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A MAXIMUM RANK PROBLEM FOR DEGENERATE ELLIPTIC FULLY

NONLINEAR EQUATIONS

PENGFEI GUAN AND D. H. PHONG

Abstract. The solutions to the Dirichlet problem for two degenerate elliptic fully nonlinear
equations in n + 1 dimensions, namely the real Monge-Ampère equation and the Donaldson
equation, are shown to have maximum rank in the space variables when n 6 2. A constant rank
property is also established for the Donaldson equation when n = 3.

1. Introduction

The solutions of elliptic partial differential equations are known to have many remarkable con-

vexity properties, under suitable structure conditions. Some early works are those of Brascamp-

Lieb [5], Caffarelli and Friedman [6], Yau [26], with many important subsequent developments

(see [1, 18, 7, 16, 20, 2, 3] and also references therein). The constant rank theorem has been es-

tablished for a general class of fully elliptic nonlinear equations. But the situation for degenerate

elliptic fully nonlinear equations has remained largely unexplored, despite its considerable inter-

est for example in geometry. One exception is the beautiful work of Lempert [19] on the solution

to the homogeneous complex Monge-Ampère equation on convex domains in Cn with prescribed

log singularity at an interior point (the pluri-Green’s function). Using a complex foliation, he

showed that the solution is smooth and the complex Hessian has maximum rank n− 1. Even for

that result, there is no known PDE proof.

In this paper, we study a maximum rank problem for the Dirichlet problem for two basic

models of such equations, on the space Xn × T , where Xn = (R/Z)n is the n-dimensional torus

and T = (0, 1) is the unit interval. The first model is the Monge-Ampère equation

det(D2
x,tu+ In+1) = ε(1.1)

and the second is the equation introduced by Donaldson [13]

utt(n+∆u)−
n∑

j=1

u2jt = ε.(1.2)

Here the variables in X ×T have been denoted by (x, t), and In+1 is the (n+1)× (n+1) matrix

with the n × n identity matrix In as its upper left block, and all zeroes on its (n + 1) row and
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its (n + 1) column. The right hand side ε is a strictly positive constant, but may be arbitrarily

small. One imposes the Dirichlet condition

u(x, 0) = u0(x), u(x, 1) = u1(x),(1.3)

where the boundary data u0 and u1 are assumed to be C∞. For the Monge-Ampère equation,

the solution u is required to satisfy D2
xtu + In+1 > 0, while for the Donaldson equation, it is

required to satisfy n+∆u > 0.

Both cases of right hand side 0 < ε << 1 and ε = 0 are of importance in geometry and

physics: the geodesic and approximate geodesic equations for the space of Kähler potentials

coincide with a complex version of (1.1) [12, 21, 25], and for toric varieties, they reduce to a

real version of (1.1) on polytopes with Guillemin boundary conditions. The equation (1.2) has a

similar interpretation as the geodesic and approximate geodesic equations for the space of volume

forms on a Riemannian manifold. It coincides with (1.1) when n = 1, but is more closely related

to Nahm’s equation in theoretical physics as well as to some free boundary problems in applied

mathematics [13].

For fixed ε > 0, the equations (1.1) and (1.2) are elliptic. The existence of a unique smooth

solution for ε > 0 is a consequence of the general theory [11, 14] for the Monge-Amp‘ere equation

(1.1), and it has been established in [9, 17] for the Donaldson equation (1.1). For ε = 0, it has

been shown by D. Guan [15] that the partial Legendre transform of the solution of (1.1) is a

linear function of t, and thus the equation admits a smooth solution which is strictly convex in

x. The existence of C1,α solutions for (1.2) is in [9, 17]. We refer to [8, 22, 23, 24] for various

regularity results on the complex Monge-Ampère equation on Kähler manifolds.

The main question of interest is whether the equations (1.1) and (1.2) have maximum rank

in the space directions, in the sense that the Hessian satisfies D2
xu+ In > 0 for all t. Of course,

the boundary data have to satisfy the maximum rank property first. That is, for some strictly

positive constant λ,

D2
xu

0 + In > λ, D2
xu

1 + In > λ.(1.4)

We shall be interested in when there is an estimate

D2
xu+ In > λ̃,(1.5)

with some constant λ̃ > 0 uniformly in ε? It does not appear that the Monge-Ampère and

Donaldson equations (1.1, 1.2) fall under the scope of the broad structure conditions which

have been introduced for partial convexity properties in [3]. However, by building on the strong

maximum principle methods of [6, 26, 7, 2, 3], exploiting the specific form of the Monge-Ampère

and the Donaldson equations, and pushing the desired estimates to the boundary, we can establish

the following:

Theorem 1. Let u be the solution of the Monge-Ampère equation (1.1) on Xn × T with D2
xtu+

In+1 > 0 and Dirichlet data (1.3) satisfying the strict convexity condition (1.4). Assume that
2



n 6 2. Then for all t ∈ T and all ε > 0, u(·, t) satisfies the same strict convexity condition in

the interior,

D2
xu(x, t) + In > λ,(1.6)

with the same λ > 0 as in (1.4).

When ε = 0, the solutions of (1.1) are explicit and manifestly satisfy the inequality (1.6) [15],

so the interest in Theorem 1 lies in the solutions for ε > 0 themselves. They can be easier to

use than the solutions for ε = 0, see for example the complex case treated in [8, 10, 4]. For the

equation (1.2), lower bounds for D2
xu + In in both cases ε > 0 and ε = 0 were not known. We

have

Theorem 2. Let u be the solution of the Donaldson equation (1.2) on Xn × T with n+∆u > 0

and Dirichlet data (1.3) satisfying the strict convexity condition (1.4). Assume that n 6 2. Then

the strict convexity condition (1.4) with the same lower bound λ is preserved in the interior, that

is, for all t ∈ T and all ε > 0, u(·, t) satisfies

D2
xu(x, t) + In > λ.(1.7)

It would be interesting to determine whether one can lift the restriction of n 6 2 in Theorem

1 and Theorem 2. For the Donaldson equation (1.2), we can prove the following partial constant

rank theorem.

Theorem 3. Suppose Ω is a domain in Rn and δ > 0. Let u be a solution of the Donaldson

equation (1.2) on Ω× (0, δ) satisfying D2
xu+ In > 0 for each t ∈ (0, δ). Assume that n 6 3. Then

the rank of (D2
xu+ In) is constant for all (x, t) ∈ Ω× (0, δ).

For the Monge-Ampère equation, ε > 0 and the convexity condition D2
xtu + In+1 > 0 imply

trivially the strict convexity condition D2
xtu + In+1 > 0 and hence the strict space convexity

condition D2
xu + In > 0. Thus the main interest in Theorem 1 lies in the fact that the lower

bound for D2
xu+ In depends only on the boundary data. For the Donaldson equation, even the

mere space convexity of the solution does not seem so easy. We observe that it follows from

Theorem 3 when n 6 3:

Theorem 4. Let u be the solution of the Donaldson equation (1.2) on Xn × T with n+∆u > 0

and Dirichlet data (1.3) satisfying the strict convexity condition (1.4). Assume that n 6 3. Then

the strict convexity of u is preserved in the interior, that is, for all t ∈ T and all ε > 0,

D2
xu(x, t) + In > 0.(1.8)

There are many important questions related to the maximum rank problem which should be

investigated. Perhaps of greatest interest is the question of whether maximum rank theorems

such as Theorem 1 hold for the complex Monge-Ampère equation, i.e., the geodesic and approx-

imate geodesic equations for the space of Kähler metrics. It is not clear whether the techniques
3



developed in [20, 16] for complex nonlinear equations can be adapted to treat the maximum rank

problem for the complex Monge-Ampère equation. One would also like to generalize Theorem

1 to general Riemannian manifolds of arbitrary dimension. The results of this paper should be

thought of as experimental. It is our hope that the paper can generate some interest for the

study of the maximum rank problem, as we believe that it is an important topic in PDE and

differential geometry.

The proof of Theorems 1, 2 and 3 is given in §5. The essential part is contained in Propositions

2 and 3, which are proved in §3 and §4 respectively.

2. The general set-up

Both the Monge-Ampère and the Donaldson equations (1.1)(1.2) are equations of the form

F (D2
xtu+ In+1) = ε,(2.1)

where F (M) is a function of the symmetric n×n matrix M = (Mαβ). Recall that u is a function

on (x, t) ∈ Xn×T . It is convenient to denote by Latin letters i, j, · · · the n indices for the “space”

variables x = (xj), and by Greek letters α, β, · · · the n+1 indices for the “space-time” variables

(x, t). As usual, we denote by Fαβ and Fαβ,γδ the derivatives of F with respect to Mαβ ,

Fαβ =
∂F

∂Mαβ
, Fαβ,γδ =

∂2F

∂Mαβ∂Mγδ
.(2.2)

Let µ0 be the minimum over Xn × T of the lowest eigenvalue of D2
xu+ In,

µ0 = min(x,t)∈Xn×Tmin|ξ|2=1〈(D2
xu(x, t) + In)ξ, ξ〉.(2.3)

We would like to show that µ0 is attained at the boundary. For this, it suffices to show that

the set where the matrix D2
xu + In − µ0In has a zero eigenvalue is open. In practice, it suffices

to show that for each K, the set where the matrix D2
xu + In − µ0In has a zero eigenvalue of

multiplicity K is open. Let x0 be an interior point of Xn × T where D2
x + In − µ0In has a zero

eigenvalue of multiplicity K. Set

ϕ =
∑

i1<···<in−K+1

λi1 · · ·λin−K+1
≡ σn−K+1(λ1, · · · , λn)(2.4)

where λi are the eigenvalues of D2
xu + In − µ0In

∗. The strong maximum principle reduces the

desired statement to a key local, elliptic inequality near x0. The precise formulation we need is

the following:

Proposition 1. (a) Let x0 be an interior point where D2
xu+ In − µ0In has a zero eigenvalue of

some multiplicity K, and let ϕ be defined as in (2.4). If there is a constant C so that

Fαβϕαβ 6 C(ϕ+ |∇ϕ|)(2.5)

∗The function ϕ depends obviously on the choice of order K. To lighten the notation for ϕ, we have not
indicated this explicitly.
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for all points in a neighborhood of x0, then ϕ vanishes in a neighborhood of x0.

(b) If (2.5) holds for an arbitrary interior point x0 where D2
xu + In − µ0In has a zero of

multiplicity K, and if ϕ vanishes at some point, then ϕ vanishes identically on X × T . In

particular, λ is the largest lower bound for the boundary data D2
xu

0 + In and D2
xu

1 + In, and we

have µ0 = λ and, for all (x, t) ∈ Xn × T ,

D2
xu+ In > λIn.(2.6)

Thus we need to investigate estimates of the form (2.5). Let x0 be an interior point as in Propo-

sition 1, (a), and let x be an arbitrary point in a neighborhood of x0. Choose a parametrization

λ1, · · ·λn of the eigenvalues of the matrix D2
xu + In − µ0In which is continuous in a neighbor-

hood of x0. For each fixed x in this neighborhood, we can choose a coordinate system with D2
xu

diagonal at x. Thus at x, we have

uij + (1− µ0)δij = λiδij .(2.7)

Define the matrix vij by

vij = uij + (1− µ0)δij .(2.8)

We divide the indices i, 1 6 i 6 n, into two sets of indices,

{1, · · · , n} = G ∪B(2.9)

with the “good” set G consisting of those indices i for which λi(x0) 6= 0, and the “bad” set B

consisting of those indices i for which λi(x0) = 0. Note that #G = n−K and #B = K, where

#G,#B denote the cardinalities of G and B. The starting point of our considerations is the

following

Lemma 1. Let #G be the number of good directions, and set ϕ = σ#G+1(λ1, · · · , λn). Then we

have

(a) The function ϕ is of size

c1
∑

m∈B

vmm 6 ϕ 6 c2
∑

m∈B

vmm(2.10)

for some strictly positive constants c1, c2.

(b) The first derivatives of ϕ are given by

ϕα = (
∏

g∈G

vgg)
∑

m∈B

ummα +O(ϕ)(2.11)

(c) The second derivatives of ϕ are given by

ϕαβ = (
∏

g∈G

vgg)(
∑

m∈B

uαβmm − 2
∑

m∈B

∑

g∈G

umgαumgβ

vgg
) +O(ϕ+ |∇ϕ|).(2.12)
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(d) The linearized operator Fαβϕαβ is given by

Fαβϕαβ = −(
∏

g∈G

vgg)(
∑

m∈B

Fαβ,γδuαβmuγδm + 2
∑

m∈B

∑

g∈G

Fαβ

vgg
umgαumgβ)

+O(ϕ+ |∇ϕ|)(2.13)

Proof: The function ϕ is a linear superposition of terms, each of which is a product of #G + 1

eigenvalues of D2
xu+ In − µ0In. Thus it is of the size of the sum of the terms with exactly one

eigenvalue in B. This establishes (a). Formally, (b) and (c) can be established in the same way,

by differentiation of the eigenvalues if they are smooth. More generally, the same proof can be

adapted by expanding ϕ in terms of minors. As for (d), successive differentiations of the equation

F (D2
xtu+ In+1) = ε gives

Fαβuαβµ = 0

Fαβuαβµµ = −Fαβ,γδuαβµuγδµ.(2.14)

Multiplying the expression for ϕαβ in (c) by Fαβ, and making use of this last identity gives (d).

Q.E.D.

3. The Monge-Ampère equation

We consider now more specifically the Monge-Ampère equation, where

F (M) = detMαβ(3.1)

and ε is a strictly positive constant. Our main results in this situation can be stated as follows:

Proposition 2. Let u be a solution of the equation F (D2
xtu+In) = 0 on Xn×T , which is convex

in the sense that D2
xtu+In+1 > 0. Define µ0 as in (2.3), and let K be either n or n−1. Then the

set of interior points x0 where the matrix D2
xu+ In − µ0In has a zero eigenvalue of multiplicity

K is open.

Proof: Let x0 be an interior point where D2u + In − µ0In has a zero eigenvalue of multiplicity

K. We treat first the easier case when K = n. In this case, the function ϕ is, explicitly,

ϕ =

n∑

m=1

vmm.(3.2)

Consider next the expression (2.13) for the function Fαβϕαβ . Since |∇uij | 6 C ϕ
1

2 for 1 6 i, j 6 n,

we obtain modulo O(ϕ+ |∇ϕ|),
Fαβϕαβ = −

∑

m∈B

Fαβ,γδuαβmuγδm = −2
∑

m∈B

F tt,γδuttmuγδm = −2
∑

m∈B

uttm∂mF tt.(3.3)

For the Monge-Ampère equation, F tt is simply the determinant

F tt =

n∏

i=1

µi.(3.4)
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where µi denotes the eigenvalues of D2u+ I. Since we have then λi = µi − µ0, we can write

F tt =
n∑

p=0

σn−p(λ1, · · · , λn)µ
p
0.(3.5)

Since 0 6 λi 6 ϕ for all i, we have

n−2∑

p=0

|∇σn−p(λ1, · · · , λn)| 6 C ϕ, |∇σ1(λ1, · · · , λn)| = |∇ϕ|.(3.6)

Thus |∂mF tt| 6 C(ϕ+|∇ϕ|). Altogether, we obtain the inequality (2.5) and the desired statement

follows from Proposition 1.

We consider now the case when the matrix D2
xu+ In − µ0In admits at an interior point x0 a

zero eigenvalue of multiplicity n − 1. Thus there is only one good direction, which we label g,

G = {g}, and all other space directions, B = {1 6 m 6 n; m 6= g} are bad. The expression (c)

for Fαβϕαβ in Lemma 1 becomes in this case

Fαβϕαβ = −
∑

m∈B

(
vgg

∑

αβ,γδ

Fαβ,γδvαβmvγδm + 2
∑

αβ

Fαβumgαumgβ) +O(|∇ϕ|+ |ϕ|).(3.7)

The next step is to derive an identity for the term Fαβumgαumgβ :

Lemma 2. We have

Fαβumgαumgβ = (ugg + 1)
∑

α,β 6=g

Fαβ,gg(umgαumgβ − umgguαβm) +O(|∇ϕ|+ |ϕ|)(3.8)

Proof: Recall that differentiating the equation gives

Fαβuαβm = 0(3.9)

Extracting the terms involving the good direction g gives,

F gguggm + 2
∑

α6=g

Fαguαgm = −
∑

α,β 6=g

Fαβuαβm.(3.10)

Returning to the expression Fαβumgαumgβ , we can write

Fαβumgαumgβ = F ggumggumgg + 2
∑

a6=g

Fαgumgαumgg +
∑

α,β 6=g

Fαβumgαumgβ

= umgg(F
ggumgg + 2

∑

α6=g

Fαgumgα) +
∑

α,β 6=g

Fαβumgαumgβ

=
∑

α,β 6=g

Fαβ(umgαumgβ − umgguαβm).(3.11)

We exploit the fact that F is an affine function of any of the entries to write

Fαβ = Fαβ,gg(ugg + 1) + Fαβ

|ugg+1=0
.(3.12)
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The identity in the lemma follows then from the following claim
∑

m∈B

∑

α,β 6=g

Fαβ
|ugg+1=0

umgαumgβ = O(|∇ϕ| + ϕ)

∑

m∈B

∑

α,β 6=g

Fαβ
|ugg+1=0

umgguαβm = O(|∇ϕ| + ϕ).(3.13)

To see the first identity above, we note that the terms with α ∈ B and β ∈ B are O(ϕ). Thus

we need only consider the terms with at least α or β equal to t. But then the cofactor Fαβ

|ugg+1=0

has either a full column or a full row of zeroes, and must be 0.

Next, we consider the second identity above. For the same reason as above, Fαβ

|ugg+1=0
= 0 if

either α or β is equal to t. Thus we can restrict to α, β ∈ B. Write now
∑

α,β 6=g

Fαβ
|ugg+1=0

uαβm =
∑

α,β∈B

Fαβ
|ugg+1=0

uαβm +O(|∇ϕ|+ ϕ)

=
∑

i∈B

F ii
|ugg+1=0

uiim + 2
∑

i,j∈B,i<j

F ij
|ugg+1=0

uijm +O(|∇ϕ|+ ϕ).(3.14)

By inspection, we observe that

• If i, j ∈ B, then F ij
|ugg+1=0

= 0 unless i = j.

• If i ∈ B, then F ii
|ugg+1=0

= u2gt
∏

j∈B,j 6=i(ujj + 1).

The last identity implies
∑

m∈B

F ii
|ugg+1=0

uiim = u2gtµ
n−2
0

∑

m∈B

uiim +O(ϕ)

= O(|∇ϕ|+ ϕ).(3.15)

The lemma is proved. Q.E.D.

For our purposes, it is convenient to rewrite the identity in the preceding lemma in the following

form: note that uαβmuγδm = O(|∇ϕ|+ ϕ) if both α and β are in B. Since neither of them is g,

we can assume that at least one of them is t. Thus

Lemma 3. We have

Fαβumgαumgβ = (ugg + 1)
(
F tt,ggu2tgm + 2

∑

i∈B

F it,ggumgiumgt

)

−(ugg + 1)
∑

α,β 6=g

Fαβ,ggumgguαβm +O(|∇ϕ|+ |ϕ|).(3.16)

Our next task is to simplify the expression
∑

αβ,γδ

Fαβ,γδuαβmuγδm.(3.17)
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First, we isolate the contribution of the index (gg), which will cancel out with the corresponding

term from the first identity,
∑

αβ,γδ

Fαβ,γδuαβmuγδm = 2
∑

αβ

Fαβ,gguαβmuggm +
∑

(αβ),(γδ)6=(gg)

Fαβ,γδuαβmuγδm.(3.18)

Next, we work out the remaining contributions. For this, it is convenient to introduce the

following sets of indices, A = {(gt), (tg), (tt)} , and B = Ac, so that (αβ) is in B if and only if at

least one of the indices α or β is in B.

• If both (αβ) ∈ B and (γδ) ∈ B, then |uαβm|+ |uγδm| = O(ϕ
1

2 ), and thus these contributions

are O(ϕ) and can be neglected.

• The contributions when both (αβ) and (γδ) are in A can be worked out explicitly,
∑

(αβ)∈A,(γδ)∈A

Fαβ,γδuαβmuγδm = F tg,gtu2tgm + F gt,tgu2tgm = −2u2tgm
∏

j∈B

ujj = −2F tt,ggu2tmg .(3.19)

• The remaining contributions are

2
∑

(αβ)∈B,(γδ)∈A

Fαβ,γδuαβmuγδm.(3.20)

To identify these terms, we divide the set B of indices (αβ) with at least one index in B into

three mutually disjoint sets:

B0 = {(αβ);α ∈ B, β ∈ B}
B1 = {(αβ);α ∈ {g, t}, β ∈ B}
B2 = {(αβ);α ∈ B, β ∈ {g, t}}

The sum breaks up correspondingly

2
∑

(αβ)∈B,(γδ)∈A

Fαβ,γδuαβmuγδm = 2
∑

a=0,1,2

∑

(αβ)∈Ba

(
Fαβ,ttuαβmuttm

+(Fαβ,gt + Fαβ,tg)uαβmugtm
)
.(3.21)

Each of these terms can now be worked out explicitly. First, we have
∑

(αβ)∈B1∪B2

Fαβ,ttuαβmuttm = 0(3.22)

because we can see by inspection that Fαβ,tt is given then by a matrix with a column or a row

of 0 and hence must be 0.

Next, we have
∑

(ij)∈B0

F ij,ttuijmuttm =
∑

i∈B

uiimuttm
∏

j 6=i,j∈B

(ujj + 1).(3.23)
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This is because F ij,tt = 0 unless i = j, and the entries F ii,tt can be easily computed, giving the

formula above. Since we can replace ujj + 1 by µ0 modulo O(ϕ), we obtain

∑

(ij)∈B0

F ij,ttuijmuttm = µn−2
0

∑

i∈B

uiimuttm +O(ϕ) = O(|∇ϕ|+ ϕ).(3.24)

It remains only to determine the sum

∑

a=0,1,2

∑

(αβ)∈Ba

(Fαβ,tg + Fαβ,gt)uαβmugtm.(3.25)

Consider first the contributions from (αβ) ∈ B2, i.e. (αβ) = (αg) or (αβ) = (αt). Then it is

clear that we obtain

(αβ) = (αg) : Fαg,tg + Fαg,gt = Fαg,gt = −Fαt,gg

(αβ) = (αt) : Fαt,tg + Fαt,gt = Fαt,tg = −Fαg,tt = 0.(3.26)

Thus we find

∑

(αβ)∈B2

(Fαβ,tg + Fαβ,gt)uαβmugtm = −
∑

α∈B

Fαt,gguαgmugtm.(3.27)

Similarly, the contributions from (αβ) ∈ B1 correspond to (αβ) = (gβ) or (αβ) = (tβ), and work

out to be

(αβ) = (gβ) : F gβ,tg + F gβ,gt = F gβ,tg = −F gg,tβ

(αβ) = (tβ) : F tβ,tg + F tβ,gt = −F tt,gβ = 0,(3.28)

and

∑

(αβ)∈B1

(Fαβ,tg + Fαβ,gt)uαβmugtm = −
∑

β∈B

F gg,tβugβmutgm.(3.29)

Finally, we come to the contributions from (αβ) ∈ B0. Here it is seen by inspection that only

(αβ) = (αβ) will contribute, and thus

∑

(αβ)∈B0

(Fαβ,tg + Fαβ,gt)uαβmugtm =
∑

α∈B

(Fαα,tg + Fαα,gt)uααmugtm

= 2
∑

α∈B

Fαα,tguααmugtm.(3.30)

But an inspection shows that for α = i ∈ B,

F ii,tg = ugt
∏

j 6=i,j∈B

(ujj + 1)(3.31)
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so that
∑

(αβ)∈B0

(Fαβ,tg + Fαβ,gt)uαβmugtm = 2ugt
∑

i∈B

uiimugtm
∏

j 6=i,j∈B

(ujj + 1)

= 2ugtµ
n−2
0

∑

i

uiimugtm +O(ϕ)

= O(|∇ϕ|+ ϕ).

(3.32)

In summary, we have proved

Lemma 4. We have the following identity
∑

αβ,γδ

Fαβ,γδuαβmuγδm = 2
∑

αβ

Fαβ,gguαβmuggm

−2(F tt,ggu2tmg + 2
∑

i∈B

F it,gguigmugtm) +O(|∇ϕ|+ ϕ).(3.33)

Comparing the identities in Lemmas 3 and 4, we obtain the main lemma in this case,

Lemma 5. We have

Fαβumgαumgβ = −(ugg + 1)Fαβ,γδuαβmuγδm +O(|∇ϕ|+ ϕ).(3.34)

and, finally, since vgg = ugg + 1− µ0,

Fαβϕαβ = 2µ0 F
αβ,γδuαβmuγδm +O(|∇ϕ|+ ϕ).(3.35)

The first term on the right hand side is negative, modulo O(ϕ+ |∇ϕ|): indeed, Lemma 5 shows

that it is given by −(ugg + 1)−1Fαβumgαumgβ. But ugg + 1 > 0 and, in the case of the Monge-

Ampère equation, the matrix Fαβ is just the matrix of minors of D2
xtu+ In+1, which is positive.

Thus we obtain again the key estimate (2.5). Q.E.D.

4. The Donaldson equation

In our notation, the Donaldson equation (1.2) is an equation of the form (2.1), with F (M)

given by

F (M) = Mtt(1 +
n∑

j=1

Mjj)−
n∑

j=1

M2
jt.(4.1)

We again consider the Dirichlet problem on the space Xn×T , with the usual boundary condition

(1.3). Our main result is the following:

Proposition 3. Let u be a solution of the Donaldson equation F (D2u + I ′) = 0 on Xn × T

satisfying D2
xu+ In > 0, with F as in (4.1). Define µ0 > 0 as in (2.3), and let K be either n or

n− 1. Then the set of interior points x0 where the matrix D2
xu+ In−µ0In has a zero eigenvalue
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of multiplicity K is open. If µ0 = 0 in (2.3), then the set of interior points x0 where the matrix

D2
xu+ In has a zero eigenvalue of multiplicity K > n− 2 is open.

Proof: As in the previous sections, we work at an arbitrary point x in a neighborhood of a given

point x0 where the matrix D2u+ In−µ0In admits a zero eigenvalue of multiplicity K. The three

values K = n, n − 1, n − 2 correspond respectively to #G = 0, 1, 2, where #G is the number of

good directions. The most difficult case is #G = 2 (corresponding to the case K = n− 2). Thus

we write down the calculations for general #G, and then specialize to the cases of interest.

We use the same notations as in Section §2. If we use ϕ = σn−K+1 as before, and apply Lemma

1 with the function F (M) corresponding to Donaldson’s equation, we would find

Fαβϕαβ = −2
∑

m∈B

Q̃m (
∏

g∈G

vgg) +O(ϕ+ |∇ϕ|),

with

Q̃m = uttm∆um −
∑

j∈G

u2tjm + utt
∑

j,k∈G

u2jkm
vjj

+ (n+∆u)
∑

j∈G

u2tjm
vjj

− 2
∑

j∈G

n∑

k=1

utkutjmujkm
vjj

.

We notice that there are linear terms of the form ∇ukm, k,m ∈ B. When n > 3 and K = n− 2,

these linear terms cannot be bounded by ϕ+ |∇ϕ|. To overcome this obstacle, we use instead

ϕ = σn−K+1 + q, where q =
σn−K+2

σn−K+1
.(4.2)

The regularity and strong concavity of q was proved in [2]. Following the arguments in [2, 3] (e.g,

see eq. (60) in [3], in our case, F is independent of ∇u, u, x) for ϕ defined in (4.2), we obtain

N∑

α,β=1

Fαβϕαβ = −2
∑

m∈B

[σl(G) +
σ2
1(B|m)− σ2(B|m)

σ2
1(B)

]Q̃m +O(ϕ+
∑

i,j∈B

|∇uij |)

−
N∑

α,β=1

Fαβ[

∑
i∈B ViαViβ

σ3
1(B)

+

∑
i,j∈B,i 6=j uijαujiβ

σ1(B)
],(4.3)

where

Q̃m = uttm∆um −
∑

j∈G

u2tjm + utt
∑

j,k∈G

u2jkm
vjj

+ (n+∆u)
∑

j∈G

u2tjm
vjj

− 2
∑

j∈G

n∑

k=1

utkutjmujkm
vjj

= Qm +Q∗
m,(4.4)

Qm = uttm∆um −
∑

k∈G

u2ktm + utt
∑

j,k∈G

u2mjk

1 + ujj

+(n+∆u)
∑

j∈G

u2mjt

1 + ujj
− 2

∑

j,k∈G

utkutjmumjk

1 + ujj
,(4.5)
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Q∗
m =

∑

m∈B

∑

j∈G

Fαβ(
1

vjj
− 1

1 + ujj
)umjαumjβ,(4.6)

and σl(B) =
∑

i∈B vii, σl(B|m) =
∑

i 6=m,i∈B vii,

(4.7) Viα = uiiασ1(B)− uii

(∑

j∈B

ujjα

)
.

The term
∑

i,j∈B |∇uij | in (4.3) can be controlled by ϕ, |∇ϕ| and the last term in (4.3) in the

same way as in [2, 3]. We obtain, for some C > 0,

N∑

α,β=1

Fαβφαβ 6 −2C
∑

m∈B

(Qm +Q∗
m) +O(ϕ+ |∇ϕ|).(4.8)

Since µ0 > 0, we have 1
vjj

− 1
1+ujj

> 0. It is easy to see that Q∗
m in (4.6) is nonnegative

by the positivity of (Fαβ). Thus we would be done if we can show that Qm > 0, modulo

O(ϕ + |∇ϕ|). Since the contributions of each index m ∈ B are entirely similar, we can consider

them individually. To simplify the notation, we set m = 1, and drop the subindex m from Qm.

4.1. Using the equation. Differentiating the equation gives

utt1 = −utt
∆u1

n+∆u
+

2

n+∆u

∑
utjutj1.(4.9)

Thus Q can be written as

Q = A+B + C(4.10)

with A,B,C defined by

A ≡ −utt
(∆u1)

2

n+∆u
+ utt

∑

j,k∈G

u21jk
1 + ujj

B ≡ 2

n+∆u
∆u1

∑
utjutj1 − 2

∑

j,k∈G

utkutj1ujk1
1 + ujj

C ≡
∑

j∈G

u21jt(
n+∆u

1 + ujj
− 1).(4.11)

4.2. The A terms. The A terms can be re-written as follows, modulo O(ϕ+ |∇ϕ|),

A =
utt

2(n +∆u)

∑

j,k∈G,j 6=k

((1 + ukk)ujj1 − (1 + ujj)ukk1)
2

(1 + ujj)(1 + ukk)
+ utt

∑

j,k∈G,j 6=k

u21jk
1 + ujj

.(4.12)
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To see this, just write

− (∆u1)
2

n+∆u
+

∑

j,k∈G

u21jk
1 + ujj

=
∑

u21jj(
1

1 + ujj
− 1

n+∆u
)−

∑

j 6=k

ujj1ukk1
n+∆u

+
∑

j 6=k

u21jk
1 + ujj

=
∑ u21jj

(1 + ujj)(n +∆u)

∑

k 6=j

(1 + ukk)−
∑

j 6=k

ujj1ukk1
n+∆u

+
∑

j 6=k

u21jk
1 + ujj

=
1

2

∑

j 6=k

1

n+∆u
(
1 + ukk
1 + ujj

u2jj1 +
1 + ujj
1 + ukk

u2kk1)

− 1

n+∆u

∑

j 6=k

ujj1ukk1 +
∑

j 6=k

u21jk
1 + ujj

=
1

2(n +∆u)

∑

j 6=k

((1 + ukk)ujj1 − (1 + ujj)ukk1)
2

(1 + ujj)(1 + ukk)
+

∑

j 6=k

u21jk
1 + ujj

.

4.3. The B terms. The B terms can be re-written as

B = −
∑

j 6=k

utjutj1
(1 + ujj)(n +∆u)

(vjj1(ukk + 1)− vkk1(ujj + 1))− 2
∑

j 6=k

utkutj1u1jk
1

1 + ujj
.(4.13)

To see this, we decompose the B terms as follows

2

n+∆u
∆u1

∑

k∈G

utkutk1 =
2

n+∆u

∑
ujj1

∑

k∈G

utkutk1 = B1 +B2(4.14)

and

−2
∑

j,k∈G

utkutj1ujk1
1 + ujj

= B3 − 2
∑

j,k∈G,j 6=k

utkutj1ujk1
ujj

(4.15)

with the terms B1, B2, B3 defined by

B1 = 2
∑

k

utkutk1ukk1
n+∆u

B2 = 2
∑

j 6=k

utkutk1ujj1
n+∆u

B3 = −2
∑ utkutk1ukk1

1 + ukk
.(4.16)

The terms B1 and B3 can be regrouped as

B1 +B3 = −2
∑

utkutk1ukk1(
1

1 + ukk
− 1

n+∆u
)

= −2
∑

utkutk1ukk1
1

(1 + ukk)(n +∆u)

∑

j 6=k

(1 + ujj),(4.17)
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and, combined with B2, as

B1 +B2 +B3 = −2
∑

utkutk1ukk1
1

(1 + ukk)(n+∆u)

∑

j 6=k

(1 + ujj) + 2
∑

j 6=k

utkutk1ujj1
n+∆u

= 2
∑

j 6=k

utkutk1
(1 + ukk)(n+∆u)

(ujj1(1 + ukk)− ukk1(1 + ujj)).

4.4. A second formula for Q. For convenience, we write here the formula for Q obtained in

this manner

Q = utt
{ 1

2(n +∆u)

∑

j 6=k

((1 + ukk)ujj1 − (1 + ujj)ukk1)
2

(1 + ujj)(1 + ukk)
+

∑

j 6=k

u21jk
1 + ujj

}

− 2utjutj1
(1 + ujj)(n+∆u)

(ujj1(1 + ukk)− (1 + ujj)ukk1)− 2
∑

j 6=k

utkutj1u1jk
1 + ujj

+
∑

j∈G

u21jt(
n+∆u

1 + ujj
− 1).(4.18)

We can complete the square in ukkujj1 − ujjukk1, and obtain

Q =
1

2

∑

j 6=k

{
(

utt
(1 + ujj)(1 + ukk)(n +∆u)

)
1

2 ((1 + ukk)ujj1 − (1 + ujj)ukk1)

+(
utkutk1
1 + ukk

− utjutj1
1 + ujj

)(
(1 + ujj)(1 + ukk)

utt(n+∆u)
)
1

2

}2

+D + utt
∑

j 6=k

u21jk
1 + ujj

− 2
∑

j 6=k

utkutj1ujk1
1 + ujj

(4.19)

where we have introduced the D terms

D ≡ −1

2

∑

j 6=k

(1 + ujj)(1 + ukk)

utt(n+∆u)
(
utkutk1
1 + ukk

− utjutj1
1 + ujj

)2 + C

= −1

2

∑

j 6=k

(1 + ujj)(1 + ukk)

utt(n+∆u)
(
utkutk1
1 + ukk

− utjutj1
1 + ujj

)2 +
∑

j∈G

u21jt(
n+∆u

1 + ujj
− 1).(4.20)

When #G 6 1, the term Q reduces to the term D, and D reduces in turn to a manifestly positive

expression. Thus the cases #G 6 1 are now proved.

4.5. The D terms. In the rest of the proof, we will assume µ0 = 0 and #G = 2.
15



Expanding the squares in the D terms gives

D = −1

2

∑

j 6=k

1

utt(n+∆u)
(
1 + ujj
1 + ukk

u2tku
2
tk1 +

1 + ukk
1 + ujj

u2tju
2
tj1)

+
∑

j 6=k

1

utt(n+∆u)
utkutk1utjutj1 +

∑
u21jt

1

1 + ujj

∑

k 6=j

(1 + ukk)

=
∑

u21jt(
1

(1 + ujj)

∑

k 6=j

(1 + ukk)−
∑

k 6=j

u2tj(1 + ukk)

utt(n+∆u)
) +

∑

j 6=k

utkutk1utjutj1
utt(n +∆u)

=
∑

j∈G

u21jt
∑

k 6=j

1 + ukk
1 + ujj

utt(1 + ∆u)− u2tj
utt(n+∆u)

+
∑

j 6=k

utkutk1utjutj1
utt(n+∆u)

.

We can now make use of the equation

utt(n+∆u)− u2tj =
∑

ℓ 6=j

u2tℓ + ε(4.21)

and obtain

D =
∑

u21jt
∑

k 6=j

1 + ukk
1 + ujj

u2tk
utt(n +∆u)

+
∑

j 6=k

1

utt(n+∆u)
utkutk1utjutj1

+
∑

u21jt
∑

k 6=j

1 + ukk
1 + ujj

1

utt(n+∆u)
(
∑

ℓ 6=j,k

u2tℓ + ε).

(4.22)

Thus we arrive at

D =
1

2

∑

j 6=k

1

(1 + ujj)(1 + ukk)utt(n+∆u)
(utj1utk(1 + ukk) + utk1utj(1 + ujj))

2

+
∑

u21jt
∑

k 6=j

1 + ukk
1 + ujj

1

utt(n+∆u)
(
∑

ℓ 6=j,k

u2tℓ + ε).(4.23)

4.6. A third formula for Q. We summarize the expression for Q obtained in this manner

Q =
1

2

∑

j 6=k

{
(

utt
(1 + ujj)(1 + ukk)(n+∆u)

)
1

2 ((1 + ukk)ujj1 − (1 + ujj)ukk1)

+(
utkutk1
1 + ukk

− utjutj1
1 + ujj

)(
(1 + ujj)(1 + ukk)

utt(n+∆u)
)
1

2

}2

+
1

2

∑

j 6=k

1

(1 + ujj)(1 + ukk)utt(n+∆u)
(utj1utk(1 + ukk) + utk1utj(1 + ujj))

2

+
∑ 1

utt(n+∆u)
u21jt

∑

k 6=j

1 + ukk
1 + ujj

(
∑

ℓ 6=j,k

u2tℓ + ε) + E(4.24)
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where the term E is defined by

E ≡ utt
∑

j 6=k

u21jk
1 + ujj

− 2
∑

j 6=k

utkutj1u1jk
1

1 + ujj
.(4.25)

4.7. The E terms. We rewrite the E term as follows,

E =
1

2

∑

j 6=k

utt(
u21jk

1 + ujj
+

u21kj
1 + ukk

)−
∑

j 6=k

u1jk(
utkutj1
1 + ujj

+
utjutk1
1 + ukk

)

=
1

2

∑

j 6=k

1

(1 + ujj)(1 + ukk)

{
u21jk((1 + ujj) + (1 + ukk))utt

−2u1jk(utkutj1(1 + ukk) + utjutk1(1 + ujj))
}
.(4.26)

4.8. Differences when #G > 3. It is here that there seems to be a significant difference between

the cases of #G = 2 and #G > 2. When #G = 2 and µ0 = 0, we have, modulo O(ϕ),

(1 + ujj) + (1 + ukk) = n+∆u,∀j 6= k ∈ G,(4.27)

but not otherwise.

4.9. Case #G = 2. When #G = 2, the argument can be completed as follows. Using the fact

that (1 + ujj) + (1 + ukk) = n+∆u, we can write

E =
1

2

∑

j 6=k

u21jk(n+∆u)utt − 2u1jk(utkutj1(1 + ukk) + utjutk1(1 + ujj))

(1 + ujj)(1 + ukk)
(4.28)

and hence

E =
1

2

∑

j 6=k

1

(1 + ujj)(1 + ukk)

{
u1jk

√
(n+∆u)utt −

utkutj1(1 + ukk) + utjutk1(1 + ujj)√
utt(n+∆u)

}2

−1

2

∑

j 6=k

1

(1 + ujj)(1 + ukk)

1

utt(n+∆u)
(utkutj1(1 + ukk) + utjutk1(1 + ujj))

2

Note now that the next to last term in E cancels a term in the third formula for Q.

4.10. A fourth formula for Q. Thus we have obtained, when #G = 2,

Q =
1

2

∑

j 6=k

{
(

utt
(1 + ujj)(1 + ukk)(n +∆u)

)
1

2 ((1 + ukk)ujj1 − (1 + ujj)ukk1)

+(
utkutk1
(1 + ukk)

− utjutj1
(1 + ujj)

)(
(1 + ujj)(1 + ukk)

utt(n+∆u)
)
1

2

}2

+
1

2

∑

j 6=k

{
u1jk

√
(n+∆u)utt − utkutj1(1+ukk)+utjutk1(1+ujj)√

utt(n+∆u)

}2

(1 + ujj)(1 + ukk)

+
∑ 1

utt(n+∆u)
u21jt

∑

k 6=j

1 + ukk
(1 + ujj)

(
∑

ℓ 6=j,k

u2tℓ + ε).(4.29)
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This expression for Q shows that it is non-negative. The proof of Proposition 3 is complete.

5. Proof of the main theorems

Theorems 1 is a consequence of Proposition 2. In this case, since ε > 0, we have D2
txu+In+1 >

0. If the matrix D2
xu+In−µ0In has a zero eigenvalue on the boundary of X×I, there is nothing

to prove. Otherwise, if x0 is an interior point with a zero eigenvalue of multiplicity K > 1, then

all possible values of K are covered by Proposition 2 when n 6 2. Thus D2
xu+ In−µoIn vanishes

everywhere, and in particular again on the boundary.

The argument for Theorem 2 is similar using Proposition 3, except that we need to show first

that the solution u satisfies the space convexity condition D2
xu + In > 0 for each t. In view of

Proposition 3, we need to create a homotopic deformation path. Note that u = 1 + t2 is the

solution to the equation

utt(n +∆u)−
n∑

k=1

u2tk = 2n,

with boundary data

u(x, 0) = 1, u(x, 1) = 2, ∀x ∈ X.

For ε > 0 and given boundary data u0, u1 satisfying (1.4), for each 0 6 s 6 1, we consider the

following family of equations

(5.1) utt(n +∆u)−
n∑

k=1

u2tk = sε+ 2n(1− s),

with boundary data

(5.2) u(x, 0) = su0(x) + 1− s, u(x, 1) = su1(x) + 2(1− s), ∀x ∈ X.

It is easy to see that boundary data (5.2) satisfies the condition (1.4) (possibly with different

λ > 0, but independent of s). By [17], the equation (5.1) has a unique smooth solution for each

s ∈ [0, 1]. By continuity, the solution u satisfies D2
xu + In > 0 for each t when s > 0 is small.

Let s0 > 0 be the first value of s where D2
xu+ In has a zero eigenvalue for some (x, t) ∈ X × T ,

if such a point exists. Then for all s < s0, D
2
xu+ In > 0 and we can apply Proposition 3 to the

equation with Dirichlet data corresponding to this value of s. It follows that D2
xu + In > λ for

s < s0. By continuity, this inequality still holds at s = s0. This is a contradiction, and thus no

point with D2
xu + In with a zero eigenvalue exists. This establishes the strict space convexity

of the solution for all 0 6 s 6 1. By applying again Proposition 3, we obtain the precise lower

bound D2
xu+ In > λ for all t, s ∈ [0, 1]. Theorem 2 is proved.

Finally, Theorem 3 follows directly from the last statement of Proposition 3, and Theorem 4

follows directly from Theorem 3.
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