading channel under the conditions of Theorem 1. Its size-
Wl 777777 — Size-asymptotic asymptotic finite-SNR DMT canlbe approximated as
o Monte-Carlo ’ 2
‘ Lol d, =~ (n—r) (1——), v >1, (27)
10° | | ExaFt 2 B
0 0.5 1 _ 15 2 where the multiplexing gain = nR/C is defined via the
Multiplexing Gain mean capacity. The SNR offset is
Fig. 3. SNR offset vs. multiplexing gaifi(P1) ihx 2 i.i.d. Rayleigh fading Cy R L (28)
channel at _SNR_=10dB. While the offset is not signifi_carvt at 1.5, it rapidly 47Tdv ln(’y/e)
becomes significant at < 1 so that the rough estimat®,,: =~ 1/7‘1(”") od(r)

is not accurate anymore. The Gaussian approximation is catrate when N
r — 0, but is accurate when multiplexing gain is moderate to highich is 47rd(7“) 1n( /e)’
a practically-important range for modern systems (see[4(]). v

asy — oo, (29)

whered, = (n—r)*(1+2/[,/71n(v/e)]) and the approxima-
tion in (28) holds ford, In(y/e) > 1 and0 < r < n; ¢y =0

B. Size-asymptotic DMT and SNR offset whenr — 0, andd, = 0, ¢, = 1/2 for » = n. The outage

In this section, the finite-SNR DMT is analyzed via thé"0P2Pbility can be estimated d%,,; ~ ey /7"

size-asymptotic capacity distribution in_{19) under theltmu Proof: see Appendix. u
plexing gain definitions iN[(20)=(22) to show their advartag Note that the first factor in[(27) is identical to the SNR-
and disadvantages when applied to realistic systems (lowasymptotic DMT in [(4) (except for missing linear interpola-
moderate SNR, moderate or small system size). The followitign), and the second term represents the effect of the finite
proposition is instrumental in using the generic Gaussi&@NR. The i.i.d. Rayleigh channel considered in [1] and Ricia
capacity distribution for the size-asymptotic DMT anadysi one considered in [2] are special cases of Theorem 4. Naie als

L _ . . that lim,_, dy = lim,_, d’, = d(r) and the convergence
Cal;;(::%(})/sg;(s)tr:isuggneizl[z&-ga)lsi);mptotlc DMT under the outag%f d,, to the SNR—asymptotidW(r) in (@) takes place when the

second term i (27) can be neglected, which we set, somewhat
1 (61>2 - 25) arbitrary, asl /(2,/7) < 0.1 (i.e. within 10% accuracy), so that
T 3

’Y%

~ — 2 ~

2Iny \oc d, ~d(r) = (n—r)* fory>25~14dB  (30)

J ~ 1 9 C Qd* 26 The following proposition shows that, unlike the SNR-
v g dln~ oo (r) (26) asymptotic DMT, the finite-SNR one depends crucially on the

_ _ _ definition of multiplexing gain, which also has a significant
whereC'; = C'/m* is the mean capacity per degree of freedoiact on the SNR offset.

in the channelyn* = min(m,n, M) is the channel rank, B ] .
d* (r) = (m* —r)2, andr is the multiplexing gain defined Proposition 3: The size-asymptotic DMT of a full-rank
via the mean capacity ifi (21). i.i.d. n x n channel under conditions of Theorem 1 with

Proof: see Appendix. m the approximations in[(13) and under the multiplexing gain

definitions in [20), [(2R), is

Note thatd* (r) = (m* — r)? is somewhat similar to the )
original Zheng-Tse DMT in[{4), but also has two notable ; (n— 1)’ <1 ontr 1 ( r ) 1 )
differences: (i) for a full-rank channel, it depends only on "~ n—r) In(y/e)? )’
min(m, n, M), not onm,n, M individually, and coincides R
with @) whenm = n = M; (ii) there is no linear interpolation forr=—<mn (31)
for non—integerr@ While d* (r) is independent of the SNR, 7
the first two factors in[(25) describe the effect of SNR and ¢/ ~ (n — r)? (1 _n+ ri)  for r = B .,

n

8this also holds true for most fading channels at finite SNR.[38 (32)



If r =n, thend, = d, = 0. The SNR offset is given by e The multiplexing gain definition via the mean capacity in
(21) is the best, with the convergence at realistic SNR &lue

ede2rin=r) which is also independent of any system parameters, unlike

¢y = ————, asy — oo, forr=R/Invy (33 .
" Jamd (o) /M7 B3 ose in [2D) and(22).
e Comparing Figs. 4 and 5, one concludes that the conver-
ed™ gence of the finite-SNR DMT to the SNR-asymptotic one for

asy — oo, forr = R/In(y/e) the multiplexing gains in (20) an@(P2) is significantly affed

Cy — ————
K 4md(r) In(vy/e)
(34) by the system size: for small systems, all three definitions
Proof: along the same line as for Theorem 4. B give roughly the same (fast) convergence, achieved astieali

It follows from Theorem 4 and Proposition 3 tha — SNRs; for large systems, only the definition [n](21) resuits i

d, — d(r) (without linear interpolation) ag — oo for all convergence at realistic SNRs.

X : X A .o Unlike large systems (see Fig. 1), the SNR offset for
3 multiplexing gain definitions, but the convergence rate IS aller svstems (see Fig. 2) is moderate for all multiplgxin
the fastest forr = nR/C and the slowest for = R/In~: y g P

. N2 : gain definitions, so that the rough approximatiéy,; ~ 1/¢
dy ~ d(r) = (n—r) at high SNR such that can be used, unless— 0, as indicated in Proposition 1. In the
l(lo(n n T))z ( 3 )1 latter case, the rough approximation cannot be used reggrdl
y>max [ ——= ) , exp |1+ ,
n—r n—

of the multiplexing gain definition and the system size, sjnc
for the baseline model in 6}, — 0 and this is the dominant

) effect, which makes the DMT framework inapplicable in this
case.

r

for r = i, (35
In~vy

10(n +r) 2 R
N > (ﬁ) , forr = owat (36)

For moderate to large system size only= nR/C results

in the convergence at realistic SNR values (see Fig. 4), st
that the SNR-asymptotic DMT has operational significance
only for this multiplexing gain definition. Comparing (33)

and (34) to (29), one concludes that the SNR offsets for
r = R/In(vy/e) andr = nR/C are the same, but there is an

additional SNR offset factoe?"(*~") for r = R/ In~, which

1
.

TS 000 A
,‘&’Oooooooooq)oo i

Diversity Gain

can be very significant for large or r, as examples below 0.2 | — size-asymptotic||
demonstrate. Based on (29), (33) and (34), we remark that th ' / °  Monte-Carlo
SNR offsetc, is exponentially large in the diversity gaitir) P08 ./ |-~ Approximation
for various multiplexing gain definitions. While thia(v/e) % 20 20 60 80
term somewhat reduces the offset, it is a minor effect since SNR [dB]

v/In(v/e) increases very slowly with the SNR.

Figs. 4 and 5 compare the differential diversity gain evaltEJg| 4| Differential dlvefSlt){OQam VQS d?'\;R f01f Vafliguls défions of the
multiplexing gain;n = m = r = = 1; solid line — asymptotic
ated via the asymptotic distribution with the momentin)(11, ' (1), [12).[T9), dashed — approximations(inl (271] (€3). Convergence

(12) to the approximations if_(R7), (31) and (32), and Fig. % the asymptotic result iffJ4) is achievechat- 45dB and~y > 65dB for the
does the same for the SNR offset. Few observations aremn'tlplexmg gain definitions in{22) anf (P0), respectiyednd aty > 14dB
order: for that in [21), so only the latter has operational signifemat realistic SNR.

e The size-asymptotic analysis provides reasonable acgurac
in estimating both the diversity gain and the SNR offsetpeve
for small systems.

e The original multiplexing gain definition if(20), which Ibset}rcl)ifrl])é sl:]JrFSrgi’;mzed below. A more detailed discussion can
was used in [1], results in extremely slow convergence (as
(Inv)~?) of the finite-SNR DMT to the SNR-asymptotic one Proposition 4: Under the conditions of Theorem 1, the size-
for large systems (see Fig. 4 and also Fig. 7), making tesymptotic DMT of a full rank: xm channely # m, is given
results inapplicable at realistic SNR values. The SNR offsby
is very high in this case¢ ~ 10* at v = 60dB for n = , In(y/a)

=10, r =9 (see Fig. 1 and (33)), which makes the rough d ~2dy = (m" =) W’
apprOX|mat|0nP0ut ~ 1/~4% inaccurate at any SNR. The high- _ )

SNR threshold increases exponentially in system size andfjére » = m*R/C, m* = min(m,n), and §* =
the multiplexing gain (see (35)). min(m, n) / max(m,n).

e The high-SNR offset in[(22) improves the convergence, Proof: see Appendix A. u
but yet not enough to achieve it at realistic SNR for large Note that the first term in[(37) is somewhat similar to
systems. the SNR-asymptotic DMT of Zheng and Tse [ (4), but is

While the results above have been obtained o= m
channels, similar results also hold fer # n channels, which

0<r<m*, (37)



for the whole SNR range as
: /
d = min {d,, d(r)} (38)
£
T
3 0.7
2 d(r)=0.6 L
4 0.6 -
2 | | —— Size-asymptotic R
e e oo 1 05l © Monte-Carlo A 500822%7
— Size-asymptotic £ ~-—- Approximation L 6600°°
©  Monte-Carlo s i i 400
——————————— Carlo O 04 : 5
-~ Approximation 2 _min(m,n)R / o
v ; * Exact 203 C e
O I T > . f:/
0 10 20 30 40 50 a y/j R
- r=——
SNR [dB] 0.2 b ny s
oo~ 02
099& 7 0%
Fig. 5. Differential diversity gain vs. SNR for various défions of the 0.1 pa M
multiplexing gain;n = m = 2,r = 1,d(r) = 1. Convergence to the e 0000
asymptotic result in[{4) is achieved at> 25dB for the multiplexing gain o= pooo]
definitions in [20) and[{22), and at > 14dB for that in [21), i.e. faster 0 10 20 30 40 50 60 70 80 90
convergence for smaller systems. SNR [dB]
Fig. 7. Differential diversity gain vs. SNR for various défions of the
1 ‘ 1 1 ‘ ‘ multiplexing gain;n = 10, m = 9,7 = 8.7,d(r) = 0.6; solid line — size-
: § § —— Size-asymptotic asymptotic from [(I1),[(112)[(19), dashed — approximatior@d). The size-
: ; ; o Monte-Carl asymptotic diversity gain is accurate up to about 40dB, dedntultiplexing
\ | | on e-. arq gain definition via the mean capacity is the best one. Siméaults can also
0.8 [ o ~ -~ Approximation 1 be observed for smaller-size channels.
\ | N Approximation 2
@
£
0 C. The impact of correlation and power imbalance
x
z 1 1 1 While all the results above apply to independent channel,
T similar results can also be obtained for correlated onesdas
‘ : on Theorem 2.
Theorem 5:Under the conditions of Theorem 2, the size-
0 ‘ ‘ ‘ ‘ asymptotic DMT of a correlated, full-rank x m Rayleigh-

0 20 40 60 80 100 fading channelp << m, is given by
SNR [dB]
7 (n—7)?In 1
Fig. 6. SNR offsetcy vs. SNR for2 x 2 system and- = nR/C = 1, v n (i HR H)27
Approximations 1 and 2 are as in (29) afd](28). The SNR offset slowly- m t

varying function of the SNR, which converges to the asyniptote in (29) at . . . - -
high SNR. The size-asymptotic model provides a reasongipeoaimation, whereR, is the transmit correlation matrix, andis the SNR

even for small systems, over the whole SNR range. The exdsetovas Offset, all defined in Theorem 2, and=nR/C.

obtained via the exact outage probability obtained by naton of the Proof: see Appendix. u
Wishart eigenvalue density.

<n, (39)

Note the presence of Zheng-Tse tefmn-r)2. Theln 2 term
is the average capacity per degree of freedom, which inslude
S the effect of correlation at the Rx end via the SNR offgeind
affected only bymin(m,n), notm andn individually, and no 1 g |/ is the measure of correlation and power imbalance at
linear interpolation is present. The S|ze-as_ymptot|c DMEFeh tnﬁe Tx end [26], [29]. Thus, unlike the SNR-asymptotic DMT
does not converge to the SNR-asymptotic oneyas> oo, [g], hoth of these factors decrease the finite-SNR one. In the

which is due to the fact that the accuracy of the GaussigRisence of correlation (.®, =1, R, = I), (39) reduces to
approximation for finite-size systems decreases as ONesMOPen) (with * = n/m << 1, a — i)’ as it should be.

to the distribution tail [38]. Yet, the approximation in_{3i&
more accurate than the SNR asymptotic onel[in (4) for low
to moderate SNR range, as Fig. 7 demonstrates. BasednRank-deficient channels

this, we observe that the size-asymptotic and SNR-asyioptot The size-asymptotic approach can also be used for rank-

results are Complementary in this case: wh_|le the latteragem deficient channels via the double-scattering or multi-kegh
accurate at very high SNR, the former is better at low tl% dels in [26], [29] based on Theorem 3

moderately high SNR, so that the DMT can be approximatedO
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Theorem 6:Under the conditions of Theorem 3, the sizewhereg is any entry ofg. If g is Gaussian, them,(|g|*) = 1.
asymptotic DMT of a rank-deficient correlated channel is Proof:

iven for0 <r < M < mi ,n) as
g S 7 <M < min(m,n) E(|h]]*) = tr (R1/2E(gg+)R1/2) =trR

21 2
dl ~ (M — T) 1DE (40) (||hH2) E ( (R1/2( + I)R1/2)2)
vy ) ) m = tr —
Sl (Bom 2 [Rexl* + Brin = [Ros?) ’ 58
2
wherea is the SNR offset in Theorem 3 and= M - R/C. - F Z (IgiIQ — 1) i
Proof: see Appendix. [ ] P
Note that this expression has a structure very similar to = ZE (|gi|4 - 1) 2
that in [39). In particular, the diversity gain decreasethwi i
the measures of correlation and power imbalance at both ends = |IR|* ma(|g]?). (42)

—2 2 -2 2 :
m = [Rax[”, n== Ry, it is proportional to the Zheng- o\ o6 the eigenvalues @& and we have used the fact
Tse-like term(M — r)” and to the mean capacity per degree g?atE =1 -
freedomin 1. Extensive numerical experiments show thai (4 (88™) =
provides a reasonable approximation to the true DMT at low to Without loss of generality, we assume thiaf; andh, are
moderate SNR range. Furthermore, unlike the SNR-asyneptotormalized:m=tr{R;} = n~'tr{R,;} = 1. The channel
approach, the size-asymptotic one provides a reasonatsiyTheorem 3 is the multikeyhole model in [[26], Theorem 7],
accurate estimate of the outage probability at low to mdgeravhose instantaneous capacity converges in probability to
SNR range and, thus, can be used as a design criterion for M b |2
practically-important SNR ranges. C%Y In <1 + T:—J [hyel|® ||hrk||2> , asm,n — oo,

k=1

(43)

if (i) lim m ™' |hy|® < oo, lim n~! ||hy|® < oo and

While the SNR-asymptotic DMT is an elegant frameworl; lﬁﬁj}ztr[Rthﬂ] _ Ofﬁﬁ"m n=2r[RyRot] = 0
to compare various MIMO systems and channels and alsof(t)?mevgory Bl — 1M Conditir?no?i) follows from (b) in
obtain a numk_Jer of_design guideline_s, its use gt fin_ite SNR corem 3’ Using';“ Voln-Neumann trace [37] and Cauchy-
a number of Ilmlta_ltlo_nsz which are (_j|scussed in th_ls paper. & varz inequalitiesy[R:Ro] < ||R. || R2|, whereR; and
overcome these I|m|tat|qns, the f|n|te-$NR DMT i obtaine o are positive semidefinite. Thus, a sufficient condition for
for a broad class of fading channels, including full-rankl an(ii) to hold is Tim m~ [Rusl| = 0, lim n—L |Rys = 0
rank-deficient (double-scattering, keyhole, relay) ornesed m—s00 th ' noo Tk '
on recent results on size-asymptotic outage capacityitistr From [[25], Comment 5], (n~" ||R||)1/3 < M/ 1T
tion in such channels. Since the DMT alone is not sufficient {ghere s = (5, /\;5)1/5, and from [[25], Theorem 1],
characterize adequately the outage probability, the SN f Al / [All, = O iff |R|l,/[R] = 0 asn — oo, so that
has been introduced and characterized via the size-as§imptgj) holds under condition (c) of Theorem 3.
theory. The size-asymptotic, finite-SNR DMT in combination | ot Cr, = In(1 + Lbx [y HhtkH2 ||hrk||2)- Under conditions
with the SNR offset can be used to characterize accurately @) to (c), ¢, is asy%gtotically Gaussian as,n — oo as
outage probability and also to produce some design guiggfows from [[26], Theorem 4], [[25], Theorem 1]. To find
lines valid at realistic SNR values, including such effe@$s {he moments ofCy, define a functionf(z,y) = In(l +
correlation and power imbalance in the channel. All resulErM?,y_xy) and note thaCy, = f(m " |hu|®, n=" [ho]?).
and conclusions have been validated via extensive Mon{§um the Lemma above and under adopted normalization
Carlo simulations. Overall, the size-asymptotic approach mr{Ry} = nr{Ry)} = 1, E(m~! HhtkHQ) _
viable alternative to the SNR-asymptotic one since the &vrmE(n—l ||hrk||2) = 1. Sincef is a smooth function (first-order
produces the results that hold at realistic SNR and for adorogerivative is continuous) in the neighborhoodaof= y = 1,

class of fading distributions (i.e. robust), and include ¢ffect using Cramer Theorem [[39], Theorem 7], the mean and the
of correlation and power imbalance in the channel. variance ofCj, asm,n — oo are

Ch=f(1,1)=In (1 n |bk|27) (44)

IV. CONCLUSION

APPENDIX
Proof of Theorem 3:the following Lemma is instrumen- and

tal. o5y * Bue Rl

Lemma 1:Let h = R'/2g, whereg is a zero mean, unit 7k = Or  |,oyymn | M tk
variance, i.i.d. complex random vector, altlis a positive 2
semidefinite (correlation) matrix. Then, the mean and vaga + Of(x,y) ] Bri ”RM”?
of ||h|* are Y =1 y=1| 1

2
E(|n|*) = trR, bk Btk Brk

(” Hz) 2 2 = (72 %”RtkHQ"' 2 HRrkl|2 (45)
ma([[h]") = [[R]"m2 |g["), (41) L+ b7y ) \m n
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where i, = ma(|ge|*), B = ma(lgrk]?), andg,(,. is any whered(r) = (n—r)? and A(y) quantifies the effect of finite
entry of gy(,yi. If g;)x are Gaussian, thef,, = 3, = 1. SNR,
SinceC' converges to a sum af};, which are asymptotically A(y) =142/ (v/vIn(v/e)) (53)

Gaussian and independent (due to the mode independéhce . . . .
is asymptotically Gaussian with the mean and variance Phterpretmg thel /e term in [32) as a high-SNR offset (sim-

ilarly to [33]), the diversity gain in[(20) becomes, =~
C— ZM Ch; 02 = ZM o2 (46) d(r)A(y). Using [52), the differential diversity gaif (23) can
k=1 k=1 be expressed ag), = d(r)(A(v) + vIn(y/e)0A(y)/9),
and [18) follows. The approximations follow in a straightfo \hich, after some mampulatlons can be simplifiedfd (27).

ward way. u While the upper bound if(47) is of sufficient accuracy to
Proof of Proposition 1: From [8), ¢(r) = 4™ p,,,. evaluate the diversity gains, a more refined approximason i
For0 < v < oo, limy_074" < oo andlim, o P,,, = required to capture accurately the SNR offset,
lim._,¢ Fo(g) = 0. Thereforee(r) — 0 asr — 0. [ ] 1 22 1 P
. ) Q(z) = ——exp (——) +0<—exp <——>) (54)
Proof of Proposition 2: We use the following upper- V2712 2 z
bound, from which the outage probability can be approximated, for
o A p\2 dyIn(vy/e) > 1 andr > 0, as
C—-R 1 1/C—-R Y
Poui(R)=Q <-exp|-—-= 47) 4
oc 2 2 oc 1 Y v
Pt w — (1) (55)
4drd, In(vy/e) \e

On thelog-log scale, the gap betweeR,,; and the upper-
bound is almost a constant, so that the diversity gain lsing this in [24), the SNR offset becomes

accurately captured by the upper bound. By substituting thi oo oy —d) Iny
upper-bound in[{20)[(23) and after some manipulations, one Oy N (56)
obtains [25),(26). N dmdy In(vy/e)
Proof of Theorem 4:For square channelg, = 1, from It is straightforward to see that, —d, = o(1/Inv), so that

Theorem 1, (56) simplifies to[(ZB), and (29) follows. Note that the SNR

_ offset in [28) can also be identified by inspection[ofl (55prRr

¢ _onm <1+7_ F(%l)) _ F(%l)’ Proposition 1,c, — 0 whenr — 0, andd, = 0, ¢, = 1/2

n 4 4y for r = n by inspection of[(19). [ |

o2 — I (1 B (F(% 1))2> 7 (48) Proof of Proposition 4 (sketch)This follows mostly the

4y steps of that of Theorem 4: Using{13) andl(21), the outage

robability can be approximated, via the upper bound i, (47
whereF(y,1) = (vAy +1—1)% Itis straightforward to see gs Y PP PP (47)

_d'y
that Pout ~ 1 (1) ) (57)
F(v,1) 1 1 n 1 n (1) 2 \a
T T AR Ty o\ ) where
o viomeoow PR CIZ)
F(y,1) dy = s (m* —7)° ——— (58)
0 :7—ﬁ+§+0(1), (49) 2 —In(1 - pB*)
so that, after some manipulations is the diversity gain. Substituting (67) intb {23) givé$ in
' _ ' D). [ ]

¢ =1In (1) + 2 +o0 (i) , Proof of Theorem 5 (sketch):Following Theorem 2,

" € VY V7 we use the approximation? ~ 25 IR/||* , assuming

o2 — by Lo (L) (50) rank(R.) = n, to evaluate the capacity variance. Using the

© 7274\ Nal multiplexing gain definition in[(21), the outage probalyilit
f hich follows. E thi d using = rC/n, modera.\te to high. SNR can be approximated via the upper
Orggirv]vs.lc [I3) follows. From this and using = »C'/n, one bound in (@Y) as in{37), where

(n—7r)2 Inl
1) 4+ 2 dy =~ a 55 (59)
(=F) == (1() f) (=) 2 (LRl
oc PRI VI is the finite-SNR diversity gain. Using this in (23), {31)lfals
— 2 (n—r) 2 ( (V) ) (1) (51) after some straightforward manipulations. ]

Proof of Theorem 6 (sketch):Using the high SNR
Substituting [(511) into the upper bound [n147) and after sona@proximation in[(18), the outage probability can be approx
lengthy by straightforward manipulations, keeping onlg thmated as in[(37) with
lower-order (dominating) terms, one obtains (M —7)2In 1
d ~

1 7\ —dAM) y A ;
Pour 5 (2) , (52) 257, (B [Rall + 2 [RoulP)

(60)
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where the SNR offset is as in Theorem 3. Using this i (23),[24] C. Martin, B. Ottersten, "Asymptotic Eigenvalue Distitions and
(40Q) follows. [ |

(1]

[2] R. Narasimhan, "Finite-SNR Diversity—Multiplexing ddeoff for Corre- [27] A. M. Tulino, S. Verdu, "Random Matrix Theory and Wirsle Com-
lated Rayleigh and Rician MIMO ChanneldEEE Trans. Inform. Theory munications”,Foundations and Trends in Commun. and Inform. Theory
vol. 52, no. 9, pp. 3965-3979, Sep. 2006. vol. 1, pp. 1-182, 2004.

[3] D. N. C. Tse, P. Viswanath, L. Zheng, "Diversity-Multgting Tradeoff [28] A. M. Tulino, A. Lozano, S. Verdu, "Impact of Antenna Gelation on
in Multiple-Access ChannelslEEE Trans. Inform. Theoryol. 50, no. the Capacity of Multiantenna ChanneldEEE Trans. Inform. Theory
9, pp. 1859-1874, Sep. 2004. vol. 51, no. 7, pp. 2491-2509, July 2005.

[4] K. Azarian, H. El Gamal, "The Throughput—Reliability ddeoff in Block- [29] G. Levin, S. Loyka, "Multi-Keyhole MIMO Channels: Asyptotic
Fading MIMO Channels”|EEE Trans. Inform. Theoryvol. 53, no. 2, Analysis of Outage Capacity’2006 IEEE International Symposium on
pp. 488-501, Feb. 2007. Inform. Theory pp. 1305-1309, July 2006.

[5] K. Azarian, H. El Gamal, "On the Utility of a 3dB SNR Gain MIMO  [30] H. Shin, M. Z Win, M. Chiani, "Asymptotic Statistics of Mual
Channels”,2006 IEEE International Symposium on Inform. Thegrp. Information for Doubly Correlated MIMO ChannelsTEEE Trans. on
2274-2278, July 2006. Wireless Communvol. 7, no. 2, pp. 562-573, Feb. 2008.

[6] L. Zhao, W. Mo, Y. Ma, Z. Wang, "Diversity and Multiplexm Tradeoff [31] I. E. Telatar, "Capacity of Multi-Antenna Gaussian @hals”, AT&T
in General Fading ChannelslEEE Trans. Inform. Theoryol. 53, no. Bell Labs, Internal Tech. Memd 995, (European Trans. Telecomvol.
4, pp.1549-1557, April 2007. 10, no. 6, 1999).

[7] W.-Y. Shin, S.-Y. Chung, Y. H. Lee, "Diversity-Multipleng Tradeoff and [32] G. J. Foschini, M. J. Gans, "On Limits of Wireless Comruations in a
Outage Performance for Rician MIMO Channel#£EE Trans. Inform. Fading Environment when Using Multiple Antenna¥Vjreless Personal
Theory vol. 54, no. 3, pp. 1186-1196, Mar. 2008. Commun, vol. 6, no. 3, pp. 311-335, Mar. 1998.

[8] S. Yang, J.-C. Belfiore, "Diversity-Multiplexing Tradé of Double [33] A. Lozano, A. M. Tulino, S. Verdu, "High-SNR Power Offsén
Scattering MIMO Channels arXiv:cs/0603124v231 Mar. 2006. Multiantenna CommunicationlEEE Trans. Inform. Theorwol. 51, no.

[9] W. Chang, S. Y. Chung, Y. H. Lee, "Diversity-Multiplexgn Tradeoff in 12, pp. 4134-4151, Dec. 2005.

REFERENCES

L. Zheng, D. N. C. Tse, "Diversity and Multiplexing: A Fdamental
Tradeoff in Multiple-Antenna ChannelslEEE Trans. Inform. Theory
vol. 49, no. 5, pp. 1073-1096, May 2003.

Rank-Deficient and Spatially Correlated MIMO Channel2006 IEEE

International Symposium on Inform. Theppp. 1144-1148, July 2006.

[10] C. Rao, B. Hassibi, "Diversity-Multiplexing Gain TraelOff of a MIMO

System with Relays”2007 IEEE Inform. Theory Workshop on Inform.

Theory for Wireless Networkgp. 1-5, July 2007.

[11] P. Coronel, H. Bolcskei, "Diversity-Multiplexing Tdeoff in Selective-

Fading MIMO Channels”,2007 IEEE International Symposium on In-

form. Theory pp. 2841-2845, June 2007.

[12] Y. Jiang, M. K. Varanasi, "Diversity-Multiplexing Tdeoff of MIMO
Systems with Antenna Selection2007 IEEE International Symposium [38] S. Loyka, G. Levin, "On Finite-SNR Diversity-Multipiéng Tradeoff”,

on Inform. Theorypp. 2836-2840, June 2007.

[13] K. Azarian, H. El Gamal, P. Schniter, "On the Achievalidversity-

Multiplexing Tradeoff in Half-Duplex Cooperative Changgl IEEE
Trans. Inform. Theoryvol. 51, no. 12, pp. 4152-4172, Dec. 2005.

[14] E. Stauffer, O. Oyman, R. Narasimhan, A. Paulraj, "EfBNR

Diversity-Multiplexing Tradeoffs in Fading Relay ChansigllEEE Jour-

nal on Selected Areas in Communicatiprsl. 25, no. 2, pp. 245-257,

Feb. 2007.

Capacity for MIMO Channels under Correlated FadinZEE Trans.
Wireless Communvol. 3, no. 4, pp. 1350-1358, July 2004.

[25] G. Levin, S. Loyka, "Comments on Asymptotic Eigenvaistributions

and Capacity for MIMO Channels under Correlated FaditigEE Trans.
Wireless Communvol. 7, no. 2, pp. 475-479, Feb. 2008.

[26] G. Levin, S. Loyka, "On the Outage Capacity Distributiof Correlated

Keyhole MIMO Channels”|EEE Trans. Inform. Theoryol. 54, no. 7,
pp. 3232-3245, July 2008

[34] S. Boyd, L. Vandenbergh&onvex OptimizationCambridge University

Press, 2004.

[35] D. N. C. Tse, P. Viswanatirundamentals of Wireless Communications

Cambridge University Press, 2005.

[36] S. M. Alamouti, "A Simple Transmit Diversity Techniquer Wireless

Communications” [EEE Journal on Selected Areas in Communicatjons
vol. 16, no. 8, pp. 1451-1458, Oct. 1998.

[37] J. Von Neumann, "Some Matrix Inequalities and Metii@atof Matrix

Space”, Tomsk Univ. Rev.,Ilpp. 286-300, 1937.

2007 IEEE GLOBECOMpp. 1456-1461, Nov. 2007.

[39] T. S. Ferguson, A Course in Large Sample Theorhapman &

Hall/CRC, 1st Ed. Reprint, 2002.

[40] A. Lozano, N. Jindal, "Transmit Diversity vs. SpatialuMiplexing in

Modern MIMO Systems”arXiv:0811.3887v25 Mar. 2009.

[41] G. Levin, S. Loyka, "Diversity-Multiplexing Tradeofind Outage Prob-

ability in MIMO Relay Channels”,IEEE International Symposium on
Inform. Theory June 2010.

[15] M. Yuksel, E. Erkip, "Multiple-Antenna Cooperative Yéless Systems:
A Diversity-Multiplexing Tradeoff Perspective”]EEE Trans. Inform.
Theory vol. 53, no. 10, pp. 3371-3393, Oct. 2007.

[16] T. T. Kim, M. Skoglund, "Diversity-Multiplexing Tradeff in MIMO

Sergey Loyka (M'96-SM’'04) was born in Minsk, Belarus. He received the
Ph.D. degree in Radio Engineering from the BelorussianeSthtiversity
. f ” of Informatics and Radioelectronics (BSUIR), Minsk, Bekarin 1995 and
ghsgngié\l_‘g;ﬁgﬂgcg&fEE Trans. Inform. Theoryvol. 53, no. the M.S. degree with honors from Minsk Radioengineerinditurte, Minsk,
[17] H Iél Gamal GY. Cai}e M.'O. Damen, "The MIMO ARQ Channel: Belarus in 1992. Since 2001 he has been a faculty member &dheol of
Diversity-MuIti[’)Iexing-DeI’ay Tradeoff”]EE’E Trans. Inform. Theoryol. Information Technology and Engineering, University ofata, Canada. Prior
52, no. 8, pp. 3601-3621, Aug. 2006 to that, he was a research fellow in the Laboratory of Compatitins and
[18] HY. EI.Géma'I G. Caire ’M. O: Damén "Lattice Coding andcbeing Integrated Microelectronics (LACIME) of Ecole de Techrgil® Superieure,

: } 8 . . : Montreal, Canada; a senior scientist at the Electromagr@tmpatibility
Achieve the Optimal Diversity-Multiplexing Tradeoff of NIO Chan- ; S =
nels’, IEEE Trans. Inform. Theoryvol. 50, no. 6, pp. 968-985, June Laboratory of BSUIR, Belarus; an invited scientist at thédeatory of Elec-

2004 tromagnetism and Acoustic (LEMA), Swiss Federal InstitateTechnology,
[19] P Iélia K. R. Kumar, S. A. Pawar, P. V. Kumar, H.-F. Lu, xjlicit Lausanne, Switzerland. His research areas include wérelesimunications

Space-Time Codes Achieving the Diversity-MultiplexingiGaradeoff”, a_nd ne;works, MIMO systems_and smart antennas, RF systeml_nmg)dand

IEEE Trans. Inform. Theorwol. 52, no. 9, pp. 3869-3884, Sep. 2006. simulation, and electromagnetic compatibility, in which has published ex-

[20] R.Vaze, B. S. Rajan, "On Space-Time Trellis Codes Adhig Optimal tensively. Dr. Loyka is gtechnical program committee_memtbeeveral IEEE
DiversityYMultiplexing ’Tradeoff" IEEE Trans. Inform. Theoryol. 52 conferences and a reviewer for numerous |IEEE periodicalscanferences.

no. 11, pp. 5060-5067, Nov. 2006. He received a number of awards from the URSI, the IEEE, thesSwelarus

[21] A. Medles, D. T. M. Slock, "Achieving the Optimal Diveitg-Versus- and former USSR governments, and the Soros Foundation.
Multiplexing Tradeoff for MIMO Flat Channels with QAM Spadéme
Spreading and DFE EqualizationEEEE Trans. Inform. Theorwol. 52,
no. 12, pp. 5312-5323, Dec. 2006.

[22] P. Elia, B. A. Sethuraman, P. V. Kumar, "Perfect Spage€l Codes for
Any Number of Antennas”|EEE Trans. Inform. Theoryol. 53, no. 11,
pp. 3853-3868, Nov. 2007.

[23] B. M. Hochwald, T. L. Marzetta, V. Tarokh, "Multiple-Aanna Channel
Hardening and Its Implications for Rate Feedback and Sdimetu|EEE
Trans. Inform. Theoryvol. 50, no. 9, pp. 1893-1909, Sep. 2004.

Georgy Levin received the B.S. and M.S. degrees, both cum laude,
Electrical and Computer Engineering from Ben-Gurion Ursity of the
Negeyv, Israel in 1995 and 2000, and the Ph.D. degree from thieetdity
of Ottawa, Ontario, Canada in 2008. He is currently a reseassistant at
the University of Ottawa. Dr. Levin's research spans thed&iebf wireless
communications and information theory with specific ing¢rén MIMO
systems, smart antennas, relay networks, cognitive radicgnthetic aperture
radars.

n



	I Introduction
	II System Model and Outage Capacity Distribution
	III Finite-SNR DMT via Size-Asymptotic Capacity Distribution
	III-A Limitations and difficulties of the DMT framework at finite SNR
	III-B Size-asymptotic DMT and SNR offset
	III-C The impact of correlation and power imbalance
	III-D Rank-deficient channels

	IV Conclusion
	Appendix
	References
	Biographies
	Sergey Loyka
	Georgy Levin


